
Flexible Communication Support for CSCW Applications�

Hugo Miranda

Universidade de Lisboa

hmiranda@di.fc.ul.pt

Lu��s Rodrigues

Universidade de Lisboa

ler@di.fc.ul.pt

Abstract

Modern computer-supported cooperative work ap-
plications (CSCW) supporting same-time/di�erent-
place interaction are required to open several com-
munication channels. Each of these channels has its
own Quality of Service (QoS) and is implemented by
a speci�c protocol stack. Typically, these channels
need to be synchronized but inter-stack dependen-
cies are hard to express with current communication
architectures. The paper proposes a novel approach
to the development of communication software sup-
porting a style of micro-protocol composition that
satis�es the requirements imposed by CSCW appli-
cations.

1 Introduction

The steady increase in communication bandwidth
and processing power, and the ubiquity of the
WEB presence, has brought same-time/di�erent-
place computer-supported cooperative work (CSCW)
applications from the local-area network niche to the
wide-area arena. Products such as the Microsoft Net-
Meeting [17] are helping to create the user demand
for full-
edged CSCW applications that integrate in
a seamless way audio, video, data and control chan-
nels.

On the other hand, wide-area networks pose sig-
ni�cant challenges to the communication protocol de-
signer. Common impairments such has the variability

�Selected sections of this report were published in the Pro-
ceedings of the 5th International Workshop on Groupware,
Cancun, Mexico, September, 1999.

of network delays, message losses, network partitions,
node crashes, among others, require the implemen-
tation of corrective measures that are media-speci�c.
For instance, a video frame may be dropped (depend-
ing on the compression algorithm) but a resource lock
request needs to be delivered in a reliable way. Addi-
tionally, these applications are typically multi-user,
and this raises the need for group communication
primitives that ensure a consistent view of critical
application data.
As a result of these diÆculties, complex CSCW ap-

plication are often forced to manage di�erent proto-
col stacks, each specialized for a given type of stream,
such as audio, video, bulk-data and control informa-
tion. Each of these stacks has been widely studied in
isolation. Protocols tailored for video and audio have
been proposed in [12, 6]. Protocols for data transfer
can be found in [11]. Communication stacks that en-
sure strong semantics even in the presence of failures
have been described in [18, 13]. However, the issue of
coordinating these di�erent stacks has been neglected
until recently [2, 3, 5].
The paper proposes a communication architecture

that allows di�erent communication channels, each
with its own QoS, to be integrated in a coherent
multi-channel protocol stack. Furthermore, the ar-
chitecture allows the application designer to specify
the protocol stack that meets her/his QoS require-
ments through the composition of micro-protocols.
A requirement constraining a single channel is called
intra-QoS requirement. The integration of di�erent
media contents in a single application also imposes
inter-QoS requirements. Video and audio, for exam-
ple, must be synchronized at the receiver1. Previous

1The SMIL protocol [8], for example, allows to de�ne the

1



Figure 1: CSCW application

communication frameworks have limitations in satis-
fying inter-QoS requirements, delegating that burden
to the application. We argue that providing inter-
QoS properties at the communication level leads to a
cleaner application design.

The paper is organized as follows. In section 2
we motivate the problem by presenting one exam-
ple of the class of problems that impose inter-QoS
constraints. Section 3 introduces related work in the
are of CSCW and Group Communication Services.
Section 4 describes a 
exible communication archi-
tecture that addresses inter-QoS requirements. Sec-
tion 5 concludes the paper.

2 Motivation

We motivate our work by giving an example from
the class of problems that require the use of multiple
QoS with both intra-QoS and inter-QoS constraints.
The example is taken from [3]. It consists of a CSCW
application where users share: i) video and audio; ii)
a blackboard; iii) text, in the form of \chat" windows;
iv) control information.

This application can be implemented using four
di�erent channels, as illustrated in Figure 1: an audio

channel, a video channel, a data channel and a con-

trol channel. Each of these channels is supported by
its own protocol stack and the following intra-stack
QoS requirements can be identi�ed:

application behaviour when synchronization problems arise.

� Messages on all channels must respect FIFO or-
der.

� Audio and video channels can allow some extent
of lost or garbled data.

� Text and control channels must be reliable.

� The control channel should provide strong se-
mantics such as virtually synchronous totally or-
dered multicast [4]. This simpli�es the manage-
ment of the session control, including the man-
agement of resource locks.

In addition to these intra-sack requirements, sev-
eral inter-stack constraints can also be listed:

� Audio and video frames should be synchronized
with blackboard updates.

� Causal order should be preserved among control
and text channels.

� Failure noti�cations should be provided in a con-
sistent manner on all communication stacks (for
an interesting discussion of the relevance of con-
sistent failure detection in CSCW application
see [7]).

In the next section, we will give an overview of how
these constraints have been addressed in the litera-
ture.

3 Related Work

The Collaborative Computing Transport Layer
(CCTL) [15] is a framework designed to support
CSCW and multimedia applications. The authors
address the need for supporting communication chan-
nels with di�erent QoS requirements within a com-
mon session. CCTL presents a reliable control chan-
nel (the default channel) with strong properties (to-
tal order, FIFO, Failure detection and Name Ser-
vice) and reliable or unreliable data channels pro-
viding total, FIFO or unordered delivery. Member-
ship information 
ows through the control channel

2



and is processed by a Channel Membership Submod-

ule that manages the membership of every data chan-
nel. Channels are not built using a modular frame-
work, thus channels di�erent from those pre-de�ned
have to be built from scratch. The only Inter-stack

constraint supported is the synchronization of mem-
bership changes. Inter-media data synchronization
and ordering are not explicitly supported.

Maestro [3] is a 
exible group manager for groups
of protocol stacks. The base of Maestro is a core En-
semble [9] stack who handles membership on behalf
of data stacks. Data stacks can be taken from a wide
set of types, from UDP [14] sockets, to CCTL [15] and
Ensemble stacks. The tool addresses problems such
as the management of messages priorities and multi-
level security. However, Maestro does not support
layer sharing across two or more stacks. In this way,
most inter-stack constraints other than membership
have to be dealt directly by the application.

The Multimedia Multicast Transport Service
(MMTS) [5] o�ers more 
exibility in the management
of multiple stacks. It integrates a Group Commu-
nication Service (Transis [1] or Horus [18]) with self-
managed channels providing several QoS possibili-
ties such as Unreliable FIFO and Reliable Unordered.
While the group communication service channel pro-
vides membership and reliable control information,
data channels transfer informations in \bunches", re-
specting marks imposed on the control channel. The
\bunch" concept is a mechanism that allows the ap-
plication designer to de�ne, in a limited way, some
inter-stack ordering constraints.

4 A Flexible Communication

Framework

Protocol composition must be supported by a number
of abstractions, tools and run-time mechanisms. Rel-
evant run-time mechanisms include memory manage-
ment for message structures, timeout management,
thread management, etc. A classical example of work
in this area is the x-kernel [10], which provides a pow-
erful set of features to develop communication stacks.
From the point of view of protocol composition, the

function of the protocol kernel is to support the ex-
change of events between adjacent layers. This paper
focus exclusively on the layer composition aspects of
protocol kernels and does not addresses orthogonal is-
sues such as bu�er management, timer management,
etc.
It should be noted that, in order to maintain

layer independence, the micro-protocols should not
be aware of the way they are interconnected. No
explicit reference to a particular upper or lower layer
should be allowed. Instead, each protocol should only
invoke generic \up-event" and \down-event" calls.
The events are delivered to the appropriate protocols
by the kernel according to the bindings established
when the stacks are created (possibly, at run-time).
We propose a novel architecture that allows the rout-
ing of events to be based not only on QoS param-
eters (intra-QoS constraints) but also on inter-QoS
constraints. The protocol kernel acts as a switching
fabric, routing messages between layers and ensuring
that a path satisfying the desired QoS is followed.

4.1 The model

We de�ne a layer as the implementation of a pro-
tocol. All protocols implement the same event in-

terface, which de�nes the types of events each one
is able to consume and produce. The format and se-
mantics of these events is irrelevant to our exposition.
Typical examples of events are data transmission re-
quests, indication and con�rmations. Examples of
layers are \datagram transport", \positive acknowl-
edgment", \total order", \checksum", etc. Good ex-
amples of relevant layers and events in the context of
fault-tolerant applications can be found in [9].
We de�ne a session as an instance of a layer [10].

The session maintains state that is used by the layer
code to process events. A layer that implements
ordering may keep a sequence number or a vector
clock as part of the session state. In connection ori-
ented protocols, the session also maintains informa-
tion about the endpoints of the connection. Note that
it is often useful to maintain several active sessions
for the same layer even when they share the same
endpoints: for instance, one might want to have dif-
ferent FIFO channels for di�erent priority streams.

3



Figure 2: Inter-stack QoS requirements for a multi-
media application in a) QoS set b) acyclic graph c)
stack with three channels

The clear separation between layers and sessions is
key to our design. These two concepts can be com-
bined to satisfy multiple QoS requirements as follows:

A QoS is de�ned as an ordered set of layers. The
QoS de�nes which protocols must act on the mes-
sages and by which order they must be traversed. A
channel is an instantiation of a QoS and is 2 char-
acterized by a stack of sessions of the corresponding
layers. For sake of clarity we assume that all QoS
that interact with the application are terminated on
top by a layer that we simply call the \Application".
A session of the Application layer is also called an

2At a �ner level of granularity, one could also consider dif-
ferent parameterizations of each protocol as an independent
QoS.

RQ-1 The user should be allowed to send a message
using di�erent Qualities of Service.

RQ-2 The message should follow peer channels in dif-
ferent nodes.

RQ-3 Channels may or may not share sessions of
common layers. In particular, they may share the
same endpoint.

RQ-4 Micro-protocols independence should be pre-
served.

Table 1: Implementation requisites

endpoint. A stack is a set of non-disjoint channels
(i.e., each channel shares at least one session with
some other channel of the same stack).

Every stack interfaces the application by at least
one session of the APPLICATION layer. Each ses-
sion of this layer serves as a serial access point to
the stack: messages are sent to the lower layers by
the order they are injected in the access point by the
application. Similarly, messages are delivered to the
application by the order they are received from the
lower layers. The stack interfaces the communication
media through a DEVICE layer. This layer is just
an abstraction of any protocol outside the control of
our communication kernel (for instance, TCP, UDP
or MBONE). Figure 2 illustrates these concepts.

4.2 Requirements revisited

We can now revisit the requirements of applica-
tions demanding the management of multi non-
independent quality of services in face of our de�-
nitions. The requirements are presented in Table 1.

Requirement RQ-1 is the basic motivation for our
service. It is satis�ed by allowing users to send mes-
sages over di�erent channels. Requirement RQ-2 re-

ects the fact that, at the recipient site, the message
should be processed by the peer entities of the pro-
tocols traversed during transmission. Requirement

4



RQ-3 imposes that inter-QoS constraints need to be
taken into account and stacks with \diamond" struc-
tures need to be built. Finally, in requirement RQ-
4, we state that micro-protocols should be combined
without the need to re-write any code. This preserves
the 
exibility of the system, allowing an existent plat-
form to be extended instead of recreated.

4.3 De�ning stacks

A stack can be de�ned as a sequence of channels that
may share sessions. Each channel is de�ned as a se-
quence of pairs (Layer,Session). Stacks can be easily
de�ned in graphical form, such as illustrated in Fig-
ure 2. However, we believe that, for most practical
purposes, graphs can be speci�ed using a string with
a simple syntax. We propose the syntax presented on
Figure 3 for stack de�nition.

Channel is a name that identi�es a given path, al-
lowing system to satisfy requirements RQ-1 and RQ-
2; Layer speci�es a layer name and Session its in-
stance. Session identi�ers are simple integer num-
bers; note that the session identi�er has a scope that
is local to the stack speci�cation since, by de�nition,
channels that share a session of a given layer belong
to the same stack. With this syntax users can:

� Use di�erent instances of the same protocol for
di�erent channels by specifying di�erent session
numbers;

� Force channels to share layers by specifying the
same session number.

Sometimes, multi-channel session may sponta-
neously generate events which are not bound a priori

to a given channel. For instance, the intermedia syn-
chronization layer may exchange non-audio and non-
video control information with its peers. To avoid
ambiguities, every multi-channel session must be as-
sociated to a default channel that is used to route
all events which are not speci�cally bound to a given
channel. In our example, control information could
be routed by default through the data channel.

The stack graphically represented in Figure 2,
would be speci�ed as follows:

Stack = "Channel1:
Layer[Session] j
Layer[Session]
. . . ;

Channel2:
. . . ;

. . . ;
Defaults:

Layer[Session] -> channel;
. . . ;

"

Figure 3: Stack de�nition syntax

stack="audio: APPLICATION[1] j INTERMEDIASYNC[1]

j AUDIOPROTO[1] j FIFO[1] j FAILDETECT[1] j
DEVICE[1]; video: APPLICATION[1] j
INTERMEDIASYNC[1] j VIDEOPROTO[1] j FIFO[2] j
FAILDETECT[1] j DEVICE[1]; data: APPLICATION[1]

j INTERMEDIASYNC[1] j DATAPROTO[1] j FIFO[3] j
FAILDETECT[1] j DEVICE[1]; defaults:

INTERMEDIASYNC[1] -> data"

Note that audio and video channels share sessions
of the APPLICATION, MEDIASYNC and FAILDE-
TECT layers but have their own local sessions of the
FIFO layer.

4.4 Execution overhead

At �rst glance, one might think that the additional

exibility o�ered by our approach comes at the ex-
pense of some execution overhead. At this point, we
still do not have a running prototype of our archi-
tecture. However, our experience with the Ensemble
system lead us to expect a small overhead only dur-
ing stack creation: the meta-structures required by
our approach are more complex than those used in
that system. On the other hand, the complexity of
event routing should not be seriously a�ected.

4.5 Execution environment

The protocol stack can be con�gured to run both
as a communications server or as a communication

5



library. The advantages of each mode can be enu-
merated:

i) The protocol stack will be executed in a separate
process, with its own address space. This con�gura-
tion can be found in several group communication
frameworks, such as xAMp [4, 16]. It allows the same
stack to be shared by several application on the same
node but imposes additional context switching over-
head.

ii) The protocol stack is executed in the address
space of the application. Since the protocol stack
needs to provide prompt response to network events,
protocols threads should not be delayed by applica-
tion threads. This approach works at its best when
the system supports kernel threads.

The framework will be running outside the oper-
ating system kernel. This way, it will be possible to
have applications running in di�erent operating sys-
tems to interact.

4.6 Discussion

Previous work addressing the issue of preserving
inter-stack constraints has solved particular prob-
lems. CCTL [15] focused on the membership prob-
lem. Maestro [3] has also given particular empha-
sis to membership and addressed some ordering is-
sues, namely those related with message priorities.
MMTS [5] incorporates the concept of \ message
bunches" that also allows to order data messages with
regard to control messages. We take a more generic
approach of allowing di�erent protocol stacks to share
an arbitrary number of layers.

Needless to say, our approach alone does not solve
all the problems. The protocol (or application) de-
signer still has to build the layers that perform the
inter-stack synchronization. For instance, the \Inter-
media sync" layer of Figure 2 has to be prepared to
route events from di�erent channels and synchronize
them. Nevertheless, our approach allows complex
inter-stack constraints to be addressed in an elegant
manner through the composition of micro-protocols.

5 Conclusions

CSCW applications that support same-
time/di�erent-place interaction among users are
bound to use several protocol stacks. However,
these stacks are not independent. These applications
often impose inter-stack constraints that can be
implemented in an elegant way if the protocol stacks
are allowed to share common layers.
In this paper we have described a communication

architecture that allows the application designer to
build the communication stack through the composi-
tion of micro-protocols in a way that allows him to
express both inter-stack and intra-stack constraints.
It is our belief that this architecture is particularly
well adapted to the requirements of CSCW applica-
tions.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki.
Transis: A communication sub-system for high-
availability. In Digest of Papers, The 22nd Interna-
tional Symposium on Fault-Tolerant Computing Sys-
tems, pages 76{84. IEEE, 1992.

[2] S. Barrett, B. Tangney, and V. Cahill. Construct-
ing distributed groupware systems: A walk on the
wilde side. Technical Report TCD-DSG#TCD-CS-
1998-17, Trinity College Dublin. Distributed Sys-
tems Group, Sept. 1998.

[3] K. Birman, R. Friedman, and M. Hayden. The mae-
stro group manager: A structuring tool for applica-
tions with multiple quality of service requirements.
Technical report, Cornell University, Ithaca, USA,
Feb. 1997.

[4] K. Birman and T. Joseph. Reliable Communication
in the Presence of Failures. ACM, Transactions on
Computer Systems, 5(1), Feb. 1987.

[5] G. Chockler, N. Huleihel, I. Keidar, and D. Dolev.
Multimedia multicast transport service for group-
ware. In Proceedings of the TINA Conference on the
Convergence of Telecommunications and Distributed
Computing Technologies, pages 43{54, Sept. 1996.

[6] M. Correia and P. Pinto. Low-level multimedia
synchronization algorithms on broadband networks.
In The Third ACM International Multimedia Con-
ference and Exhibition (MULTIMEDIA '95), pages
423{434, San Francisco, Nov. 1995. ACM Press.

6



[7] F. Cosquer, P. Antunes, and P. Ver��ssimo. Enhanc-
ing dependability of cooperative applications in par-
titionable environments. In Dependable Computing -
EDCC-2, Lecture Notes in Computer Science, pages
335{352. Springer-Verlag, Oct. 1996.

[8] S. M. W. Group. Synchronized multimedia integra-
tion language (SMIL) 1.0 speci�cation. Technical
report, World Wide Web Consortium, 1998.

[9] M. Hayden. The Ensemble System. PhD thesis,
Cornell University, Computer Science Department,
1998.

[10] N. Hutchinson and L. Peterson. Design of the x-
Kernel. In Proceedings of the SIGCOMM'88: Com-
munications Architectures and Protocols, Stanford,
USA, Aug. 1988. ACM.

[11] W. Jia. Implementation of Reliable Multicast Pro-
tocol. Software Practice and Experience, 27(7), July
1997.

[12] S. McCanne and V. Jacobson. vic: A 
exible frame-
work for packet video. ACM Multimedia, pages 511{
522, Nov. 1995.

[13] L. Moser, P. Melliar-Smith, A. Agarwal, R. Bud-
hia, and C. Lingley-Ppadopoulos. Totem: A fault-
tolerant multicast group communication system.
Communications of the ACM, 39(4):54{63, Apr.
1996.

[14] J. Postel. User Datagram Protocol. Technical Re-
port RFC 768, USc Inf. S. Inst., Aug. 1980.

[15] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam.
Group communication support for distributed col-
laboration systems. In Proceedings of the 17th Inter-
national Conference on Distributed Computing Sys-
tems, pages 43{50, Balitmore, Maryland, USA, May
1997. IEEE.

[16] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-
primitive Group Communications Service. In Pro-
ceedings of the 11th Symposium on Reliable Dis-
tributed Systems, pages 112{121, Houston, Texas,
Oct. 1992. IEEE.

[17] B. Summers. The OÆcial NetMeeting Book. Mi-
crosoft Press, 1999.

[18] R. van Renesse, K. P. Birman, R. Friedman, M. Hay-
den, and D. A. Karr. A framework for protocol
composition in Horus. In Proceedings of the Four-
teenth Annual ACM Symposium on Principles of
Distributed Computing, pages 80{89, Ottawa, On-
tario, Canada, 2{23 Aug. 1995.

7


