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Abstract. Citizens living in countries ruled by repressive regimes may
have access to rightful information blocked or may be prevented from
sharing such information freely on the Internet. In spite of all efforts to
hinder the transmission of potentially compromising data, even the most
oppressive regimes cannot afford to block all channels with the outside
world, as these may be instrumental to preserve the economy and the
sustainability of the regime itself. One way to circumvent censorship is to
use those channels that cannot be blocked as carriers for covert channels.
In this project we study techniques to hide arbitrary sequences of data
in the traffic generated by popular multimedia streaming applications,
such as Skype and Google Hangouts, since these applications are widely
used for business and private interaction and therefore cannot be blocked
without significant social and economic impact to the repressive regime.
Although tunneling protocols with this characteristic have been proposed
in the past, they are limited on the type of information that can be
transferred and on the type of interference they tolerate. We present a
novel technique to encode a covert channel in synthesized video frames
which can be transmitted through a video streaming protocol.

1 Introduction

Today, most electronic communication over the Internet can be controlled
by the government and/or by a few corporate players. Repressive regimes may
monitor and control the access to the Internet by employing several censorship
techniques, such as blocking specific IP addresses or specific content (for instance,
web sites). As a result, citizens may see their rights to freely access rightful
information, communicate, and express opinions severely constrained [1–3].

However, even the most oppressive regimes cannot afford to block all chan-
nels with the outside world, as these may be instrumental to preserve the econ-
omy and the sustainability of the regime itself. In particular, there is evidence
that several countries do restrict access to information but maintain operational
widely used services such as Skype. In fact, only in extreme scenarios, govern-
ments can afford to completely block the access to the Internet [4, 5].

In certain cases, to prevent access to specific sources of information, the
censor employs simple blacklisting techniques in which it instructs ISPs to block
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direct connections from the population to these sources. To circumvent such
restrictions, a typical strategy consists in accessing this information via a trusted
proxy. However, this strategy is only viable as long as the proxy address is not
public and the connections to it cannot be easily flagged as suspicious.

In order to prevent all proxies addresses to become public, Tor [6] has sug-
gested the use of bridges, proxies which addresses are not publicly distributed,
to access its overlay network. Even so, if no explicit effort is made to obfus-
cate the traffic towards a bridge, it may exhibit patterns that make it easily
recognizable [7]. Unfortunately, the task of obfuscating the traffic is a challenge
by itself. If the resulting pattern does not match any known protocol, the flow
can also be deemed as suspicious. Therefore, for the obfuscation to succeed, the
resulting traffic should mimic existing protocols, ideally protocols that a censor
may not be willing to block. But protocol mimicking can be extremely hard to
implement [8] and needs to be adjusted every time the protocol is updated.

A more recent and promising approach consists in providing access to rightful
information using a covert channel by tunneling the data stealthily through pro-
tocols that are unlikely to be blocked by the censor. Here, the assumption is that
it is possible to implement the tunneling in such a way that the traffic pattern
of the carrier protocol is not modified in a significant way. Examples of this line
of work include FreeWave [9], which encodes network traffic into acoustic sig-
nals sent over VoIP connections, and Facet [10], which enables clients to secretly
stream censored videos over a Variable Bit Rate (VBR) video conferencing call.
To assure “unobservability”, Facet embeds the censored video into some carrier
video such that the transmission of both the resulting video and the streaming of
an unsuspected video cannot be distinguished by a censor agent that can listen
to the network and perform traffic analysis or active packet manipulation.

These results are very promising but still have important limitations. Free-
Wave is vulnerable to attacks that leverage perturbations in the network. The
drop of selected packets may render the system useless, as it will corrupt the ne-
gotiation of parameters for the audio data demodulation. Also, its covert channel
can be uncovered when established over a VBR VoIP connection, by analyzing
the generated network traces. In its turn, Facet employs a technique named
video morphing which can only be used to transfer video content. This restric-
tion may severely limit Facet’s broader applicability to other important types of
communication, namely web browsing and bulk file transfers.

To bridge this gap and support covert transmission of arbitrary sequences
of data frames, a naive approach is to extend Facet’s pipeline with additional
processing stages. At the sender side, a data frame must first be encoded as a
“payload video” before it can be embedded into the carrier video and transmit-
ted over the wire. Also, a new last mile stage must be added at the receiver
side in order to decode the extracted “payload video” and obtain the original
data frame. Although this approach may seem conceptually simple, data en-
coding/decoding raises non-trivial challenges. The first challenge is about space
efficiency. To avoid wastage of covert channel bandwidth, which is important for
bulk data transfers, we should be able to fit as many bits as possible in each
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of the frames of the payload-carrier video. The second challenge is about time
efficiency. To prevent significant data delivery latency, which is important for
interactive communication such as web traffic, encoding and decoding must add
small delays to the communication. A third challenge is to achieve space and
time efficiency without degrading a system’s “unobservability” property.

In this work, we aim at mitigating the limitations imposed by existing sys-
tems. We design a novel data encoding technique that allows the transmission
of arbitrary sequences of data frames through a synthesized video stream over a
cover protocol.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present an overview of
the censorship circumvention techniques described in the literature. Section 4 de-
tails several protocol tunneling approaches, as implemented by existing systems.
Section 5 describes the proposed architecture to be implemented, and Section 6
describes how we plan to evaluate our results. Finally, Section 7 presents the
schedule of future work, and Section 8 concludes the report.

2 Goals

This project aims at exploring approaches that allow for censored information
to be accessed via a covert channel that is tunneled through protocols which are
hard to block by a censor. Although previous work has started to explore this
approach, existing systems still exhibit significant limitations, as presented in
the introduction. Our goal is to mitigate some of these limitations.

Goals: This project focuses on the design and implementation of a
new censorship circumvention system that introduces a novel data en-
coding technique which allows for the encoding of a reliable data stream
within a synthesized video stream. The synthesized video stream shall
exhibit the traffic profile of a regular video call, such that the covert
channel cannot be identified via traffic analysis tools. We expect to be
able to achieve these goals while sustaining a latency that is sufficient
for interactive communication, such as web browsing, and a throughput
that can accommodate bulk data transfers, such as large documents.

In order to evaluate the proposed solution we will implement a prototype of
the system that will use a Skype’s call video stream as the carrier for the covert
channel. An extensive experimental evaluation of the system will be performed
in order to assess: the resilience of the covert channel to attacks on the traffic flow
that do not compromise a regular Skype call; the resilience to traffic analysis,
by comparing the resulting flows with flows from unaltered Skype calls; the
maximum throughput that can be achieved; and the minimum latency that can
be attained. In summary, the project will produce the following expected results:

Expected results: The work will produce i) a specification of the sys-
tem; ii) an implementation adapted for Skype video calls, iii) an extensive
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experimental evaluation of the performance and resilience of the system
to active and passive attacks.

3 An Overview of Censorship Circumvention Techniques

In this section we give an overview of the main Internet censorship circum-
vention techniques that have been described in the literature. Naturally, the
likelihood of success of these techniques depends on the ability of the censor to
detect and interfere with the information flow it is trying to block; the more
powerful the censor is, the more sophisticated the circumvention technique has
to be. Therefore, we start by briefly discussing the power of the censor and the
attacks that the censor can perform in the information flows. Then we proceed
to make a survey of the main circumvention techniques in increasing order of so-
phistication, with particular emphasis on techniques that leverage the fact that
some protocols/services cannot be easily blocked by the censor.

3.1 Power of the Censor

The ability of a censor to efficiently detect and/or block some target in-
formation flows depends on the amount of resources it has available but also
on its know-how and proficiency. In our survey we consider the classification
proposed by Houmansadr et al. [8]. Three levels, which take into account the
resources available to the censor, are proposed: local adversary, state-level obliv-
ious adversary and state-level omniscient adversary. A local adversary (such as
a corporation) is only able to observe a limited number of connections. On the
contrary, state-level adversaries can observe connections on a larger scale, often
with state-sponsored ISPs cooperation. A state-level oblivious adversary is ex-
pected to perform Deep Packet Inspection (DPI) only to short observations of
network traffic, considering that its infrastructure does not allow to keep con-
nection records in long-term. Instead, a state-level omniscient adversary has the
required infrastructure to collect, store and analyze a large set of network traces.

In this work, we face a state-level omniscient adversary, which is assumed
to be able to observe and store all the network flows crossing its borders, but
unable to snoop the digital contents in end-users computers. It is also unable
to control the software installed on end-users computers. In fact, government
initiatives directed at increasing the reach of Internet censorship to the edges of
the network, such as China’s Green Dam [11], have failed in the past.

3.2 The Censor Toolbox

Broadly speaking, there are three major categories of attacks that a censor
may perform to detect or to prevent the access to rightful information:

– Passive attacks are tied to the analysis of observed and collected network
traces. Typical passive attacks are conducted with statistical traffic analysis
resorting to DPI mechanisms, usually deployed within ISPs’ premises.
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– Proactive attacks are performed by sending crafted probes to random or
suspected hosts in order to get a response that may identify them as circum-
vention mechanisms. Usually, the censor acts as a client of the censorship
circumvention system itself.

– Active attacks are perpetrated by perturbing network traffic. A censor may
be able to delay, drop, modify or inject content into selected network packets.

To perform these attacks the censor may employ a large spectrum of tech-
niques aimed at identifying, interfering with, or blocking information flows. Such
techniques range from simple IP address blocking to actual monitoring and ma-
nipulation of served content. DPI allows for the gain of information about the
length and content of packets that cross a network. This enables a censor either
to take immediate action based on the content of each observed packet or to
employ statistical traffic analysis techniques, which usually require the ability
to store a large number of network traces [12]. Such statistical analysis may be
able to unveil unusual network traffic patterns that may be linked to the use of
censorship circumvention mechanisms.

3.3 Censorship Arms Race

Censorship circumvention systems are continuously at an arms race against
increasingly sophisticated censorship techniques. Any circumvention technique
aims at achieving both “unobservability” and “unblockability”:

– A censorship circumvention system lacks “unobservability” if it can be iden-
tified by the censor. To achieve “unobservability”, circumvention techniques
typically rely on the existence of a pre-shared secret [13–16] and/or on the
the ability to obfuscate the communication [17–19]. These two approaches
can make it harder for the censor to detect covert communications in the
network (among all other innocuous traffic).

– A circumvention system is said to be “unblockable” if the flows it protects
cannot be blocked without substantial loss for the censor. One of the most
promising strategies to achieve this property is to tunnel flows through widely
used protocols such as cloud services, email, VoIP or video conferencing [20,
21, 9, 10], in such a way that the only remaining strategy for the censor is
to apply indiscriminate attacks to all flows, even to those that the censor
would like to preserve.

Clearly, a system that is observable becomes more vulnerable to be blocked,
given that the censor is then able to stage a targeted attack instead of an in-
discriminate attack. It is therefore no surprise that achieving “unobservability”
is referred by Houmansadr et al. [9] as the biggest challenge facing the existing
censorship circumvention systems.

In the following paragraphs, we present an evolution of censorship-enforcing
techniques as well as systems designed to circumvent them.
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3.3.1 Content Withholding

Early state-sponsored censorship techniques relied on the ability of the censor
to control publication mediums, such as newspapers or TV shows. Before being
published, all content would be previously scrutinized, to ensure that harmful
information to the regime would never be divulged.

Recently, the Internet has become an excellent medium to exchange infor-
mation and therefore an obvious target for censors. Although many Internet
services are neither hosted nor controlled by repressive regimes, they may still
offer censorship-enforcing platforms to prevent offensive content from being dis-
tributed within a country’s borders.

Techniques available to the censor: Some popular Internet services, such as Twit-
ter, enable governments to formally request the withholding of content within
a country’s boundaries [22]. This is mostly due to business decisions, enabling
the service to remain available within several countries, even those whose gov-
ernments actively perform Internet censorship.

Circumvention strategies: In order to stealthily transmit information that would
otherwise be censored, traditional steganographic techniques aimed at conceal-
ing the existence of a message by embedding it into some cover medium [23].
Examples of such techniques are the concealment of Morse code in the length of
grass in a drawing or Microdots, which allow for the representation of printed
material in small dots. Variations of these steganographic techniques are still
employed in the digital age, where data may be encoded within different layers,
such as text or media files [24, 25]. Such techniques may be used by citizens living
in countries ruled by oppressive regimes, in order to publish and access rightful
information, by evading simple content filtering mechanisms and not having their
messages targeted by content withholding requests. This may force the censor
to effectively block the access to the Internet service itself, as it may not be able
to distinguish innocuous from steganographically-marked communication.

3.3.2 Simple Internet Destination Blocking

Destination blocking is one of the simplest strategies that can be used by a
censor to prevent users from accessing rightful information in the Internet. It
consists of identifying the endpoints that serve the content to be censored and
then block the access to those endpoints. In many cases, this strategy can be
implemented even by a local adversary possessing few computational resources.

Techniques available to the censor: Consider the case where the information
sources can be identified by an IP address. In this case, a censor may choose
to enforce either a blacklist or a whitelist of IP addresses [1]. While being more
permissive, a blacklist is easier to manage than a whitelist, considering that in
the latter each new host on the Internet would need to require an authorization
from the censor in order to become accessible within its network.
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Fig. 1. Proxy-based censorship circumvention overview.

The interception of DNS Lookup requests can also be used by the censor
in order to prevent the translation of a given hostname to its IP address. The
censor responds with an IP address serving a different page, typically under its
control, rather than the originally requested one [1].

A censor may also block connections in a more selective fashion. If the content
is served over HTTP, the censor may filter connections based on the headers
of HTTP requests. This kind of attack allows for blocking content at a finer
granularity, restricting access only to certain pages on a given domain [1]. This
is performed by analyzing a page’s full URL, looking for specific keywords.

Circumvention strategies: The described censorship techniques can be evaded by
leveraging proxy-based traffic re-routing, which is often combined with digital
steganography techniques.

Instead of directly establishing a connection with the host serving blocked
content, a user could direct its request to a network proxy, which would instead
be accessible, enabling seemingly uncensored web-browsing. This is depicted in
Figure 1 and implemented by systems such as Ultrasurf [26].

Decoy routing systems [15, 16, 27] aim to deploy special routers within co-
operating ISPs’ networks. The key insight of this technique is to have routers,
rather than end hosts, relay traffic to blocked destinations. A client issues an
HTTPS steganographically marked request to an overt destination whose path
crosses a decoy router deployed by an ISP. Decoy routers are able to recognize
such mark (which reveals a client’s true desired destination) and act as a man-
in-the-middle, diverting traffic to blocked destinations. The censor is only able
to observe the innocent looking destination in HTTPS requests.

A different approach employing steganography relies on volunteer relay servers
which secretly serve censored content. A client wishing to use Infranet [13] places
visible, seemingly innocuous HTTP requests with associated additional seman-
tics, regarding the sequence of requests performed. Infranet servers interpret such
sequence, steganographically embedding the requested content into uncensored
images that are returned to the client. We must highlight that Infranet’s threat
model consider the blocking of HTTPS connections to be a reality.
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3.3.3 Network Proxies Detection and Blocking

As already discussed, the use of network proxies may be leveraged to evade
censorship techniques that rely on the identification of the source of information.
However, it is often difficult to hide the proxies from the censor and, once proxies
are detected, they can be blocked in a similar manner as the original source.

Techniques available to the censor: A censor may be able to block connections
to a given source of information, even when users re-route their traffic through
network proxies. By gathering the addresses of publicly distributed proxies, a
censor is able to blacklist connections to such hosts.

A censor may also be able to detect connections to unlisted network prox-
ies. If a client connects to a network proxy through HTTP, the censor may be
able to inspect the network packets’ contents and flag the connection for pro-
hibited content. Not only that, the censor may actually be able to modify a
packet’s content itself, preventing prohibited information to be delivered. The
same strategies can be used to detect an Infranet server. If the website serving
the covert content does not have a legitimate reason to change its cover content
frequently, a censor may notice that the same cover content structure appears
to be different when embedding different covert data.

Schuchard et al. proposed an attack [28] where censors may proactively probe
and detect routes containing decoy routers. Thus, censors capable of making
routing decisions could avoid to send traffic through such routes. However, such
attack was later studied by Houmansadr et al. [29], who argue that a strategic
placement of decoy routers would render it ineffective.

Providing that HTTPS is allowed and the client uses an HTTPS proxy to
circumvent censorship, a censor may employ known website fingerprinting [30]
techniques to look for statistical deviations of the censor’s regulated traffic, iden-
tifying ciphered connections that are being used to circumvent content filtering.
The same applies for connections between a client and decoy routers, where the
traffic fingerprint of the covertly requested website does not match the one of
the seemingly requested website.

To flag the aforementioned HTTP connections, a censor must at least be
able to perform line-speed DPI, in order to analyze the properties of single
packets flowing through the network. This type of censor falls into the category
of state-level oblivious adversary. Conversely, website fingerprinting techniques
require the analysis of large data sets of network traces, so that they can yield
more accurate results. If a censor drops connections while having a high degree
of uncertainty about their nature, it is likely that regular connections will be
affected. Therefore, only a state-level omniscient adversary owns this capability.

Circumvention strategies: A censor may still be able to detect connections to
unlisted proxies through a connection’s characteristics and content. A new class
of systems helping in circumvention aim to obfuscate connections’ traffic, trans-
forming it in such a way that it cannot be linked to the underlying application
layer protocol. Such technique is dubbed traffic morphing [31]. One of such ob-
fuscation methods consists in protocol randomization, where all the traffic from a
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regular connection is ciphered to make it seem random from a network’s observer
point of view.

An example of an overlay network that uses a proxy approach in order to sup-
port censorship circumvention is Tor [6]. In Tor, such proxies are called bridges,
representing hosts whose IP address is not publicly advertised. Bridges can be
discovered through passive attacks by observing Tor connections’ characteristic
traffic, which uses TLS in its outer layer. Such attacks may require line-speed
DPI [7] or the storage and posterior analysis of network flows [32, 33].

In order to avoid the fingerprinting of Tor traffic at line-speed [7], Obf-
sproxy [34] uses a stream cipher to encrypt regular Tor traffic. This hides the
TLS cipher suite list, server name and TLS extensions, which could give the con-
nection away, by making the traffic effectively look like random bytes. However,
the use of length-preserving encryption does not prevent detection from other
traffic analysis techniques, which take into account the distribution of packets’
length and inter-arrival times. To protect against this kind of attack and to en-
hance the randomization mechanism, ScrambleSuit [35] is used in tandem with
Obfsproxy, manipulating packets’ length and inter-arrival times.

The above protocol randomization techniques were devised to work alongside
Tor as modules of an obfuscation framework named pluggable transports [36].
These obfuscation systems assure that simple protocol classifiers will be unable
to identify the morphed protocol which, in this case, appears to be random.

3.3.4 Protocol Randomization Detection and Blocking

While protocol randomization can evade detection from simple protocol clas-
sifiers, a censor may take a different approach, whitelisting approved protocols
and throttling the connection for unknown or undesirable protocols.

Techniques available to the censor: While protocol randomization systems are
able to provide a fast and efficient traffic morphing, the network traffic they
generate is distinguishable as it does not resemble any known protocol. There-
fore, they are defeated by a censor which only authorizes known and approved
protocols across its network.

It is possible to distinguish connections performed through protocol ran-
domization from regular TLS connections. While Obfsproxy encrypts every flow
message, TLS uses fixed plaintext headers when establishing a connection, as
part of the TLS handshake [37]. Entropy tests on initial messages’ headers may
be able to distinguish regular TLS traffic from Obfsproxy encrypted traffic. Con-
cretely, such entropy tests may indicate a uniform byte distribution where the
plaintext TLS headers should be located [38]. This analysis does not require com-
parison and correlation with large data sets of stored packet samples, enabling
a state-level oblivious adversary to block an unknown or undesirable protocol.

Circumvention strategies: A different strategy for protocol obfuscation is protocol
imitation, which aims at mimicking known and popular protocols permitted by
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a censor, evading the possible throttling of randomly morphed ones. The advan-
tage lies in the unwillingness of a censor to indiscriminately block popular and
fundamental services to the region’s economical development. As such, existing
systems try to mimic protocols like HTTP and several VoIP implementations.

To avoid traffic analysis of a connection’s packets distribution, StegoTorus [18]
steganographically conceals chops of Tor traffic on a cover protocol messages.
The chopped traffic is split over multiple connections and can be delivered out
of order. Each connection is served by a steganography module, which may act
like an HTTP or VoIP client/server.

SkypeMorph [17] was designed to obfuscate connections to Tor bridge nodes
by mimicking the statistical properties of Skype’s video calls. Unlike StegoTorus,
a SkypeMorph client initiates a connection by effectively calling a bridge, quickly
dropping the call thereafter. However, the call is seemingly uninterrupted as the
communication with the bridge continues by exchanging the morphed network
packets carrying Tor’s traffic.

CensorSpoofer [19] leverages a similar approach to both Stegotorus and
SkypeMorph, while attempting to keep its server location hidden from the cen-
sor. A client can communicate to the CensorSpoofer server the page it wishes
to visit through a low-bandwidth channel, such as a steganographically marked
email. The server fetches the requested web page and sends it back to the client
by embedding it into the network packets of a spoofed VoIP session imitation.

A different approach at protocol imitation is to use Format-Transforming
Encryption (FTE) [39] in order to produce ciphertexts that are able to match
regular expressions from a user’s choosing. FTE can then be used to foil regex-
based DPI systems by producing ciphertexts that match the content definition
of a protocol allowed across the censor’s network.

Protocol imitation obfuscation techniques are still able to defeat the early
discussed traffic analysis techniques based on the network packets’ length and
inter-arrival times distributions. Moreover, they are able to evade blacklisting by
mimicking popular and allowed protocols within the censor’s controlled network.

3.3.5 Protocol Imitation Detection and Blocking

Houmansadr et al. [8] consider that achieving “unobservability” through pro-
tocol imitation presents a hard challenge. This is because a system must com-
pletely mimic the target protocol behavior, including error conditions and im-
plementation specific bugs. Additionally, protocols may show dynamic depen-
dencies among several established connections, adding to the complexity of a
correct imitation.

Techniques available to the censor: To flag or thwart a covert channel over proto-
col imitation only requires the censor to spot a single discrepancy when compar-
ing with the real protocol. Favoring the censor, a large part of good candidates
for imitation are also complex protocols with many of the aforementioned dy-
namic dependencies. Thus, even a local adversary may be able to distinguish
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between a legitimate protocol and an imitation by performing active or proac-
tive attacks. Other imitation techniques may only be detected by leveraging DPI
mechanisms that are feasible to be implemented even by low resourceful censors.
We present below several attacks that a censor may apply to the previously
described protocol imitation systems.

A censor may pro-actively probe StegoTorus servers’ HTTP module with
HTTP requests, so as to determine if the servers’ responses to both correct and
malformed requests is consistent with a real HTTP server’s software fingerprint.
The StegoTorus server may be flagged by a censor, shall it fail to exhibit a usual
fingerprint found among real HTTP servers.

SkypeMorph lacks the correct implementation of an accompanying TCP con-
trol channel which directly reflects perturbations in the UDP stream and vice-
versa. A censor may perform an active attack and then check that such dynamic
dependence is not enforced as in a legitimate Skype call.

A censor is able to flag a connection to a CensorSpoofer server by detecting
inconsistencies between the actual and the spoofed server. The SIP connection
between a client and a CensorSpoofer server is relayed through a registrar outside
the censor borders. As such, the censor is unable to verify the server’s true IP
address. However, a censor may send a SIP INVITE request to a dummy SIP
ID on the server’s alleged IP address. While a genuine SIP client would return a
status message, the spoofed server may not have a running SIP client, therefore
not responding to the censor’s probe.

The use of FTE may be detected at line-speed by applying entropy tests on
the first message of an FTE flow, an HTTP GET request. These yield results with
relatively low false-positive rates [38], allowing a censor to flag the connection.

Circumvention strategies: A recent system, Marionette [40], tackles previous
mimicking limitations by constructing a hierarchical composition of probabilis-
tic automata, capable of controlling several aspects of protocol mimicry. Au-
tomata composition is used to control fine-grained aspects of mimicry, such as
dynamic dependencies over channels, statistical properties of generated traffic
and error conditions. For instance, it is possible to fully model an HTTP server
specification so that a server leveraging protocol imitation resists active probing
attacks.

Unlike the previously described imitation systems, Marionette is fully pro-
grammable through a domain-specific language, making it easy to adjust the
obfuscation strategy, ranging from randomized obfuscation to full protocol imi-
tation, while avoiding the need to rewrite the system from the ground up. How-
ever, good candidates for imitation may be proprietary software, demanding its
reverse engineering in order to build a model for imitation. Not only this is a
tedious effort, it may involve its repetition once a new version of the software is
made available.

To rise the difficulty of detection by a censor, protocol tunneling systems
attempt to evade censorship by tunneling blocked content through an imple-
mentation of a protocol. Such as protocol imitation systems, these rely on the
unwillingness of a censor to block popular protocols. However, systems that work
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by tunneling take advantage of directly coping with the chosen implementation
intrinsic characteristics. As an example, FreeWave [9] takes advantage of VoIP
channels to tunnel modulated acoustic signals which encode data.

3.3.6 Protocol Tunneling Detection and Blocking

Protocol tunneling systems avoid the need to faithfully implement a popular
cover protocol, by effectively using it to tunnel covert traffic. While the possible
thwarting of covert channels may be performed through active attacks, the cen-
sor may unwillingly affect legitimate connections. To avoid this issue, a better
approach would be to pinpoint an abusing connection, perturbing it after some
degree of certainty it is being used to evade censorship.

Techniques available to the censor: In order to detect a covert channel over a
popular protocol, a censor may look for mismatches between the covert and
carrier protocols [41]. We refer to the following types of mismatch:

– Architectural mismatches may allow the identification of information flows
when the cover protocol communication architecture differs from that of the
covert protocol. For instance, if protocol tunneling is performed through a
centralized system, the server relay is consistent with a client-proxy archi-
tecture. Decentralized architectures may turn the endpoint acting as a proxy
into a hot spot, raising suspicion from the censor.

– Content mismatches may allow for the detection of covert information flows,
by observing that the traffic patterns generated by a given protocol are
different than expected when it is used to tunnel the covert protocol data.

– Channel mismatches may pose a risk for the correct functioning of the covert
protocol. A covert protocol which needs reliable transmission may be affected
by the design of its cover protocol, which may tolerate the loss, delay or
duplication of packets.

– Utilization mismatches may set off a response from the censor. Since a pro-
tocol not directly intended to browse blocked web content may be used for
tunneling, the user of such system must avoid seemingly abusive uses so that
circumvention can remain undetectable. As an example, a long web-browsing
session over FreeWave may take longer than the average Skype call time [42].
Abnormal connection times through the cover protocol may look suspicious
and trigger further investigation from the censor.

The detection of covert channels over carrier protocols requires a passive
attack to be performed. So as to detect content or utilization mismatches, the
censor must be able to keep a record of past network traces. For instance, con-
nections from users must be recorded in order to establish common utilization
rates, such as the average duration of VoIP calls. Traffic analysis aiming to find
content mismatches also requires a large data set of network flows to be avail-
able. As is, a more accurate detection of a covert channel is in the hands of a
state-level omniscient adversary. However, even a local adversary may be able
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to thwart a covert channel while incurring in minor performance issues for legit-
imate connections, shall it be able to exploit a channel mismatch between the
carrier and covert protocols.

Circumvention strategies: To prevent a local adversary from thwarting covert
protocols, protocol tunneling systems should be implemented in such a way they
can cope with the chosen cover protocol intricacies. These systems pose as a
good approach to censorship circumvention as they may be able to effectively
evade simple or line-speed censorship mechanisms, forcing the censor to devise
advanced censorship techniques based on traffic analysis. A more detailed de-
scription of such systems is presented in Section 4.

4 Protocol Tunneling Revisited

Protocol tunneling surges as one of the best approaches to censorship circum-
vention. Providing that a protocol tunneling implementation avoids mismatches
between the covert and cover protocol, not even a state-level omniscient ad-
versary may be able to infer discrepancies between a regular execution of the
legitimate protocol and one being used for evading censorship. The next para-
graphs present a survey of existing protocol tunneling systems, concluding with
a brief discussion.

4.1 Protocol Tunneling Using Staged Network Applications

The following systems stand upon widely used protocols which use an obliv-
ious server relay to stage both client requests and covert data prior to delivery.
They are presented in increasing order of security guarantees.

4.1.1 SWEET

SWEET [21] leverages email communication to tunnel covert traffic through
email messages.

Description: SWEET operates by having the client exchange emails that include
the covert traffic with a dedicated server. When it receives an email, the SWEET
server is able to extract the covert information, process it (for instance, obtain a
requested web page) and produce a reply message that tunnels the response back
to the client (for instance, the content of the requested web page). The client
may contact the SWEET server directly or, if the destination domain needs to
be hidden, it can also be accessed indirectly: emails are sent to an account of a
widely used service and this account is regularly accessed by the SWEET server
(in this case, the credentials for that account need to be agreed using some
out-of-band channel).

The way to tunnel information in the email messages depends on the type of
email services that are permitted by the censor. If the client can access directly
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trusted servers using encrypted emails, the information is simply transferred in
the body of the email message. If the client is forced to use an outgoing email
server controlled by the censor, steganography techniques must be used to encode
the covert information in what appears to be a regular email message.

Advantages: A significant advantage of SWEET is that it uses a service which
is unlikely to be completely blocked by a censor, given the importance that
email has obtained in the daily life of citizens and business. SWEET is also
able to provide communication with a sufficiently small latency for supporting
web-browsing.

Limitations: A serious limitation of SWEET is that the traffic patterns imposed
by the covert channel may be significantly different from the traffic patterns
induced by regular email. For instance, under normal use a client may only ex-
change a few email messages per day, with relatively long inter-message intervals.
On the other hand, while browsing the web using SWEET, the client may deal
with many (incoming and outgoing) messages in a short interval. Thus, traffic
analysis tools are likely to unveil the existence of the covert channel. A better
approach would be to make use of a cover service with more flexible traffic and
utilization patterns, such as cloud storage, to tunnel covert data.

4.1.2 CloudTransport

CloudTransport [20] leverages cloud storage services to tunnel covert traffic
through storage read and write requests.

Description: CloudTransport operates by having the client exchange information
with a server that serves as a bridge to the censored service via an intermediate
cloud storage service, as depicted in Figure 2. The client writes a request in the
cloud storage. In turn, the bridge periodically polls the cloud storage for new
files; it fetches the request, serves it and writes the response back to the storage
service. Finally, the client reads the storage service to get the reply. For this
scheme to work, the client and the bridge must pre-agree on the storage service
to use and on location of the files to be exchanged on the storage namespace.

CloudTransport also aims at helping clients to find bridges and negotiate
which storage account to use for exchanging the files. For this purpose, each
bridge is required to maintain a dedicated cloud storage account that is only used
to rendezvous with potential clients. In turn, a client can setup its own cloud
storage account for supporting the cover channel and then share the account
credentials with the selected bridge, making use of the rendezvous account of
that bridge. Furthermore, CloudTransport suggests that some directory service
could be created for bridges to advertise their services.

Advantages: As cloud storage services become more and more popular, it may
be hard for a censor to completely block cloud storage without significant loss.
Also, as the set of applications that use cloud storage is diverse, many read/write
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Fig. 2. CloudTransport overview (adapted from CloudTransport [20]).

patterns may exist in practice and this diversity may help in making the covert
channel hard to detect.

Limitations: The traffic patterns imposed by the covert channel may still be
different from the traffic patterns induced by regular application that use cloud-
storage. Thus, although this task is arguably harder with cloud storage than with
email, the traffic to the storage service can still be monitored to unveil the covert
channel. For instance, the censor may conduct website fingerprinting attacks in
order to correlate traffic from a CloudTransport client with traffic patterns that
emerge when web-browsing blocked destinations. A way to mitigate this vulner-
ability is to employ some of the traffic morphing techniques previously discussed
in Section 3.3.4. However, as we have stated before, such countermeasures may
also be detected by a censor.

Another shortcoming of CloudTransport is that the techniques proposed to
help clients to discover and connect to bridges are prone to several attacks.
First, the censor may create false bridges to divert traffic to itself and then
match the observed traffic with traffic produced by clients to identify the client
of a given request. In fact, by performing a Sybil attack [43] an adversary may
easily dominate the number of advertised bridges in the system, making this
attack very powerful. Also, shall it act like a client, the censor can monitor all
accesses to its cloud storage account to obtain the IP addresses of the bridges
it interacts with. This enables the censor to neutralize the bridges by staging
targeted denial of service attacks.

Further staged protocol tunneling approaches may aim at the mitigation
of attacks that leverage the analysis of traffic patterns, by exhibiting patterns
common to regular utilization of the cover system.

4.1.3 Castle

Castle [44] leverages common commands issued in Real-Time Strategy (RTS)
games to encode and tunnel covert traffic.
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Description: The system employs desktop automation software to issue game
commands that carry covert data, providing the map used for the ongoing game
is custom-made and known apriori by the system. Castle works by selecting
structures or immobilized units, respectively setting rally-points or attempting
unit displacement to a given map coordinate. The system’s authors propose a
combinatorial scheme where a move/rally-point command is issued to different
subsets of the available units, giving the possibility to encode more data than if
a fixed number of units was chosen.

The receiving Castle client must have a way to interpret the covert data
in order to retrieve the original data. Usually, RTS games keep a log of the
issued commands in order to save or replay a game. This allows the receiving
Castle client to fetch and decode Castle’s specially crafted commands. As is, a
Castle’s client may be used to transmit textual data such as emails or other
short messages.

Although a censor cannot infer the commands placed by analyzing the en-
crypted game packets, the traffic flow variance caused by several game factors
may be analyzed by the censor. However, this variance is still within the margins
of resemblance to an actual human player.

Advantages: Circumvention tools may adjust Castle’s design to make use of a
panoply of games available to the general public, such as free games like 0 A.D
or some of the best-selling RTS games ever. Since many of such games share
elements inherent to the RTS genre, a censor gains little by banning a specific
game, since another similar one may be used as cover. Thus, the only censor’s
alternative is to blanket ban all RTS games, incurring in social discontentment.

The games which Castle relies upon typically encrypt and authenticate their
network communication channels to prevent cheating, thus preventing the ability
of a censor to observe the commands issued by the clients. It also thwarts active
attacks relying on rogue packet injection. Moreover, reliable data transmission
channels are implemented in the application layer as the majority of RTS games
transfer game data through UDP. Therefore, the system tolerates active attacks
comprising the drop and delay of packets.

The system’s authors propose a different mode of operation where a client can
place a request for a web page which would be served by parallel data transfers
provided by the remaining clients, acting like a web proxy. This is made possible
because several RTS games allow multiple players to join a session.

Limitations: Castle’s performance is limited by two factors: i) throughput is
highly dependent on the time that the desktop automation tool takes to perform
the unit selection and to select a coordinate; ii) different games have different
limits on the amount of units that can be selected at once, varying the amount
of data that is possible to encode in a given command. Such limitations may
prevent a given Castle’s implementation to sustain a sufficient throughput for
bulk file transfers.
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4.1.4 meek

meek [45] leverages domain fronting to tunnel traffic over HTTPS connections
to allowed hosts, while establishing a covert connection to a prohibited host.

Description: Domain fronting is applied by using different domain names at
different layers of the HTTPS request. In such requests, the destination’s domain
name may be found in three locations: the DNS query, the TLS Server Name
Indication (SNI) extension and in the HTTP Host header. While a censor may
observe the domain name associated with the DNS query and SNI, it is unable
to check the value of the HTTP Host header, since it is hidden by the HTTPS
request encryption. This allows for a domain-fronted request to use an allowed
domain name on the layers that a censor is able to observe, while hiding the
true desired destination in the HTTP Host header. When the frontend server
receives such a request, it routes it to the covert destination indicated in the
HTTP Host header. Content Distribution Networks (CDNs) are good candidates
for deploying frontend servers. As part of their normal operation, they already
forward requests to the domain found in HTTP Host header whenever they are
unable to serve a request from their local cache.

Advantages: CDNs are widely used today and it may be impossible for a censor
to block its usage. Using this strategy, a client may perform a request to a CDN’s
apparently inoffensive front domain, which will resolve to a frontend server the
censor is not able to observe.

Limitations: The patterns observed on meek ’s TCP ACK traffic are distinct
from regular TLS connections. This is due to the fact that meek ’s clients poll
the meek server, checking if there is data to be received. It has been shown
that it is possible to use machine learning to perform traffic classification in
order to distinguish meek ’s implementation over Tor on particular settings, like
a campus network and home wireless networks [38]. Such classifiers work well
when deployed in the environments where they were trained, rendering it an
interesting approach to be deployed in a localized environment when a censor
attempts to confirm a given user is evading censorship.

4.2 Protocol Tunneling Using Multimedia Streaming Applications

The protocol tunneling systems described up to this point leverage a purely
staged communication approach, where an oblivious server relays the communi-
cation between the client and server of a given censorship circumvention system.
A different tunneling approach leveraging multimedia streaming protocols can
make use of an oblivious server to relay the communication or take advantage of
peer-to-peer communication between the endpoints engaging in circumvention.

To the best of our knowledge, the approach of protocol tunneling through
multimedia streaming applications has been explored by two systems, which ex-
hibit remarkable differences between their security properties and use cases. We
present both systems on the next paragraphs, highlighting both their advantages
and limitations.
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Fig. 3. FreeWave’s data frame layout (adapted from FreeWave [9]).

4.2.1 FreeWave

FreeWave [9] leverages VoIP connections to tunnel Internet traffic, allowing
for uncensored web browsing.

Description: FreeWave’s audio data is generated by a bit-interleaved coded mod-
ulation. The system uses a wrapper protocol to carry the modulated data. This
wrapper allows for the demodulator to synchronize with the modulator and to
negotiate the modulation parameters, necessary to demodulate the acoustic sig-
nal. The modulated bit stream is split in data frames. Each data frame has a
preamble block which is used for synchronization. The preamble is followed by a
signal block which contains the parameters used for the modulation of the data
frame. Lastly, the data frame contains interleaved blocks of training data and
actual data, as depicted in Figure 3.

FreeWave’s modulated data interpretation needs to be synchronized. While
the VoIP channel resists to packet dropping, this may prevent the FreeWave’s
modem from synchronizing. As previously stated, data frames must contain a
known preamble block, so that the demodulator can synchronize and interpret
the data being sent. Providing that the preamble is not found by the demodula-
tor, it will not be able to decode the actual data. A larger size of the preamble
will render a higher probability of a correct identification of a data frame’s start-
ing point. One can picture diverse modes of operation, where both the preamble
and signal blocks are included: i) uniquely at the beginning of the connection;
ii) at the beginning of scheduled data frames with a fixed data blocks number;
iii) at each data frame sent whenever the modem has data to send.

Advantages: FreeWave allows the transmission of Internet traffic by modulating
it into an audio signal sent through VoIP systems.

The vast number of available VoIP providers makes it hard for a censor to ban
all instances of FreeWave, unless it performs a potentially undesirable blanket
ban over all VoIP services within its borders.

Limitations: FreeWave can be detected by employing passive attacks and have
its functioning thwarted by active attacks, when it is used over VBR codecs.
Despite a packet’s payload being ciphered, in-depth analysis of the packets’
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length distribution over time is known to be able to distinguish between the
language being spoken in a conversation [46] and even to reconstruct spoken
phrases [47]. FreeWave’s detection can be achieved based on the observation that
the generated network packets’ length distribution is nothing similar to that of
a recognizable language, expected to be found in an actual conversation [41].

A censor may also prevent FreeWave’s modem to synchronize by actively
perturbing the network. Indeed, the censor may be able to block any of the
three modes of operation described, shall it be able to selectively drop the packets
which carry the preamble.

4.2.2 Facet

Facet [10] leverages video conferencing connections to tunnel censored videos.

Description: In order to transmit the content in real time, Facet is built upon a
pipeline which downloads and convert the desired video. Instead of using a real
microphone and camera, the system makes use of emulators which will be fed
with the pipeline data. An interesting insight on Facet is that it avoids channel
mismatches by tunneling videos over a video transmission channel. This provides
an active attack resistance by design, since any perturbation in the network will
cause exactly the same effect on a regular or covert video transmission.

Facet employs video morphing, a technique developed to ensure that the
network packets generated by the video conferencing software do not directly
reflect the characteristics of the censored video, but approximate those of regular
video calls instead. To this end, Facet embeds the censored video in a portion
of each frame, filling the remaining space with a chat video. This is depicted in
Figure 4. A user will then watch a scaled-down censored video over a background
chat video. Naturally, the more scaled-down the censored video is, the better
the resilience to traffic analysis. This happens because the background video
characteristics dominate over those of the embedded censored video.

To foil a censor’s traffic classifier results, audio morphing is also required. The
audio layer of the censored videos is re-sampled to simulate the lower quality of
chat audio.

A Facet’s user must communicate with the server in order to specify the URL
of the video he wishes to watch. Facet’s authors anticipate the blocking of video
search services by the censor, giving the possibility for using the Facet server
as a proxy for obtaining such URL lists. The user may send an encrypted or
steganographically marked email directed at the server (a similar approach to
the one discussed in SWEET [21]) to which the server will answer.

Advantages: The described approach yields good enough results to prevent a
censor to easily block Facet’s sessions. A censor who tries to completely disrupt
Facet from functioning incurs into a twenty percent block over legitimate video
conferencing calls, when dealing with a scale factor of 0,125. This factor may be
adjusted upwards, enabling a user to watch a censored video with better quality,
while still representing possible prohibitive collateral damage to the censor.
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Limitations: By design, the only type of content that Facet is able to serve is
video. This limits the system’s applicability to other types of communication,
such as web browsing. This is because different kinds of data would need to be
properly encoded in order to be transmitted, and a reliability layer would need
to be in place to resist against active attacks perpetrated by a censor.

Moreover, in order to guarantee a prohibitive collateral damage for the cen-
sor, the covert video’s scale factor must be small overall, damaging the quality
perceived by the client. While video quality may be enough for watching a film’s
trailer, small scale factors may hinder the viewing experience for several videos.
For instance, tutorial-like videos often require the viewer to follow steps shown
on-screen. These would be hard, if not impossible, to perceive under high traffic
analysis resistance guarantees.

4.3 Discussion

Protocol tunneling systems that create covert channels through staged net-
work applications present good approaches at censorship circumvention. In par-
ticular, meek is at the forefront of currently deployed protocol tunneling systems,
exhibiting a combination of many of the required features to be considered an
excellent choice for evading censorship. However, we argue that the encoding
of data in multimedia streaming protocols is still relatively unexplored in the
context of Internet censorship circumvention. Novel techniques may be devised
in order to allow the reliable transmission of arbitrary types of data, while being
resilient to active and passive attacks perpetrated by a censor.

FreeWave provides the possibility for arbitrary data transmission over a loss
tolerant channel. However, it is vulnerable to active attacks perpetrated by a
censor, rendering such transmission unreliable or even impossible at all. Further-
more, FreeWave is unable to resist traffic analysis when used over applications
employing VBR codecs, since the network traffic generated by its modulated
data is distinguishable from that generated with real speech.

Contrary to FreeWave, Facet is not intended for interactive communication.
Although the system’s approach seems promising from a traffic analysis resis-
tance point of view, it is limited on the transmission of video content.
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Table 1. Protocol tunneling systems comparison.

System Active Attack
Resistance

Passive Attack
Resistance

Arbitrary Data
Transmission

Interactive
Communication

High
Throughput

SWEET Yes No (limited by
utilization
mismatch)

Yes No (limited by
utilization
mismatch)

Yes

CloudTransport Yes No Yes Yes Yes
Castle Yes Yes Yes Yes No
meek Yes Yes Yes Yes Yes

FreeWave No No (w/ VBR
codecs)

Yes Yes Yes

Facet Yes Yes No No Yes

In order to be effective from a security point of view, a censorship circumven-
tion system must exhibit resilience to active and passive attacks from a censor.
Moreover, a system that aims to offer both web browsing capability and bulk
data transfer must be able to attain certain performance guarantees, namely to
achieve a high throughput and to transmit arbitrary sequences of data frames in
an interactive way. In Table 1, we depict the surveyed protocol tunneling-based
circumvention systems, regarding the aforementioned security and performance
properties. A more comprehensive study over the security and performance prop-
erties exhibited by existing censorship circumvention systems was presented by
Elahi et al. [48].

5 DeltaShaper

In this section we briefly describe the architecture of the censorship circum-
vention system that we plan to build. The system, named DeltaShaper, encodes
data into the video layer of an allowed video conferencing call in order to tunnel
covert traffic.

5.1 Data Encoding Approach

DeltaShaper introduces a novel technique which enables the encoding of ar-
bitrary data frames in a video stream, by effectively synthesizing a video frame
from the original data.

A first approach, taking inspiration from Facet’s video morphing insight,
would be to overlay text containing the covert data, expecting that the back-
ground video characteristics dominate over those of the overlayed video. Such
text could be recovered resorting to Optical Character Recognition (OCR) tech-
niques. However, off-the-shelf OCR solutions can be error prone, even on uniform
backgrounds. Suitable image processing and error correction algorithms would
need to be devised to recover the overlayed text over a changing background.
The study of such algorithms are out of the scope of this work.

A second approach would be to leverage Facet’s video morphing technique
to transmit video-encoded data, while taking advantage of its traffic analysis
resistance design. However, the majority of the channel’s bandwidth would be
used to transmit the cover background video instead of the data in question.
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Fig. 5. Video stream synthesis overview.

A more interesting approach would be to use all of the carrier video band-
width for covert data transfer, by encoding data in each of the synthesized video
frames. Careful crafting of such video frames may be able to produce close-
to-regular chat video network traffic, while achieving a high bandwidth covert
channel. Unlike Facet, this would allow to use an entire video frame to encode
covert data, not needing a real chat video to be transmitted as cover.

By synthesizing video frames, the system becomes independent from the
video conferencing tool itself. In fact, some of the most popular video confer-
encing services are proprietary, where the tool’s source code is not disclosed and
modifications are not allowed. In order to retrieve the original data, DeltaShaper
must analyze the video as displayed in each end host’s screen. Since video data is
commonly ciphered prior to transmission, being deciphered by the application at
the receiving end, the video stream receiver only has access to the video signal as
displayed by the conferencing application viewport. This mechanism is depicted
in Figure 5.

We focus our work on developing the proposed video synthesis technique,
which surges as a base to deploy a covert channel over a video conferencing call
between two parties engaging in circumvention. The system is designed to be
interactive, allowing a client to send requests and to receive the corresponding
responses, laying the foundations for web-browsing capability. Although peer
discovery and the tool’s distribution must be considered when deploying a cen-
sorship circumvention system, these are issues outside of the scope of this work.

5.2 Supporting Application Data Transmission

The DeltaShaper server may run a SOCKS [49] proxy in order to direct the
network traffic of its clients to their desired destinations. The SOCKS protocol
enables DeltaShaper to tunnel several application protocols, such as HTTP to
support web-browsing or FTP to support bulk file transfers.

A user of DeltaShaper may configure an application (e.g. web browser or
FTP client) to send its traffic through the SOCKS protocol. Instead of directly
contacting the SOCKS server proxy, the user application will direct its SOCKS
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traffic to DeltaShaper’s local client, which will encode the protocol messages into
video frames and send them through the chosen video conferencing system. The
DeltaShaper’s server shall decode and deliver the received messages to a SOCKS
proxy server, running on the same machine, which will then communicate with
the client’s desired destination. The response shall be delivered to the client in
a similar way. This mechanism is depicted on Figure 6.

In order to support the tunneling of SOCKS data, a wrapper protocol must
be implemented so as to assure the reliability of the transmission. This protocol
may also be responsible for multiplexing connection data from one to several
applications at once, between the DeltaShaper client and server.

5.3 On Avoiding Covert and Carrier Channels Mismatches

As discussed in 3.3.6, protocol tunneling systems face four types of mis-
matches between the covert and cover channel. The following paragraphs de-
scribe the approach followed by DeltaShaper in order to resist to attacks that
leverage such mismatches:

Architectural Mismatch Prevention: DeltaShaper exhibits the same limitations
observed on previous similar systems described in the literature, regarding archi-
tectural mismatches. Concretely, the use of a decentralized video conferencing
system may turn a DeltaShaper server into a hot spot, since a censor will be
able to observe several video conferencing connections to it. If DeltaShaper users
choose a centralized video conferencing system instead, their calls are relayed
through an oblivious server which may also be relaying regular calls. This may
prevent a censor from blocking such oblivious relay servers (and consequently
DeltaShaper) due to potential collateral damage.

Content Mismatch Prevention: In widespread video streaming protocols such as
VP8 or H.264, updates between subsequent video frames are mostly performed
through commonly called delta frames [50, 51], which provide data about the
incremental changes between adjacent frames.
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In order to provide “unobservability”, DeltaShaper’s synthesized video frames
should keep the difference to their directly related frames below a certain thresh-
old. To prevent a content mismatch, the rate and size of the generated delta
frames must not be distinguishable from that of a regular chat video by an
observer of the network traffic.

The audio layer also poses as a concern from a traffic analysis perspective.
Therefore, users engaging in circumvention can maintain an actual conversation
or recorded audio may be played so that the generated network traffic reflects
that of a regular VoIP conversation.

Channel Mismatch Prevention: The transfer of a data stream through a loss
tolerant channel such as video calls raises the issue of channel mismatches, from
which a censor may take advantage. In order to tolerate active attacks aimed at
corrupting the covert data transfer, DeltaShaper’s wrapper protocol shall also
be responsible for providing reliability on the application layer.

Utilization Mismatch Prevention: We argue that a video call provides cover
during enough time for an average web-browsing session to take place, without
raising suspicion from a censor. However, we emphasize that this is the only
mismatch that directly depends on a responsible and informed utilization of the
censorship circumvention system by its users.

6 Evaluation

We intend to evaluate our prototype regarding two main aspects: i) perfor-
mance; ii) resilience against passive and active attacks.

6.1 Performance Evaluation

The performance of our system will be evaluated by measuring the achieved
throughput and latency, taking into account different kinds of traffic, such as
the one generated by bulk file transmissions and web-browsing traffic.

We expect the throughput of our system to surpass the one provided by
FreeWave, since the bandwidth available for a video stream channel is larger than
that available for an audio channel. We also expect the latency of our system to
be sufficient for supporting interactive communication like web-browsing.

Naturally, both performance measures are likely to be affected by the amount
of data that can be encoded on a video frame, providing that the rate and size of
video frames’ updates observed on the network are similar to those of a regular
chat video.

6.2 Attack Resilience Evaluation

We shall evaluate the system’s resilience against both active and proactive
attacks. As in the system’s performance evaluation, we shall measure attack
resilience when tunneling different kinds of data.
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To resist a passive attack, the network traces generated by the video confer-
encing service should not be dramatically different when establishing a regular
video conferencing call or a call where our system is being employed. As discussed
previously in the text, this is a prevalent issue when dealing with VBR codecs.
To this end, we shall collect network traces of a multitude of both types of call in
order to employ statistical traffic analysis techniques. In particular, a χ2 binary
classifier [10, 46] shall be employed to determine whether a DeltaShaper video
call is considered legitimate or not. We shall measure the false positive and false
negative rates of the classifier so as to understand how many legitimate calls
would be shut down by the censor, shall it aim to disrupt our system from func-
tioning. We expect the traffic analysis resistance offered by our system to at
least match the one provided by Facet, since we expect to have a finer-grained
control over the video signal itself.

In order to evaluate the resistance of our system against an active attack
perpetrated by the censor, we shall measure the time it takes for our system to
resume a given covert data transfer after active perturbation on the network, as
well as the correctness of the transferred data itself.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation.

– May 4 - May 23: Write a paper describing the project.

– May 24 - June 15: Finish the writing of the dissertation.

– June 15: Deliver the MSc dissertation.

8 Conclusions

Repressive regimes actively censor the access to the Internet, foiling the abil-
ity for their citizens to obtain or to publish rightful information. In this work
we have surveyed the relevant related work regarding both censorship enforcing
and circumvention techniques.

We propose a novel data encoding technique through video stream synthesis
which can be leveraged to build a covert channel over popular video conferencing
applications, overcoming limitations exhibited by previous systems.

We have presented the architecture of the proposed solution. Its detailed
specification, implementation, and experimental evaluation are left for future
work, whose schedule has also been presented.
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