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Universidade Técnica de Lisboa
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Abstract—This paper addresses the self-management of in-
memory distributed data grid platforms. A growing number
of applications rely in these platforms to speed up access to
large sets of data. However, they are complex to manage due
to the diversity of configuration and load profiles. The proposed
approach employs an adaptation policy expressed in terms of
high-level goals to facilitate the task of the system manager,
and address the complexity issues posed by the management of
multiple configurations. The approach is validated experimentally
using the open-source RedHat´s Infinispan platform.

I. INTRODUCTION

Today, many services such as Twitter, Slashdot, Facebook,

and Wikipedia, among many others, rely on in-memory dis-

tributed data grids to substantially speed up their websites.

Distributed data grids supply applications with a scalable stor-

age repository where data can be accessed without bottlenecks

and shared across a pool of virtual servers. Platforms such as

Memcached [1], Infinispan [2], Coherence [3], Scale Out [4],

or Velocity [5], provide fast access to data, decoupling the

management of persistence from the critical request processing

path. By dramatically improving the deployment of scalable

applications, distributed data grids play a key role in cloud-

based infrastructures.

In-memory distributed data grids, or simply IMDDGs, are

able to adapt their operation in response to changes in the

workload. In fact, on-demand elasticity is one of the main

features of any middleware platform for cloud computing.

These platforms offer several configuration options that can be

adapted with significative impact on the system performance.

The scaling out process is an adaptation that allows to respond

to sudden changes in demand, for instance, flash crowds. This

adaptation adds or removes resources as necessary, providing

the elasticity so necessary in cloud computing. The elasticity

can be obtained using many aspects such as cache size, number

of cache cluster nodes, number of copies of each object,

underlying communication protocols, eviction algorithms, the

locking and deadlock detection schemes, just to name a few.

We propose an approach that allows to autonomously man-

age the many configurable settings of the platform and other

associated middleware. The approach relies in high-level goal

policies to guide the self-management of the platform settings.

The policy is defined by a system manager, that is aware of

the application needs, while the configurations are provided

by the platform developers, experienced with its behavior. In

this paper, we focus on aspects related with data replication, as

we consider that fault-tolerance is also a fundamental aspect

to manage in cloud-computing platforms.

The contribution of this work is an approach for the self-

management of IMDDGs which provides a clear separation of

system manager and platform developers functions. This sep-

aration allows to offer the adequate abstraction level for each,

while providing an effective manner to tackle the complexity

of self-management. This contribution is validated using a

prototype of the approach on top of Infinispan (by RedHat).

II. IMDDGS

IMDDG platforms are rich in configurable settings, resulting

in a wide variety of system behaviors, that influence signif-

icantly the system performance. Thus, the management of

so many behaviors becomes overwhelming when the system

is subject to variable load. In this section, we address the

metrics and the reconfiguration mechanisms more relevant for

the aspects related with data replication. The key performance

indicators (KPIs) for IMDDGs used in our experimental eval-

uation are the following.

• Service Ratio (SR): Let RI be the rate of incoming (read

and write) requests from the application to the IMDDG,

i.e., the current load on the system. Let RS the rate at

which these requests are served, i.e., the throughput. The

service ratio is defined as SR = RS/RI . Ideally, the

service ratio should be 1.

• Resource Consumption (C): This metric captures how

many resources are used to maintain the cache opera-

tional. As noted before, it is important that the IMDDG

is able to scale elastically with demand to save resources.

In terms of reconfiguration, different implementations of

IMDDGs offer different reconfiguration mechanisms. The

adaptation of the number of servers/replicas is cross-platform.

More servers may support additional load (increasing the

service ratio, if below 1) but they consume more resources.

Thus, it is of interest to only have the strictly needed servers.

III. SELF-MANAGEMENT OF IMDDGS

The aim of this approach is to automate the management of

the configurable settings of IMDDGs, where adaptations are

selected and deployed automatically in response to runtime
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changes. This avoids the complex task of manually deter-

mining which system configuration is the more appropriated

for the current execution conditions. The approach’s planning

phase targets the complex trade-offs identified previously,

making a clear distinction between guiding the system man-

agement and achieving it. This distinction allows the manager

to focus on the high-level management of the system and

benefits from the expertise of developers in terms of platform

configuration and its impact on performance.

A. Architecture

The approach relies on an external controller that follows

a control loop model [6], [7], where the main activities

performed by the control layer are i) the collection of relevant

data from sensors; ii) the analysis of the collected data; iii) the

decision on how to adapt the system to reach a desirable state;

and iv) the implementation of the decision via the available

effectors. The main activities of the control loop are carried

out by three components: Monitor, Planner, and Executor. The

Monitor is independent of the IMDDG platform and collects

data captured by several sensors present in each node of the

cache cluster. The Monitor also analyzes this data and detects

when the system is in an undesirable state. When such a state

is identified, the Monitor notifies the Planner, triggering an

event carrying the relevant state information. In reaction to

such notifications, the Planner determines how to adapt the

system and, once a decision is made, it passes this decision to

the Executor. The Executor controls the adaptation process,

relying in a number of effectors, which exist at every node

and implement the reconfiguration mechanisms described in

the previous section.

B. Planning based on Goal Policies

The proposed approach employs high-level goal policies [8],

[9] to define the behavior goals for the system. This choice

offers several advantages. One is that it allows to express the

management guidelines independently of the used platform.

Additionally, the goals can be changed without affecting the

remainder of the controller. Another advantage is that it allows

to explore the many trade-offs of the reconfigurable options

in terms of performance. Also, it allows to express behavior

goals not related with performance; this is useful to express

the self-* properties of the autonomic system, such as the

self-healing property, by maintaining a level of redundancy to

survive failures and address failovers. Finally, this approach is

flexible enough to change the management guidelines without

changing the adaptations or the effectors.

While there are other approaches that also employ goal

policies to achieve an autonomic behavior [8], [10], they do not

address distributed systems. IMDDGs not only are distributed

but their adaptation depends on the system topology, making

the distribution an unavoidable aspect. This is also the case

of [9], which led us to evolve the approach to support IMD-

DGs. Among other features, the new model introduces scopes
for monitoring and actuation in a distributed setting, with

system, component, node, and instance-level scopes. The set of
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Figure 1. Overview of goal based planning

adaptations was also expanded to consider new adaptations and

targets. Finally, the adaptation selection process was revised,

in order to take into account the new model, adaptations, and

other aspects associated with the distribution.

Figure 1 presents an overview of the planning phase based

on goal policies. The planning encompasses an offline and an

online phase. During the offline phase, a set of adaptation

rules is generated from a goal policy and a specification

of the available adaptations. Each rule defines a collection

of adaptations that might correct a particular deviation in

the system behavior. The rule generation process itself is

executed in two steps. The first step determines the types of

deviations that may affect the system behavior. The second

step determines the adaptations that might help to correct each

deviation. During runtime, when a deviation occurs, an event is

triggered and forces the execution of the online phase. The rule

triggered by that event is evaluated against the current system

state and the policy. One or more adaptations are selected as

a result. Next, we describe in more detail the key elements of

the planning phase.

1) KPIs: The KPIs allow to characterize the system be-

havior and assess its state. The specification of a KPI includes

its name, the value type, a function defining how the global

value is calculated from local values, and the acceptable error

margin (Error) in any evaluation of the KPI (any two values

are equivalent if the distance is below the margin). Four types

of KPIs can be defined: system, node, component and instance-
sensed. The values of system-sensed KPIs are measured for

the entire system as a whole. The values of node-sensed
KPIs are measured by individual node and its specification

includes an aggregation function AF, which defines how the

value of the KPI for the entire system is obtained. The

values of component-sensed KPIs are measured by individual

component as a whole and its specification includes a com-
bination function CF, which defines how the KPI value for

the entire system is obtained. Finally, the values of instance-
sensed KPIs are measured per component instance, i.e., by

individual component in each node. The specification includes

a combination function and an aggregation function. Some

examples of KPIs can be found in Section IV. The approach

also allows the definition of composite KPIs (CKPIs), whose

values are calculated using a Join Function of other KPIs.

2) Components and Adaptations: The component specifi-

cation includes the description of all the components available

for use in the system. This description includes any con-
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Type Actions
Component c.setParameter(param,value) c.replaceBy(c’)
Instance n.c.setParameter(param,value) n.c.replaceBy(c’)
Node n.addComponent(c) n.removeComponent(c)

Table I
ADAPTATION ACTIONS PER TYPE OF ADAPTATION

figurable parameters. The adaptation specification describes

the adaptations that can be used to manage the system.

Adaptations are defined in terms of a fixed set of actions. To

address both distributed and non-distributed components, three

groups of adaptations were considered, characterized by their

scope: component, instance, and node adaptations. Component

adaptations target a component c, affecting all the instances in

the system. Instance adaptations only affect an instance of the

component c in a particular node n. Finally, node adaptations

affect only a node n. The accepted actions per adaptation

type are depicted in Table I. Each adaptation also declares the

impact of the declared actions on the system KPIs and CKPIs

and the time for stabilization. The impact is an estimate of

the values of affected KPIs after the adaptation. Examples of

adaptations are provided in Section IV.

3) Goal Policy: Goals are the high-level directives that will

guide the system management. These goals describe what is

the acceptable behavior in terms of KPIs values. There are

three types of exact goals and three types of approximation
goals. The exact goals separate the values of a KPI in two dis-

joint sets: acceptable and not acceptable. An above goal will

only find acceptable the values above the threshold. A below
goal will only accept the values below, and a between goal

only the values in the specified interval. The approximation
goals are best effort goals that specify a total order between

the values of a KPI. A maximize goal states that the largest is

the best, while a minimize goal aims at the smallest. A close
goal tries to keep the value as close as possible to the aim
value. The system will try to optimize its behavior with respect

to approximation goals periodically (every period of time) but

there is a minimum gain for an adaptation be worthwhile. The

six types of goals follow:

Goal goalName : kpiName Above threshold down
Goal goalName : kpiName Below threshold up
Goal goalName : kpiName Between threshold down threshold up
Goal goalName : kpiName Close aim MinGain value Every per iod
Goal goalName : Minimize kpiName MinGain value Every per iod
Goal goalName : Maximize kpiName MinGain value Every per iod

4) Rule Generation and Evaluation: The rule generation

process consists in two steps that aim to generate the rules that

will be evaluated to select adaptations. A rule is composed by

an event and a set of combinations of adaptations. Its gener-

ation starts by extracting the relevant events from the goals.

Next, for each event, the set of possible useful adaptations is

selected, i.e., those that help correcting the problem signaled

by the event. For instance, assuming that we have an event

that demands to lower the KPI (because it is above the limit),

all the adaptations that decrease the KPI are selected. The

adaptations whose helpfulness is unknown are also selected.

Then, all combinations of adaptations that can be performed

simultaneously are calculated.

Client Client Client Client Client ClientClient
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Figure 2. Case study architecture

The rule evaluation process analyzes one rule at a time,

using the system state as input. It starts by estimating the

impact of the adaptations in the KPIs. Afterwards, the selection

algorithm evaluates the different combinations of adaptations

against the goal with the highest rank. If a combination fulfills

the goal, it passes to the next step, otherwise, it is discarded.

If none of the combinations fulfills the goal, they all pass to

the next step, as the KPIs associated with lower ranked goals

may still be corrected or improved. After, the combinations

that passed are evaluated against the next goal, and so forth

until all the goals are evaluated. Among the combinations that

reach the last step, one is selected to be performed.

IV. CASE STUDY

The case study developed to validate the proposed approach

relies in a website, that serves static and dynamic content. The

website is served by several web servers, each running on its

own node. The website load is balanced by the several web

servers. The system relies in an IMDDG to speed up web

servers’ access to data, with a local instance serving each of

system web servers. The local instance has its own cache and

serves as a proxy to query and update remote caches of the

platform. The website content is generated from data that is

available in the cache of the IMDDG platform. If the data is

not available in cache (local or remote), it will be fetched from

the database and added to cache. In addition to the web server

and the IMDDG instance, each node also includes a communi-

cation toolkit that provides communication and coordination

support among IMDDG instances. In our prototype we use

Infinispan [2] as an IMDDG platform. Figure 2 illustrates the

case study architecture. The management of the database is

not considered in this case study.

The case study’s self-management aims at taking advantage

of the reconfigurability of the IMDDG platform. The goal is

to optimize performance in order to maintain user satisfaction,

but at the same time to minimize resource consumption to cut

on costs. Furthermore, we are also concerned with healing

properties. The development and evaluation of the case study

will focus on these goals.

A. KPIs and Goal Policy

The following objectives guide the self-management. One

is to self-optimize performance, another objective is to be

energy-efficient, thus, cutting on costs. Finally, the last ob-

jective is fault-tolerance, providing self-healing and self-
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Type KPI Values CF AF Error Description
System #servers int - - 0 servers
Instance RI double Sum Sum 0.2 load
Instance RS double Sum Sum 0.2 throughput

CKPI Values JoinFunction Error Description
service ratio [0,1] RS/RI 0.01 service ratio

Table II
THE KPIS AND CKPI OF THE CASE STUDY

protection features to the system, so that it can tolerate server

failures without loss of data. To fulfill these objectives, the first

step in our approach is to characterize the system behavior,

selecting the adequate KPIs. These KPIs will be used by the

system manager to describe the goal policy and by the platform

developers to specify the adaptations. The case study KPIs are

depicted in Table II. All the KPIs were already described in

Section II, with the exception of #servers that describes how

many instances of the IMDDG/servers are active.

Next, it is necessary to translate the informal objectives

into goals. The goal policy chosen for the case study is one

among several, as it is possible to derive different policies

that give distinct priorities to different objectives. The policy

consists in three goals. The first is to maintain the redundancy,

i.e., a minimum number of servers/replicas. This self-healing

property is the most important goal because it will allow the

system to recover from fail overs and avoid downgrading

the service to a critical level. In the next goal, the system

attempts to process as many requests as possible, to maximize

the service ratio. Finally, the last goal minimizes the resource

consumption to cut on costs, as long as other goals are not

violated.

Goal preserve redundancy : #servers Above 3
Goal max serv ice ra t io : Maximize SR MinGain 0.05 Every 300
Goal min cost resources : Minimize #servers Every 500

B. Adaptations

The platform developers have knowledge about the different

settings used to configure the platform and their impacts in the

behavior. In the case study, we focus on the replication degree.

While Infinispan can handle changes in the number of local

instances running, that cannot be adapted during runtime. The

adaptation below allows to add a new server to the system and

increase throughput, if the system is overloaded.

NodeAdaptation AddServer ( n )
Node :

n
Actions :
n . addComponent (ApacheHTTP)
n . addComponent ( I n f i n i s p a n )

Requires :
! n . hasComponent (ApacheHTTP)

Impacts :
#servers += 1
RS = (writePercentage ∗ (1− AR) ∗ writeT ime)−1

Stab i l i za t ion :
per iod = 120 secs

A new server/replica is added to an inactive node n (we have

10 nodes available in the system), which is achieved by adding

the web server and Infinispan. As a result, the #servers KPI

increases and has impact on RS. The impact on RS is specified

using the average write time, computed by the monitor as

Type Goal Event
Exact maintain redundancy kpiBelow(#servers,3)
Approx maximize SR kpiIncrease(SR,300,true)
Approx minimize cost resources kpiDecrease(#servers,500,true)

Table III
EVENTS EXTRACTED FROM THE GOALS

described in [11], and the percentage of write requests, which

is context information available in the monitor. The impact

functions of RS are based on results obtained from distinct

benchmarks made to the system, where different combinations

of the write percentage, the key pool size, and the number

of servers were explored. The impact functions used are not

exact, but they provide enough accuracy for the approach.

C. Generated Rules

With the information provided by the human operators, the

proposed approach is able to generate the rules that will be

used to manage the system. These rules are composed by an

event (extracted from the goal) and the suitable combinations

of adaptations to address the issue described by the event. The

extracted events are described in Table III. One rule follows:

When kpiDecrease (#servers ,500 , t r ue )
Adaptations : RemoveServer ( 1 ) , RemoveServer ( 2 ) , . . .

V. EXPERIMENTAL EVALUATION

The prototype relies in Infinispan 5.0.0, whose local in-

stances were deployed using the replication topology for fault-

tolerance purposes. The load imposed by the web servers is

emulated by the benchmark Radargun 1.1.0 [12]. The bench-

mark simulates the clients, the virtual server load balancer, and

the web servers at each node. The benchmark detects when

a new server is added to the cluster, through a monitoring

agent present in each node, which notifies the virtual server’s

load balancer. Radargun emulates the operation of the web

server, using a configurable load profile, that includes the

write percentage and the object pool. The benchmark was

extended to allow a finer control of the workload and the

duration of each experiment. The autonomic controller was

implemented in the JavaTM language. The testbed consists of

eleven machines. One hosts the autonomic controller and the

others can run instances of Infinispan.

A. Workloads

We rely in several workloads to simulate variable load. The

experiments have the following pattern: we first let the system

stabilize in the best configuration for a given workload, then

we change the workload characterization and observe how the

system reacts. Changes to the workload are made such that

different adaptations are more appropriate in each experiment.

The workload transitions are based on 2 workloads WL-5 and

WL-6, which differ in terms of load (RI). The first requires 5

servers, while the second requires 6. We have experimented 2

transitions which are discussed next.

WL-5 to WL-6. The website is subject to an increase

in the load. Before the increase, the system is not using

total order, and requires 5 servers to process all incoming
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requests. When the workload changes, the 5 servers/replicas

become overloaded and the service ratio decreases. As a result,

the planner selects the adaptation AddServer to add another

web server and Infinispan instance. Figure 3(a) depicts the

improvement of the service ratio after the adaptation. However,

the addition of new server increases the service cost and the

resource consumption, as demonstrated by the increase in the

power consumption, as the machine is no longer idle. We

opted to show the average power consumption because power

consumption is not steady over time.

WL-6 to WL-5. This transition illustrates the inverse

of the previous transition, decreasing the load, when the

system is using 6 servers. At some point, the periodic event

corresponding to the cost and resource consumption goal is

triggered and the planner determines that it is possible to cut

on costs and resources, while maintaining the service ratio.

The planner selects the RemoveServer adaptation. Figure 3(b)

shows that after the adaptation, the service ratio is maintained,

power is saved and the service becomes cheaper.
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(b) Second scenario: removing one instance
Figure 3. Experimental results some minutes before and after the adaptation

In an extended report [13], we include results for additional

adaptations, such as, a new replica update protocol to decrease

the abort rate during high-contention workloads.

VI. RELATED WORK

IMDDGs employ different technologies that several works

have tried to dynamically reconfigure and tune. Many works

focus on the adaptation of caching middleware. They provide

adaptive solutions for the expiration time of objects in the

cache [14], cache update algorithms [15], [16], or mapping

of requests to groups of cache servers in web caching [17].

None of these approaches relies on high-level policies to

autonomously manage the aspect they target. The planning

is hard-coded in the algorithm and only takes in consideration

a limited number of metrics. To extend these algorithms to

consider other metrics, adaptations, and a different desired

behavior, the planning would have to change significantly. In

contrast, our approach provides enough flexibility to change

the system’s adaptive behavior, by changing the goal policy.

Therefore, the self-management support does not require re-

development. Nevertheless, these approaches could be inte-

grated in our approach as part of the pool of cache policies.

VII. FINAL REMARKS

In this paper, we present an approach for the self-

management of systems employing IMDDGs, where the sys-

tem manager expresses the target behavior of the middleware

in terms of a high-level policy that establishes goals for a

set of KPIs. The platform developers describe the possible

adaptations, that are selected and deployed automatically, in

response to runtime changes in the workload. The results show

that the approach is able to automatically manage the system

during runtime, taking advantage of the available adaptations

to improve the system performance. Our previous work in

centralized environments [9] shows that the planning can scale

for larger sets of adaptations, which dramatically increases the

difficulty of manually balancing the trade-offs necessary to

specify a low-level policy, not to mention more error-prone.
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