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Abstract

Federated learning is a machine learning approach that allows
different clients to collaboratively train a common model
without sharing their data sets. We focus on centralized fed-
erated learning, where a central server collects contributions
from individual clients, merges these contributions, and dis-
seminates the results to all clients. Since clients have different
data and classify data differently, there is a trade-off between
the generality of the common model and the personalization
of the classification results. Current approaches rely on using
a combination of a global model, common to all clients, and
multiple local models, that support personalization. In this
work, we report the results of a study, where we have applied
some of these approaches to a concrete use case, namely the
Service Studio platform from OUTSYSTEMS, where Graph
Neural Networks help programmers in the development of ap-
plications. Furthermore, we explore two different approaches
which merge some of the state-of-the-art algorithms so as to
develop the best model for all the different clients. Our results
show that one of the proposed approaches manages to achieve
similar performance to the best-performing algorithms for
all the classes of clients and can even outperform previous
algorithms for some classes of clients.

1 Introduction

Machine Learning (ML) is an area of Artificial Intelligence
(AI) that studies how to build a model, from a given training
data set, such that it can be used to predict an output given
an input. Federated Learning (FL) is a particular case of ML
where different entities collaborate to construct a common
model without explicitly exchanging their data sets and com-
promising performance while, ideally, preserving the privacy
of their data. Our research is driven by the requirements of
OUTSYSTEMS, where FL is being explored as an alternative
to the current fully centralized inference and training setup,
in order to build a model intended to help programmers in
their coding tasks.

In our work, we study the centralized FL approach, which
uses a central server to keep a global model. The server peri-
odically performs communication rounds with some clients
(all or just a subset), to improve the global model with the
help of the individual training data from each client. In each
communication round, the selected clients receive the global

model parameters from the central server (step 1), train this
model with their private data (step 2), and send back to the
server the resulting updates to the model (step 3). The server
then aggregates all the received local updates to generate
a global update (step 4) to improve the global model. This
procedure is repeated over various communication rounds.

FL has many challenges. First, the communication rounds
may consume significant processing and network resources
and should be made as efficient as possible. Second, keeping
data at the clients may not be enough to preserve privacy, as
it may be possible to infer the content of the training data
from the updates to the model. Third, a faulty or malicious
client may attempt to bias or poison the global model. Lastly,
clients may have different data and different classification
preferences, which creates the need for maintaining personal-
ized models, in combination with a common general model.

In this work, we are mainly concerned with the last chal-
lenge, particularly, in techniques that can offer clients per-
sonalized models, while still benefiting from FL. Current
approaches for personalization rely on using a global model,
common to all clients, which is then adapted to each client’s
data, or on splitting the model in two and having a shared
global part and multiple more specific parts, each one tailored
and maintained exclusively by each client. We survey the
state-of-the-art solutions for FL and identify unexplored alter-
natives for training in this personalized setup that are worth
exploring. Based on these findings, we propose to implement
and evaluate some of the existent solutions and our two new
variants, FedHybridAvgLG and FedHybridAvgLGDual.

We experiment and evaluate these new variants in the con-
text of the Service Studio platform from OUTSYSTEMS. Ser-
vice Studio is a low-code platform that allows users to design
and manage systems and applications in a simple and efficient
manner through a visual and interactive user interface. In this
platform, among other things, the user defines the application
logic by creating a flow of actions. These actions can be of
several types, for instance, “1 £”, “for” or “assign” (many
other actions related to, for example, user interface develop-
ment and data management, are possible). In this platform,
ML is used to give recommendations to the users about which
actions should be added next to an action flow.

An action flow can be modelled as a graph where the ac-
tions are nodes and the edges represent the flow from action to
action. The graph can then be used as input to a specific type



of ML neural network model architecture, a Graph Neural
Network (GNN), which is specialized in interpreting graphs
and making predictions on them. In our case, the model pre-
dicts, from a finite set of possible node types, which are the
most probable to be added next to the graph. This prediction
is then used by Service Studio to recommend possible next
actions to the user. The use of FL in this context is relevant
because it allows the model to be trained using contributions
from various clients while ensuring that information about
the applications being developed remains private.

Our results show that one of the newly proposed approaches
achieves a performance similar to the top-performing algo-
rithms, for each class of clients.

2 Studied Algorithms
2.1 Federated Learning

In its simplest form, the creation of ML models assumes that
all the data of the clients is shared during the training phase.
FL allows different clients to collaborate so as to construct
a shared model without the need to share their private data,
therefore preserving data privacy.

The most common approach to achieve FL consists in us-
ing a central server to orchestrate the coordination among
clients. This architecture is described by Bonawitz et al. [1].
The protocol proceeds in rounds of communication where, in
each round, the server selects a set of clients to participate.
When the round starts, the server sends the parameters of the
current global model to each participant. Afterwards, each
participant independently trains the model received, using its
own data set, obtaining a local model. The client then sends
an update back to the server which reflects the changes that
have been locally applied to the global model. Finally, the
central server collects the updates from different clients, per-
forms a weighted aggregation considering the size of each
client’s training data set, and uses the resulting global update
to derive the new global model to be used in the following
round. This aggregation method is defined as Federated Aver-
aging (FedAvg) [7].

It is possible to define different FL categories, according to
the way the data is partitioned, the way clients communicate
and the scale of federation [3, 4, 10]. In terms of the data par-
titioning, if all the clients store the same features about each
data subject (in our case action flows) but each data subject
has all its features stored in a single client, the partition is
horizontal, if the information about a single data subject is
spread across clients and each client stores a different feature
about the data subject, the partition is vertical; if each client
stores different features of different data subjects, the partition
is hybrid. In terms of the communication architecture, it can
be classified as centralized (the previously described case), or
decentralized (if the clients directly communicate with each
other without needing a central server). Finally, in terms of
the scale of federation it can be classified as “cross-silos” or
“cross-device”, depending on whether the clients represent
organizations or individual devices. In this work, we consider

a horizontally partitioned environment, with centralized ar-
chitecture and “cross-silo” federation, where the clients are
the organizations using the Service Studio platform.

2.2 Personalized Federated Learning

FL introduces several challenges in different areas, including
the privacy of client data, robustness against attacks during the
model training phase, communication efficiency and model
performance. In this thesis, we focus on the challenge of max-
imizing the performance of the model. This typically involves
using mechanisms of model personalization [9]. Namely, the
necessity of creating specific models for each client, which
may include global components (which benefit from the con-
tribution of all the clients) and specialized components (ad-
justed to the data set of each client).

Concretely, we focus on algorithms based on the parameter
decoupling technique, which divide the model into two parts,
the representation or “body” and the classifier or “head”. The
body is composed of the first layers of the model and is respon-
sible for extracting the data features, and the head is composed
of the last layers of the model and is responsible for classi-
fying the data from its features. Depending on the algorithm
one of the parts is global and the other is local and specialized
to each client. Clients can train both parts but the updates
exchanged with the server correspond only to the global part.
Three relevant examples of these approaches are Local Global
Federated Averaging (LG-FedAvg) [5], Federated Represen-
tation Learning (FedRep) [2] and Federated Averaging with
Body Aggregation and Body Update (FedBABU) [8]. Fig-
ure 1 summarizes the algorithms and includes the FedAvg
algorithm (Figure 1(a)), covered in the previous section. The
joint chains indicate the training is joint, that is, both the head
and the body are updated in the same training step. We provide
in the next paragraphs a brief description of the remaining
three algorithms.
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Figure 1. Models according to the algorithms FedAvg, LG-
FedAvg, FedRep and FedBABU.

LG-FedAvg is one of the algorithms based on the parameter
decoupling technique. In the specific case of this algorithm,



the classifier is shared with the server and the representation is
specialized for each client. Thus, this algorithm personalizes
the body such that it can extract the features of the data for
each client and shares the head in order to obtain a classifier
that works for every client. This allows each client to have
its own type of data, for instance, one client can have images
while the other can have text. Therefore, after receiving the
head of the model from the server, the client associates its
local body to obtain the local model which is, afterwards,
trained jointly, that is, performing a sequence of local epochs
and updating both the head and the body simultaneously. After
training, the client sends to the server the updates referring
to the head. Figure 1(b) illustrates the training procedure and
the role of each model part.

FedRep is an algorithm which takes a different approach
to the LG-FedAvg algorithm. The authors of the algorithm ar-
gue that results from centralized ML indicate that data shares
a common representation of its features and that the hetero-
geneity resides in the classifications. For example, an image
of a dog is represented equally in two clients, however, one
client can classify the dog as ugly while another can classify
it as beautiful. Therefore, the representation is shared with
the server and the classifier is specialized for each client. By
sharing the body, the algorithm tries to obtain a global rep-
resentation for all the clients while keeping the head local
allows for the classifications to be specialized. Another differ-
ence between FedRep and LG-FedAvg resides in the way the
training is performed. While in LG-FedAvg the body and the
head are updated simultaneously and for the same number
of rounds, in FedRep the head is fully trained first and only
afterwards is the body trained, furthermore, the number of
training rounds between the head and the body may differ.
Therefore, FedRep is more flexible since it allows the parts
of the model to be trained for a different number of rounds,
which can be useful when we want to personalize the head
further by performing more training rounds than the body.
Figure 1(c) illustrates the training procedure of the algorithm
FedRep.

FedBABU is another algorithm based on the parameter
decoupling technique. Figure 1(d) summarizes the algorithm.
Similarly to FedRep, FedBABU shares the body, such that,
a good representation of the data is collaboratively created
by the clients. The authors studied the FedAvg algorithm to
understand why an increase in the performance of the global
model does not necessarily mean that fine-tuning it further
increases the performance. They came to the conclusion that
aggregating the head introduces unnecessary noise to the
global model, as the classification is a specificity of each
client. Therefore, FedBABU leverages a shared fixed global
head to train the body in each client, focusing on creating a
good generalized global representation. Then, and only during
evaluation, the head is personalized through fine-tuning.

Table 1 summarizes the main characteristics of the three
personalization algorithms. In terms of notation, E indicates
the number of local training rounds, E the number of local

head training rounds and Ep the number of local body training
rounds.

Table 1. Comparison between the different FL personaliza-
tion algorithms.
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3 Federated Learning in the context of
OUTSYSTEMS
3.1 Service Studio
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Figure 2. Service Studio Action Flow for splitting a string
into multiple tokens from a given naming convention.

Service Studio is a platform developed by OUTSYSTEMS,
which intends to help programmers develop their applications
in a simple way, without the need to write code. As such,
the programmers simply need to create a chain of actions,
called an action flow, which represents the logic of the ap-
plication. As an example, Figure 2 shows an OUTSYSTEMS
Action Flow for splitting a string formatted in a given naming
convention. The flow leverages a “switch” action to select
the initial string naming convention format, either snake case
(condition 1) or pascal case (condition 2), otherwise, it raises
an exception. For the pascal case, first a “server action” is per-
formed to split the string by capital letters and then the output
is set. For example, for the input string "FederatedLearning"
in the Pascal naming convention, this flow outputs "Federated
Learning".

Action Flows can be modelled as graphs and can be classi-
fied as directed weakly connected graphs. The nodes represent
the actions and are connected through edges, which repre-
sent the flow between two actions. Each edge is directed,
meaning that there exists a flow relation between a source
node and a destination node. Each node has its own attributes
which represent characteristics or features of the action. For
example, all nodes have a kind that indicates the type of the



Table 2. Comparison between models for different clients.

Number of | Accuracy (%) Accuracy (%)
Action Flows | Local Model | Centralized Model
Client A 47,711 75.41 65.79
Client B 60 24.14 58.62
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action, e.g., “switch”, “assign”, “if””, and so on. Edges also
have attributes that represent the characteristics of the flow,
for example for a “switch” action one of the edge attribute
indicates the condition the edge corresponds to.

ML is used in this platform to give recommendations to
the users whenever the user tries to add a new action by
suggesting some possible next actions to be added to the
action flow. These suggestions are obtained using a ML model
based on GNNs. In particular, the model’s objective is to
predict one of the nodes’ attributes: the node “kind”.

Currently, this model is trained in a centralized fashion,
that is, the OUTSYSTEMS clients need to share their data
with a centralized server, such that, a model can be trained on
the data from all the clients. However, this approach has two
setbacks. Firstly, it requires the clients to share their personal
data which may contain sensitive information, thus raising
privacy concerns. Secondly, the obtained model is shared
across all the clients, which means the predictions might not
be the most adequate as there is no personalization. Another
more naive approach would be having each OUTSYSTEMS
client develop their own local model, trained only with each
client’s data. However, this would require each client to have
enough data to be able to train its own model, which is not
always the case.

Table 2 highlights the advantages and disadvantages, in
terms of the quality of the recommendations, for the usage
of local models in relation to the usage of a single global
model, calculated from the data of 881 clients, resorting to
two distinct clients. Client A has a long usage history of the
platform, therefore, it already has a large data set. As such,
it has enough data points to construct a local model which
offers great accuracy and is specialized to its business model.
On the other hand, client B is relatively new to the platform,
thus it has a small data set. This client clearly benefits from
the usage of a centralized model.

One way to allow the creation of collaborative models
without the need to share private data is by using FL. Fur-
thermore, as seen in Section 2.2, there are approaches which
focus on personalizing FL. models to each client. This allows
the creation of models which are trained with the data of
various clients without sharing client data, while also being
personalized to each client’s data. In this work, we propose
two possible approaches, each combining two different algo-
rithms from the ones covered previously, we deem these al-
gorithms hybrid algorithms (the reasoning behind the chosen
algorithms for the proposed approaches will become clearer
in Section 4.2).

3.2 FedHybridAvgLG

The algorithm Federated Hybrid FedAvg LG-FedAvg (FedHy-
bridAvgLG) is an hybrid algorithm which attempts to merge
the FedAvg and LG-FedAvg algorithms. Smaller clients, who
do not have sufficient data for personalization, leverage the
FedAvg algorithm as it generates more general models since
the full model is shared by all clients. Larger clients, which
are those who have enough data for personalization, lever-
age the LG-FedAvg algorithm as it allows personalization by
specializing the body of the client.

3.2.1 Small Clients. For smaller clients, which do not have
enough data to personalize the model, the algorithm FedHy-
bridAvgLG works as the FedAvg algorithm, hence Figure 1(a)
can be used to illustrate the scheme of a model for a small
client. Thus, in each communication round, after receiving
the model parameters, the smaller clients train the body and
the head of the model jointly to obtain the trained local model.
Afterwards, the client update is sent to the server, this update
contains the parameters of the full trained local model.
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Figure 3. Example of a model for large clients in the FedHy-
bridAvgLG algorithm.

3.2.2 Large Clients. Figure 3 illustrates the scheme of a
model for a large client in the FedHybridAvgLG algorithm.
For these clients, which have a large enough data set to person-
alize a model, FedHybridAvgLG leverages the LG-FedAvg
algorithm. Hence, in each communication round, after receiv-
ing the model parameters, the clients only update their model
head keeping their local body (instead of the whole model
as in small clients) and then train both the local body and
the received head jointly to obtain the trained local model.
Afterwards, the client update is sent to the server. The local
update contains both the trained head (as in LG-FedAvg), but
also the local body (contrarily to LG-FedAvg).

3.3 FedHybridAvgLGDual

Federated Hybrid FedAvg LG-FedAvg Dual Model (FedHy-
bridAvgLGDual) is an approach different from the previous
one, that requires the larger clients to calculate two different
models (hence the dual in the name).

3.3.1 Small Clients. The procedure for smaller clients is
exactly the same as in the FedHybridAvgLG algorithm. So the
smaller clients simply receive the full model parameters from
the server, train the model locally and send back the trained
parameters. Figure 1(a), illustrates this procedure.
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Figure 4. Example of a model for large clients in the FedHy-
bridAvgLGDual algorithm.

3.3.2 Large Clients. For larger clients, this algorithm lever-
ages two models, one based on the FedAvg algorithm and
one based on the LG-FedAvg algorithm, Figure 4 illustrates
the procedure for this algorithm. (i) After receiving the global
model parameters, the client trains the full model received
jointly simulating FedAvg. (ii) Then, the client keeps a local
body which is trained jointly with the global head received
from the server. After training both models, the client sends
the body trained from (i) and the head trained from (ii) to the
server, keeping the local body from (ii).

3.4 Client-Size Categorization
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Figure 5. Accuracy of local and centralized models by the
number of total client data points.

Hybrid algorithms combine two different FL algorithms,
having each client perform one or the other depending on a
given threshold. In order to define the threshold for consid-
ering a client small, we used the data from Figure 5. This
Figure illustrates the average validation accuracy from the
last 5 training rounds of a total of 30 rounds for the local
models and the centralized model, for each one of 33 selected
clients. The procedure for choosing these clients is described
in Section 4.1. The horizontal axis is in logarithmic scale.
From this graph, we can identify a point where the clients
start to have enough data to personalize a model to their use

case, thus starting to prefer using local models instead of the
centralized model, which is more general.

In this graph, we can see a point at approximately 2200 data
points (marked in the figure with a red dashed line) where
to the left the centralized model generally achieves better
performance (except for a couple of points) and to the right
the performance of local models is superior. Hence, to the left
of this point, the clients do not have a sufficient amount of
data to personalize a model to their use case and, to the right,
the clients start to have a large enough data set which allows
them to create a model specialized to their data.

This threshold of 2200 data points draws the line between
clients preferring a more general model, such as the central-
ized model, and a more personalized model, like the local
model. Therefore, we defined this value as the threshold for
considering a client as a small client.

3.5 Discussion

The two previously proposed hybrid algorithms present sig-
nificantly different approaches. FedHybridAvgLG does not
require the larger clients to train two different models, there-
fore, it is less costly computationally. Also, since this algo-
rithm maintains a local body in the larger clients which is
further specialized every round and is sent to the server, it is
expected that the aggregated body in the server will be more
specialized than when using the FedAvg algorithm, where the
clients train a global body every round. The same happens
with the global head, which will also be more specialized due
to the larger clients training it with a local body.
FedHybridAvgLGDual uses a more specialized aggregated
head than FedAvg, since the head sent by the larger clients
to the server was trained with a local specialized body. Also,
contrarily to FedHybridAvgLG, the body sent by the larger
clients is not the local specialized body and is instead a body
calculated from the received global body, thus the global
body is more general than in FedHybridAvgLG. Furthermore,
since the aggregation of the global head is performed with the
heads from the smaller clients, which are not as specialized as
they were trained with a more general global body, it is to be
expected that the aggregated heads of FedHybridAvgLG and
FedHybridAvgLGDual are less specialized than LG-FedAvg.
Lastly, since FedHybridAvgLGDual requires more compu-
tation from the larger clients, this algorithm only becomes
viable if the obtained models provide some advantage.

4 Experimental Study
4.1 Experimental Setup

In order to evaluate each one of the federated algorithms, we
leveraged an OUTSYSTEMS data set composed of the code
developed by 881 clients. From this data set, we selected 33
clients for evaluation. Each client maintains the data relative
to one organization which uses the Service Studio platform,
that is, it keeps all the action flows of that organization.

To extract the 33 clients, the clients were partitioned ac-
cording to their number of action flows. The first partition
includes all the clients with less than 64 flows and all the



following partitions increase exponentially in size by a factor
of 2, creating 11 partitions in total. Afterwards, 3 clients were
randomly selected from each partition.

The evaluation was performed in the AWS cloud where
each client was run on a separate instance. For the federated
algorithms, 30 communication rounds were performed and
for each one all the 33 clients participated, that is, there was
no client selection since in the case of OUTSYSTEMS there
are no communication or hardware restrictions. The local
models were obtained using the data of each one of the 33
clients and the centralized model using the data of all the 33
clients in a single instance.

4.1.1 Model Performance. Since the clients’ data set is bal-
anced, the performance of the obtained models was evaluated
using the accuracy of the models in each client’s test data set,
that is, the percentage of correct predictions over the total
predictions. In the analysis of the results we split the clients
into three groups (large clients are split into intermediate and
big clients):

o Clients with a small number of data points (until 2200
data points, as explained in Section 3.4);

o Clients with an intermediate number of data points
(between 2200 and 31700 data points). The value 31700
was obtained from the percentiles of the total number
of data points for the 881 clients and it corresponds to
the 75% percentile, and;

o Clients with a big number of data points (above 75%
percentile, that is above 31700 data points).

4.2 Node Kind Prediction Task

In this section, we analyse the experimental results for the
node kind prediction task. A more complete experimental
evaluation which includes experiments with a more complex
prediction task, with the prediction of novel actions and with
the variation of some hyperparameters are available in the
thesis [6]. In Section 4.2.1, we analyse the results for the
algorithms proposed in the literature (FedAvg, LG-FedAvg,
FedRep and FedBABU) and the centralized and local models.
Then, we analyse the performance of our hybrid proposals
in Section 4.2.2. In order to facilitate the interpretation of
the results, we created two different graphs for each type of
client, one which contains the literature approaches (includes
the federated algorithms from the literature and the local
and centralized algorithms) and another which contains the
hybrid algorithms (includes the hybrid algorithms and, for
comparison purposes, the literature algorithms which they
intend to replicate as well as the best-performing algorithms
from the literature graph for that group of clients). In the case
of the FedAvg and LG-FedAvg algorithms, a single local
training round was performed. For the FedRep algorithm,
one local training round for the head and one for the body
were performed. For FedBABU, a single local body training
round was performed and since we wanted to provide the
same test environment for every algorithm, no fine-tuning
was performed, meaning that for this specific experience there
is no personalization mechanism for FedBABU. As such a

fixed classifier was used. Therefore, we performed a separate
experience where we fine-tune the models for a single round
before evaluation. The results of this experience are presented
in Section 4.2.3.
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Figure 6. Accuracy of the various models for small clients
for the node kind prediction task.

4.2.1 Literature Algorithms.

Performance for Small Clients. Figure 6(a) shows the evo-
lution of the average accuracy for the small clients throughout
the training/communication rounds for each one of the algo-
rithms. In terms of the federated models from the literature,
we can see that the FedAvg and FedBABU algorithms are
the ones which obtain the best accuracy (with a slight ad-
vantage from FedBABU), followed by the FedRep algorithm
and lastly by the LG-FedAvg, meaning that personalizing the
head is preferable to personalizing the body. The LG-FedAvg
algorithm achieves the worst performance, a fact that can be
justified by the few data points of the client which do not
allow for proper personalization of the body.

We can also check that the centralized model achieves
worse accuracy than both FedAvg and FedBABU in a consid-
erable amount of rounds. Lastly, we see that the local models
are inferior to both the centralized model and the FedAvg,
FedBABU and FedRep algorithms, which shows the impor-
tance of client collaboration for smaller clients.
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Figure 7. Accuracy of the various models for intermediate
clients for the node kind prediction task.

Performance for Intermediate Clients. Figure 7(a) illus-
trates the evolution of the average test accuracy for the clients
with an intermediate number of data points. We can see
greater proximity between the accuracies of the four federated
algorithms. Furthermore, the personalization algorithms are
superior to FedAvg and FedBABU. Also, FedBABU achieves
slightly better performance than FedAvg in most of the rounds.
Finally, note that towards the end of the training, LG-FedAvg
and FedRep end up achieving better accuracy than both the
local models (about 0.3% to 1% superior) and the centralized
model (about 2% to 3% superior), with LG-FedAvg surpass-
ing FedRep, meaning that for clients with more data, person-
alizing the body of the model is best.

Performance for Big Clients. Figure 8(a) illustrates the
evolution of the average accuracy for big clients. In this case,
we can see a tendency similar to the one of the intermediate
clients, where the personalization algorithms are superior
to FedAvg and FedBABU, which have similar performance.
However, the LG-FedAvg algorithm is superior to the FedRep
algorithm, meaning that personalizing the body is the best
option for clients with a lot of data. Also, towards the end of
the training where the body of LG-FedAvg starts to be more
specialized, the accuracy becomes slightly superior to the
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Figure 8. Accuracy of the various models for big clients for
the node kind prediction task.

one of the local model (difference of 0.1% to 0.2%) and the
centralized model (difference of 7% to 8%).

Discussion of Results. From the obtained results we can
conclude that there is no strategy that is the best for all types
of clients. For clients with few data points, the personalization
of the head is easier than the body, since the body typically
has a greater number of parameters, therefore, it is harder
to personalize. However, for these clients, either the collab-
oration on the full model or on the body but using a fixed
head is preferable, since the low amount of data makes per-
sonalization ineffective. The FedAvg algorithm, which trains
the whole model collaboratively, obtains results very close to
those of the centralized model, being superior in a consider-
able amount of rounds. Also, FedBABU manages to achieve
slightly better results than FedAvg, which means that collabo-
ratively training the head might introduce some noise into the
model and so it is preferable to train the model with a fixed
head.

As the number of data points grows (intermediate and big
clients) the data becomes specific and in sufficient quantity
to train, individual client models. Therefore, the centralized
model becomes inferior to local models and personalization
algorithms are superior alternatives to FedAvg and FedBABU.
Also, the personalization of the body offers greater results



than that of the head and actually, slightly superior to local
models resulting in a difference of up to 1% in accuracy.
This indicates that the collaboration on the head might help
these larger clients classify some more general data points
which are less specific to the client and the local model fails
to classify. As such, we can conclude that for these clients,
personalizing the representation is preferable to personalizing
the classifier, which is somewhat surprising since the literature
mentions that it is expected for the heterogeneity to reside in
the classifier and not in the representation.

In environments where data privacy is required, the de-
velopment of a hybrid approach between the FedAvg or
FedBABU algorithms (for smaller clients) and the LG-FedAvg
algorithm (for bigger clients) would allow bigger clients to
collaborate in the construction of a federated model which
would benefit the smaller clients without sharing their data,
while also receiving a small boost in model performance when
compared to local models. This reasoning is what motivated
the development of the hybrid algorithms FedHybridAvgLG
and FedHybriAvgLGDual, whose results will be covered next.

4.2.2 Proposed Hybrid Algorithms.

Performance for Small Clients. In Figure 6(b) we can
verify the evolution of the performance for small clients for
the hybrid algorithms. We can observe that FedHybridAvgLG
is the algorithm which has the worse performance, and in fact,
it gets worse over every communication round. On the other
hand, FedHybridAvgLGDual manages to achieve the intended
performance and obtain results similar to FedAvg.

Performance for Intermediate Clients. From Figure 7(b)
we can observe that FedHybridAvgLG does not manage to
match the performance of the LG-FedAvg algorithm, which
was its intended goal. Also, FedHybridAvgLGDual although
not overperforming LG-FedAvg in every round, it manages to
surpass the performance of this algorithm in some rounds and
it also achieves close results in the other rounds, as intended.

Performance for Big Clients. In Figure 8(b) the evolu-
tion of the accuracy for the big clients for each one of the
hybrid algorithms can be observed. The FedHybridAvgLG al-
gorithm manages to achieve similar results to the LG-FedAvg
algorithm, nonetheless, it achieves inferior accuracy (differ-
ence of about 0.1% to 0.6% in accuracy). Lastly, FedHybri-
dAvgLGDual also achieves similar results to the LG-FedAvg
algorithm but it overperforms this algorithm in some rounds
(difference of about 0.1% to 0.4% in accuracy), therefore,
achieving its intended goal.

Discussion of Results. The algorithm FedHybridAvgLG
underperformed in comparison to LG-FedAvg for the inter-
mediate and big clients, and most importantly, to FedAvg for
small clients where the difference between the two is con-
siderable and kept getting worse after each communication
round. We believe this results from each larger client send-
ing its local body for aggregation. Since every round, each
local body keeps getting more and more specialized in its

own unique way, the resulting aggregated model is not of use
because each body “pulls” in its own direction.

The FedHybridAvgLGDual algorithm achieved the intended
results, it achieved better performance than the FedAvg al-
gorithm for the smaller clients and similar or better perfor-
mance than the LG-FedAvg model (and consequently the lo-
cal model, as they have identical performance) for the larger
clients. For the smaller clients, the fact that the global head is
trained with the local bodies of the larger clients means that
it becomes more specialized while also managing to remain
general enough not to affect the classifications of the more
general data, leading to an improvement in performance. For
the big clients, we have the opposite, as the small improve-
ment in performance comes from the fact that the aggregated
head contains the heads of the smaller clients which were
trained with a more general body (remember that for smaller
clients there is no local body), meaning the global head is
more general than the one obtained from LG-FedAvg. This
improves the classifications of the few data points that are
more general and less specific to each client.

Since FedHybridAvgLG did not manage to achieve the
intended results, in order to save test budget, we opted not to
perform any further experiments with this algorithm.

4.2.3 Fine-Tuning. In order to test the influence of fine-
tuning, we performed an experiment where we fine-tuned
the models of the previous experiment for one round before
evaluation. Fine-tuning was performed on the whole model.

Performance for Small Clients. Figure 9 presents the re-
sults of the accuracy for small clients when fine-tuning the
models for each algorithm. Similarly to the previous results,
for ease of interpretation, we split the results into two graphs,
thus, Figure 9(a) contains the results for the literature algo-
rithms and Figure 9(b) contains the results for the hybrid
algorithms. From the results we can verify that almost all al-
gorithms benefit from fine-tuning before evaluation, meaning
that a small personalization of the whole model can make
the model adapt to the client’s data. Only LG-FedAvg had no
improvement after fine-tuning, which indicates that personal-
izing the head might not be useful for these clients.

Performance for Intermediate Clients. Figure 10 illus-
trates the performance for the intermediate clients with and
without fine-tuning, Figure 10(a) contains the results for the
literature algorithms and Figure 10(b) for the hybrid algo-
rithms. It is possible to observe that both our approach and
LG-FedAvg do not benefit from fine-tuning, which might
imply that the personalization was already adequate before
fine-tuning. However, the remaining algorithms manage to
outperform both LG-FedAvg and our approach by quite a
margin (3% to 6% in accuracy), something that indicates that
intermediate clients still benefit from a more general approach
which only needs an adaptation to the client data.

Performance for Big Clients. Figure 11 contains the re-
sults with and without fine-tuning for the big clients, Fig-
ure 11(a) contains the results for the literature algorithms and
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Figure 9. Accuracy of the various models for small clients
for the node kind prediction task after fine-tuning.

Figure 11(b) for the hybrid algorithms. There are some simi-
larities and some differences from the previous clients. As for
the similarities, once again fine-tuning our hybrid approach
and LG-FedAvg does not produce any gains and in some
rounds is prejudicial to the model performance. As for the
differences, the remaining algorithms do not manage to over-
perform the former algorithms as they did for the intermediate
clients, meaning the personalization of the body manages to
capture the specificities of the client data more accurately.

Discussion of Results. Firstly, it is interesting to notice that
fine-tuned FedBABU achieves better results than fine-tuned
FedAvg for smaller clients, but worse results for intermediate
and big clients. The authors of FedBABU [8] argued that
training the head introduced noise to the global model, as
such, we can derive that the introduced noise in FedAvg is
prejudicial for the smaller clients since it affects the generality
of the model when these clients need a more general model.
However, the noise results from the specific data of the larger
clients, so when it is removed (as in FedBABU) it affects the
quality of the predictions as the model becomes more general
when larger clients need a more specific model.

Secondly, it is also interesting to note that the body might
be the model part which best captures the specificity of the
client data. By looking at the performance of the LG-FedAvg
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Figure 10. Accuracy of the various models for intermediate
clients for the node kind prediction task after fine-tuning.

for all the clients and our hybrid approach for the interme-
diate and big clients (where it replicates the behaviour of
LG-FedAvg), we can see that fine-tuning does not improve
performance, in fact, in some rounds, it worsens the perfor-
mance. This happens because the body has reached a point
of personalization where more personalization simply has
no effect (in the early rounds fine-tuning improved the accu-
racy, which does not happen in the later rounds) and the head
by being more personalized stops classifying more general
and out of the distribution client data as effectively, which
can explain the drop in performance in some of the rounds
after fine-tuning. Furthermore, if we look at the results of
FedRep after fine-tuning and compare them to the ones of
FedAvg after fine-tuning for the intermediate and big clients,
we can see that fine-tuned FedAvg outperforms or matches
fine-tuned FedRep which has a personalized head, hence the
personalization of the body seems to be the key performance
factor. Thus, it is preferable to have a more general head and
a body which is personalized to the client data.

Lastly, fine-tuning FedAvg, FedRep and FedBABU in the
intermediate clients achieved better performance than our ap-
proach and LG-FedAvg. This might mean that these clients,
still do not have enough specific data to be preferable to per-
sonalize the body fully than having a more general model
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Figure 11. Accuracy of the various models for big clients for
the node kind prediction task after fine-tuning.

which is adapted to their data when fine-tuning. Thus, if fine-
tuning is desired, it may be worth developing an approach sim-
ilar to FedHybridAvgLGDual where the intermediate clients
behave like the smaller clients except they fine-tune the model.
However, the impact of the intermediate clients not participat-
ing in the LG-FedAvg part of the algorithm would have to be
studied, since it might impact the performance of the model.

5 Conclusions and Future Work

In this thesis, we performed an experimental study to evaluate
the viability of applying techniques of personalized FL to our
use case, the Service Studio platform developed by OUTSYS-
TEMS. We surveyed some solutions proposed in the literature
and evaluated them. The obtained results demonstrated that
the amount of data of each client influences the performance
of each algorithm, meaning there is no algorithm which works
well for every client. Clients with fewer data prefer an algo-
rithm which allows collaboration on the full model, as they
do not have enough data to personalize part of the model.
Clients with more data, prefer to collaborate on the head of
the model and personalize the body. Hence, we also proposed
and evaluated possible approaches that merge some of the
studied algorithms, which we call hybrid algorithms. One
of the proposed algorithms, FedHybridAvgLGDual, which
merges the FedAvg and LG-FedAvg algorithms, proved to

achieve similar performance to the top algorithms for all the
types of clients for a task of predicting the kind of the next ac-
tion to be added to an action flow. We also demonstrated that
for this task fine-tuning our hybrid proposal only improves
the performance for clients with a low amount of data.

Our proposed algorithm FedHybridAvgLGDual requires
the clients with more data (intermediate and big clients) to
calculate two different models in each communication round.
Therefore, as future work, some other approaches might be ex-
plored to avoid having to calculate two different models. Also,
it would be interesting to test our hybrid algorithm with other
data sets (possibly even out of the scope of OUTSYSTEMS).
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