
Reducing Latency in Rendezvous-Based Publish-Subscribe Systems for Wireless
Ad Hoc Networks∗

Nuno Carvalho
University of Lisbon
nunomrc@di.fc.ul.pt

Filipe Araujo
University of Lisbon
filipius@di.fc.ul.pt

Luı́s Rodrigues
University of Lisbon

ler@di.fc.ul.pt

Abstract

To ensure decoupling between publishers and sub-
scribers, most publish-subscribe systems route notifications
through intermediate message brokers. A byproduct of this
practice is that notifications often follow suboptimal paths
that are much longer than a direct path. Hence, in this
paper, we propose a publish-subscribe architecture called
GeoRendezvous which aims to reduce the latency experi-
enced by end clients in the delivery of notifications. We
base our system on a position-based distributed hash table
(DHT) that supports rendezvous points where the interests
of publishers and subscribers match. Leveraging from pre-
vious work, we replicate the rendezvous points to give mul-
tiple choices of paths to the subscribers. We show that in
this way, the subscriber is able to achieve latencies compa-
rable to a direct publisher-subscriber path without breaking
the decoupling assumptions of the publish-subscribe model.
Additionally, we show that scalability is one of the most
prominent features of GeoRendezvous, as the number of
rendezvous points scales with the network size.

1 Introduction

When compared to remote invocations, the weak cou-

pling of event-based communication in general and of the

publish-subscribe communication model in particular offers

a number of advantages to create modular applications. To

ensure decoupling, publish-subscribe clients typically inter-

act through means of intermediate decentralized message

brokers, which often form an overlay network [8, 7, 15, 17].

This often raises a dilemma to the designer: the system

can disseminate advertisements and subscriptions all over

the overlay, thus creating a lot of traffic. In alternative,

the system may try to match publishers and subscribers in

randomly placed rendezvous points, thus using suboptimal

∗This work was partially supported by the LaSIGE and by the FCT

project P-SON POSC/EIA/60941/2004 via POSI and FEDER funds.

paths. In particular, most publish-subscribe systems cannot

ensure timely delivery of notifications as the path that goes

from the publisher to the subscriber is fixed by the overlay.

In this paper, we propose GeoRendezvous, which is

based on the ideas presented in Hermes [15] and also lever-

ages on systems like SCRIBE [17] or IndiQoS [6]. In Geo-
Rendezvous, we focus on minimizing the latency experi-

enced by clients of a publish-subscribe system in a wireless

ad hoc network. GeoRendezvous runs atop of a wireless dis-

tributed hash table called “Cell Hash Routing” [1] (CHR)

that we use to spread a number of rendezvous points. The

hash function deterministically fixes the location of these

rendezvous points, which can be accessed by all the pub-

lishers and subscribers of a given type. By having multi-

ple path options, subscribers can choose the shortest path.

One of the fundamental characteristics of GeoRendezvous
is the use of a position-based DHT which maps the ren-

dezvous points into fixed positions of the space. This allows

the subscribers to take advantage of positional information

to make hints on the rendezvous that will best serve them,

thus keeping the signaling costs under control. In this way,

subscribers concern only with their own position and pick

a better rendezvous node as they move. Interestingly, we

show that one of the strongest features of GeoRendezvous is

its scalability. For all the network sizes we have tested, the

number of rendezvous nodes necessary to achieve a given

performance is independent of the network size.

The rest of the paper is organized as follows. Section 2

presents GeoRendezvous. Section 3 presents a theoretical

analysis that describes the behavior of the GeoRendezvous
system, which is experimentally evaluated in Section 4.

Section 5 presents related work. Finally, Section 6 con-

cludes the paper.

2 The GeoRendezvous Architecture

The GeoRendezvous architecture is a topic-based

publish-subscribe middleware targeted for wireless net-

works. GeoRendezvous uses an underlying distributed hash

table (DHT) to match advertisements and subscriptions.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

s

d

D

h

c
1

c
2

c
3

c
4

c
5

c
6

c
7

Home

perimeter

Figure 1. Routing in the CHR DHT

Given the identification of a type, we use a hash function

to deterministically get a position in space, which corre-

sponds to a rendezvous point. Then, the DHT ensures that

there is at least one node responsible for this rendezvous

point. In fact, in our particular implementation, there is

an entire cluster of nodes inside a given geographical cell,

called “rendezvous cell”, that is responsible for that point.

The rendezvous cell must store the subscriptions to that

topic and forward each of the notifications it gets to the

interested subscribers. The main contribution of GeoRen-
dezvous is the use of a position-based DHT to support the

publish-subscribe system. In a position-based DHT, nodes

self organize according to their geographical positions and

the keys hash to physical locations. This allows GeoRen-
dezvous clients to use positional information to consider-

ably reduce traffic and signaling costs.

If we used only one rendezvous cell, we would have

no options concerning the choice of paths and, as a con-

sequence, we could not improve the latency metric. On

the other hand, even in a wired system, it is not feasible

to collect network-wide information about advertisements,

subscriptions and QoS (see for instance [9]) to select paths

based on QoS constraints. This problem is exacerbated in a

wireless system. Therefore, to deal with the inherent lack of

information in GeoRendezvous, we replicate the rendezvous

cells, in a way that is similar to IndiQoS [6]. This creates

several different routing options, thus enabling the system

to improve latency with only a limited impact on the sig-

naling cost and state. In the following sections we detail

the GeoRendezvous architecture, starting by the supporting

DHT.

2.1 The Cell Hash Routing DHT

The Cell Hash Routing (CHR) is a cluster-based

DHT [1]. In CHR, the space is divided into equally sized

squares or cells and each cell acts as a virtual node that rep-

resents all the real nodes that are inside it. This virtual node

is located in the precise center of the cell. Whenever a cell

is populated, there is a virtual node representing it. The size

of the cells must be chosen in a way that maximizes the

probability that nodes inside a given cell can listen to all the

nodes in any of the eight neighboring cells. On the other

hand, the size of the cell cannot be made so small or no

gain will result from clustering. Figure 1 depicts the CHR

architecture. One crucial aspect of CHR is that it must be

possible to unambiguously determine the center of the cell

corresponding to any point in space. To do this, it suffices

that the nodes agree on the size of the cells and on some

arbitrary origin of space. One interesting aspect of CHR is

that nodes do not need to have a precise notion of location.

It suffices for them to know their cell and to reach at least

one neighbor in each of the populated adjacent cells.

To route messages in CHR, we use a variation of the

Greedy Perimeter Stateless Routing algorithm [13], GPSR,

initially proposed in [4]. In CHR, our routing algorithm

works as follows. Assume that some node S in cell s is

forwarding a message to destination D in cell d. In this

case, node S will consider itself to be in the center of cell

s and consider its routing graph to have a shape like the

one shown in Figure 1, i.e., all the edges are directed to

the center of the populated neighboring cells. If S wants to

route to neighboring cell c1, it picks a random node from

c1, say C1, and sends the message to this node. Cell x is

represented by its central point and N(x) is the set of pop-

ulated cells that are adjacent to x. When using the greedy

mode, S will select as the next hop, the cell c1 such that

c1 ∈ N(s) ∧ ||c1d|| < ||sd|| ∧ �k ∈ N(s) ||kd|| < ||c1d||.
This means that S will send the message to neighboring

node C1, of cell c1 that minimizes the distance to the desti-

nation, as long as this cell is closer to the destination. Oth-

erwise, if a cell is a local minimum, e.g. c3, node C3 must

send the message in perimeter mode to contour the face in

the direction where the line c3d lies. Then, as soon as the

message reaches some cell h, such that ||hd|| < ||c3d||, the

message leaves the perimeter mode and reenters the greedy

mode. If the message reaches the same node twice, say H ,

cell h, in perimeter mode without having passed through a

closer neighbor of d, this means that i) cell d is empty and

ii) cell d is inside the face contoured by the message (called

“home perimeter”) and therefore, h is the proxy destina-

tion of the message, which we call “home cell”1. Consider

the example of Figure 1. To route a message to point D in

space, starting from some node inside cell s, the message

uses greedy routing to do the path s−c1−c2−c3. Then, c3

is a local minimum and the packet enters perimeter mode,

going around the face through cells c4− c5− c6− c7. Upon

1As explained in [1], if cell d is empty, nodes in cell h may under

certain circumstances assume that h is the home cell of d before they send

the message in the home perimeter.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

arrival at cell c7, the packet reenters greedy mode and the

node holding it sends the packet to cell h, which is a lo-

cal minimum. Cell h is, in fact, the home cell of d and the

packet will contour the entire home perimeter until reach-

ing h again. Araújo et al. proved in [1] that routing always

converges in CHR, given that no edges exist between non

adjacent cells. A similar routing scheme was first proposed

in [16], for a non-clustered environment.

2.2 Basic Operation of GeoRendezvous

GeoRendezvous uses the hash function of the DHT to

output pseudo-arbitrary positions in space, given the unique

identification of a topic. Hence, consider that a client wants

to subscribe for the topic “cars”. It must compute the

hash of “cars”, hash(“cars”), which will provide a pseudo-

random position in space, say (138, 144). This means that

the rendezvous point of the topic “cars” is (138, 144). In

the case of CHR, this will define a unique rendezvous cell.

All the nodes of that cell can be made responsible for that

point (optionally, to conserve resources, keys inside a cell

can be divided by the nodes). Note that GeoRendezvous
can work with any DHT that hashes keys to positions in

space and that uses position-based routing, namely with Ge-

ographical Hash Table [16] (GHT). However, we use CHR,

because it scales better with node density than unclustered

approaches [1] and, additionally, it is easy to take advantage

of redundancy of nodes inside each cell, as more than one

node can take care of a key.

Consider that there is some publisher P willing to notify

subscribers on the topic “cars” and some subscriber Si inter-

ested in those notifications. P will send an advertisement to

the rendezvous cell of the topic “cars”. On the other hand,

Si must also send a subscription to the same rendezvous

cell. When there is a match, all the notifications that get

to the rendezvous cell are forwarded to Si. To reduce traf-

fic, when a subscription matches an advertisement, a node

in the rendezvous cell becomes responsible for forwarding

the subscription to P . The rendezvous cell only needs to do

this for the first subscriber S1. To enable GeoRendezvous to

react to changes in the topology and in the parties, publish-

ers and subscribers periodically repeat their advertisements

and subscriptions. Clients that fail to renew their advertise-

ments/subscriptions are removed from the system.

2.3 Replication of the Rendezvous Points

The latency in the architecture that we have described so

far is determined by the single path publisher-rendezvous

cell-subscriber. To have more options we simply use more

than a single rendezvous point. For each rendezvous point

i, we provide i as an additional parameter to hash with the

same key (i.e., the topic name) to independent positions of

R1

P

R2

S

(a) Adv./Sub.

R1

P

R2

S

(b) Notification

R1

P

R2

S

(c) Pruning

Figure 2. GeoRendezvous architecture

the space. Hence, assume that we have n rendezvous points

and that there is a publisher P willing to notify subscribers

on the topic “cars”. This publisher will send an advertise-

ment to each of the n rendezvous points. The subscriber

also sends a subscription to all the n rendezvous nodes.

Then, when some node P sends a notification, a subscriber

will receive the notification n times. It must prune n − 1
paths, by selecting the single path to the rendezvous cell

that has the shortest number of hops and removing all the

others (it can break ties in many different ways, like com-

paring distance to the rendezvous point or selecting the path

where the first notification arrived). This soft-wires a pub-

lisher and a subscriber through just a single rendezvous cell.

To reduce traffic, when there are no other subscribers in-

terested, the rendezvous cells forward the prune messages

toward the publisher. This ensures that the publisher will

only send notifications through paths where it actually has

receivers. However, it should be noticed that advertisements

are never pruned, i.e., they remain in the rendezvous cells

for the life of the publisher. Like in the single rendezvous

node, clients must resend their messages periodically to re-

fresh the state at the rendezvous cells. Figure 2 illustrates

these interactions in the GeoRendezvous architecture.

2.4 The Use of Position to Optimize GeoRendezvous

One of the most interesting aspects of using geographi-

cal position as part of the system is that it becomes easier

for subscribers to make hints on whether some of the ren-

dezvous points are good or not. Hence, we considerably

reduce the signaling cost associated with each subscription

by limiting the subscriber to select only a subset of the ren-

dezvous points that are geographically close to it. In other

words, instead of letting the subscriber search for the best

rendezvous among n points, with all the associated costs,

the subscriber selects just the m rendezvous points that are

physically closer to it. Since position bears a close connec-

tion to topology in wireless networks, we expect this opti-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

mization to have only a small impact on performance in ex-

change of significant savings in signaling traffic, especially

for large values of n.

3 Theoretical Analysis

In this section, we show that under certain conditions

that are likely to hold in a wireless environment with a uni-

form distribution of nodes, the probability of having a nicely

placed rendezvous does not decrease below a certain thresh-

old, despite the number of nodes of the network. d(A,B) is

the number of hops of the shortest path between A and B.

N(X, r) is the set of nodes within r hops of node X . The

total number of nodes of the network is N . The diameter of

the network is L. |N(X, L)| = N . Random variable l rep-

resents the minimal number of hops between arbitrary pairs

of nodes, being E [l] its expectation.

Additionally, we assume that i) the network fol-

lows a growth bounded model (e.g. [12]), where

|N(X, 2r)| ≤ Δ|N(X, r)|, for a constant Δ; and ii) ∃ε >
0 | ∀L, E [l] /L > ε.

Theorem 3.1 Assume that l = d(A,B) and lr =
d(A,R) + d(R,B), where R is a randomly placed ren-
dezvous node. ∀k,∃ρ > 0 | P (lr ≤ l + 2kl) > ρ.
This means that for any k, the probability of having a
path through the rendezvous node not exceeding l + 2kl is
bounded by below by a constant ρ, i.e., it does not vanish.

Proof 3.1 Given two different distances r1 and r2, such
that r2 > r1, we have the following relation:

|N(X, r2)|
|N(X, r1)| ≤ Δ�log2

r2
r1

�

To demonstrate our theorem, we pick any node M in
the optimal path between A and B. For any node Y ∈
N(M,kl), we have d(A, Y) + d(B, Y) ≤ l + 2kl. For a
given l and L, we define r(l, L) to be the ratio of nodes in-
side N(M,kl) to the total number of nodes in the network.
From the growth bounded assumption:

r(l, L) =
|N(M,kl)|
|N(M,L)| ≥ 1

Δ�log2
L
kl �

This is a lower bound for the probability that a ren-
dezvous node will ensure a path of at most l + 2kl, for each
path length l. Additionally, the function of τ , Δlog2

kτ
L is

convex if Δ > 2 in the interval (0, +∞), concave if Δ < 2
and linear if Δ = 2. Therefore, considering all the possible
path lengths and using Jensen’s inequality, it follows that
(we omit the cases where Δ ≤ 2 as they trivially follow):

P (lr ≤ l + 2kl) ≥
L∑

τ=1

r(τ, L)P (l = τ)

≥ 1
Δ

L∑

τ=1

Δlog2
kτ
L P (l = τ)

≥ 1
Δ

Δlog2
k
L

PL
τ=1 τP (l=τ)

= Δlog2 k
E[l]

L −1 > Δlog2 kε−1 = ρ

�
It directly follows from this result that if we have more

than one rendezvous to place, the probability of having a

path length through one of the rendezvous Ri such that

d(A,Ri) + d(Ri, B) < l + 2kl is also bounded by below.

This shows that in a larger network, longer paths between

arbitrary pairs of nodes balance the increased difficulty of

placing a rendezvous in a favorable position.

4 Experimental Evaluation

We now demonstrate the effectiveness of GeoRen-
dezvous. We show that, with less than 8 rendezvous cells,

GeoRendezvous can consistently achieve latencies similar

to those of a direct path. Then, we show that using po-

sitional information, we can reduce the number of ren-

dezvous cells to only 2 for a 600-node network. Finally,

we take a configuration where a publisher sends a notifica-

tion to randomly placed subscribers to compare the cost of

sending notifications down a tree with multiple rendezvous

cells, versus the cost of using a single rendezvous cell. We

simulated networks with 80 to 3000 static uniformly dis-

tributed nodes (we did not consider packet collisions) in-

side a square. We assumed that communication range of

nodes is a unit disk ray with an average network degree of

45 neighbors per node. All the results that we depict here

result from an average of 20 different uniformly distributed

publisher-subscriber paths in 200 different networks.

In Figure 3(a), we show the relative overhead of routing

through a variable number of rendezvous cells, compared

with a direct path from the publisher to the subscriber. We

can see that the benefits of using more than 8 rendezvous

cells are limited. Additionally, we can see in Figure 3(b)

that performance is dictated by the number of rendezvous

cells and it is quite stable and largely independent of the

network size. This confirms the theoretical results of Sec-

tion 3 and matches the wired case [6]. We believe that this

independence of the network size is one of the most inter-

esting aspects of replicating the rendezvous cells.

As we can see from Figure 2, there is a signaling cost

associated with each rendezvous point. We assume a stable

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20 25 30 35

P
at

h
le

ng
th

 o
ve

rh
ea

d
(h

op
s)

Number of rendezvous nodes

80 nodes
140 nodes
200 nodes
340 nodes
420 nodes
500 nodes
600 nodes

1000 nodes
2000 nodes
3000 nodes

(a) Overhead per rendezvous node (vs. direct path)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000

P
at

h
le

ng
th

 o
ve

rh
ea

d
(h

op
s)

Number of nodes

1 rvz
2 rvz
4 rvz
8 rvz

16 rvz
32 rvz

(b) Overhead per network size (vs. direct path)

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 2 3 4 5 6 7 8

P
at

h
le

ng
th

 o
ve

rh
ea

d
(h

op
s)

Number of close rendezvous nodes

(c) Overhead per nearby rendezvous cell

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35

Tr
ee

 le
ng

th
 ra

tio
 (h

op
s)

Number of multicast clients

(d) Length ratio

Figure 3. Results

setting, where a publisher is already notifying all the ren-

dezvous. For each rendezvous that is not selected by the

subscriber, we have the following unnecessary messages: a

subscription, a notification and a pruning message (which

unlike Figure 2 does not need to be forwarded to the pub-

lisher). For n rendezvous, this makes 3(n− 1) unnecessary

messages. To reduce n, we tried the optimization described

in Section 2.4. We used a network with 600 nodes and set

the total number of rendezvous cells to 8. Then each sub-

scriber selected from 1 to (all the) 8 rendezvous by ascend-

ing order of physical distance. In Figure 3(c), we can see

that with only 2 rendezvous cells, we stay close to the av-

erage direct publisher-subscriber path (and also close to the

result achieved by 8 rendezvous cells in a 600-node net-

work). The reader should confront this curve with the one

depicted in Figure 3(a).

Another important question is whether the notification

trees with multiple rendezvous cells generate more traffic

than their counterparts with only one rendezvous cell. We

depict the overhead of having 8 rendezvous cells (of which

the clients only try the 2 closest) versus a tree with a single

rendezvous cell in Figure 3(d) for a 600-node network. We

uniformly distributed between 1 and 32 subscribers. Results

are quite interesting. With less than 8 subscribers, it is better

to have multiple rendezvous, because the publisher does not

need to send a notification to them all (ratios < 1). On the

other hand, as the number of subscribers approaches 8, the

cost of the multiple-rendezvous tree grows to become nearly

the same as in a single-rendezvous tree. Finally, when the

number of subscribers grows, having 8 rendezvous cells be-

comes increasingly better than having only 1. The shorter

path to the subscribers clearly pays for the burden of repli-

cating the notifications in the publisher and every new sub-

scriber helps to amortize this cost.

5 Related work

A limitation of most existing architectures that sup-

port publish-subscribe communication, even in wired net-

works, is their limited support for the negotiation or en-

forcement of Quality of Service (QoS) parameters (such

as latency). This observation applies both to models such

as the CORBA Event Service [14], the Java Message Ser-

vice [10] and to systems, such as CEA (Cambridge Event

Architecture) [2], SIENA (Scalable Internet Event Notifica-

tion Architectures) [7], Combined Broadcast and Content-

Based [8] (CBCB) or Hermes [15]. This is a significant

drawback, because QoS features are important for applica-

tions [5, 3]. In particular, latency arguably remains the most

important as well as difficult QoS parameter to optimize in

a network.

Systems like CEA directly connect publishers and sub-

scribers and do not ensure the adequate decoupling required

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

by all the applications. One way to overcome this problem

is through means of intermediate message brokers. For ex-

ample, the Java Message Service [10] is a model that uses a

broker that is conceptually centralized which brings a num-

ber of problems like scalability or tolerance to faults. This

motivates many authors to follow decentralized approaches,

like SIENA [7]. To preclude the flooding of control infor-

mation, systems like Hermes [15] use a rendezvous node on

top of a DHT. In [6], we proposed a type-based publish-

subscribe system that uses more than one rendezvous node

to ensure QoS requirements to the clients. Unfortunately,

none of these systems is applicable to wireless networks,

because they rely on overlays that need the (wired) IP pro-

tocol. Additionally, none of these solutions could take ad-

vantage of positional information.

There are also publish-subscribe systems built on wire-

less networks. One example is the Pronto [19] system which

is a serverless JMS client for mobile applications that takes

into account problems like resource constraints, network

characteristics and data optimization. In a serverless imple-

mentation based on IP-multicast, JMS behaves in a decen-

tralized way, which makes the system more fault tolerant.

However, a publisher acts as a temporary server. In [11]

Huang et. al. build publish-subscribe trees on top of a

wireless network. The algorithm builds a spanning tree that

maximizes a metric that takes into account network char-

acteristics and limited device resources. These solutions

compromise some decoupling properties of the publish-

subscribe interaction. There are also multicast routing pro-

tocols that use multi-core trees [18, 20]. One common prop-

erty of these algorithms is that they use a knowledge com-

parable to that of distance-vector protocols and, therefore,

scale worse than position-based routing approaches.

6 Conclusions

In this paper we presented and evaluated a topic-based

publish-subscribe architecture called GeoRendezvous. Geo-
Rendezvous explores multiple rendezvous nodes and takes

advantage of positional information to reduce the end-to-

end latency experimented by the clients. We showed, by

analysis and experimentally that our system can effectively

reduce the latency, when compared to a single rendezvous

node system, without compromising the scalability. In par-

ticular we obtained the following results: i) using positional

information, we can get latencies close to a direct publisher-

subscriber path using only 3 additional messages (in a sta-

ble scenario), ii) the probability of randomly getting a good

place for a rendezvous point does not vanish with the net-

work size and, for the network sizes we tested, it seems to

be nearly constant; and iii) with the use of position, we can

create a tree with multiple rendezvous nodes (cores) that is

shorter than a tree with a single randomly placed core.

References

[1] F. Araújo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. CHR:

a distributed hash table for wireless ad hoc networks. In The 25th
IEEE Int’l Conference on Distributed Computing Systems Workshops
(DEBS ’02), Columbus, Ohio, USA, June 2005.

[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Sei-

del, and M. Spiteri. Generic support for distributed applications.

IEEE Computer, Mar. 2000.

[3] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.

An architecture for differenciated services, December 1998. RFC

2475.

[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guar-

anteed delivery in ad hoc wireless networks. In Int’l Workshop on
Discrete Algorithms and Methods for Mobile Computing and Com-
munications (DIALM), pages 48–55, 1999.

[5] R. Braden, D. Clark, and S. Shenker. Integrated services in the inter-

net architecture: an overview, June 1994. RFC 1633.

[6] N. Carvalho, F. Araújo, and L. Rodrigues. Scalable QoS-based event

routing in publish-subscribe systems. In The 4th IEEE Int’l Con-
ference on Network Computing and Applications (NCA ’05), Cam-

bridge, MA, USA, July 2005.

[7] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and evaluation of

a wide-area event notification service. ACM Transactions on Com-
puter Systems, 19(3):332–383, Aug. 2001.

[8] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for

content-based networking. In IEEE INFOCOM 2004, Hong Kong,

China, Mar. 2004.

[9] Y. Goto, M. Ohta, and K. Araki. Path QoS collection for stable hop-

by-hop QoS routing. In The Seventh Annual Conference of the Inter-
net Society (INET ’97), 1997.

[10] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java
Message Service. Sun Microsystems, April 2002.

[11] Y. Huang and H. Garcia-Molina. Publish/Subscribe Tree Construc-

tion in Wireless Ad-Hoc Networks. In The 4th Int’l Conference on
Mobile Data Management (MDM), volume 2574 of LNCS, pages

122–140, London, UK, 2003.

[12] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-

restricted metrics. In STOC, pages 741–750, 2002.

[13] B. Karp and H. T. Kung. GPRS: Greedy perimeter stateless routing

for wireless networks. In ACM/IEEE Int’l Conference on Mobile
Computing and Networking, 2000.

[14] OMG. Event Service Specification. Object Management Group, Mar.

2001.

[15] P. Pietzuch and J. Bacon. Hermes: A distributed event-based mid-

dleware architecture. In 22nd IEEE Int’l Conference on Distributed
Computing Systems Workshops (DEBS ’02), 2002.

[16] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and

S. Shenker. GHT: A geographic hash table for data-centric storage

in sensornets. In First ACM Int’l Workshop on Wireless Sensor Net-
works and Applications (WSNA), Atlanta, Georgia, September 2002.

[17] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.

SCRIBE: The design of a large-scale event notification infrastruc-

ture. In Networked Group Communication, pages 30–43, 2001.

[18] C. Shields and J. J. Garcia-Luna-Aceves. The ordered core based tree

protocol. In Int’l Conference on Computer Communication (INFO-
COM), pages 884–891, 1997.

[19] E. Yoneki and J. Bacon. Pronto: MobileGateway with publish-

subscribe paradigm over wireless network, 2003.

[20] D. Zappala and A. Fabbri. An evaluation of shared multicast trees

with multiple active cores. LNCS, 2093, 2001.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

