
Separating Replication from Distributed

Communication:

Problems and Solutions ∗

Miguel Antunes†

Miguel.Antunes@inesc.pt
Hugo Miranda‡

hmiranda@di.fc.ul.pt

António Rito Silva§

Rito.Silva@inesc.pt
Lúıs Rodrigues¶

ler@di.fc.ul.pt

Jorge Martins‖

Jorge.B.Martins@inesc.pt

Abstract

Replication and distributed communication are usually tightly cou-
pled. This code tangling forbids their independent reuse and adapta-
tion. In this position paper the problems resulting from coupling repli-
cation with distributed communication are discussed. In addition, a
solution based on separation of concerns is proposed. The abstractions
for each concern are presented as well as their composition.

∗This work was partially supported by Fundação para a Ciência e Tecnologia, Praxis/
C/ EEI/ 33127/ 1999 MOOSCo and Praxis/ C/ EEI/ 12202/ 1998 TOPCOM. Selected
portions of this report were published in the Proceedings of the International Workshop on
Distributed Dynamic Multiservice Architectures (DDMA), in conjunction with the 21st
International Conference on Distributed Computing Systems (ICDCS-21) April 16-19,
2001. Phoenix, Arizona, USA.
†INESC/IST Technical University of Lisbon, Rua Alves Redol no9, 1000-029 Lisboa,

PORTUGAL
‡University of Lisbon, FCUL, LASIGE, Edif́ıcio C5, Campo Grande, Lisboa, PORTU-

GAL
§INESC/IST Technical University of Lisbon, Rua Alves Redol no9, 1000-029 Lisboa,

PORTUGAL
¶University of Lisbon, FCUL, LASIGE, Edif́ıcio C5, Campo Grande, Lisboa, PORTU-

GAL
‖INESC/IST Technical University of Lisbon, Rua Alves Redol no9, 1000-029 Lisboa,

PORTUGAL

1

1 Problem

Distributed multi-user interactive systems are an extremely relevant appli-
cation area. Applications such distributed simulation, computer supported
collaborative work (CSCW), multi-user games or dungeons (MUDs), and
multi-user object-oriented environments (MOOs) are becoming increasingly
pervasive. The MOOSCo project [10], Multi-user Object-Oriented environ-
ments with Separation of Concerns, addresses the difficulties in applying a
component-based approach in a vertical and integrated manner, from anal-
ysis to implementation, to the design of this class of systems. In this project
the experience of two research groups, a software engineering group and a
distributed systems group, is being integrated. In particular, the composi-
tion of middleware abstractions and infrastructure communication protocols
is being studied. This position paper discusses the problems associated with
the composition of replication with distributed communication.

Replication and distributed communication are usually tightly coupled
since replication only makes sense in the context of distributed applications.
Almost accidentally, replication is mixed with distributed communication
since the latter is usually used as the base of distributed applications con-
struction. This situation results in the well-known code tangling problem [7].

Regardless of non orthogonality, it is necessary to find completely inde-
pendent solutions for both concerns, such that it is possible to reuse, adapt
and compose them independently. This separation of non-orthogonal con-
cerns is a major open problem [1].

In synthesis, the following problems are addressed:

• What are the abstractions for replication and distributed communica-
tion that allows them to be independently specified from each other?

• How to deal with inter-concern dependencies such that their impact
is controlled in order to keep independent the definition and evolution
of each concern.

2 Solution

The proposed solution is to treat both concerns at the same level, instead
of defining replication on top of distributed communication. The approach
considers replication independently from distributed communication.

Abstractions for replication and distributed communication are defined
in a way that each abstraction does not raise any assumption about the

2

other abstraction.
In order to deal with inter-concern dependencies a new abstraction is

defined, a composition abstraction, that ensures the independence of each
concern’s specific parts. That way, the whole, the composition, is more than
the sum of the parts, the composed concerns.

The independence of the concern abstractions allows them to be easily
reused and adapted. Each concern has several variations that should be
used depending on the application specific needs. For example, different
distributed architectures can be used for distributed communication, e.g.,
client-server, peer-to-peer and hybrid. Both architectures have their advan-
tages and disadvantages thus, designers should be able to choose which is
more suitable for the target application. Regarding replication, different
consistency criteria are needed for different objects depending of what is
their replicated state, their update frequency or even their semantics. Forc-
ing the same consistency criteria for all updates is too restrictive and may
impose unnecessary overhead on the system.

So, the proposed approach requires that each concern abstraction pos-
sesses the expressive power required to support the different concerns vari-
ations. Moreover, in order to keep concerns independent, the composition
abstraction should also support the variations that are part of the com-
position semantics. That way, non-orthogonal aspects of composition are
confined to the composition abstraction and the impact of their evolution is
controlled in the right place.

In the rest of this paper abstractions for distributed communication and
replication are presented, Sections 3 and 4 respectively. In Section 5 it is
also presented an abstraction for their composition. It is shown the ex-
pressive power of these abstractions, and how they support concern and
concern composition variations. Conclusions and future work are presented
in Section 6.

3 Distributed Communication

3.1 Variations

A solution for the distributed communication should consider the following
variations:

• Communication Protocol. The solution may choose between different
communication protocols. For instance, multicast or unicast. It may

3

Message

NetworkProtocol

0..*

0..*

Channel

0..*

0..*

+sends/
receives1

1

ChannelMember 11

Figure 1: Distributed communication abstraction structure.

also choose between the different qualities of service. For instance,
reliable and unreliable.

• Distributed Architecture. The solution may choose between different
distributed architectures. For instance, client-server or peer-to-peer.

3.2 Structure

Figure 1 presents the structure proposed for the distributed communication
concern. The abstraction has the following participants:

• ChannelMember. It represents a particular application that is associ-
ated with a channel. It is used to send and receive messages from the
members that form a communication channel.

• Channel. A Channel instance represents a channel endpoint over
which messages can be sent to all (or a subset) of the channel members
and over which messages sent to channel members can be received. It
is associated with a communication protocol, NetworkProtocol, that
is used for message delivery with a particular quality of service.

• NetworkProtocol. It is responsible to send messages from one chan-
nel member to the remaining channel members through the network,
according to a particular quality of service.

• Message. It represents the information exchanged between channel
members through Channel instances.

3.3 Expressiveness

It is possible to specialize the proposed abstraction to support the different
variations.

4

To support different communication protocols and qualities of service
NetworkProtocol is specialized. There are two main specializations, Unicast-
Protocol and MulticastProtocol, that represent, respectively, point-to-
point and multicast communication protocols. These classes can be fur-
ther specialized to provide different qualities of services. For instance,
ReliableUnicast and ReliableMulticast.

To support different distributed architectures, the class Channel is spe-
cialized. MulticastChannel represents communication channels for multi-
cast architectures. Note that this architecture requires a particular com-
munication protocol, multicast protocol, supported by a specialization of
MulticastProtocol. However, there is no commitment for a particular
quality of service.

ClientChannel and ServerChannel support client-server architectures.
In this distributed architecture a communication channel is represented by
an instance of ServerChannel and multiple instances of ClientChannel.
All messages are sent by a ClientChannel instance to the ServerChannel
instance which is responsible to deliver them to the other ClientChannel in-
stances. Note that this distributed architecture requires a particular commu-
nication protocol, unicast protocol, supported by a specialization of Unicast-
Protocol.

3.4 Implementation with APPIA

Appia 1 is a communication architecture that allows different communication
channels, each with its own QoS, to be integrated in a coherent multi-channel
protocol stack [9]. Appia recognizes the need to integrate channels, allowing
properties to be shared across several channels. Most of the previous dis-
tributed communication models such as the x -Kernel [6] and Ensemble [5]
offer limited support for expression of inter-channel constraints. The work
with Maestro [2] illustrates the difficulties of maintaining consistent failure
detection when channels with diverse characteristics are used concurrently.
To satisfy inter-channel requirements, Appia extends the abstraction pro-
vided by previous works.

The architecture of Appia allows the application designer to specify the
protocol stack that meets her/his QoS requirements through the composition
of micro-protocols. Appia addresses these problems by providing a stack
composition model that allows to express inter-QoS requirements.

Figure 2 shows how Appia can coordinate two different objects A and B
1Appia was started in the context of the previous project, TOPCOM.

5

Network
Failure Detection

Reliable
Compress

Stronger
consistency

Weaker
consistency

(A)
(B)

Figure 2: Two objects with different distributed consistency requirements
in Appia

with independent consistency requirements. Both channels share a common
failure detector module; this way, inconsistencies motivated by the unrelia-
bility of failure detection are avoided.

Appia handles inter-QoS requirements in a clean way: property sharing
is achieved by allowing the same protocol instances to be present in the
required channels. The figure presents two distinct Appia channels, one
for object (A) and another for object (B), and behaving as such for the
application programmer. Despite the flexibility of the model, developing
protocols for Appia is not harder than for previous protocol frameworks.
Depending on protocol behaviour, participation of an instance in several
channels can be transparent to the implementation.

4 Replication

4.1 Variations

When developing application-specific solutions for replication the following
variations should be considered:

• Shared State. It should be possible to choose the shared state on a
per object basis. The shared state is defined identifying the object’s
attributes and actions that should be shared.

• Consistency Protocols. Different consistency should be allowed. Con-
sistency criteria should be defined on a per object basis. Moreover, it

6

should be possible to define consistency criteria that apply to several
objects.

• Replication policy. The replication policy to handle newcomers may
change. In some situations a new shared space member receives all
the shared objects from the same member. In other situations several
members contribute for providing the new member with the shared
space’s objects.

4.2 Structure

Figure 3 presents the structure of the proposed solution for the replication
concern. The abstraction has the following participants:

ReplicationPolicySharedState

IntraObjectConsistencyProtocol InterObjectConsistencyProtocol

10..* 10..*

SpaceConsistencyProtocol1 1

SharedSpaceMember

SharedObject

1

1

1

1..*

1..*

1..*

1..*

1

0..*

1

0..*

SharedSpace

1

1..*

1

1..*

1

1

1

1

1

1

+member1

0..* 1+objectReplica0..* 1

0..* 1+localObject0..* 1

Figure 3: Replication abstraction structure.

• SharedSpaceMember. An application that is associated with a Shared-
Space instance.

• SharedSpace. Represents a members’s view for a particular shared
space. It is through SharedSpace instances that members may access
shared objects that exist in a shared space.

• SharedObject. An object shared in the context of a shared space.

• SharedState. Represents the part of a SharedObject instance that
is actually shared.

• IntraObjectConsistencyProtocol. Represents a consistency pro-
tocol that enforces some consistency criteria on a SharedObject in-
stance. It may be applied to one or more shared attributes and actions
of the shared object.

7

• InterObjectConsistencyProtocol. Represents a consistency proto-
col that enforces some consistency criteria between state updates of
different objects. Each aggregates several intra-object consistency pro-
tocols.

• SpaceConsistencyProtocol. Represents a consistency protocol that
is used for maintaining consistency between shared space members
regarding the number of existing shared objects. Moreover, Shared-
Space instances use their SpaceConsistencyProtocol to propagate
shared objects creation and destruction to other shared space members
using a particular consistency criteria.

• ReplicationPolicy. Represents a policy to manage the creation and
destruction of shared objects, whenever shared space members join and
leave a shared space. Each shared space consistency protocol delegates
in a ReplicationPolicy instance the handling of: the activation and
deactivation of shared objects; space membership changes; and deter-
mining which member or members have the responsibility of sending
to newcomers information about the existing shared objects.

4.3 Expressiveness

It is possible to specialize the proposed abstraction to support the different
variations.

The abstraction for the replication concern allows for the application
shared state to be defined on a per object basis. This allows a better control
of what state changes must be propagated to other space members.

Different consistency protocols can be obtained by specializing classes
IntraObjectConsistencyProtocol and InterObjectConsistencyProtocol.
For instance, class DeadReckonProtocol, is a specialization of IntraObject-
ConsistencyProtocol that can be used to reduce the number of state up-
dates that are propagated between space members, using a state prediction
algorithm2. Class CausalSpaceProtocol defines a inter-object consistency
protocol that forces causal ordering for state updates. It can be used to
force the state updates of a particular set of objects to be causally ordered.

Different specializations of ReplicationPolicy can be defined to sup-
port different policies for handling newcomers and shared object creation

2DeadReckon algorithms are used in Multi-User Virtual Environments to reduce state
updates of objects positions that can be predicted using the previous position and velocity
of the object. Variations have been defined that apply this algorithms to any kind of data
.

8

and destruction. For instance, class DistributedPolicy represents a pol-
icy where each member is responsible to send the replicas of the objects they
have created to the newcomers. The classes MasterPolicy and SlavePolicy
represents a policy where the responsibility of handling newcomers belongs
to a single member, the master. The remaining members, the slaves, do
not handle space membership changes and when they join a space, they
send replicas of their objects to the master, and obtain the other member’s
replicas from the master.

4.4 Implementation

The implementation of consistency protocols was based on the concept of
protocols layers and protocol stacks that can be found in several distributed
communication platforms. Each layer supports a particular consistency pro-
tocol and protocols are composed by layering them in protocol stacks. In
some aspects the structure of consistency protocols is very similar to the
communication protocols supported by Appia. There are however some dif-
ferences that try to take into account consistency protocols semantics. For
instance, when initializing a consistency protocol stack, the layers deter-
mine if the state updates produced locally must be propagated through the
protocol stack before being applied locally or if they can be immediately
applied. For instance, if there is a layer that must force some ordering or
synchronization criteria to state updates then they must be first propagated
trough the stack; otherwise they can be immediately applied avoiding un-
necessary delays. Also, the messages exchanged between protocol layers are
state updates that can be inspected by protocols, and not simple opaque
byte sequences like in communication platforms. Object protocol layers
have access to the objects they are managing so that they take into account
specific object semantics when forcing some consistency criteria.

Figure 4 shows a possible run-time structure of a SharedSpace instances
and its consistency protocols. Note that the ReplicationPolicy class is in
fact implemented as a special space protocol layer that always exist in a
space control protocol.

5 Composition

5.1 Structure

The composition abstraction has the following participants:

9

Obj 1

Other
objects
…

Obj 2

UnOrdered Causal Ordered

ReplicaLyfeCyclePolicy

Shared
Space

Space
Consistency
Protocol

Other protocols …
Inter-Object
Consistency
Protocols

Total Ordered Updates

Dead Reckon

Attr V Action Z

Fifo Updates

Object
Ownership
Protocol

Fifo Updates

Attr X Attr Y

Dead Reckon

Figure 4: Run time structure of consistency protocols.

• DistInterObjectConsistencyProtocol. Represents a specialization
of InterObjectConsistencyProtocol that uses a Channel instance
to receive and propagate state updates to remote space members. It
represents the composition between inter-object consistency protocol
and distributed communication. Note that this composition must also
be enforced for any of InterObjectConsistencyProtocol specializa-
tions described in section 4.3. The way the composition is supported
is implementation dependent. At this level it is only important to
identify what are the concern’s elements that must be composed in
order to obtain the intended functionality, i.e., distributed replicated
objects.

• DistSpaceConsistencyProtocol. A specialization of SpaceConsistency-
Protocol that implements a distributed membership protocol for man-
aging space membership changes. Creation and destruction of replicas
are propagated to remote members trough the Channel instance(s)
associated with a DistSpaceConsistencyProtocol.

5.2 Expressiveness

Support for different consistency criteria is obtained by specializations of
both IntraObjectConsistencyProtocol and DistInterObjectConsistency-
Protocol classes, that enforce different consistency criteria to object’s state
updates. Also the Channel instances used by DistInterObjectConsistency-
Protocol specializations must use NetworkProtocol instances that allow
those consistency criteria to be supported over distributed communication.
For instance, if a certain object requires some consistency criteria that forces
ordered state updates, then it is necessary that the network protocol used

10

by the DistInterObjectConsistencyProtocol’s channel supports at least
reliable message delivery.

Different distributed architectures are obtained using different combina-
tions of Channel and ReplicationPolicy specializations. For instance, a
pure client-server architecture can be obtained by using ClientChannel and
ServerChannel instances combined with SlavePolicy and MasterPolicy
instances, respectively. The clients use ClientChannel instances associated
with DistInterObjectConsistencyProtocol and DistSpaceConsistency-
Protocol instances; and SlavePolicy associated with their DistSpace-
ConsistencyProtocol instance. The server uses a ServerChannel instance
to route network messages , i.e. state updates, between clients and uses
MasterPolicy for managing newcomers.

5.3 Implementation

The implementation of DistInterObjectConsistencyProtocol and DistSpace-
ConsistencyProtocol is supported by specializations of consistency proto-
col layers (see section 4.4) that have an associated Channel instance. It also
uses the Appia implementation of Channel to perform distributed com-
munication over different network protocols and qualities of service. The
resulting composition supports distributed replicated objects, and it also
maintains the support for the both concerns variations. Since the compo-
sition between distributed communication and replication is well identified
and isolated, changing or extending that composition is made easier and
only affects the composition code and not the correspondent concerns. For
instance, decisions about associating different channels to different inter-
object consistency protocols, or sharing the same channel between different
consistency protocols, or even using more than one channel for the same
consistency protocol can be taken at the composition level, by specializ-
ing DistInterObjectConsistencyProtocol and DistSpaceConsistency-
Protocol appropriately.

There are, however, some dependencies that arise from the composi-
tion of distributed communication with replication, namely from composing
consistency protocols with distributed communication. For instance, consis-
tency protocols that enforce some ordering criteria needs that the underlying
distributed communication is at least reliable. In other situations, using reli-
able communication may introduce unnecessary delays since the consistency
protocols can deal with state updates losses, as it is the case of DeadReckon
protocols. It is necessary to guarantee that the distributed communica-
tion protocols provide the necessary quality of service so that consistency

11

protocols can be enforced. At present, although Appia can manage pro-
tocol dependencies within its protocol stacks, there is no way of enforcing
the dependencies between consistency protocols and Appia’s communication
protocols.

6 Conclusions

The work presented in this paper describes a solution for supporting dis-
tributed replication that considers replication and distributed communica-
tion as two separated concerns. For each concern, a solution is proposed
that supports several variations that are relevant for the domain of multi-
user virtual environments. Distributed replication is obtained by compos-
ing solutions described for the replication and distributed communication
concerns. This approach allowed reasoning about communication and repli-
cation at different levels of abstractions, and at the same time allowed for
the composition of those concerns. Furthermore, identifying the composi-
tion points allowed for optimizations to be performed at the composition
level [3, 8, 4].

Despite having defined independent abstractions for replication and dis-
tributed communication, the implementations of those abstractions were
very similar, namely both the implementations of consistency protocols and
communication protocols use the concepts of protocol layer and protocol
stack. The main reason to use such concepts was to easily support protocol
definition and composition.

One of the goals of this work is try to understand if it is possible for a
platform like Appia to support both consistency and distributed protocols
without violating the separation of concerns. Although Appia is focused on
supporting communication protocols, it is sufficient generic to allow special-
izations for other domains like consistency maintenance.

The main advantage of using the same mechanisms for supporting both
consistency and communication protocols, is that it may simplify the man-
agement of existing dependencies between particular consistency protocols
and quality of service of the underlying communication protocols. As stated
before, Appia already gives support for resolving dependencies between com-
munication protocol layers. However, before using Appia as a general mech-
anism to support the definition of consistency and communication protocols,
it is necessary to understand if Appia offers the necessary semantics to sup-
port consistency protocols as it supports communication protocols. More-
over, it is necessary to guarantee that supporting both types of protocols

12

will not violate the separation of concerns given by the defined abstractions.
In the future the issue of using the same mechanism to support both

communication and consistency protocols will be further investigated. If
necessary, changes will be made to Appia in order to successfully support
consistency protocols definition. However, this must be done, carefully,
without affecting the current ability to efficiently support communication
protocols.

References

[1] Lowdewijk Bergmans and Mehmet Aksit. Composing software from
multiple concerns: A model and composition anomalies, June 2000.
ICSE’2000 Workshop on Multi-Dimensional Separation of Concerns in
Software Engineering.

[2] K. Birman, R. Friedman, and M. Hayden. The maestro group man-
ager: A structuring tool for applications with multiple quality of ser-
vice requirements. Technical report, Cornell University, Ithaca, USA,
February 1997.

[3] Thomas Funkhouser. Network Topologies for Scalable Multi-User Vir-
tual Environments. In Proceedings of the 1996 IEEE Virtual Reality
Annual International Symposium (VRAIS), pages 222–228, San Jose,
CA, April 1996. IEEE Neural Networks Council.

[4] Chris Greenhalgh. Spatial Scope and Multicast in Large Virtual Envi-
ronments. Technical Report NOTTCS-TR-96-7, Department of Com-
puter Science, The University of Nottingham, UK., 1996.

[5] M. Hayden. The Ensemble System. PhD thesis, Cornell University,
Computer Science Department, 1998.

[6] N. Hutchinson and L. Peterson. The x-Kernel: An architecture for im-
plementing network protocols. IEEE Trans. on Software Engineering,
17(1):64–76, January 1991.

[7] Gregor Kicsales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented
programming. Technical Report SPL97-008 P9710042, XEROX PARC,
February 1997.

13

[8] Michael Macedonia, Michael Zyda, David Pratt, Donald Brutzman,
and Paul Barham. Exploiting Reality with Multicast Groups. In IEEE
Computer Graphics and Applications, pages 15(5):38–45, September
1995.

[9] H. Miranda and L. Rodrigues. Flexible communication support for
CSCW applications. In 5th Internation Workshop on Groupware -
CRIWG’99, pages 338–342, Cancún, México, September 1999. IEEE.

[10] MOOSCo. Multi-user Object-Oriented environments with Sep-
aration of Concerns Project. MOOSCo Home Page URL:
http://www.esw.inesc.pt/moosco.

14

	Problem
	Solution
	Distributed Communication
	Variations
	Structure
	Expressiveness
	Implementation with APPIA

	Replication
	Variations
	Structure
	Expressiveness
	Implementation

	Composition
	Structure
	Expressiveness
	Implementation

	Conclusions

