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Resumo

Vários governos aplicam técnicas de vigilância e censura em larga escala na Internet, de forma a
impedir os seus cidadãos de aceder ou publicar informação. Para evadir o controlo dos censores no
acesso à informação, sistemas recentes possibilitam a criação de canais de comunicação encobertos
ao encapsular dados em protocolos de transmissão de conteúdo multimédia. Infelizmente, a introdução
de um canal encoberto pode introduzir discrepâncias entre os padrões que caracterizam o fluxo original
de pacotes e o fluxo que transporta o canal. Se estas discrepâncias forem estatisticamente significati-
vas, estas podem ser observadas por um censor. Assim, um dos principais desafios que se levantam na
concretização desta técnica consiste em garantir que o canal encoberto não é observável pelo censor.

Tendo em conta este desafio, esta tese visa o estudo da codificação de informação arbitrária no
canal vı́deo de aplicações de vı́deo-conferência, de forma a que as caracterı́sticas do tráfego resul-
tante se assemelhem às caracterı́sticas do tráfego de vı́deo-chamadas legı́timas. Particularmente, a
tese propõe e avalia diferentes alternativas para a codificação de informação no canal, tendo como
objectivo a maximização da taxa de transferência e a preservação das caracterı́sticas de tráfego de
vı́deo-chamadas legı́timas. O protótipo desenvolvido encapsula pacotes da camada de rede, supor-
tando o encaminhamento de qualquer protocolo transmitido sobre TCP/IP. Os resultados da avaliação
do sistema mostram que é possı́vel atingir uma taxa de transferência de 0.4 KB/s ao manter a não-
observabilidade do canal encoberto, permitindo a execução de aplicações comuns tais como FTP, Telnet
ou Wget.



Abstract

Repressive regimes are known to deploy large-scale surveillance and censorship mechanisms in
order to deter their citizens from accessing or publishing rightful information in the Internet. To evade the
censors’ control over the access to information, recent systems enable the creation of covert channels
by tunneling data through popular media streaming protocols. Unfortunately, the covert channel may
induce patterns in the resulting packet stream that distinguish themselves from the packet patterns that
characterize regular streams. If the differences are statistically significant, the censor may be able to un-
veil, and subsequently block, the covert channel. Therefore, one of the main challenges in implementing
this technique is to ensure that the covert channel remains unobservable from censors.

Considering this challenge, this thesis studies the encoding of arbitrary data on the video channel
of widely used video-conferencing applications, such that the traffic characteristics of legitimate video-
conferencing calls are preserved. Particularly, the thesis proposes and evaluates different alternatives
to encode information within a video-stream, in order to maximize the available throughput while re-
maining indistinguishable from legitimate video-conferencing traffic. A prototype of the system, named
DeltaShaper, tunnels network layer packets and supports the forwarding of any protocol that runs over
TCP/IP. The experimental evaluation’s results show that it is possible to achieve a throughput of 0.4
KB/s while maintaining unobservability, which allows to run standard applications such as FTP, Telnet,
or Wget.
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1Introduction
This thesis addresses the problem of Internet censorship circumvention. It studies the use of pop-

ular video-conferencing applications such as Skype as vehicles for bi-directional covert channels, al-
lowing for censorship-resistant communication. The idea of using different forms of media, including
video-conferencing, to encode covert channels has been recently explored in the literature in several
ways. However, ensuring the unobservability of the covert channel remains a significant challenge.
Informally, a covert channel is deemed unobservable if there are no noticeable differences between a
regular stream and a stream carrying covert messages. This thesis presents a solution to the problem
of enabling covert communication through video-conferencing applications, while preserving the charac-
teristics of unmodified video-streams. Covert communication is provided by tunneling TCP/IP packets,
allowing for arbitrary traffic to be transparently forwarded between the parties engaged in circumvention.

1.1 Motivation

Today, most electronic communication over the Internet can be controlled by governments and/or by
a few corporations. This allows repressive regimes to monitor and control the access to the Internet by
employing several censorship techniques, such as blocking specific IP addresses or specific content (for
example, web sites) (Aryan, Aryan, and Halderman 2013). As a result, citizens may be prevented from
exercising their civil rights, for instance they may not be allowed to access information, communicate, or
express opinions freely (Chaabane, Chen, Cunche, De Cristofaro, Friedman, and Kaafar 2014).

Fortunately, not even the most oppressive regimes can afford to block all electronic communication
channels with the outside world, as these may be instrumental to preserve the economy of the country
and the sustainability of the regime itself. In particular, there is evidence that several countries do restrict
access to information but maintain operational widely used services such as Skype (Zittrain and Palfrey
2007). In fact, only in extreme scenarios, governments can afford to completely block the access to the
Internet (Dainotti, Squarcella, Aben, Claffy, Chiesa, Russo, and Pescapé 2011).

In certain cases, to prevent access to specific sources of information, the censor instructs ISPs to
block direct connections to these sources. To circumvent such restrictions, a typical strategy consists
in accessing this information via a trusted proxy. However, this approach is only viable as long as
the proxy address is not public and the connections to it cannot be easily flagged as suspicious. In
order to prevent the public exposure of proxy addresses, systems such as Tor (Dingledine, Mathewson,
and Syverson 2004) employ proxies (named bridges) whose addresses are not publicly distributed to
access its overlay network. Even so, if no explicit effort is made to obfuscate the traffic towards a
bridge, the traffic may exhibit patterns that make the bridge easily recognizable (David Fifield 2014).
Unfortunately, the task of obfuscating the traffic is a challenge by itself: if the resulting pattern does not
match any known protocol, the flow can also be flagged as suspicious and possibly blocked by a censor.
Therefore, for the obfuscation to succeed, the resulting traffic should mimic existing protocols, ideally



protocols that a censor may not be willing to block. But protocol mimicking can be extremely hard to
implement (Houmansadr, Brubaker, and Shmatikov 2013). Several factors concur to this difficulty, in
particular: (1) the complexity of protocols’ specification in terms of the number of possible states that
must be mimicked, (2) the specificity of their respective implementations which may be used by a censor
to distinguish legitimate from simulated protocol implementations, (3) the fact that proprietary protocols
are often closed to the general public, and (4) the need to constantly update the mimicked protocol
whenever a new release is put out.

A more recent and promising approach consists in providing access to rightful information using a
covert channel by tunneling the data stealthily through protocols that are unlikely to be blocked by the
censor. Here, the assumption is that it is possible to encode payload messages in such a way that the
traffic pattern of the carrier protocol is not modified in a significant way. Examples of this line of work
include FreeWave (Houmansadr, Riedl, Borisov, and Singer 2013), which encodes network traffic into
acoustic signals sent over Voice over IP (VoIP) connections, and Facet (Li, Schliep, and Hopper 2014),
which enables clients to stream censored videos over video calls.

These results are very promising but have important limitations. FreeWave is vulnerable to attacks
that leverage perturbations in the network. Dropping selected packets may render the system useless,
as it will corrupt the negotiation of parameters for the audio data demodulation. Also, its covert channel
can be uncovered when established over a Variable Bit Rate (VBR) VoIP connection, by analyzing the
generated network traces. In its turn, Facet employs a technique named video morphing, which consists
of embedding the censored video into some carrier video such that the resulting transmission cannot be
distinguished from the original by a censor, even if the agent can listen to the network and perform traffic
analysis or active packet manipulation. However, Facet can only be used to transfer video content. This
restriction may severely limit Facet’s broader applicability to other important types of communication,
namely web browsing and bulk file transfers. Providing such functionality may be fundamental to enable
critical communication in the presence of a state-level censor.

The goal of this thesis is to leverage the basic principle of video morphing and extend it in order
to support the transfer of arbitrary data content and not only video streaming, in a way that preserves
unobservability (i.e, a censor must not be able to distinguish regular call streams from streams carrying
covert data).

1.2 Contributions

This thesis analyzes, implements and evaluates techniques to establish a bi-directional covert chan-
nel over the video layer of a video-conferencing call, such that the generated traffic patterns are indistin-
guishable from those generated by regular video-conferencing calls. As a result, the thesis makes the
following contributions:

• Proposes a novel Internet censorship circumvention system named DeltaShaper which establishes
a covert channel over the video layer of popular video-conferencing applications. This channel
enables the tunneling of network layer packets and the use of high-level application protocols.

• Delivers a comprehensive analysis over several data encoding alternatives, including the trade-
offs involved between the maximization of the system’s throughput and resilience against detection
from a censor.

3



1.3 Results

The results produced by this thesis can be enumerated as follows:

• An implementation of the system, named DeltaShaper, using Skype as the carrier video-
conferencing application.

• An experimental study to determine valid subsets of encoding parameters that allow the transfer of
covert information, while retaining the properties of the traffic generated by regular Skype streams.

• An experimental evaluation of the implemented system’s performance, comparing its adoption in
opposition to the use of overt communication channels.

Research History

This work benefited from the fruitful comments of Professor Fernando Pereira, regarding the H.264
codec inner workings. We also benefited from Professor Bruno Martins’ suggestions on evaluation
metrics.

A paper that describes parts of this work has been accepted for publication in Actas do Oitavo
Simpósio de Informática, INForum 16 (Barradas, Santos, and Rodrigues 2016).

This work was performed at INESC-ID and was partially funded by FCT and PIDDAC as part of the
UID/CEC/50021/2013 project.

1.4 Structure of the Document

The remaining of this document is organized as follows. Chapter 2 provides an introduction to
real-world censorship apparatus, dwelling on techniques aimed at both censorship enforcing and cir-
cumvention. Chapter 3 describes the design of DeltaShaper and Chapter 4 details the implementation
of the system’s prototype. Chapter 5 presents the results of the experimental evaluation of DeltaShaper.
Lastly, Chapter 6 concludes this document by summarizing our main findings and discussing a few
directions for future work.
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2Related Work

This chapter starts by addressing the different levels of competence exhibited by censors around
the world (Section 2.1). Then, it provides a survey over Internet censorship circumvention techniques
described in the literature, in an increasing order of sophistication (Section 2.2). Lastly, this chapter
focuses on the survey of recent protocol tunneling systems, discussing the main advantages and limita-
tions of such systems (Section 2.3).

2.1 Censor Operation

Oppressive regimes have prevented their citizens to make full use of their civil rights long before the
Internet. Traditional media, such as books or newspapers, would be scrutinized by regime authorities
in order to ensure that no offensive information would be published and accessible to the population.
However, the advent of the Internet has allowed citizens to express their opinions freely and access
information hosted all over the world (Al-Saqaf 2016).

In order to prevent the dissemination of information that can jeopardize the legitimacy of the regime
itself, state-level censors are known to stage different Internet censorship initiatives, aimed at minimizing
the leakage of information from within the nation and the access to external information, which may be
contradictory to the regime ideals. Notably aggressive censorship apparatus can be observed during
especially sensitive time-spans, such as election periods (Esfandiari 2013).

However, censorship comes at a cost, even for the most repressive regimes. Not all communication
channels can be ultimately blocked due to social and economical motives, opening the opportunity for
the devise of covert channels which can then be used to transfer rightful information. In this setting,
the censor must be able to identify and block abusing connections, under the penalty of incurring in
collateral damage by blocking legitimate connections. Real-world censors are known to act in a multitude
of domains so as to efficiently detect and/or block selected information flows. Generally, censorship
initiatives depend both on the amount of resources a censor has available and on its know-how and
proficiency. The following paragraphs offer a high-level overview over real-world censors’ capabilities
aimed at preventing the access or distribution of rightful information.

Traffic Collection, Analysis and Interference: The surveillance capabilities introduced by the collec-
tion and further analysis of Internet traffic flowing through a censor’s borders are instrumental for the
devise of refined censorship enforcing mechanisms. There has been a proposal of a three level-based
classification for censors exhibiting such capability (Houmansadr, Brubaker, and Shmatikov 2013), which
relies on the sheer amount of raw network traffic a censor is able to observe, analyze or interfere with at
any given point in time: local adversary, state-level oblivious adversary and state-level omniscient adver-
sary. A local adversary (such as a corporation) is only able to observe a limited number of connections.
On the contrary, state-level adversaries can observe connections on a larger scale, often with state-
sponsored Internet Service Providers (ISPs) cooperation. A state-level oblivious adversary is expected



to perform Deep Packet Inspection (DPI) only to short observations of network traffic, considering that its
infrastructure does not allow to keep connection records in long-term. Instead, a state-level omniscient
adversary has the required infrastructure to collect, store and analyze a large set of network traces.

Broadly speaking, there are two major categories of attacks that a censor may perform to detect or
to prevent the access to rightful information, when in control of the traffic that flows across its borders:

• Passive attacks are tied to the analysis of observed and collected network traces. Typical pas-
sive attacks are conducted with statistical traffic analysis resorting to DPI mechanisms, usually
deployed within ISPs’ premises.

• Active attacks are perpetrated by perturbing network traffic. A censor may be able to delay, drop,
modify or inject content into selected network packets.

To perform these attacks the censor may employ a large spectrum of techniques aimed at iden-
tifying, interfering with, or blocking information flows. Such techniques range from simple IP address
blocking to actual monitoring and manipulation of served content. DPI allows for the gain of information
about several characteristics of the packets that cross a network, such as their length and content. This
enables a censor either to take immediate action based on the content of each observed packet or to
employ statistical traffic analysis techniques, which usually require the ability to store a large number of
network traces (Wagner 2008). Such statistical analysis may be able to unveil unusual network traffic
patterns that may be linked to the use of censorship circumvention mechanisms.

Rogue Software Deployment: Censorship actions may not directly depend upon the inspection and
control of the network traffic crossing the censor’s borders. In particular, there is evidence of govern-
ment initiatives directed at increasing the reach of Internet censorship to the edges of the network. As
a matter of fact, China has explicitly requested the modification of software products in the past so as
to introduce surveillance and censorship components. For instance, Microsoft has partnered with Tom
Online in order to provide an altered Skype version to chinese users (Knockel, R. Crandall, and Saia
2011). This modified version would actively record and censor the text messages produced by users.
Another example is China’s Green Dam (OpenNet Initiative 2009), a filtering software product that would
allegedly protect children from browsing specific Internet content. However, the software’s functionality
reached far deeper into the operating system itself, actively monitoring a wide range of applications and
disrupting their use, should they deal with information deemed prohibited by the censor. Despite its
use has been condemned by the general population and the government had officially backed down on
Green Dam’s mandatory installation, the possible spreading of government-sponsored malware, aimed
at enforcing such restrictions or at the identification of citizens engaging in active censorship circumven-
tion, must be acknowledged.

Foreign Services Disruption: Rather than filtering and/or blocking the access to an information source,
a censor may attempt to render that very source incapable of serving requests to its users. In a recent
episode which took place in March 2015, China has staged a distributed denial of service attack against
two GitHub repositories maintained by GreatFire.org, through an offensive system dubbed “GreatCan-
non” (Marczak, Weaver, Dalek, Ensafi, Fifield, McKune, Rey, Scott-Railton, Deibert, and Paxson 2015).
The system worked by intercepting foreign traffic aimed at the domestic service Baidu, serving a mali-
cious script into the visiting users’ browser, who would then unknowingly participate in the attack. The
deployment of such system for censorship purposes hinders users all over the world, departing from the
typical approach of preventing information to be accessed by users co-located with the censor.
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Lawful Interception Policies: The data of some widely used services, such as instant-messaging
applications, may be hosted outside a censor’s border, making it difficult for authorities to access the
content generated by its citizens. In order to avoid the bureaucratic hassle of requesting logs overseas
and make it easier for state entities to access such data, some censors have already begun to regulate
the operation of foreign services within its borders. These are subject to place the servers containing the
citizens’ data within the country (Reuters 2016). In some settings, censors are known to replace popular
foreign services, such as social networks, with domestic variants (Bowen and Marchant 2015).

Proactive Circumvention Mechanisms Disruption: Apart from the detection and further blocking of
attempts to circumvent censorship carried out by their citizens, censors may try to proactively find and
thwart systems offering censorship evasion capabilities. The idea is rather simple: a censor interacts
with random or suspicious hosts as if it was a client interested in triggering a particular circumvention
mechanism. The contacted endpoint can then be blocked shall it offer a way to engage in covert com-
munication. For instance, China is known to proactively probe Internet addresses while looking for Tor
bridges (Ensafi, Fifield, Winter, Feamster, Weaver, and Paxson 2015).

As described, state-level censors seek efficient surveillance and censorship mechanisms, driven
by the need of expanding their control over the information handled by citizens. Particularly, China
is recognized for possessing the most extensive and advanced Internet censorship infrastructure in
the world. In practice, there is no evidence that the remaining known censors possess such advanced
capabilities. According to the data of recent reports, the vast majority of censors mainly concentrate their
efforts in: traffic collection, analysis and interference; pro-actively disrupting deployed circumvention
mechanisms. The next section addresses the evolution of censorship-enforcing mechanisms tied to
such capabilities, surveying concurrently evolving censorship-evasion techniques as well.

2.2 Censorship Arms Race

Censorship circumvention systems are continuously at an arms race against increasingly sophisti-
cated censorship techniques. Any circumvention technique aims at achieving both “unobservability” and
“unblockability”:

• A censorship circumvention system lacks “unobservability” if it can be identified by the censor.
To achieve “unobservability”, circumvention techniques typically rely on the existence of a pre-
shared secret (Feamster, Balazinska, Harfst, Balakrishnan, and Karger 2002; Burnett, Feamster,
and Vempala 2010; Wustrow, Wolchok, Goldberg, and Halderman 2011; Houmansadr, Nguyen,
Caesar, and Borisov 2011) and / or on the ability to obfuscate the communication (Moghaddam, Li,
Derakhshani, and Goldberg 2012; Weinberg, Wang, Yegneswaran, Briesemeister, Cheung, Wang,
and Boneh 2012; Wang, Gong, Nguyen, Houmansadr, and Borisov 2012). These two approaches
can make it harder for the censor to detect covert communications in the network (among other
innocuous traffic).

• A circumvention system is said to be “unblockable” if the flows it protects cannot be blocked without
substantial loss for the censor. One of the most promising strategies to achieve this property is to
tunnel flows through widely used protocols, such as those employed on cloud services, email, VoIP
or video-conferencing (Brubaker, Houmansadr, and Shmatikov 2014; Zhou, Houmansadr, Caesar,
and Borisov 2013; Houmansadr, Riedl, Borisov, and Singer 2013; Li, Schliep, and Hopper 2014),
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in such a way that the only remaining strategy for the censor is to apply indiscriminate attacks to
all flows, even to those that the censor would like to preserve.

Clearly, a system that is observable becomes more vulnerable to be blocked, given that the censor
is then able to stage a targeted attack instead of an indiscriminate attack. It is therefore no surprise that
achieving “unobservability” is referred as the biggest challenge facing the existing censorship circum-
vention systems (Houmansadr, Riedl, Borisov, and Singer 2013).

The following paragraphs present an evolution of censorship-enforcing techniques as well as sys-
tems designed to circumvent them.

2.2.1 Content Withholding

Early state-sponsored censorship techniques relied on the ability of the censor to control publication
mediums, such as newspapers or TV shows. Before being published, all content would be previously
scrutinized to ensure that harmful information to the regime would never be divulged. Recently, the
Internet has become an excellent medium to exchange information and therefore an obvious target for
censors. Although many Internet services are neither hosted nor controlled by repressive regimes, they
may still offer censorship-enforcing platforms to prevent offensive content from being distributed within a
country’s borders.

Techniques Available to the Censor: Some popular Internet services, such as Twitter, enable gov-
ernments to formally request the withholding of content within a country’s boundaries (Tanash, Chen,
Thakur, Wallach, and Subramanian 2015). This is mostly due to business decisions, enabling the service
to remain available within several countries, even those whose governments actively perform Internet
censorship.

Circumvention Strategies: In order to stealthily transmit information that would otherwise be censored,
traditional steganographic techniques aimed at concealing the existence of a message by embedding it
into some cover medium (Cheddad, Condell, Curran, and Kevitt 2010). Examples of such techniques
are the concealment of Morse code in the length of grass in a drawing or Microdots, which allow for the
representation of printed material in small dots. Variations of these steganographic techniques are still
employed in the digital age, where data may be encoded within different layers, such as text or media
files (Djebbar, Ayad, Meraim, and Hamam 2012; Li, He, Huang, and Shi 2011). Such techniques may
be used by citizens living in countries ruled by oppressive regimes in order to publish and access rightful
information by evading simple content filtering mechanisms and not having their messages targeted by
content withholding requests. This may force the censor to block the access to the Internet service itself,
as it may not be able to distinguish innocuous from steganographically-marked communication.

2.2.2 Simple Internet Destination Blocking

Destination blocking is one of the simplest strategies that can be used by a censor to prevent users
from accessing rightful information in the Internet. It consists in identifying the endpoints that serve the
content to be censored and block the access to those endpoints. In many cases, this strategy can be
implemented even by a local adversary possessing few computational resources.

Techniques Available to the Censor: Consider the case where the information sources can be iden-
tified by an IP address. In this case, a censor may choose to enforce either a blacklist or a whitelist of
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Figure 2.1: Proxy-based censorship circumvention overview.

IP addresses (Aryan, Aryan, and Halderman 2013). While being more permissive, a blacklist is easier
to manage than a whitelist, considering that in the latter each new host on the Internet would need to
require an authorization from the censor in order to become accessible within its network.

The interception of DNS Lookup requests can also be used by the censor in order to prevent the
translation of a given hostname to its IP address. The censor responds with an IP address serving a
different page, typically under its control, rather than the originally requested one (Aryan, Aryan, and
Halderman 2013).

A censor may also block connections in a more selective fashion. Providing that the content is
served over HTTP, the censor may filter connections based on the headers of HTTP requests. This kind
of attack allows for the blocking of content at a finer granularity, restricting access only to certain pages
of a given domain. To carry out this attack, the censor analyzes a page’s full URL looking for specific
keywords tied to potentially compromising information it wishes to block.

Circumvention Strategies: The described censorship techniques can be evaded by leveraging proxy-
based traffic re-routing, which is often combined with digital steganography techniques. Instead of di-
rectly establishing a connection with the host serving blocked content, a user could direct its request to a
network proxy, which would instead be accessible, enabling seemingly uncensored web-browsing. Such
a mechanism is implemented by systems such as Ultrasurf (Ultrareach Internet Corp. 2002). A simple
depiction of this censorship circumvention technique can be observed in Figure 2.1.

A different approach to traffic re-routing consists in relaying traffic to blocked destinations through
routers, rather than end hosts. To this end, Decoy routing systems (Wustrow, Wolchok, Goldberg, and
Halderman 2011; Houmansadr, Nguyen, Caesar, and Borisov 2011; Karlin, Ellard, Jackson, Jones,
Lauer, Mankins, and Strayer 2011) aim to deploy special routers within cooperating ISPs’ networks. A
client issues an HTTPS steganographically marked request to an overt destination whose path crosses
a decoy router deployed by an ISP. Decoy routers recognize such mark (which reveals a client’s true
desired destination) and act as a man-in-the-middle, diverting traffic to blocked destinations. A censor is
only able to observe the innocent looking destination in HTTPS requests.

A different approach employing steganography relies on volunteer relay servers which secretly serve
censored content. An example of such a system, named Infranet (Feamster, Balazinska, Harfst, Bal-
akrishnan, and Karger 2002), allows clients to place visible, seemingly innocuous HTTP requests with
associated additional semantics, regarding the sequence of requests performed. Infranet servers inter-
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pret such sequence, steganographically embedding the requested content into uncensored images that
are returned to the client. Infranet’s threat model explicitly considers the blocking of HTTPS connections
to be a reality.

2.2.3 Network Proxies Detection and Blocking

As already discussed in Section 2.2.2, the use of network proxies may be leveraged to evade
censorship techniques that rely on the identification of hosts serving prohibited content. However, it is
often difficult to hide the proxies from the censor and, once proxies are detected, they can be blocked in
a similar manner as the original source.

Techniques Available to the Censor: A censor may be able to block connections to / from a given
source of information, even when users re-route their traffic through network proxies. By gathering the
addresses of publicly distributed proxies, a censor is able to blacklist connections to such hosts.

A censor may also be able to detect connections to unlisted network proxies. If a client connects
to a network proxy through HTTP, the censor may be able to inspect the network packets’ contents and
flag the connection for prohibited content. Not only that, the censor may actually be able to modify a
packet’s content itself, preventing prohibited information to be delivered. The same strategies can be
used to detect an Infranet server. If the website serving the covert content does not have a legitimate
reason to change its cover content frequently, a censor may notice that the same cover content structure
appears to be different when embedding different covert data.

An attack where censors may proactively probe and detect routes containing decoy routers has
already been proposed (Schuchard, Geddes, Thompson, and Hopper 2012). Thus, censors capable of
making routing decisions could avoid to send traffic through such routes. However, the outcome of a
study about such attack suggests that a strategic placement of decoy routers would render it ineffec-
tive (Houmansadr, Wong, Inc, and Shmatikov 2014).

Providing that HTTPS is allowed and the client uses an HTTPS proxy to circumvent censorship,
a censor may employ known website fingerprinting (Herrmann, Wendolsky, and Federrath 2009) tech-
niques to look for statistical deviations of the censor’s regulated traffic, identifying ciphered connections
that are being used to circumvent content filtering. The same applies for connections between a client
and decoy routers, where the traffic fingerprint of the covertly requested website does not match the one
of the seemingly requested website.

To flag the aforementioned HTTP connections, a censor must at least be able to perform line-
speed DPI in order to analyze the properties of single packets flowing through the network. This type
of censor falls into the category of state-level oblivious adversary. Conversely, website fingerprinting
techniques require the analysis of large data sets of network traces in order to yield more accurate
results. Therefore, only a state-level omniscient adversary owns this capability.

Circumvention Strategies: A censor may still be able to detect connections to unlisted proxies through
a connection’s characteristics and content.

A new class of systems helping in circumvention aims to obfuscate connections’ traffic, transforming
it in such a way that it cannot be linked to the underlying application layer protocol. Such technique is
named traffic morphing (Wright, Coull, and Monrose 2009). An instance of this approach consists in
protocol randomization, where all the traffic from a regular connection is ciphered to make it seem
random from a network’s observer point of view.
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Protocol randomization is used in Tor (Dingledine, Mathewson, and Syverson 2004), an overlay
network which uses a proxy approach in order to support censorship circumvention. This procedure
is necessary since connections to Tor proxies can be discovered through passive attacks by observing
Tor connections’ characteristic traffic. Such attacks may require line-speed DPI (David Fifield 2014) or
the storage and posterior analysis of network flows (Panchenko, Niessen, Zinnen, and Engel 2011; Cai,
Zhang, Joshi, and Johnson 2012).

An interesting insight over protocol randomization is that the use of length-preserving encryption
does not prevent detection from traffic analysis techniques which take into account the distribution
of packets’ length and inter-arrival times. To avoid simple Tor traffic fingerprinting at line-speed, Obf-
sproxy (Kadianakis and Mathewson ) uses a stream cipher to encrypt regular Tor traffic. This system
hides the Transport Layer Security (TLS) cipher suite list, server name and TLS extensions, which could
give the connection away, by making the traffic effectively look like random bytes. However, a censor may
leverage the aforementioned traffic analysis techniques to identify Tor connections. To protect against
this kind of attack and to enhance the randomization mechanism, ScrambleSuit (Winter, Pulls, and Fuss
2013) is used in tandem with Obfsproxy, manipulating packets’ length and inter-arrival times.

2.2.4 Protocol Randomization Detection and Blocking

While protocol randomization can evade detection from simple protocol classifiers, a censor may
take a different approach, by whitelisting approved protocols and throttling the connection for unknown
or undesirable protocols.

Techniques Available to the Censor: While protocol randomization systems are able to provide fast
and efficient traffic morphing, the network traffic they generate is distinguishable as it does not resemble
any known protocol. Therefore, such systems can be defeated by a censor which only authorizes known
and approved protocols to be used across the network.

In particular, a censor may attempt to distinguish between connections performed through pro-
tocol randomization mechanisms and regular TLS connections. While Obfsproxy encrypts every flow
message, TLS uses fixed plaintext headers when establishing a connection, as part of the TLS hand-
shake (RFC 6246 - TLSHandshake ). Entropy tests on initial message headers may be able to distin-
guish regular TLS traffic from Obfsproxy encrypted traffic. Concretely, such entropy tests may indicate
a uniform byte distribution where the plaintext TLS headers should be located (Wang, Dyer, Akella, Ris-
tenpart, and Shrimpton 2015). This analysis does not require comparison and correlation with large
data sets of stored packet samples, enabling a state-level oblivious adversary to block an unknown or
undesirable protocol.

Circumvention Strategies: A different strategy for protocol obfuscation is protocol imitation, which
aims at mimicking known and popular protocols permitted by a censor, evading the possible throttling of
randomly morphed ones. The advantage lies in the unwillingness of a censor to indiscriminately block
popular and fundamental services to the region’s economical development. As such, existing systems
try to mimic widely used protocols like HTTP and several VoIP systems’ implementations.

To avoid traffic analysis of a connection’s packets distribution, StegoTorus (Weinberg, Wang, Yeg-
neswaran, Briesemeister, Cheung, Wang, and Boneh 2012) steganographically conceals chops of Tor
traffic on a cover protocol messages. The chopped traffic is split over multiple connections and can be
delivered out of order. Each connection is served by a steganography module, which may act like an
HTTP or VoIP client/server.
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SkypeMorph (Moghaddam, Li, Derakhshani, and Goldberg 2012) was designed to obfuscate con-
nections to Tor bridge nodes by mimicking the statistical properties of Skype video calls. Unlike Stego-
Torus, a SkypeMorph client initiates a connection by calling a bridge, quickly dropping the call thereafter.
However, the call is seemingly uninterrupted as the communication with the bridge continues by ex-
changing the morphed network packets carrying Tor’s traffic.

CensorSpoofer (Wang, Gong, Nguyen, Houmansadr, and Borisov 2012) leverages a similar ap-
proach to both StegoTorus and SkypeMorph, while attempting to keep its server location hidden from
the censor. A client can communicate to the CensorSpoofer server the page it wishes to visit through a
low-bandwidth channel, such as a steganographically marked email. The server fetches the requested
web page and sends it back to the client by embedding it into the network packets of a spoofed VoIP
session imitation.

A different approach at protocol imitation is to use Format-Transforming Encryption (FTE) (Dyer,
Coull, Ristenpart, and Shrimpton 2013) in order to produce ciphertexts that are able to match regular
expressions from a user’s choosing. FTE can then be used to foil regex-based DPI systems by producing
ciphertexts that match the content definition of a protocol allowed across the censor’s network.

By mimicking the traffic characteristics of different network protocols, protocol imitation obfuscation
techniques are able to defeat the early discussed traffic analysis techniques based on the network
packets’ length and inter-arrival times distributions. Moreover, since these techniques aim at mimicking
popular protocols allowed within the censor’s controlled network, protocol imitation systems are able to
evade blacklisting due to potential collateral damage.

2.2.5 Protocol Imitation Detection and Blocking

Achieving “unobservability” through protocol imitation is considered a hard challenge (Houmansadr,
Brubaker, and Shmatikov 2013). This is because a system must completely mimic the target protocol
behavior, including error conditions and implementation specific bugs or features. Additionally, protocols
may show dynamic dependencies among several established connections, adding to the complexity of
a correct imitation.

Techniques Available to the Censor: To flag or thwart a covert channel over protocol imitation only
requires the censor to spot a single discrepancy when comparing with the real protocol. Favoring the
censor, a large part of good candidates for imitation are also complex protocols with many of the afore-
mentioned dynamic dependencies. Thus, even a local adversary may be able to distinguish between
a legitimate protocol and an imitation by performing active or proactive attacks. Other imitation tech-
niques may only be detected by leveraging DPI mechanisms that are feasible to be implemented even
by low resourceful censors. Several attacks that a censor may apply to the previously described protocol
imitation systems are presented below.

A censor may pro-actively send HTTP requests targeted at StegoTorus servers’ HTTP module so
as to determine if the servers’ responses to both correct and malformed requests is consistent with the
software fingerprint of a real HTTP server. The StegoTorus server may be flagged by a censor, shall it
fail to exhibit a usual fingerprint found among real HTTP servers.

SkypeMorph lacks the correct implementation of an accompanying TCP control channel which di-
rectly reflects perturbations in the UDP stream and vice-versa. A censor may perform an active attack by
dropping UDP packets and then check that such dynamic dependence is not enforced as in a legitimate
Skype call.

12



Connections to CensorSpoofer, another protocol imitation system, can also be flagged by a censor.
In particular, the censor may identify a connection to a CensorSpoofer server by detecting inconsis-
tencies between the actual and the spoofed server. The Session Initiation Protocol (SIP) connection
between a client and a CensorSpoofer server is relayed through a registrar outside the censor borders.
As such, the censor is unable to verify the server’s true IP address. However, a censor may send a SIP
INVITE request to a dummy SIP ID on the server’s alleged IP address. While a genuine SIP client would
return a status message, the spoofed server may not have a running SIP client, therefore not responding
to the censor’s probe.

The use of FTE may be detected at line-speed by applying entropy tests on the first message of
an FTE flow, an HTTP GET request. Such tests have yield results with relatively low false-positive
rates (Wang, Dyer, Akella, Ristenpart, and Shrimpton 2015), allowing a censor to flag the connection
with a high degree of confidence.

Circumvention Strategies: Although it does not offer a definitive solution for protocol imitation, a recent
system, named Marionette (Dyer, Coull, and Shrimpton 2015), tackles some of the previous mimicking
limitations. Marionette allows for the construction of a hierarchical composition of probabilistic automata,
capable of controlling several aspects of protocol mimicry. Automata composition is used to control
fine-grained aspects of mimicry, such as dynamic dependencies over channels, statistical properties of
generated traffic and error conditions. For instance, Marionette makes it is possible to fully model an
HTTP server specification so that a server leveraging protocol imitation resists active probing attacks.

Unlike the previously described imitation systems, Marionette is fully programmable through a
domain-specific language, making it easy to adjust the obfuscation strategy, ranging from randomized
obfuscation to full protocol imitation, while avoiding the need to rewrite the whole system. However,
good candidates for imitation may be proprietary software, demanding its reverse engineering in order
to build a model for imitation. Not only this is a tedious effort, it may involve its repetition once a new
version of the software is made available.

To raise the difficulty of detection by a censor, protocol tunneling systems attempt to evade censor-
ship by tunneling blocked content through an implementation of a protocol. Such as protocol imitation
systems, these rely on the unwillingness of a censor to block popular protocols. However, systems that
work by tunneling take advantage of directly coping with the chosen implementation intrinsic character-
istics. As an example, FreeWave (Houmansadr, Riedl, Borisov, and Singer 2013) takes advantage of
VoIP channels to tunnel modulated acoustic signals which encode Internet traffic data.

2.2.6 Protocol Tunneling Detection and Blocking

Protocol tunneling systems avoid the need to faithfully mimic a popular cover protocol by effectively
using it to piggyback covert data. To prevent covert communication without hurting legitimate traffic, a
censor can try to pinpoint an abusing connection, perturbing it after some degree of certainty it is being
used to evade censorship.

Techniques Available to the Censor: Protocol tunneling systems do not explicitly change its cover
protocol behavior. However, the embedding of covert data may induce subtle changes on a cover proto-
col’s typical network traffic characteristics. In order to detect a covert channel over a popular protocol, a
censor may try to analyze such changes and look for the following mismatches between the covert and
carrier protocols (Geddes, Schuchard, and Hopper 2013):
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• Architectural mismatches may allow the identification of information flows when the cover protocol
communication architecture differs from that of the covert protocol. For instance, if protocol tun-
neling is performed through a centralized system, the server relay is consistent with a client-proxy
architecture. Decentralized architectures may turn the endpoint acting as a proxy into a hotspot,
raising suspicion from the censor.

• Content mismatches may allow for the detection of covert information flows, by observing that the
traffic patterns generated by a given protocol are different than expected when it is used to tunnel
the covert protocol data.

• Channel mismatches may pose a risk for the correct functioning of the covert protocol. A covert
protocol which needs reliable transmission may be affected by the design of its cover protocol,
which may tolerate the loss, delay or duplication of packets. For instance, the loss of selected
packets may prevent the transmission of messages which are crucial for the establishment of the
covert channel, while having little to no impact on the cover protocol functioning.

• Utilization mismatches may set off a response from a censor which possesses simple traffic anal-
ysis capabilities at its disposal. Since a protocol not directly intended to access blocked content
may be used for tunneling, the user of such system must avoid seemingly abusive uses so that
circumvention can remain undetectable (Zhou, Houmansadr, Caesar, and Borisov 2013). For in-
stance, a long web-browsing session over FreeWave may take longer than the average Skype
call time (Statistic Brain Research Institute 2015). Abnormal connection times through the cover
protocol may look suspicious and trigger further investigation from the censor.

The detection of covert channels over carrier protocols requires a passive attack to be performed.
So as to detect content or utilization mismatches, the censor must be able to keep a record of past
network traces. For instance, connections from users must be recorded in order to establish common
utilization rates, such as the average duration of VoIP calls. Traffic analysis aiming to find content
mismatches also requires a large data set of network flows to be available. A censor must first be able to
build signatures for different kinds of legitimate traffic prior to start looking for deviations on said traffic.
As it stands, a more accurate detection of a covert channel is in the hands of a state-level omniscient
adversary. However, even a local adversary may be able to thwart a covert channel while incurring
in minor performance issues for legitimate connections, shall it be able to exploit a channel mismatch
between the carrier and covert protocols.

Circumvention Strategies: To prevent a local adversary from thwarting covert protocols, protocol tun-
neling systems should be implemented in such a way they can cope with the chosen cover protocol
intricacies. These systems pose as a good approach to censorship circumvention as they may be
able to effectively evade simple or line-speed censorship mechanisms, forcing the censor to devise ad-
vanced censorship techniques based on traffic analysis. A more detailed description of such systems is
presented in the next section.

2.3 Protocol Tunneling Revisited

By avoiding to mimic complex protocol behaviors and relying on the unwillingness of a censor to
block popular protocols, protocol tunneling surges as one of the best approaches to censorship circum-
vention. Providing that a protocol tunneling implementation avoids mismatches between the covert and
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cover protocol, not even a state-level omniscient adversary may be able to infer discrepancies between
a regular execution of the legitimate protocol and one being used for evading censorship. The next
paragraphs present a survey of existing protocol tunneling systems, concluding with a brief discussion.

2.3.1 Protocol Tunneling Using Staged Network Applications

The following systems stand upon widely used protocols which use an oblivious server relay to
stage both client requests and covert data prior to delivery. They are presented in increasing order of
security guarantees.

2.3.1.1 SWEET

SWEET (Zhou, Houmansadr, Caesar, and Borisov 2013) leverages email communication to tunnel
covert traffic through email messages.

Description: SWEET operates by having the client exchange emails that include the covert traffic
with a dedicated server. When it receives an email, the SWEET server is able to extract the covert
information, process it (for instance, obtain a requested web page) and produce a reply message that
tunnels the response back to the client (for instance, the content of the requested web page). The client
may contact the SWEET server directly or, if the destination domain needs to be hidden, it can also be
accessed indirectly: emails are sent to an account of a widely used service and this account is regularly
accessed by the SWEET server (in this case, the credentials for that account need to be agreed using
some out-of-band channel).

The way to tunnel information in email messages depends on the type of email services that are
permitted by the censor. If the client can access directly trusted servers using encrypted emails, the
information is simply transferred in the body of the email message. If the client is forced to use an
outgoing email server controlled by the censor, steganography techniques must be used to encode the
covert information in what appears to be a regular email message.

Advantages: A significant advantage of SWEET is that it uses a service which is unlikely to be com-
pletely blocked by a censor, given the importance that email has obtained in the daily life of citizens and
business. SWEET is also able to provide an interactive communication scheme with a sufficiently small
latency for supporting web-browsing.

Limitations: The traffic patterns imposed by SWEET’s covert channel may be significantly different from
the traffic patterns induced by regular email. For instance, under normal use a client may only exchange
a few email messages per day, with relatively long inter-message intervals. On the other hand, while
browsing the web using SWEET, the client may deal with many (incoming and outgoing) messages in
a short interval. Thus, traffic analysis tools are likely to detect an utilization mismatch and unveil the
existence of the covert channel. A better approach would be to make use of a cover service with more
flexible traffic and utilization patterns, such as cloud storage, to tunnel covert data.

2.3.1.2 CloudTransport

CloudTransport (Brubaker, Houmansadr, and Shmatikov 2014) leverages cloud storage services to
tunnel covert traffic through storage read and write requests.
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Figure 2.2: CloudTransport overview.

Description: CloudTransport operates by having the client exchange information with a server that
serves as a bridge to the censored service via an intermediate cloud storage service, as depicted in
Figure 2.2. The client writes a request in the cloud storage. In turn, the bridge periodically polls the
cloud storage for new files; it fetches the request, serves it and writes the response back to the storage
service. Finally, the client reads the storage service to get the reply. For this scheme to work, the client
and the bridge must pre-agree on the storage service to use and on location of the files to be exchanged
on the storage namespace.

CloudTransport also aims at helping clients to find bridges and negotiate which storage account to
use for exchanging the files. For this purpose, each bridge is required to maintain a dedicated cloud
storage account that is only used to rendezvous with potential clients. In turn, a client can set up its own
cloud storage account for supporting the cover channel and then share the account credentials with the
selected bridge, making use of the rendezvous account of that bridge. Furthermore, CloudTransport’s
authors suggest that some directory service could be created for bridges to advertise their services.

Advantages: As cloud storage services become more and more popular, it may be hard for a censor
to completely block cloud storage without significant loss. Also, as the set of applications that use cloud
storage is diverse, many read/write patterns may exist in practice and this diversity may help in making
the covert channel hard to detect.

Limitations: The traffic patterns imposed by the covert channel may still be different from the traffic
patterns induced by typical applications that use cloud-storage. Although the task of monitoring traffic
aimed at a cloud-storage service is arguably harder than monitoring email traffic, a censor may still
be able to detect content mismatches and unveil the covert channel. For instance, the censor may
conduct website fingerprinting attacks in order to correlate traffic from a CloudTransport client with traffic
patterns that emerge when web-browsing blocked destinations. A way to mitigate this vulnerability is
to employ some of the traffic morphing techniques previously discussed in Section 2.2.4. However, as
stated before, such countermeasures may also be detected by a censor.

Another shortcoming of CloudTransport is that the techniques proposed to help clients to discover
and connect to bridges are prone to several attacks. First, the censor may create false bridges to divert
traffic to itself and then match the observed traffic with traffic produced by clients to identify the client of
a given request. In fact, by performing a Sybil attack (Douceur 2002) an adversary may easily dominate
the number of advertised bridges in the system, making this attack very powerful. Also, shall it act like
a client, the censor can monitor all accesses to its cloud storage account to obtain the IP addresses of
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the bridges it interacts with. This enables the censor to neutralize the bridges by staging targeted denial
of service attacks.

Further staged protocol tunneling approaches may aim at the mitigation of attacks that leverage the
analysis of traffic patterns, by exhibiting patterns common to regular utilization of the cover system.

2.3.1.3 Castle

Castle (Hahn, Nithyanand, Gill, and Johnson 2016) leverages common commands issued in Real-
Time Strategy (RTS) games to encode and tunnel covert traffic.

Description: The system employs desktop automation software to issue game commands that carry
covert data. Castle works by selecting structures or immobilized units, respectively setting rally-points
and attempting unit displacement. The system’s authors propose a combinatorial scheme where a
move/rally-point command is issued to different subsets of the available units, giving the possibility to
encode more data than if a fixed number of units was chosen.

The receiving Castle client must have a way to interpret the covert data in order to retrieve the
original data. Usually, RTS games keep a log of the issued commands in order to save or replay a
game. This allows the receiving Castle client to fetch and decode Castle’s specially crafted commands.

The authors of Castle have shown that the system’s implementation may be tuned to leverage a
particular game’s features to improve throughput. While a general implementation of Castle was able to
achieve a maximum throughput comprised between 42 and 320 Bps when deployed over three different
games, a game-specific Castle’s implementation achieved a throughput of 435 Bps.

As it stands, a Castle’s client may be used to transmit textual data such as emails or other short
messages. The authors of Castle propose a different mode of operation where a client can place a
request for a web page which would be served by parallel data transfers provided by the remaining
clients, acting like a web proxy. This is made possible because several RTS games allow multiple
players to join a session.

Advantages: Castle’s design may be adjusted to make use of a panoply of games available to the
general public, such as free games like 0 A.D., Aeons or some of the best-selling RTS games ever.
Since many of such games share elements inherent to the RTS genre, a censor gains little by banning
a specific game, since another similar one may be used as cover. Thus, the only censor’s alternative is
to blanket ban all RTS games, incurring in social discontentment.

The games which Castle relies upon typically encrypt and authenticate their network communication
channels to prevent cheating, thus preventing the ability of a censor to observe the commands issued
by the clients. Such properties also thwart active attacks relying on rogue packet injection. Moreover,
reliable data transmission channels are implemented in the application layer as the majority of RTS
games transfer game data through UDP. Therefore, the system tolerates active attacks comprising the
drop and delay of packets.

Although a censor cannot infer the commands placed by analyzing the encrypted game packets,
the traffic flow variance caused by several game factors may be analyzed by the censor. However, by
varying the number of units selected per command and limiting the rate at which game commands are
issued, the traffic flow generated by Castle is indistinguishable from the traffic flow produced by an actual
human player. Thus, Castle is resilient against passive attacks.
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Limitations: Castle’s performance is limited by two factors: i) throughput is highly dependent on the
time that the desktop automation tool takes to perform the unit selection and to select a coordinate; ii)
different games have different limits on the amount of units that can be selected at once, varying the
amount of data that is possible to encode in a given command. Such limitations may prevent a given
Castle’s implementation to sustain a sufficient throughput for bulk file transfers.

2.3.1.4 meek

meek (Fifield, Lan, Hynes, Wegmann, and Paxson 2015) leverages domain fronting, the use of
different domain names at different communication layers, to tunnel traffic over HTTPS connections to
allowed hosts while establishing a covert connection to a prohibited host.

Description: Domain fronting is applied by using different domain names at different layers of the
HTTPS request. In such requests, the destination’s domain name may be found in three locations: the
DNS query, the TLS Server Name Indication (SNI) extension and in the HTTP Host header. While a
censor may observe the domain name associated with the DNS query and SNI, it is unable to check
the value of the HTTP Host header, since it is hidden by the HTTPS request encryption. This allows
for a domain-fronted request to use an allowed domain name on the layers that a censor is able to
observe, while hiding the true desired destination in the HTTP Host header. When the frontend server
receives such a request, it routes it to the covert destination indicated in the HTTP Host header. Content
Distribution Networks (CDNs) are good candidates for deploying frontend servers. As part of their normal
operation, they already forward requests to the domain found in HTTP Host header whenever they are
unable to serve a request from their local cache.

The performance evaluation conducted over the system’s deployment on Tor shows that bulk-
download times are increased by about a factor of 3, when compared to downloads performed through
Tor without meek.

Advantages: CDNs are widely used today and it may be impossible for a censor to block its usage. By
using this strategy, a client may perform a request to a CDN’s apparently inoffensive front domain, which
will resolve to a frontend server the censor is not able to observe.

Limitations: The patterns observed on meek ’s TCP ACK traffic are distinct from regular TLS connec-
tions. This is due to the fact that meek ’s clients periodically poll the meek server, checking whether
there is data to be received. Moreover, a censor may attempt to detect irregularities in the latency ob-
served in connections to blocked destinations when compared to that expected when connecting to the
advertised front domain. While the destination IP and URL of a connection may seem legitimate, meek
does not attempt to match the traffic patterns of real CDN usage. Although the traffic flowing through
CDNs can be highly diverse, machine learning techniques applied on traffic classification can be useful
in distinguishing meek ’s implementation over Tor on particular settings, like a campus network and home
wireless networks (Wang, Dyer, Akella, Ristenpart, and Shrimpton 2015). Thus, such traffic classifiers
are able to detect content mismatches when deployed in the environments where they were trained,
rendering it an interesting approach to be deployed in localized environments.

2.3.2 Protocol Tunneling Using Multimedia Streaming Applications

The protocol tunneling systems described up to this point leverage a staged communication ap-
proach, where an oblivious server stores and forwards the communication between the client and server
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Figure 2.3: FreeWave’s data frame layout.

of a given censorship circumvention system. A different tunneling approach leveraging multimedia
streaming protocols can make use of an oblivious server to relay the communication or take advan-
tage of peer-to-peer communication between the endpoints engaging in circumvention. This approach
has been adopted in different systems which exhibit remarkable differences between their security prop-
erties and use cases. Such systems are presented on the next paragraphs, where both their advantages
and limitations are highlighted.

2.3.2.1 FreeWave

FreeWave (Houmansadr, Riedl, Borisov, and Singer 2013) leverages VoIP connections to tunnel
Internet traffic, allowing for uncensored web browsing.

Description: FreeWave’s audio data is generated by a bit-interleaved coded modulation. The system
uses a wrapper protocol to carry the modulated data. This wrapper protocol allows for the demodulator
to synchronize with the modulator and to negotiate the modulation parameters necessary to demodulate
the acoustic signal. The modulated bit stream is split in data frames. Each data frame has a preamble
block which is used for synchronization. The preamble is followed by a signal block which contains the
parameters used for the modulation of the data frame. Lastly, the data frame contains interleaved blocks
of training data and actual data, as depicted in Figure 2.3.

The experimental evaluation conducted over FreeWave’s covert data transfer rates have revealed
that the system achieves a throughput in the range of 2.0 - 2.4 KBps.

Advantages: The use of FreeWave over a Constant Bit Rate (CBR) VoIP system avoids the unveiling
of the system’s covert channel through traffic analysis techniques. The vast number of available VoIP
providers makes it hard for a censor to ban all instances of FreeWave unless it performs a potentially
undesirable blanket ban over all CBR VoIP services within its borders.

Limitations: When FreeWave is used over VBR codecs it exhibits a content mismatch which can be
detected by passive attacks launched by a censor. Despite that packet payloads are ciphered, in-depth
analysis of the packets length distribution over time is known to be able to distinguish between the
language being spoken in a conversation (Wright, Ballard, Monrose, and Masson 2007) and even to
reconstruct spoken phrases (White, Matthews, Snow, and Monrose 2011). FreeWave’s detection can
be achieved based on the observation that the generated network packets’ length distribution is nothing
similar to that of a recognizable language, expected to be found in an actual conversation (Geddes,
Schuchard, and Hopper 2013).

FreeWave is also vulnerable to active attacks that capitalize on channel mismatches. In particular,
FreeWave’s covert channel may be thwarted by preventing the synchronization of its modem compo-
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nents. As previously stated, data frames must contain a known preamble block so that the demodulator
can synchronize and interpret the data being issued by the counterpart endpoint. Providing that the
preamble is not found by the demodulator, it will not be able to decode the actual data. One can picture
several modes of operation, where both the preamble and signal blocks are included: i) uniquely at the
beginning of the connection; ii) at the beginning of scheduled data frames with a fixed data blocks num-
ber; iii) at each data frame sent whenever the modem has data to send. While the VoIP channel resists
to packet dropping, this may prevent the FreeWave’s modem from synchronizing. Indeed, the censor
may be able to block any of the three modes of operation described, shall it be able to selectively drop
the packets which carry the preamble.

2.3.2.2 Facet

Facet (Li, Schliep, and Hopper 2014) leverages video-conferencing calls to tunnel censored videos.

Description: Facet enables clients to place a request for the transmission of a censored video through
a Skype video-conferencing call. To this end, the client must tell the Facet server the URL of the
video he wishes to watch through an instant-message of the video-conferencing service or through
a steganographically-marked email. Once the Facet server receives instructions from the client, it down-
loads and converts the desired video, feeding it to audio and video emulators. Instead of using a real
microphone and camera, Skype reads input data from the emulators and places a call to the client,
which is then able to watch the chosen video.

Facet employs video morphing, a technique developed to ensure that the network packets gener-
ated by the video conferencing software do not directly reflect the characteristics of the censored video,
but approximate those of regular video calls instead. To this end, Facet embeds the censored video in
a portion of each frame, filling the remaining space with a chat video. This procedure is depicted in Fig-
ure 2.4. A user will then watch a scaled-down censored video over a background chat video. Naturally,
the more scaled-down the censored video is, the better the resilience to traffic analysis. This happens
because the background video characteristics dominate over those of the embedded censored video. To
foil a censor’s traffic classifier results, audio morphing is also required. The audio layer of the censored
videos is re-sampled to simulate the lower quality of chat audio. Another interesting insight on Facet is
that it avoids channel mismatches by tunneling videos over a video transmission channel. This provides
an active attack resistance by design, since any perturbation in the network will cause exactly the same
effect on a regular or covert video transmission.

Since a censor may block video search services, the Facet server can be used as a proxy for
obtaining video URL lists. The user may send an encrypted or steganographically marked email directed
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at the server (a similar approach to the one discussed in SWEET (Zhou, Houmansadr, Caesar, and
Borisov 2013)) to which the server will answer.

Advantages: The described approach yields good enough results to prevent a censor from easily block-
ing Facet’s sessions. A censor who tries to completely disrupt Facet from functioning may need to block
20% legitimate video-conferencing calls, shall the censored video occupy a total of 12,5% of the video-
conferencing call display area. This area may be adjusted upwards, enabling a user to watch a censored
video with better quality, while still representing possible prohibitive collateral damage to the censor.

Limitations: By design, Facet is only able to serve video content. This limits the system’s applicability
to other types of communication such as web browsing. This is because different kinds of data would
need to be properly encoded to be transmitted, and a reliability layer would need to be in place to resist
against active attacks perpetrated by a censor.

Moreover, in order to guarantee a prohibitive collateral damage for the censor, the covert video’s
scale factor must be small overall, damaging the quality perceived by the client. While video quality may
be enough for watching a film’s trailer, small scale factors may hinder the viewing experience for several
videos. For instance, tutorial-like videos often require the viewer to follow steps shown on-screen. These
would be hard, if not impossible, to perceive under high traffic analysis resistance guarantees.

2.3.2.3 CovertCast

CovertCast (McPherson, Houmansadr, and Shmatikov 2016) leverages the video layer of live-
streaming feeds to transmit the content of blocked websites via modulated images.

Description: In order to set up the system, CovertCast servers’ operators must select blocked websites
which the server will scrape, modulating the respective data into images. These images are aggregated
in order to be transmitted in a loop fashion through live video feeds. Then, CovertCast operators set
up live video channels in video-streaming websites like Youtube, using the modulated data as input for
the stream’s video layer. In this way, live feeds will repeatedly broadcast a small choice of web pages.
Internally, a CovertCast server downloads the selected page, encoding it into the RGB components
of each frame’s available pixel, up to a maximum of 6 bits per pixel. In order to make the decoding
process resilient against errors introduced by the compression applied by video encoders, the system’s
implementation employs a fixed a square of 8x8 pixels where all its pertaining pixels encode the same
color, and thus the same data. CovertCast streams 2 frames containing modulated data each second.
This transmission scheme enables CovertCast to achieve a covert data transfer rate of 21.12KBps when
streaming data over a 1280x720 high-definition video.

For using CovertCast, users must know the URL of the live video feed which is currently transmitting
the content they wish to access. The client component demodulates images served through the live
stream, extracting and saving the correspondent web content.

Since the video content is ciphered prior to transmission, CovertCast must make sure the traffic pat-
terns it generates blend among the traffic flows generated by legitimate users. The results obtained from
the system’s experimental evaluation show that a censor is unable to accurately identify CovertCast’s
covert channel. Thus, a censor wishing to block the system incurs in significant collateral damage by
erroneously classifying and blocking legitimate streams.

Advantages: Video-conferencing applications aim at enabling devices with heterogeneous computa-
tional power and bandwidth to communicate. As such, the video-compression algorithms present in
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these applications are optimized for mostly static video. In contrast, video-streaming platforms take
different approaches to multimedia data compression, enabling for the delivery of high-quality videos.
CovertCast takes advantage of this fact to mix among legitimate traffic, being able to use all of a video
frame’s area to encode data. Since a censor is unable to distinguish CovertCast transmissions from
legitimate transmissions, active attacks aimed at disrupting a video stream would have the same effect
on both kinds of streams, potentially causing severe collateral damage.

Limitations: Due to its design, CovertCast is only able to provide a satisfactory experience by im-
plementing a unidirectional multicast communication channel. This means that it is unable to offer an
interactive communication scheme and that it can exclusively be used to consume censored content.
Such a scheme implies that clients are unable to dynamically choose the content they wish to access.
This fact forces CovertCast servers’ operators to set up a multitude of live-feeds to serve different content
and distribute the associated URLs to clients.

Additionally, the kind of media platforms CovertCast depends on can be used to rapidly disseminate
potentially prohibited information. Unlike several video-conferencing applications, which have suffered
from more severe blocks during times of political unrest, video-streaming platforms have been targeted
and long-term blocked by real-world censors. This fact may encumber CovertCast’s deployment.

2.3.2.4 SkypeLine

SkypeLine (Kohls, Holz, Kolossa, and Pöpper 2016) modulates the background noise found in VoIP
connections to transmit covert data.

Description: SkypeLine introduces a new data modulation technique based on Direct-Sequence
Spread Spectrum (DSSS) based steganography to hide information in the audio layer of Skype VoIP
calls. The signal resulting from this modulation consists in an apparent noise signal. In order to attach
covert information to the carrier signal, the system generates pseudo-noise sequences from a secret
seed, shared between the caller and callee, enabling both parties to synchronize the respective demod-
ulation operation.

Due to the nature of the data modulation technique employed by SkypeLine, the system’s through-
put peaks at 64bps in the presented prototype.

Advantages: SkypeLine faces a strong threat model which assumes a censor to have the capability
to eavesdrop on the contents of an ongoing VoIP call. The background noise modulation approach
introduced by SkypeLine is robust both to attacks that leverage traffic analysis and to those taking
advantage of accessing the actual audible content of the VoIP call.

Limitations: The accuracy of the demodulation must ensure a correct recovery of the embedded covert
data. SkypeLine faces two issues with regard to this aspect. Firstly, the original call audio signal may
interfere with the modulated noise sequences, diminishing the distinguishability of the data to be de-
modulated. To enhance both signals distinguishability, SkypeLine leverages active gain control, which
adjusts the volume of the noise sequences to the different volumes of the lead audio signal. Also, since
the covert information is attached to the audio media itself, the noise reduction applied by the audio
codecs in existing VoIP applications may filter out noise sequences carrying covert data. To account for
such losses, SkypeLine employs error-correcting codes in order to achieve a greater reliability over the
recovery of the original data.

By employing an heavy focus on steganographic security, SkypeLine’s throughput is quite limited.
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Table 2.1: Protocol tunneling systems comparison.

System Active Attack
Resistance

Passive Attack
Resistance

Arbitrary Data
Transmission

Interactive
Communication

Reasonable
Throughput
(>= 320Bps)

SWEET Yes No (limited by
utilization
mismatch)

Yes No (limited by
utilization
mismatch)

Yes

CloudTransport Yes No Yes Yes Yes
Castle Yes Yes Yes Yes Yes
meek Yes Yes Yes Yes Yes

FreeWave No No (w/ VBR
codecs)

Yes Yes Yes

Facet Yes Yes No No Yes
CovertCast Yes Yes Yes No Yes
SkypeLine Yes Yes Yes Yes No

This may encumber the system’s applicability to several applications that demand higher covert data
transfer rates. However, it remains an interesting approach for providing access to low-bandwidth hungry
services such as instant messaging.

2.3.3 Discussion

The surveyed protocol tunneling-based circumvention systems are depicted in Table 2.1. This ta-
ble summarizes the security and performance properties closely addressed in this section: resistance
against active and passive attacks; capability to transfer arbitrary data frames; capability to engage in
interactive communication; and the ability to deliver a reasonable throughput (measured with respect to
the throughput obtained by the general Castle implementation, the first protocol tunneling system under
analysis which is able to offer a combination of the aforementioned properties). A more comprehen-
sive study over a broader range of security and performance properties exhibited by existing censorship
circumvention systems has been presented in the past (Elahi, M. Swanson, and Goldberg 2015).

Protocol tunneling systems that create covert channels through staged network applications present
good approaches at censorship circumvention. Although the majority of the systems surveyed do not
implement explicit mechanisms aimed at preventing detection from traffic analysis techniques, they lever-
age widely used services with flexible traffic and utilization patterns to hide covert transmissions among
legitimate traffic. For instance, meek is at the forefront of currently deployed protocol tunneling systems
by mixing its traffic among diverse CDN traffic. Due to this fact, blocking meek could represent severe
collateral damage for a censor. However, its traffic analysis resistance assumptions rest on the simple
fact that it may be hard to distinguish from legitimate CDN traffic.

Although the encoding of data in multimedia streaming protocols has been addressed in the past,
it is still relatively unexplored in the context of Internet censorship circumvention. Novel techniques are
currently being devised in order to allow the reliable transmission of arbitrary types of data, while be-
ing resilient to active and passive attacks perpetrated by a censor. FreeWave provides the possibility for
arbitrary data transmission over a loss tolerant channel. However, it is vulnerable to active attacks perpe-
trated by a censor, rendering such transmission unreliable. Furthermore, FreeWave is unable to resist
against traffic analysis when used over applications employing VBR codecs, since the network traffic
generated by its modulated data is distinguishable from that generated with real speech. Contrary to
FreeWave, Facet is not intended for interactive communication. Although the system’s approach seems
promising from a traffic analysis resistance point of view, it is limited on the transmission of video con-
tent, assuming a non-interactive communication model. In its turn, CovertCast enables for the exchange
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of other types of data over the video layer of live-streaming feeds. However, it favors scalability at the ex-
pense of interactive communication. SkypeLine assumes a stronger threat model than previous works
on multimedia streaming tunneling approaches by envisioning the collusion of the streaming service
provider with the censor. Its ability to provide interactive communication while remaining undetectable
comes at the cost of the throughput offered by its covert channel.

As it stands, existing systems that tunnel covert data through multimedia streaming protocols fail to
offer a combination of all the properties depicted in Table 2.1. In fact, although systems such as Facet
or CovertCast are resilient against passive and active attacks launched by a censor, these systems
fail to provide an interactive covert communication channel that allows for the transmission of arbitrary
data. In its turn, due to its strong threat model and data modulation technique, SkypeLine lacks suffi-
cient throughput for the usage of many traditional TCP/IP applications, such as a web client, focusing
on low-bandwidth hungry services. Considering the limitations of existing systems, the next chapter
introduces the design of DeltaShaper, a censorship-resistant communication system which aims to offer
a full combination of all of the aforementioned properties. In particular, DeltaShaper aims to significantly
extend Facet’s video morphing technique, allowing for the unobservable and interactive transmission of
arbitrary data through the video layer of existing video-conferencing systems.

Summary

This chapter introduced a survey of the main capabilities of real-world censors, as well as an
overview over several deployed censorship circumvention mechanisms. As it can be observed, China
is at the forefront of deployed Internet censorship mechanisms, while several other countries are slowly
keeping up, deploying technical measures and passing new legislation.

While rudimentary censorship circumvention techniques reveal to be effortlessly blocked by cen-
sors, recent tunneling approaches are not easily defeated, showing to be resilient even in the face of
censors which may have the infrastructure to keep large records of data and the computational power to
analyze them. Thus, such censorship circumvention approaches seem the most promising and are the
base for the further work introduced in the next chapter.
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3DeltaShaper

This chapter introduces DeltaShaper, a novel Internet censorship circumvention system which lever-
ages the video layer of video-conferencing applications to embed covert data. Section 3.1 presents the
fundamental goals that drive the system’s design and Section 3.2 describes the threat model faced by
DeltaShaper. Lastly, the design of DeltaShaper is thoroughly detailed in Section 3.3.

3.1 Design Goals

The goal of DeltaShaper is to embed a bi-directional covert channel in a regular video stream such
that the network flow resulting from its transmission cannot be identified by a censor. The design of
DeltaShaper is driven by five goals:

Unblockability: The censor must not be able to block the transmission of covert messages without
significant degradation of the Skype service for legitimate users.

Unobservability: A censor must not be able to distinguish regular call streams from streams carrying
covert data.

Video-carrier independence: The system’s data encoding scheme must be able to allow for covert
communication without depending on a specific video-conferencing application.

Reasonable network performance: The performance of the covert channel in terms of latency and
throughput must allow for traditional TCP/IP applications to work.

Portability: The system shall work without the need to change the binary image of the video-
conferencing application operating at the channel endpoints. DeltaShaper assumes that the network
packets generated by the video-conferencing application are ciphered prior to transmission. Without
loss of generality, this thesis focuses on Skype, a popular video-conferencing application.

3.2 Threat Model

The goal of the adversary is to detect and block Skype communication flows that carry covert mes-
sages. We assume an omniscient state-level adversary, which is able to observe, store, interfere with,
and analyze all the network flows between the parties that are engaged in the communication, namely
Skype connections. The censor is able to deploy proactive probing mechanisms aimed at discovering
end hosts offering DeltaShaper servers. The adversary has the power to perform deep packet inspection
but is computationally bounded, such that it cannot break the underlying cryptographic primitives used
to cipher the content of Skype-generated network packets. Therefore, the censor is unable to observe
packet contents and to reconstruct the video stream between the endpoints engaging in circumven-
tion. The adversary has no control over the software installed on end-users computers and has not the
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power to deploy rogue software with the purpose of monitoring systems on network edges. Thus, the
communication endpoints where the Skype clients are executed are assumed to run trusted software.
The adversary considers Skype traffic as allowed due to economical and social reasons. Therefore,
the censor is not willing to arbitrarily break Skype calls, avoiding severe collateral damages. However,
it may introduce controlled perturbations on the network connection in order to cause the breakdown
or disclosure of the covert channel. The censor shall only mark video-conferencing calls as disallowed
providing that there is strong evidence those are being used to convey some covert channel. Lastly, the
videoconferencing provider (i.e., the Skype service provider) will not collude with the adversary, allowing
it to inspect the video content rendered at the communication endpoints.

3.3 Design

DeltaShaper aims at establishing an unobservable covert channel over the video layer of popular
video-conferencing applications. To make the system as general as possible, the architecture allows for
the forwarding of network-layer packets between the endpoints engaging in circumvention. As a result,
the system can support any TCP/IP application that can tolerate low throughput / high latency links.

The operation of DeltaShaper depends on an upstream and a downstream pipeline, illustrated in
Figure 3.1. Traditional TCP/IP applications, such as Telnet or FTP, can be used as client / server appli-
cation. When an application sends data, the DeltaShaper Encoder component receives the payload and
encodes it in a video stream that is fed to Skype using a virtual camera interface. Skype transmits this
video to the remote Skype instance and the received stream is captured from the Skype video buffer. A
Decoder component is then responsible by extracting the payload from the video stream, transparently
delivering it to the server application. The same procedure is applied at both endpoints of a Skype call,
thus supporting a bi-directional channel between the client and the server applications.

3.3.1 Design Challenges

Although the principles behind the development of DeltaShaper are relatively simple, there are many
design challenges, described below, that will be addressed in the next sections.

1. Conflicting data encoding requirements: Intuitively, it is desirable to encode as many covert
payload bits per frame in order to achieve a high throughput. Unfortunately, this may not be possible
due to two fundamental reasons. On the one hand, the video stream is re-encoded and compressed
by Skype during the transmission, using lossy algorithms. One needs to ensure that the payload is
encoded with additional redundancy so that it can still be retrieved at the receiver, regardless of the
transformations performed by Skype. On the other hand, a careless encoding scheme will likely generate
network streams whose characteristics differ significantly from a typical Skype call, making them prone

26



to be detected by a censor. Hence, there is the need to define a video encoding decoding scheme that
is flexible enough to produce unobservable streams while offering an acceptable performance, despite
the video quality degradation induced by Skype’s video compression algorithms.

2. Characterization of unobservable streams. The traffic signature of a Skype call which carries
an embedded covert channel should be indistinguishable from a “normal” Skype call. The challenge,
however, is to define what a “normal” Skype call is. There is a need to establish objective metrics that
allow for the identification of such streams through traffic analysis and to generate covert traffic that
retains a similar signature.

3. Adaptation to network conditions. The properties of a “normal” Skype call may change depending
on the network conditions upon which a call takes place. Moreover, video-conferencing applications’
codecs are typically programmed to adjust the respective output bitstreams to the current network con-
ditions in order to offer a good visual experience. As a result, DeltaShaper must be able to adapt its
data encoding algorithm according to the current network conditions, under the penalty that a censor
leverages discrepancies in the generated traffic to compromise the unobservability of covert streams.

4. Synchronization of covert channel endpoints. A consequence of DeltaShaper’s encoder adapta-
tion to network conditions is that channel endpoints must synchronize each other so that the receiver is
able to interpret covert data according to the encoding scheme used by the sender. However, such a
mechanism must be resilient to active attacks issued by the censor in order to avoid disruptions on the
exchange of new encoding parameters.

3.3.2 Data Encoding and Decoding

This section starts by providing some basic notions on the functioning of the H.264 video codec,
which will prove to be detrimental in guiding the choice of encoding parameters for DeltaShaper. Then,
the description of DeltaShaper’s encoding scheme is presented.

3.3.2.1 How Skype Encodes Video Streams

Skype uses the H.264 video codec to enable the transmission of live video content. Advanced
video codecs like H.264 take a set of images - called frames - and explore the similarities among those
to produce a compressed representation of the data (Wiegand, Sullivan, Bjontegaard, and Luthra 2003;
Chen, Kao, and Lin 2006).

In order to achieve high rates of compression, video codecs depart from the traditional RGB color
representation of images, employing the YUV model in their image pipelines. The YUV model is a
color space defined in terms of one luminance (Y) and two chrominance (UV) components. While the
luminance component conveys the brightness of an image, chrominance represents its color information.
As the human color perception is more sensitive to luminance than chrominance, the YUV model allows
for a reduced bandwidth regarding chrominance components. This enables video transmission errors or
compression artifacts to be more efficiently masked by the human perception than using a direct RGB
color representation.

In H.264, a frame is split into macroblocks, each consisting of a small matrix of pixels. To enhance
compression, H.264 uses two types of macroblock prediction: intra prediction and motion compensated
prediction. Intra prediction leverages information of already transmitted macroblocks for a given video
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frame. It attempts to predict the current macroblock by extrapolating the neighboring pixels from adjacent
blocks, in a defined set of different directions. The difference between the predicted block and the actual
block is then coded to be transmitted. This approach is particularly useful in flat backgrounds where
spatial redundancies often exist.

H.264 provides two types of intra prediction that can be applied to the luminance component. The
first type is called INTRA 4x4. Using INTRA 4x4, the macroblock, which is of the size 16 by 16 pixels, is
divided into sixteen 4x4 subblocks. Then, a prediction for each 4x4 subblock of the luminance signal is
applied individually. This concept is illustrated in Figure 3.2. There are nine different prediction modes,
and a different one may be applied to each subblock. The second intra prediction type is called INTRA
16x16, where one out of four different prediction modes is applied to the whole macroblock. Unlike the
luminance component, the intra prediction of the chrominance components of a macroblock is always
performed on four 8x8 subblocks.

In its turn, motion compensation prediction leverages information from fully transferred reference
frames. In an attempt to better isolate motion, macroblocks can be decomposed up to a maximum of
sixteen 4x4 partitions, turning these into the minimum area used for overall predictions. Usually, for a
given area, the algorithm will be able to find a matching block with little prediction error so that the overall
size of the discovered motion vector plus a prediction error is lower than the size of a raw encoding for
that specific block.

Next, the results from the prediction stages are transformed from the spatial domain into the fre-
quency domain. Lastly, the resulting coefficients are quantized. This process causes a lossy com-
pression, reducing the precision of the integer coefficients, while maintaining perceptual quality. The
quantization parameter is often adjusted on the fly to allow for more or less compression, depending on
the available bandwidth. DeltaShaper must deal with such video compression procedures in order to
encode covert data in such a way that it does not severely interfere with Skype’s video encoder.
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Figure 3.3: Blending payload into carrier frame.

3.3.2.2 DeltaShaper’s Covert Data Encoding Scheme

Given that a video stream is a sequence of frames, that each frame is composed by a set of pixels,
and that each pixel can be defined by RGB components, one needs to find the best way to encode the
data bits in the available pixels. According to the XWD format specification that is used to store screen
dumps created by the X Window System, an RGB encoded pixel takes 24 bits, allowing the encoding
of 16,777,216 different colors. Thus, in theory, one could encode 24 bits in each pixel. Assuming a
640x480 frame (VGA resolution), it would be possible to encode, at max, 7372800 bits in a single frame.

However, there are some reasons that prevent such an encoding scheme from functioning in prac-
tice. Firstly, video processing may modify a frame’s pixels in multiple ways: change the colors of each
pixel, thus altering the information being transferred; omit differences among adjacent pixels, loosing all
information encoded in those pixels. Secondly, it is necessary to preserve unobservability. If all pixels
of a frame are used to encode data to the maximum capacity, the resulting image complexity would
be significantly different from a typical image transferred in Skype, where many pixels are similar. This
would cause the traffic signature of the resulting Skype stream to be extremely different from a that of a
“normal” Skype stream.

To deal with such conflicting trade-offs, we propose a data encoding scheme based on two basic
ideas:

1. Blend synthetic payload video into “normal” Skype video: The covert data encoding scheme
generates transmitted video frames (covert frames) from the combination of two components: carrier
frames and payload frames. Carrier frames are taken up from a pre-recorded Skype call. Payload frames
consist of synthetic video frames that encode the application data to be transmitted to the receiver.
Payload and carrier frames are then blended together into covert frames and passed over to Skype.
Figure 3.3 shows an example of how a (a) carrier frame and a (b) payload frame are blended into a (c)
covert frame. The payload frame is overlapped to top-left corner of the carrier frame. The goal of carrier
frames is to mimic a realistic Skype call by modulating the network stream observed by the censor thus
preserving unobservability.
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Name Description Example

sp payload frame area (pixel×pixel) 160× 120
sc cell size (pixel×pixel) 4× 4
bc color encoding (bits) 1
rp payload frame rate (frame/sec) 3

Table 3.1: Payload frame encoding parameters.

2. Support tunable payload frame encoding: The payload encoding scheme depends on several
parameters. Each payload frame encodes N bits of the covert message on a payload block. Each
payload block is a synthetic image that consists of a grid of cells. Each cell consists of a fix-sized area
of contiguous pixels featuring the same color. The color code is used to encode bc bits of information
of the payload block. The total amount of bits that can be encoded per frame N is then defined by the
geometry of the payload frame and given by: N = bc × nc, where nc is the number of cells per frame.
The communication throughput T is given by N × rp, where rp is the rate of payload frames sent per
unit of time. The encoding scheme is then defined by the parameters in Table 3.1: size of payload frame
in pixels (sp), size of cells in pixels (sc), color encoding in bits (bc), and payload frame rate (rp). A data
encoder is represented by the tuple S : 〈sp, sc, bc, rp〉, for example 〈160×120, 4×4, 1, 3〉. In this example,
a cell takes 4x4 pixels and the payload frame size is 160x120 pixels, totaling nc = 1200 cells. Given
that the payload data is encoded with 1 bit, yielding a binary black-white image, the payload block is
N = 1200 bits. Since the payload frame rate is 3 frames per second, the maximum communication
throughput T is 3600 bit/sec. To decode the data from payload frames, the receiver must collect covert
frames at rate rp, extract the payload area sp from the frame, average out the color of each pixel of each
cell, and streamline the bc bits of each cell. Consequently, to decode a payload block, the receiver must
know which encoding parameters were used. For this reason, the sender appends these parameters
into a fixed-format band atop the payload frame (payload header).

Together, these techniques enable DeltaShaper to handle with conflicting data encoding require-
ments by providing multiple degrees of freedom. Reducing the number of bits to represent color codes
from 24 bit makes the system more resilient to per-pixel color change introduced by video encoding
pipelines. Increasing the cell size above 1x1 helps tolerate loss of information between adjacent pixels
as a result of video compression, as more pixels will be used to encode the same data. Moreover, rather
than using every frame to encode new payload data, the scheme allows for a reduction in the payload
frame rate, which is important to mitigate the video encoding effects that can cause loss of unobserv-
ability. Thus, by properly tuning DeltaShaper encoding parameters one can control the amount of infor-
mation blended into the carrier video which will determine how close from a “normal” video-conferencing
call the resulting covert video will be. Furthermore, the different video compression procedures used
by popular video-conferencing applications are based in similar algorithms (Feller, Wuenschmann, Roll,
and Rothermel 2011). The exploration of the space of encoding selectors provides DeltaShaper a gen-
eral approach to compute valid encoding selectors without being tied to a specific video-conferencing
application’s codec implementation.

Since there is an inherent trade-off between the amount of information that can be sent through the
covert channel (throughput) and the deviation of the resulting network traffic (observability), there is the
need to find a configuration that satisfies the best from both worlds. Section 5 provides more details on
the determination of encoding parameters for Skype video-conferencing calls, specifying the conditions
in which these hold. The encoding parameters can be determined not only statically through a set of
offline experiments, but can also be negotiated on the fly between the communicating endpoints.
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3.3.3 Preserving the Skype Traffic Signature

Ideally, it would be desirable to devise an encoding procedure that could select optimal parameters
for the embedding of covert data onto a given carrier video, even before its transmission. Unfortunately,
due to the complexity of video encoding algorithms, there is no trivial manner to estimate, from some
easy to capture features of the original carrier video, how an encoded Skype stream will look like. In
fact, the H.264 encoding process is non-normative, which means that each service provider can tune
the encoding process to its like, only needing to assure that the produced bit stream adheres to a
standard. In particular, H.264 prediction modes can be configured in multiple ways, making it very hard,
if not impossible, to create an analytic model that guides the encoding of the covert channel such that
the resulting stream produced by Skype is indistinguishable from a “normal” Skype stream. Ultimately,
DeltaShaper must generate covert videos that preserve the signature of a “normal” Skype stream. To
that end, typical Skype streams must be characterized in order to devise a technique that allows the
system to generate covert streams that follow similar traffic patterns.

“Normal” Skype streams are designated regular streams. A Skype stream is regular it if results
from a legitimate video-conferencing call between Skype users carrying no covert messages. In such
cases, users normally stand in front of the camera and move sparingly as they speak. In contrast, the
resulting traffic pattern is expected to be quite different if Skype is used for streaming an action movie,
for instance. In such cases, frames will change more frequently and extensively causing Skype’s video
encoding to reflect such changes. To express this intuition that regular calls tend to follow common
pattern, while inevitably having some differences, a stream is considered to be irregular if it differs by
more than a given threshold ∆ from known regular streams, in which ∆ is obtained by a given similarity
function σ. Put more formally, considering sR to be a set of known regular streams, f a feature function
of the stream (e.g., packet length distribution), and sC an arbitrary stream (that may contain a covert
channel), sC is said to be indistinguishable from sR if:

σ(f(sC [P ]), f(sR)) ≤ ∆

Therefore, the frame encoding parameters P for sC must be chosen in such a way that the resulting
covert stream obeys this condition; to meet this goal, the following steps are taken:

1. Find an effective feature function (f ): A feature function extracts some relevant quantitative at-
tribute out of the packet traces that constitute a stream. Through experimental evaluation, the frequency
distribution of packet lengths (fl) was found to be effective at characterizing a given stream pattern
in Skype. Similar reasoning was proven to be successful at differentiating Skype streams from Tor
streams (Moghaddam, Li, Derakhshani, and Goldberg 2012). The packet length of the stream depends
on both the input video and compression applied by Skype. Therefore, blending payload frames into
the carrier frames will alter the packet length distribution. An alternative function based on the 2-gram
distribution of packet lengths has enabled to differentiate regular Skype calls from the transmission of
YouTube videos over Skype (Li, Schliep, and Hopper 2014). In the context of DeltaShaper, this function
produces similar results as fl. Alternative feature functions based on the inter-packets’ arrival time are
also considered in the system’s evaluation and are described in Section 5.6. Feature functions based
on the packets’ content were not considered since Skype-generated packets are encrypted.

2. Find an effective similarity function (σ): A similarity function aims to calculate the difference be-
tween two feature functions. Given that fl, which outputs the frequency distribution of a stream’s packet
length, was adopted, there is a need to find metrics that calculate the similarity between two probabil-
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ity distributions. Previous work has adopted the 2-sample Kolmogorov–Smirnov test (Moghaddam, Li,
Derakhshani, and Goldberg 2012; Vines and Kohno 2015). Informally, this test quantifies the maximum
vertical distance between the empirical cumulative distribution functions of two given samples.However,
the Earth Mover’s Distance (EMD) (Rubner, Tomasi, and Guibas 2000) was found to yield better classi-
fication results (as it is further shown in Section 5.6) and was selected as similarity function. Intuitively,
EMD(fl(sR), fl(sC)) represents the total amount of work that is necessary to undertake in order to trans-
form the packet length frequency distribution of a regular stream sRi into the packet length frequency
distribution of stream sC .

3. Define a set of reference streams (sR): Now that f and σ have been defined, a set of known
regular streams must be fixed to serve as reference streams around which DeltaShaper’s generated
covert streams will compare against. Such regular streams will correspond to streaming several carrier
videos that may be used by DeltaShaper in the payload blending process (as shown in Figure 3.3-a),
and can be obtained by recording the packet trace of real video-conferencing Skype calls, for example.

4. Compute the similarity threshold (∆): The similarity threshold ∆ aims to set a bound to the dif-
ferences that one can expect to find between legitimate regular Skype calls. To determine this value,
an empirical approach is undertaken. This approach consists of creating a training set of N legiti-
mate Skype call videos and record the packet length distribution of the resulting test stream si, where
0 ≤ i < N . Then, the average similarity between each test stream and every other regular stream is cal-
culated. The threshold value ∆ can then be assigned in several ways, for instance: the largest difference
verified between multiple reference streams; the average similarity between all regular streams, plus a
multiplicative factor based on the standard deviation. Furthermore, ∆ must be assigned dynamically, as
Skype’s video encoder will adapt its bit rate to the current network conditions.

5. Obtain a valid encoding selector (P ): The final step consists of determining valid sets of parameter
instances (P ) to the payload encoding scheme. A specific instance of P is called encoding selector.
To be valid, an encoding selector must produce unobservable streams. Encoding selectors that satisfy
such condition can be found by exploring the space of P generating a training stream sC [P ] and verify
that sC is indistinguishable from sR. For checking whether sC can be identified as a regular stream, its
similarity value δ can be obtained by computing the average similarity between sC and all regular test
streams in sR. More precisely:

1
N

N−1∑
i=0

EMD(fl(sC [P ]), fl(sRi)) = δ, P is valid if δ < ∆

The set of valid encoding selectors must be obtained experimentally and provided to DeltaShaper
as possible encoding selectors to be adopted. If multiple encoding selectors are valid, DeltaShaper
selects the one that delivers highest throughput, which is also determined experimentally. Section 5
presents the results of the empirical analysis conducted over DeltaShaper.

3.3.4 Adaptation to Network Conditions

As it turns out, a single reference stream set sR and respective threshold ∆ cannot be perma-
nently fixed and hard-coded in DeltaShaper. In fact, according to the experimental evaluation’s results
(described in Section 5), the Skype stream distributions that result from playing a given (carrier) video
greatly depend on the specific network conditions under which the transmission has occurred, such as
bandwidth or packet loss rate. This observation brings two consequences:
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The reference stream set and the similarity threshold must be set dynamically: In order to preserve
the properties of unobservability on a given connection, it is necessary to adopt a reference stream set
(sR) and threshold value (∆) according to the specific network conditions. Furthermore, it must be taken
into account that network conditions may change over time, either due to contingencies of the network
infrastructure or to active attacks launched by the censor. In fact, by altering the network conditions (e.g.,
throttling bandwidth or dropping packets) a censor may try to induce changes in the streams’ properties
in order to reveal suspicious discrepancies in the generated traffic.

The encoder selector must be set dynamically: In responses to changes in network conditions, it
may be necessary to change the frame encoding parameters in order to preserve a stream’s indistin-
guishability. Moreover, the new parameters must be agreed upon by both endpoints. The negotiation
of parameters between parties must also be resilient to active attacks issued by the censor aimed to
prevent the agreement and cause denial of service.

To make DeltaShaper adapt to the network conditions, the client endpoint performs the following
operations: 1) before starting data transmission, determines the closest reference stream set for the
current network conditions, 2) from that set, obtains the ideal encoding parameters, 3) starts encoding
data frames according to the determined parameters and embeds the encoding parameters directly into
each frame, 4) periodically, readjust to network conditions, by repeating this procedure starting from 1.
Next, these steps are addressed in detail:

1. Finding the reference stream set: The main cause for the change of the threshold value is a
modification of the reference streams’ packet distributions upon changes in network conditions. To ac-
commodate to those changes, before the client starts encoding payload data into carrier frames, the
client performs a calibration operation in which it transmits the carrier video alone without embedding
any payload blocks. The client transmits this video for a certain calibration time TC and in this process
collects relevant features about the stream packets. This sample will allow the client to obtain a finger-
print of the carrier video stream for those particular network conditions. The reference stream set shall
then be chosen by computing the similarity metric σ between the captured stream and the different ref-
erence sets. The client takes as reference the set that results in the lowest σ value. As these reference
sets are captured in different network conditions, it is expected that the current stream shall be closer to
the reference set captured under the same conditions.

2. Determining the encoding parameters: Based on the previously obtained reference streams set,
the ideal parameters’ selection can be performed twofold. On one hand, DeltaShaper can obtain the
ideal parameters based on a reference table, which consists in a map that tells for each reference
stream set and pre-defined cover video combination which parameters could be used for achieving
better throughput, on a given network setting. On the other hand, DeltaShaper can transmit several
covert videos produced with different encoding parameters and carrier videos, compute the similarity for
each one and choose the one which provides the largest throughput while maintaining unobservability.
Both reference streams and reference tables can be determined empirically.

3. Agreeing upon frame encoding parameters: Since the frame encoding parameters can change
dynamically negotiated, the client must be able to tell the server which parameters to adopt when decod-
ing a given payload frame. To this end, each covert frame has a small metadata block which indicates
the parameter values used in the associated payload block. The metadata block contains: a data type
indicator which states the frame’s function (calibration, dummy, payload); the total payload area used to
encode covert data; the size of each payload cell; the number of bits encoded per cell; and a parameter
used for error-correcting purposes. This makes each frame self-contained and the parameter agree-
ment resilient to denial-of-service attacks launched by the censor. The metadata block, represented
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Figure 3.5: Epochs in a bidirectional covert channel. IP packets are exchanged between client and
server applications during the data transmission phases.

in Figure 3.4, uses a conservative fixed encoding scheme so as to be resilient to decoding errors and
prevent observability anomalies.

4. Readjusting the frame encoding parameters: Since the network conditions may change during a
communication session, DeltaShaper allows for the readjustment of the encoding parameters. Essen-
tially, this is achieved by enabling the client to issue repetitions of the calibration process to determine
new parameters and then reuse such parameters to encode the ensuing data frames. Each period
comprising a calibration phase and a data transmission phase is called an epoch. Each session can
comprise multiple epochs. The time span dedicated to the calibration phase and to the data transmission
phase are defined by configuration. To support epochs, the metadata header includes a data type block
that indicates whether the frame carries dummy data, payload data or is used for calibration purposes
only. Figure 3.5 illustrates the concept of epochs; it depicts a timeline diagram that represents a two-way
communication channel established by DeltaShaper. There are two independent communication flows,
used to send IP packets in both directions: from client to server (C→S) and from server to client (S→C).

Summary

This chapter has detailed the design of DeltaShaper, a novel Internet censorship circumvention sys-
tem that leverages the video channel of existing video-conferencing applications to tunnel covert data.
The design of DeltaShaper’s encoding scheme enables for the creation of an interactive covert channel
which can be used to transmit arbitrary data between the endpoints. One of the primary concerns on the
system’s design is tied to its flexibility, allowing DeltaShaper to adapt in the occurrence of changing net-
work conditions that may or be not caused by a censor. This offers an extra degree of resilience against
traffic analysis and active attacks perpetrated by a censor. The next chapter thoroughly describes the
implementation of the system’s prototype.
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4Implementation

This chapter addresses the implementation details of DeltaShaper’s prototype. Section 4.1 presents
an overview over the implementation of DeltaShaper’s upstream / downstream pipelines. Section 4.2
details the system’s setup and operation procedures. The format of the covert channel’s messages is
specified in Section 4.3. The mechanisms that were employed to implement error recovery are described
in Section 4.4. Network layer packets’ fragmentation and reassembly mechanisms are addressed in Sec-
tion 4.5. Section 4.6 addresses the management of DeltaShaper’s covert channel. Lastly, Section 4.7
details the encoding selector algorithm leveraged by DeltaShaper to dynamically determine covert data
encoding parameters.

4.1 Implementation Overview

We have implemented a DeltaShaper prototype for Linux, as represented in Figure 4.1. The proto-
type comprises several components that implement the client and server pipelines of DeltaShaper (see
Figure 3.1). Some components were built from scratch in C++ and Python; others are based on existing
tools. To build DeltaShaper, several challenges were faced at different levels: network interfacing, video
processing, and Skype interfacing.

4.1.1 Network Interfacing

The network interfacing between DeltaShaper and the client / server application must be performed
without changes to the application. For this reason, complementary techniques are adopted on the client
and server endpoints. In particular, Linux’s network namespaces offer separate instances of network
interfaces and routing tables that operate independent of each other. A client application executing
inside a network namespace can have its traffic transparently forwarded by DeltaShaper.

The prototype takes advantage of both Linux’s network namespaces and the netfilter packet filtering
framework (Netfilter 1998) in order to build the backend of DeltaShaper’s network packets tunneling
mechanism. Netfilter allows for selected packets to be analyzed and modified by a user-space program,
which can then re-inject, drop or steal a packet from the current network stack.

Each endpoint instantiates a pair of Virtual Ethernet (VETH) interfaces which allow the communica-
tion of a network namespace with the “global” namespace where physical interfaces exist. The outgoing
IP packets of a client application running inside DeltaShaper’s network namespace are intercepted by a
kernel module which inspects the traffic flowing through the outer VETH interface (VETH0), using netfil-
ter. Therefore, the packets originating in the inner VETH interface (VETH1) are handled to a user-space
program which encodes and transmits them over Skype.

At the server side, IP packets are decoded and routed to the “localhost” interface to be delivered
transparently to the server application. This last-mile routing is performed through raw sockets, which
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Figure 4.1: Components of the DeltaShaper prototype (shaded boxes).

enables the delivery of the IP packets exactly as they were received, without modifying the information
contained in their headers.

Similarly to what is performed at the client side, the server side has a Linux network namespace with
a pair of VETH interfaces, which IPs match those of the interfaces instantiated by the client. The answer
from the server application is then directed at the local VETH interface with the same IP address as
the request-issuing VETH interface on the client side. A kernel module inspects the traffic flowing to this
VETH interface (VETH1’) by intercepting the traffic in the VETH interface that bridges the communication
to the network namespace (VETH0’). These packets are handled to a user-space program which will
encode and transmit them via Skype back to the client.

4.1.2 Video Processing

A base requirement to build DeltaShaper consists in the ability to combine the synthesized payload
frames with typical webcam videos. Snowmix (Maersk-Moller 2012), a live stream video mixer, is lever-
aged for producing the covert video frames that will be ultimately delivered to Skype. Snowmix allows for
the composition of different video feeds, enabling the overlay of the payload video on top of a dummy car-
rier video. Internally, Snowmix enables the attachment of GStreamer (GStreamer 2001) video pipelines
to input data into the different feeds. GStreamer is a pipeline-based multimedia framework which allows
for media processing through the combination of several separate processing elements.

The dummy carrier video, selected as background video as per Snowmix’s initial configuration, is fed
to Snowmix through a GStreamer pipeline. For efficient video synthesis at the client side, DeltaShaper’s
payload encoder takes each IP packet, generates the corresponding payload frame, and forwards this
frame to the payload streamer. The payload streamer is a user-level process that feeds payload frames
into a GStreamer pipeline which output is then overlayed over the background feed. When there are
no new payload frames waiting to be delivered, the payload streamer loads frames filled with pseudo-
randomly generated dummy data.

The output of both Gstreamer pipelines, as well as the global output offered by Snowmix, is set
to 30 frames-per-second. Although the payload streamer process is programmatically set to output
30 frames-per-second, the GStreamer pipeline responsible for outputting the carrier video may drop or
duplicate frames in order to match the 30 frames-per-second restriction, depending on the original video
framerate. Snowmix is configured to output a MJPEG video stream to a named pipe, where each frame
consists in an individual high-quality JPEG image.
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4.1.3 Skype Interfacing

Lastly, it is necessary to interface with Skype without modifying the Skype client software. For
this purpose, the covert video is routed to a virtual v4l2loopback (v4l2loopback 2005) camera device.
Skype’s input source is then configured to read from the virtual camera. This video routing operation is
directly supported by Snowmix when coupled with the FFMPEG (FFmpeg 2000) video encoding tool.
Here, FFMPEG will simply read the output of Snowmix from a named pipe and convert the stream’s
frames to the YUV colorspace. As described in Section 3.3.2.1, Skype’s H.264 video codec requires
that input frames are delivered in this format.

Skype4Py (skype4py 2007) is used in order to start DeltaShaper’s client and server components
according to the ongoing call status. Skype4Py is a software library which allows for the programmable
control of Skype client applications. More concretely, DeltaShaper’s client component is activated before
a call takes place, setting up all the necessary video pipelines. In its turn, the server component is
activated as soon as a call is established so that each endpoint can inspect the video content being
rendered on its virtual display.

At the receiver’s endpoint, DeltaShaper relies on a thread of the receiver process to periodically
launch the XWD tool to obtain a screenshot of the Skype call projected in the virtual display. This
thread is calibrated to ensure that the polling frequency is higher than the payload transmission rate.
This condition ensures that no covert frames are lost due to late screen captures. The same receiver
process manages a pool of worker threads which extract the payload block out of the gathered covert
frames, and routes the resulting IP packets to the Linux kernel.

4.2 System Setup and Operation

To initialize the system and establish a covert communication channel, DeltaShaper must be
launched at both channel endpoints so that it can instantiate the required components for both down-
stream and upstream pipelines. Once the channel has been established, a server application listening at
one channel endpoint can be contacted by a client application running on the counterpart endpoint. As
described before, communication takes place over standard TCP/IP sockets without the need to modify
the client-server application.

For an efficient and correct transmission of IP packets, DeltaShaper implements error recovery and
packet fragmentation mechanisms. Firstly, IP packets are encapsulated into payload blocks so that
these can be encoded into payload frames and exchanged with the receiver. Since Skype provides
ordered frame delivery, DeltaShaper system does not exhibit the increased overhead of keeping track
of the delivery of out of order covert frames and re-arrange them. However, covert frames and their
associated payload blocks may be lost due to network breakups. To keep the message protocol simple,
the IP packets transmitted in such frames are assumed to be lost, leaving it up to TCP to request the
corresponding retransmission.

Internally, DeltaShaper manages the internal state of the covert channel, assuring that the commu-
nicating parties are synchronized so that IP packets can be exchanged on overlapping data transmission
phases only. The management of the covert channel’s state, including calibration and data transmission
phases is further detailed in Section 4.6.
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4.3 Message Format

To support error correction and packet fragmentation, a simple message format protocol is specified.
Essentially, this protocol maps messages between the high-level IP layer (IP packets) and the low-level
frame layer supported by DeltaShaper (payload blocks). In designing this protocol, an additional concern
was to improve the efficiency of the channel by reducing the amount of bits allocated to metadata.

Figure 4.2 represents the format of DeltaShaper messages, highlighting three internal abstraction
layers. At the bottommost layer, it is possible to find the payload block, whose bits are directly encoded
into cells of a payload frame. The layout of the payload block consists of a body divided into segments
which are designed to support bit error recovery, resorting to Error-Correcting Codes (ECC). Each
segment contains a chunk of application data followed by redundancy bits (see Section 4.4). To support
multiple ECC schemes, the metadata block contains a header which indicates the number of a segment’s
bits reserved to redundancy data.

The intermediate abstraction layer results from extracting the payload block from error redundancy
metadata and concatenating the resulting data segments into a single byte sequence named payload
datagram. This data structure contains fragments of IP packets. There can be multiple fragments
contained in a payload datagram.

The uppermost abstraction layer specifies the data structure fragment container which represents
an individual fragment of an IP packet. Fragment containers are included in the body of payload data-
grams. The body of each fragment container contains IP packet data, whereas the header includes
four fields: a packet ID, fragment size, fragment count, and fragment number. These fields enable the
recipient party to reconstruct a sequence of received fragments into complete IP packets, as explained
below in Section 4.5.
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4.4 Error Recovery

In DeltaShaper, payload blocks are encoded into covert frames by mapping the bits of each payload
block to the pixel colors of a payload frame. The receiver can reconstruct the original payload block
by decoding the color code of each cell and chaining all decoded color codes into a bit sequence that
will constitute the reconstructed payload block. However, since the color of the received frame may
have been altered by Skype’s video compression algorithm, the recovered payload block may include bit
errors. Since discarding entire frames in the presence of errors would considerably penalize throughput,
error-correcting codes are employed.

A general payload block layout that supports configurable error-correcting codes has been defined.
The current prototype adopts the Reed-Solomon (Wicker 1994) ECC as a result of an empirical evalu-
ation. The prototype uses a commonly used code denoted as (n, k) = (255, 223), where n corresponds
to 255 bytes of data symbols, out of which k = 223 bytes consist of application data and the remaining
32 bytes encode parity bit symbols. This code can correct up to 16 symbol errors (16 different bytes) per
symbol block. By adopting the Reed-Solomon code (255, 223), the total segment size of a payload block
is limited to 255 bytes, out of which 32 bytes form the ECC (see Figure 4.2).

DeltaShaper allows for the dynamic adaptation of k, which can range from 1 to 254. This is par-
ticularly useful for encoding schemes which error threshold surpasses the error-correction capability
provided by the default (255, 223) configuration. In order to announce to the receiving endpoint which
ECC parameter should be used for the decoding of a given payload block, the payload frames’ metadata
block has a dedicated field, which represents the value of k to be used. This parameter, introduced in
Section 3.3.4, is named ECC Payload Parameter and can be observed in Figure 3.4.

4.5 Packet Fragmentation and Reassembly

Packet fragmentation and reassembly mechanisms are required in order to efficiently make use of
the covert channel implemented by DeltaShaper. This is a consequence of its encoding technique, in
which application data must be transmitted in individual frames by chunks that are bound by the payload
block size. IP packets that exceed the maximum size of a given segment of a payload block must
be broken up and transmitted along multiple segments. Conversely, multiple small IP packets can be
transmitted on a single payload frame. If the size of the current IP packet exceeds the capacity of the
available frame space, it needs to be fragmented and transmitted in multiple payload frames. To address
the aforementioned requirements, DeltaShaper implements the following algorithms:

1. Packet fragmentation: At the sender side, DeltaShaper’s payload encoder is essentially waiting
for incoming packets sent by the local client application. Instead of following their regular path through
the network stack, these packets are placed into a user-space accessible queue. The payload encoder
reads the packets from this queue, wraps them around payload containers, and forms a payload block
until its maximum capacity has been reached. The data type indicator of the header is set to indicate
that this frame carries payload application data and the fragment count is initialized to hold the total
number of fragment containers included in the body of the payload block. If a pending IP packet can fit
entirely in the available free space of the payload block’s body, the payload encoder can wrap the entire
packet around a fragment container and include it in the payload block. Otherwise, the IP packet must
be fragmented into as many pieces as necessary until all fragments are sent to the receiver endpoint.

39



START 
CALIBRATE 

WAIT 
SERVER 

DATA 
READY 

CLIENT 
START 

WAIT 
CLIENT 

START 
CALIBRATE 

DATA 
READY 

SERVER 
START 

Client
Side

2. 3.

1. 1.

5.4.6. 7.

Server
Side

Figure 4.3: State machines of DeltaShaper endpoints.

2. Packet reassembly: Upon receiving a payload frame, the receiver process starts by interpreting the
data type indicator in the metadata header to determine whether the frame carries useful data. If there is
actual data to be decoded, the process will recover the existing data fragments from the payload frame’s
body. The header of each fragment container enables for the fully recover of embedded IP packets. The
packet ID allows to determine the packet that each fragment belongs to. This identifier is taken from a
counter that is maintained by the client and incremented for every IP packet sent by the client for that
particular DeltaShaper channel. If a packet is fully enclosed in a given fragment container, the fragment
count is one and the packet size can be read from the fragment size field. If the packet is fragmented,
the fragment count is greater than one, matching the number of fragments needed to encode the packet.
In order to reassemble the entire packet, the receiver process maintains a local fragment pool and waits
until all fragments have been received in order to reorder the fragments and reassemble them. For
improved throughput, the payload encoder can add multiple IP packets into each single frame until there
is no more space left on the frame. However, in case no more IP packets exist in the queue, the frame
is sent, rather than waiting for more packets, in order to reduce packet delivery latency.

In order to simplify the message protocol, DeltaShaper does not keep track or asks for the retrans-
mission of lost frames. In the event that a given payload frame is lost, the responsibility of retransmission
of pending IP packets is delegated to TCP. The receiver has a limited amount of buffering space which
gets released on a FIFO policy: if some packet fragments have been lost, pending fragments in the
buffer will be evicted by most recent ones. This is possible since DeltaShaper provides an ordered
packet delivery. Due to the existence of packet IDs, the system is able to assess whether there are
pending packets, further discarding them.

4.6 Channel State Management

Packet transmission is only allowed to occur during the data transmission phase of a given epoch.
Communicating parties manage the internal state of the covert channel in order to implement state
transition between calibration and data transmission phases and restrict the delivery of packets to data
transmission phases. Moreover, since there can be several of such alternating phases associated with
multiple epochs, some additional effort is required to keep both parties mutually synchronized. For this
reason, client and server endpoints manage the covert channel according to the state transition diagram
shown in Figure 4.3. For signaling state transitions, the client relies on the data type indicator present
on the metadata block of outgoing covert frames.
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Essentially, DeltaShaper’s client and server coordinate each other to maintain the channel state
according to a master-slave pattern. They alternate between calibration and data transmission phases,
but the client takes an active role in triggering these transitions (master), being followed by the server
(slave). The covert channel will be closed upon the termination of the Skype call or by an explicit
termination action issued by an endpoint.

1. Calibration phases: When the system is initialized, the client starts a first epoch by entering cali-
bration phase. The client changes to STARTCALIBRATE state and sends covert frames with the data type
indicator set to “calibrating”. In this state, the content found in the body of payload frames is simply ran-
dom data. By carrying random data, calibration frames are expected to better simulate the transmission
of arbitrary binary data and stress the compression capability of the video encoding algorithm. In con-
trast, the server initializes by waiting for client calibration frames (in state WAITCLIENT) before it begins its
own calibration procedure (entering state STARTCALIBRATE). The “calibrating” data type indicator allows
the server to transit to state STARTCALIBRATE and to immediately discard incoming payload frames, as
these are issued for calibration purposes only. Eventually, the client starts receiving calibration frames
from the server. Similarly to the server, the client discards such frames, since they are not being used
to transmit any useful data. At this point, both the client and the server continue to send calibration
frames up until a predefined calibration time which allows both endpoints to collect sufficient samples for
determining the ideal payload frame parameters. Section 5.7 introduces further details on the choice of
this calibration time, which is set to 30 seconds in the current implementation.

2. Data transmission phases: Finally, when the calibration timeout expires, both the client and server
change their state to DATAREADY and start sending covert frames with the data type indicator set to
“dummy” (along with random data on the payload block). Similarly to the action performed upon the
reception of a calibration frame, both endpoints can discard the current payload frame without decoding
the dummy data. The client sets another timeout – data timeout – corresponding to the maximum
duration of the data transmission phase. Once the timeout elapses, the client side may trigger another
calibration event to start a new epoch. When the calibration phase is over, both parties can exchange
actual payload data. Whenever there is new data to send, the corresponding payload frames’ data
type indicator is set to “payload”. Unlike “calibration” and “dummy” frames, “payload” frames’ content is
extracted upon reception by the counterpart endpoint.

4.7 Encoding Selector Algorithm

Finally, the network adaptation algorithm, implemented by each party during the calibration phase, is
discussed. This algorithm is fundamental to determine the ideal parameters for payload frame encoding
which preserve unobservability under the current network conditions.

Two alternative adaptive encoding selector algorithms, each with their pros and cons, can be en-
visioned. Both alternatives involve the generation of an offline reference table, which keeps data about
regular reference streams’ sets. Since only the censor will eventually possess packet traces that cap-
ture a global signature of regular streams within its borders, DeltaShaper users may build a personalized
regular reference streams sets from their own past legitimate video-conferencing calls.

By building this reference table with packet traces obtained in different network conditions, the table
can also be used to assess the network conditions in which a DeltaShaper connection takes place. To
this end, the similarity between a carrier video and each of the different reference sets is computed.
Furthermore, as the characteristics of reference streams sets change due to network perturbations, so
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Algorithm 1 Adaptive encoding selector algorithm

1: procedure ENCODINGSELECTOR(s, sp, Tr)
2: sr, sp,∆min ← null, null,∞
3: for all r in reference streams sets Tr do
4: N ← r.nStreams

5: ∆r ← 1
N

N−1∑
i=0

EMD(fl(s), fl(r.dist(i)))

6: if ∆r < ∆min then
7: sr,∆min ← r,∆r

8:
9: ∆← sr.threshold

10: if ∆min > ∆ then
11: return null
12:
13: for all p in encoding parameters samples Sp do
14: N ← sr.nStreams

15: ∆p ← 1
N

N−1∑
i=0

EMD(fl(p), fl(sr.dist(i)))

16: if ∆p < ∆ then
17: sp ← sp + p

18:
19: if sp is empty then
20: return null
21: return sp

does the associated ∆ similarity threshold. For this reason, the reference table includes the ∆ similarity
threshold for each reference set.

The first alternative is based on an offline approximation approach where, apart from the ∆ thresh-
old, the reference table also stores possible encoding parameters for each reference stream set. The
algorithm starts by playing the carrier video, intercepting packets of the corresponding Skype stream.
For each packet, it stores relevant information about the packet in a local database, namely the packet
sizes. Then, it computes the average similarity between the stored stream and every reference stream
set present in the reference table. The reference set is chosen by checking which similarity value ob-
tained in the previous step is closest to a candidate reference stream set, providing that the similarity
value does not surpasses the ∆ threshold for that given reference set. The next step is to retrieve hard-
coded values for encoding parameters which are known to provide unobservability when coupled with
pre-established carrier videos.

In short, this adaptive encoding selector algorithm allows for a quick calibration phase, since it
just needs to transmit the carrier video once. From the moment the reference stream set is chosen,
encoding parameters are directly retrieved from the reference table and the system may issue payload
frames using such parameters. However, it also has some drawbacks. The reference table on which
this algorithm depends involves the long process of gathering traffic samples of different carrier videos,
for different network conditions, with the overhead of gathering traffic samples of covert videos with an
exploding number of encoding schemes. Another problem with this approach is that it blindly trusts the
encoding selector retrieved from the reference table without further verification.

A second alternative that departs from the blind use of possible non-ideal hard-coded parameters
actively checks the similarity of a covert video with its reference stream set. Algorithm 1 provides a
sketch of this algorithm. It starts with parameters set to null. When the channel state enters the calibra-
tion phase, the algorithm starts playing the carrier video (s) and intercepting packets of the correspond-
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ing Skype stream. For each packet, it stores relevant information about the packet in a local database,
namely the packet size. When the calibration phase ends, the similarity metric (EMD) between the ob-
tained sample and a set of reference streams (r) for different network conditions is calculated. Each
of these computations yields a ∆r value. The algorithm then chooses the reference stream set that
yielded the smallest ∆r to be the reference set (sr) for the remaining calibration operations. Shall the
algorithm be unable to identify the carrier video as a regular stream, the user is recommended to abort
the transmission (Line 11).

After transmitting the carrier video for a given period, DeltaShaper starts overlaying payload frames
with different encoding parameters (p), also intercepting packets of the corresponding Skype stream.
The next step is to compute the similarity of each sample to the previously fixed reference set, obtaining
∆p. The algorithm gathers the set of encoding parameters which yielded a ∆p smaller than the threshold
∆, for the given reference set. These (sp) correspond to several alternatives which are mostly similar
to the reference set, and that provide unobservability. If this set is empty, it means that none of the
sampled encoding schemes is considered safe and the system recommends the transmission’s abortion
(Line 20). Otherwise, the communication can be safely undertaken while preserving unobservability. As
a result, the algorithm sets the frame encoding parameters from the recommended parameters for the
selected reference set sr (Line 21). If the identified set offers more than one alternative, DeltaShaper
shall choose the one which enables for a greater throughput. When transmitting data, these parameters
will be adopted by the payload encoding scheme (see Section 3.3.2).

As a side-effect, this adaptation scheme allows for the client to choose a new input carrier video
(eventually his own recorded or live webcam videos), and quickly compute parameters that may allow
that video to be used as covert data carrier. Moreover, it may be the case that users come up with
particular videos which, due to their intrinsic characteristics, allow for the encoding of larger amounts of
covert data while maintaining unobservability.

The current implementation of DeltaShaper employs this adaptation scheme in its calibration phase.
Additionally, although the current implementation uses EMD and packet sizes to establish ∆ thresholds,
the encoder selection algorithm can be easily extended to employ different similarity functions and traffic
features. This may prove to be an advantage as the system will be able to further adapt by taking into
account novel traffic analysis techniques devised in the nearby future.

Summary

This chapter has described the implementation of the DeltaShaper prototype. The specification of
the system’s message format and network layer packets’ fragmentation and reassembly mechanisms
has been presented. Together, these allow the current implementation to tunnel TCP/IP packets be-
tween the video-conferencing call endpoints. The prototype’s implementation reveals a mechanism for
managing the covert channel’s state, allowing the system to repeatedly calibrate and adapt to network
contingencies. As part of its calibration procedure, DeltaShaper’s encoder selector algorithm offers an
extensible way to readjust the system with different similarity functions and traffic features. The next
chapter presents a comprehensive experimental evaluation of the prototype.
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5Evaluation
This chapter describes the experiments that were carried out in order to evaluate the proposed so-

lution. It starts by detailing the experimental settings used in the evaluation of the system (Section 5.1).
Then, it describes and discusses the outcomes of a series of experiments that aim to test the effec-
tiveness of EMD and ∆ threshold metrics in characterizing Skype streams (Section 5.2). Section 5.3
assesses DeltaShaper’s ability to generate unobservable covert Skype channels based on such met-
rics. Section 5.4 details the measurements of the performance of DeltaShaper channels. Later, this
chapter addresses DeltaShaper’s unobservability resilience against controlled network perturbations
(Section 5.5) and the study of alternative traffic features on the classification of Skype streams (Sec-
tion 5.6). Section 5.7 introduces a study over the calibration period with which DeltaShaper’s adaptation
mechanism may be configured. The evaluation of the end-user experience of DeltaShaper for several
use cases, comparing its use against overt communication channels, is detailed in Section 5.8. Lastly,
this chapter discusses several security considerations of the system, in light of the major categories of
attacks that a censor may conduct over DeltaShaper (Section 5.9).

5.1 Experimental Settings

The system’s experimental evaluation was performed on two 32bit Ubuntu 14.04.4 LTS virtual ma-
chines (VMs) with 8GB RAM and 4 virtual Intel Core 2 Duo T7700 2.40GHz CPUs. Each VM runs
an instance of Skype v4.3.0.37 and DeltaShaper acting, respectively, as caller and callee of video-
conferencing calls. The native netem Linux network emulation functionality was used to enforce limi-
tations over the network conditions between the VMs. More specifically, netem was configured in the
caller machine for the experiments described in Section 5.5.

In order to characterize regular video-conferencing streams, 30 videos representative of actual
videocalls have been selected. These videos are used as training set for regular streams. Such videos
generally exhibit low movement as users typically sit in front of a computer, moving sparingly as they
speak. These videos have not been edited and are free of watermarks or other visual artifacts. The
training set for irregular streams consists of 30 YouTube videos, involving more dynamic movement,
where both rapidly changing scenes and artifacts introduced by video editing software are common.
The duration of each video sample is 30 seconds. Samples are captured after 10 seconds of the initial
call establishment in the machine acting as caller. For these experiments, the calls’ audio packets carry
data representing silence.

The following experiments are based on a single traffic feature, namely the packet sizes. Packet
lengths are widely used for feature extraction in the related literature. Notwithstanding, the obtained
results are further discussed considering different traffic features, such as inter-packet timing, in Sec-
tion 5.6. The computation of the EMD cost between the packet size frequency distribution of different
streams assumes that packet lengths are discretized into equal partitions (bins) of 50 units (K = 50).
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Figure 5.1: Packet length CDF of sample streams.

Experimentally, this bin size was found to create more accurate signatures for regular / irregular streams
than bigger-sized bins, whereas smaller bins failed to accurately represent the differences between
streams. This phenomenon occurs due to the “curse of dimensionality”, where in a dimensional feature
space with many possible states, increasing amounts of data are needed to ensure that several samples
exist with each possible combination of values to accurately build a classification signature.

5.2 Characterization of Skype Streams

Firstly, it is studied whether Skype calls exhibit measurable patterns that allow the differentiation
between regular and irregular calls. This question is of utmost importance since such patterns may be
used by a censor to detect suspicious videocalls (i.e., irregular ones) and further block them. The data
in Figure 5.1 indicates that such patterns do exist. It shows the cumulative distribution function (CDF)
of packet lengths for four Skype test streams, respectively represented in a different plot: (a) the stream
of an actual videocall which is taken as reference stream; (b) a stream of a regular call from a different
user; and two irregular streams corresponding to (c) a football match and, (d) a music concert. Each plot
represents the distribution of the test stream along with the packet length distribution of the reference
stream (the black curve), exhibiting their similarity by calculating the respective EMD value. It can be
seen that the EMD increases progressively, reaching 0.113 for the most dynamic video, i.e., the music
concert stream. The main differences can be observed for 40% of packets, which correspond to the
largest packets (above 745 bytes) transmitted. This is congruent with VBR encoding procedures, where
more dynamic scenes typically lead to the generation of larger network packets due to the higher amount
of inter- and intra-frame differences. In particular, this comparison shows that these differences are more
acute in dynamic videos than in rather static videocalls. For conducting the experiment with reduced
interference, the four test streams have been transmitted in a one-way Skype video-conferencing call.
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Figure 5.2: EMD cost of multiple videocall streams.

To better understand whether these traffic patterns are stable, and therefore can be reliably used
for characterizing regular Skype streams, a study must be conducted to assess whether there are signif-
icant differences in the packet length distribution when streaming the same videocall multiple times over
Skype. Each regular video call sample in the dataset is replayed 10 times. The EMD of each resulting
stream is calculated, taking as baseline the average distribution of all 10 runs. These experiments were
performed through one-way video-conferencing calls taking place in unconstrained network conditions.
Figure 5.2 plots the most relevant statistical indicators for the resulting EMD values of each video: min,
max, mean, and percentiles 5, 25, 50, 75, and 95. On the one hand, packet length distributions of the
same video tend to be quite similar. This is attested by the fact that the largest difference observed
between 25th and 75th percentile of a single video is only 0.02. Moreover, the average EMD value tends
to be very similar among different videos, varying between 0.025 and 0.031. It is possible to conclude
that, under the same network conditions, regular Skype streams display a high degree of similarity.

The next step is to study whether a censor can differentiate regular from irregular streams by com-
puting the similarity of packet length distributions. To that end, a regular stream is used as reference
stream to calculate the EMD cost of other video streams. These video streams were generated by
running each video of the data set 10 times and calculating statistical indicators of the resulting EMD
cost. Similarly to the previous experiments, the traffic samples were obtained from one-way video-
conferencing calls, under unconstrained network conditions. Figure 5.3 (a) shows the results obtained,
plotting on the left hand side the EMD cost for regular streams, and on the right hand side the EMD cost
for irregular streams. It is possible to immediately observe a pattern in which regular streams tend to
result in a constantly low EMD cost (below 0.1), whereas irregular streams produce a significantly more
scattered pattern varying EMD cost approximately from as low as 0.025 to as high as 0.25, i.e., by an
order of magnitude.

The question is then whether it is possible to define an EMD cost ∆ threshold that can be used as
stream classifier such that a stream s is considered regular if EMD(sR, s) < ∆ or irregular otherwise (see
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Figure 5.3: EMD based on reference stream.

Section 3.3.3). For this particular experiment, ∆ can be set to any value between 0 and the maximum
observed EMD cost (0.275). To evaluate the effectiveness of this classifier, Figure 5.3 (b) shows the
probability of true positives (sensitivity) and true negatives (specificity) as ∆ varies (in the x-axis). It is
possible to see that, as ∆ increases the number of true negatives starts at 1, meaning that all irregular
streams are correctly identified by the classifier, but eventually starts decreasing at 0.025 (∆A) because
some irregular streams start being classified as regular. In contrast, the true positive rate curve begins in
0 and starts increasing when the EMD cost of some regular streams becomes lower than ∆. Eventually,
when ∆ surpasses 0.1 (∆C), the classifier is able to correctly identify all regular streams.

Based on how the ∆ threshold is set, several classification policies are possible. Suppose that a
censor wishes to apply an aggressive classification policy by blocking all streams that are truly irregular.
In this case, ∆ must be set to ∆A, which is the point where the true negative rate starts falling below
100%. The downside of this policy, however, is that a large number of regular streams would also be
blocked, more specifically 95% of regular streams (false negatives) causing a massive denial of service
of legitimate Skype users. On the other hand, if the censor aims to prevent blocking of any regular Skype
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Figure 5.4: Average EMD with respect to the regular reference streams dataset.

transmissions (i.e., a conservative classification policy), ∆ must be set to ∆C . The negative side-effect
of this policy is, however, a loss in specificity since approximately 70% of irregular streams would also be
classified as regular (false positives). An intermediate possibility that maximizes the classifier’s accuracy
is to take the cutoff point where the probability of true negatives equals the probability of true positives.
For the classifier, this point corresponds to EMD cost 0.066 (∆I ) which means that setting ∆ to this
value results in 83% accuracy in classifying a stream. Thus, it is possible to define a ∆ threshold which
allows for identification of regular streams with high probability. This is crucial as DeltaShaper explores
this property to hide within regular streams.

It is reasonable to wonder whether a single reference stream is able to provide an accurate base-
line for establishing ∆ thresholds. Even though Figure 5.2 shows that the majority of regular streams
are close to the chosen reference stream, regular streams may exhibit underlying differences among
themselves that are not captured by this simple comparison method. The assumption that the packet
length distribution can be used to effectively identify regular streams is then strengthened by a second
test. In this test, every single stream in both datasets is compared to each and every stream pertaining
to the regular streams dataset. Such comparison allows for the computation of a value which indicates,
in average, how much does a stream differ from the whole regular dataset itself. This test is currently
implemented as part of DeltaShaper’s adaptation mechanism which was already described in Section
3.3.3. To perform this experiment, one sample is randomly selected from each stream. Then, its EMD
value against every regular stream is computed. Finally, its average is plotted. The results of this exper-
iment, depicted in Figure 5.4, show that it is still possible to define accurate ∆ thresholds to distinguish
regular from irregular streams. Notably, the classifier is able to achieve 88% accuracy when setting
∆I as threshold. This outcome suggests that a censor is able to better distinguish Skype streams by
employing a more robust test which takes into account the intrinsic differences between regular streams.
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Figure 5.5: EMD cost changing area and cell size.

5.3 Unobservability of DeltaShaper Channels

As stated previously, Skype streams exhibit specific packet length patterns that allow a censor to
distinguish regular from irregular streams based on an EMD classifier. Consequently, in order to produce
covert Skype streams that can be deemed indistinguishable from a regular stream, DeltaShaper must be
set up such that the EMD cost of resulting stream remains below the ∆ threshold. Since the properties
of a resulting stream depend on the encoding parameters provided to DeltaShaper, it is fundamental to
study which range of encoding parameters can be reliably used to produce unobservable covert streams.

As listed in Table 3.1, DeltaShaper can be configured with four parameters: payload area size, cell
size, bit number, and frame rate. Since covering the entire configuration space requires covering a large
number of configurations, this work focuses on a subset of parameters that result in valid configurations,
but not necessarily optimal in terms of the maximum throughput that can be achieved. In this study, the
reference stream that was selected in the previous section, as well as the ∆ threshold values that were
found for the same reference stream, are used. For this test, several payload frames are synthesized and
combined with the carrier video that originally generated the reference stream. These “offline” samples
are then transmitted over Skype, allowing the gathering of samples from the resulting network streams.

The analysis of the combined effects of the payload area size and the cell size starts by fixing the bit
number in 1 bit/cell and the frame rate in 1 frame-per-second. Figure 5.5 shows the EMD cost for several
configurations varying the cell size between 1x1 and 8x8 pixels and the area size ranging from 160x120,
320x240, and 480x368. The area sizes were chosen to cover roughly 1/16, 1/4, and 1/2 of the frame size,
respectively, while aligning the payload size to the size of a macroblock. As described in Section 3.3.2.1,
frames are split into small matrices of pixels, named macroblocks, which are used as part of the video
compression algorithm. The plot is annotated (in dashed lines) with ∆ threshold values for the three
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Figure 5.6: EMD cost varying the bits per cell.

policies discussed in the previous section: aggressive (∆A), conservative (∆C), and intermediate (∆I ).
For example, it can be seen that, for an intermediate policy, there are five configurations that produce
unobservable streams, i.e., for area sizes 160x120 or 320x240 and cell sizes 4x4 or 8x8; and for area
size 480x368 and cell size 8x8. The payload area size 480x368 was consistently found to generate
streams identified as irregular by the DeltaShaper classifier when encoding more than 1 bit per cell.

Results show that as the cell size increases, the EMD cost tends to decrease. This is because
macroblock partitions highly affect the achievable compression: larger partitions imply that larger areas
of the frames will be colored with the same color thereby improving the efficiency of the video compres-
sion algorithm. Considering the worst case, an 8x8 cell results in splitting a macroblock into 4 different
colored partitions; a 4x4 cell results in splitting a macroblock into 16 different colored partitions. There-
fore, H.264’s run-length scheme-based coding can more efficiently compress 8x8 cells than 4x4 cells.
As for 2x2 and 1x1 cells, there is no prediction mode that can natively accommodate for such small
areas. Therefore, the corresponding pixels are expected to be transmitted in a raw form, decreasing the
compression’s effectiveness.

A study of how unobservability changes, as a function of the number of bits per cell, was conducted
for the area/cell size configurations found to be valid. Figure 5.6 shows the results, which cover the
domain of data bit numbers, i.e., between 1 and 24 bits. In general, unobservability tends to be degraded
as the number of bits increases. Some configurations, however, have a more flattened evolution of the
EMD cost. In particular, two configurations fall consistently below the ∆ threshold value for intermediate
blocking policy (∆I ), namely (160x120, 4x4) and (320x240,8x8). This means that both these encoding
configurations are good candidates to generate covert streams that are both unobservable and can
deliver a large data throughput range (due to the large data bit number). Note that since (320x240,8x8)
is proportionally larger than (160x120, 4x4), both these configurations can encode the same amount of
cells per frame.
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Figure 5.7: EMD cost varying the frame rate.

Lastly, it is conducted a study over how the frame rate affects unobservability. Figure 5.7 shows
how the EMD cost varies as the frame rate is increased. To that end, a fixed payload area size 320x240
and cell size 8x8 are defined. Then, the EMD cost for a cell bit encoding range, varying between 1 and 6
bits per cell, is measured. Although the (160x120, 4x4) configuration encodes the same amount of bits
per cell, these are mode difficult to decode due to higher error rate. The results show that increasing the
frame rate will quickly result in EMD cost above ∆. A notable exception is the the data encoding scheme
of 1 bit per cell, which remains below ∆ for all tested frame rates. Encoding schemes with higher bit
numbers can only tolerate the minimal frame rate value (1 frame-per-second).

5.4 Performance of the Covert Channel

In spite of the possibility to generate covert streams from numerous encoding configurations,
DeltaShaper can only safely adopt those that result in unobservable streams. The fact that DeltaShaper
has to satisfy this property constrains the maximum amount of data that can be encoded into the payload
frames, enforcing a limit to the maximum performance that can be delivered by a DeltaShaper channel.
Furthermore, performance can also be affected by decoding errors at the receiver when interpreting the
cell color of payload frames. In fact, as the number of bits encoded per cell increases, the video com-
pression algorithm tends to introduce more changes in the less significant bits of the color of each pixel,
therefore introducing more decoding errors. This trend can be observed in Figure 5.8, which shows the
growth of the error rate as the number of encoding bits increases for configurations (160x120, 4x4) and
(320x240, 8x8), especially for encoding schemes above 9 bits per cell.

Taking into account both restrictions in terms of stream unobservability and decoding errors, it is
possible to identify a candidate encoding configuration for DeltaShaper, which consists of: 320x240

51



1 5 9 13 17 21
Bits per Cell

0

5

10

15

20

25

30

35

40

E
rr

o
r 

P
e
rc

e
n
ta

g
e

Area: 160x120, Cell: 4x4

Area: 320x240, Cell: 8x8

Figure 5.8: Error rate increasing bits per cell.

Params With ECC Without ECC

Throughput 0.32 KBps 0.39 KBps
RTT 2s 984ms 2s 973ms

Table 5.1: Performance measurements.

area size, 8x8 cell size, 6 bits per cell, at 1 frame per second. Due to design decisions, the bit encoding
scheme is conservative (less than 9 bits per cell) because sporadic unrecoverable bit errors could result
in the loss of an entire payload frame, which would significantly affect the covert data transfer rate.
Table 5.1 lists the maximum throughput that DeltaShaper is able to achieve under this scheme: 0.32 and
0.39 KBps, respectively with and without error correction codes.

5.5 Resilience Against Active Attacks

The characterization of Skype streams performed up until this point admitted unconstrained net-
work conditions for Skype transmissions. However, a censor may introduce controlled perturbations in
the network in an attempt to increase the classification accuracy of Skype streams. By increasing its
classification accuracy, a censor may be able to establish improved ∆ thresholds that lead to the un-
veiling of DeltaShaper’s covert channel. Therefore, attacks that may give the censor an advantage in
breaking DeltaShaper’s unobservability are now studied. In particular, the following network limitations
are addressed: bandwidth throttling; loss of random packets; and the introduction of jitter between packet
delivery. For assessing the impact of such network constraints over a censor’s ability to distinguish be-
tween regular and irregular streams, the last test described in Section 5.2 is repeated for packet traces
obtained in impaired network conditions. The visual impact of network perturbations on video streams
is also measured as censors generally look for minimizing collateral damage on legitimate streams.
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Figure 5.9: Packet length CDF of a reference stream varying the connection bandwidth.

Bandwidth Classifier Accuracy

Unrestricted 88%
500Kbps 85%
300Kbps 75%

Table 5.2: Classifier accuracy when distinguishing Skype streams with varying bandwidth.

Bandwidth Throttling: The packet length distribution of Skype streams was found to be heavily de-
pendent on the available network bandwidth. Figure 5.9 shows the packet length CDF of the reference
stream (initially sampled with no network constraints) as the channel’s bandwidth is further throttled
between 150 and 500Kbps. Two main trends are evident. On the one hand, it is possible to identify
two groups of streams which display different CDF shapes: In line with Skype’s bandwidth require-
ments, one group corresponds to “Regular” video quality and comprises a bandwidth range between
128Kbps and 300Kbps; a second group includes streams between 400Kbps and 500Kbps correspond-
ing to “High Quality Video” transmission. In addition, “Regular” video quality streams exhibit notable
differences among them, especially for larger packets (700+ bytes length). These observations suggest
that DeltaShaper’s reference streams’ sets must be chosen for specific network conditions.

In order to assess whether there is a gain in classification accuracy by reducing the bandwidth avail-
able to Skype, packet traces were obtained for three different bandwidth configurations: Unrestricted;
500Kbps; 300Kbps. For simulating reduced bandwidth, packets are queued for a maximum time t at the
caller node, and dropped shall they be unable to be forwarded within t. In practice, t sets the maximum
latency expected for the video-conferencing channel. For these experiments, and to set a bound on
the maximum expected latency of a video-conferencing call for legitimate users, t is set to 1 second.
Due to this fact, throttling the bandwidth to 300Kbps resulted in a high packet loss rate, which ultimately
culminated in a high frames-per-second drop (from 30 to 5) and impairing the visual experience.

The results, depicted in Table 5.2, show that the classifier’s accuracy worsens alongside bandwidth
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Packet Loss Classifier Accuracy

5% 76%
10% 75%
20% 78%

Table 5.3: Classifier accuracy when distinguishing Skype streams with varying packet loss rate.

reductions. Recall that the classifier’s accuracy is measured in the cutoff point where true positive /
negative rates are equal (and the respective false positive / negative rates are equal as well). For unre-
stricted bandwidth measurements, the classifier reaches an 88% accuracy, while reducing bandwidth to
500Kbps and 300Kbps yields a classification accuracy of 85% and 75%, respectively. As the results in
Figure 5.9 suggest, the classification results between streams captured in unrestricted network condi-
tions and in a network with its bandwidth limited to 500Kbps are very similar. This suggests that Skype
regulates its output bit rate up to 500Kbps. In the contrary, bandwidth reduction is expected to increase
Skype’s video codec compression aggressiveness, which may hide more intricate details about a given
video stream. By throttling bandwidth to 300Kbps, false positive / negative rates reach 25%, approxi-
mately doubling the false positive / negative rates observed under unconstrained bandwidth conditions
(12%). As such, a censor employing bandwidth throttling faces an increase of false-negative rates and
may incur in collateral damage by erroneously blocking legitimate Skype calls.

Packet Loss: To study the effect of packet loss in unobservability, packet traces were obtained in three
different packet loss rates: 5%; 10%; and 20%. By visually examining ongoing streams, it is possible to
set bounds over the visual experience that legitimate Skype users would expect to get while engaged in a
video-conferencing call. Concretely, a 5% packet dropping rate is sufficient for sustaining an acceptable
viewing experience, with the absence of significant frame dropping or the manifestation of compression
artifacts. In its turn, a 10% packet dropping rate has shown to decrease the video-conferencing call’s
quality by introducing several compression artifacts on the video stream. Lastly, a 20% packet dropping
rate proved to greatly affect the stream’s quality, increasing the number of occurrences of visible com-
pression artifacts. Furthermore, such degree of perturbation also introduced noticeable freezing of the
stream’s video layer.

The collected packet traces revealed a significant increase in the number of packets sent, which in-
dicates that Skype adjusts its transmission rate to deal with adverse network conditions. The experiment
results, depicted in Table 5.3, show that the classifier’s accuracy is severely affected by packet dropping.
A reduction in the classifier’s accuracy means that a censor faces higher false negative / positive rates,
and that it may be unable to correctly classify video streams without incurring in significant collateral
damage. For this test, when analyzing the minimal degree of packet loss tested (5%), the false positive /
negative rates are doubled when compared with unimpaired network conditions (an increase from 12%
to 24%). While a censor may arguably induce network perturbations that cause the least connection
impairment to legitimate users, these are shown to impact classification accuracy in a similar way as
heavily disruptive packet dropping rates.

Packet Delay and Jitter: Video-conferencing applications are typically sensitive to network jitter, since
multimedia data must be delivered to users in a timely and sequential fashion. However, the manipu-
lation of jitter may induce changes on the network streams that carry such data. To study whether this
effect translates into an increase of classification accuracy, packet traces were obtained for three differ-
ent configurations of packet delay and jitter. More specifically, the connection’s delay was set to 20ms (an
acceptable end-to-end latency in legitimate video-conferencing calls) while jitter was adjusted in each
different experiment to 10ms, 20ms, and 50ms, respectively. The described settings resulted in a gradu-
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Network Jitter Classifier Accuracy

10ms 82%
20ms 78%
50ms 82%

Table 5.4: Classifier accuracy when distinguishing Skype streams with varying network jitter.

ally worsening visual experience. Despite the first configuration - 10ms jitter - had no perceivable impact
on the stream’s quality, the remaining configurations led to the occurrence of compression artifacts and
transiently frozen video, peaking at prohibitive frames-per-second drops on the last configuration tested.

The experiment’s results, which are depicted in Table 5.4, show that the classifier’s accuracy is
negatively affected, although moderately, by the introduction of jitter. Although the packets carrying
multimedia data may be received out-of-order, the introduction of jitter has not triggered a noticeable
compensation mechanism from Skype, as it had happened with the increase of packet dropping rates.
It can also be argued that a censor would refrain from employing other perturbations than the one which
constitutes the first experiment, since the introduction of 20ms or 50ms of jitter greatly impacts the
end-user experience for legitimate connections.

5.6 Alternative Traffic Features and Similarity Functions

While the classification of different kinds of Skype streams can be successfully achieved by using
the frequency distribution of packet lengths, it is possible that some alternative characteristics of the
network traffic can offer better classification accuracy. In the same way, it is questionable whether
similarity functions other than EMD may be used for computing the similarity between streams. In order
to answer these questions, Section 5.6.1 introduces a further study over other traffic characteristics
that may be used for classification, namely: bi-gram distribution of packet sizes, inter-packet time and
bi-gram distribution of inter-packet times. Since the content of packet payloads is ciphered, a censor
may leverage such traffic features in order to distinguish between regular / irregular streams. While
the analysis of packet inter-arrival times, packet lengths and bi-grams of packet lengths have been able
to distinguish different kinds of network traffic in related literature, this section also introduces a study
over bi-grams of inter-arrival times. Section 5.6.2 provides a comparison of EMD with the 2-sample
Kolmogorov-Smirnov test, a popular similarity function used in related literature.

5.6.1 Exploring Alternative Traffic Features

In the interest of studying the impact of different traffic features on classification accuracy, the clas-
sifier has been tested over the unperturbed traffic samples introduced in Section 5.2 and the perturbed
samples already studied in the previous section. The setup for each experiment is described below:

Bi-gram Distribution of Packet Sizes: In this test, the classifier assumes a bi-gram feature extraction
from packet sizes. This process works by taking the size of each two packets, in every contiguous
sequence of the original traffic. For instance, supposing that the traffic takes the form (150,100,700,800),
the extracted bi-grams are (150,100), (100,700), (700,800). Similarly to previous experiments, each
packet size is placed into the closest K-units bin. When compared to the analysis of the frequency
distribution of packet lengths, the construction of bi-gram models is more computationally intensive.
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Traffic Feature Packet Length (PL) Bi-Grams PL Inter-Packet Time (IPT) Bi-Grams IPT
Similarity EMD / KS EMD / KS EMD / KS EMD / KS

Unperturbed Streams
88% / 78% 85% / 72% 85% / 82% 88% / 77%

Bin size EMD / KS K = 50 / K = 50 K = 50 / K = 50 K = 5 / K = 2,5 K = 5 / K = 5
Perturbed Streams

Bandwidth
500Kbps 85% / 70% 82% / 78% 85% / 68% 88% / 68%
300Kbps 75% / 68% 75% / 58% 70% / 68% 72% / 68%

Bin size EMD / KS K = 50 / K = 50 K = 50 / K = 50 K = 5 / K = 2,5 K = 5 / K = 5

Packet Loss
5% 76% / 72% 82% / 72% 68% / 75% 78% / 70%

10% 75% / 82% 78% / 78% 72% / 73% 75% / 60%
20% 78% / 75% 68% / 72% 75% / 58% 88% / 72%

Bin size EMD / KS K = 50 / K = 50 K = 50 / K = 200 K = 2,5 / K = 1 K = 5 / K = 10

Network Jitter
10ms 82% / 78% 85% / 72% 75% / 72% 77% / 68%
20ms 78% / 85% 85% / 78% 67% / 60% 67% / 67%
50ms 82% / 78% 82% / 78% 68% / 55% 62% / 53%

Bin size EMD / KS K = 50 / K = 50 K = 50 / K = 100 K = 5 / K = 2,5 K = 10 / K = 5

Table 5.5: Classifier accuracy using different feature and similarity functions.

Inter-Packet Times: A different traffic characteristic which departs from the use of the size of packets
as feature extraction, is the arrival time between the packets of a given connection. To build this model,
the time difference between any two consecutive packets must be computed and further discretized
into K-units bins. For this case, a single bin unit represents 1 millisecond. When compared to the
analysis of the frequency distribution of packet lengths, inter-packet time analysis implies the added cost
of computing the time difference between consecutive packets.

Bi-gram Distribution of Inter-Packet Times: Similarly to the computation of bi-grams of packet lengths,
it is possible to devise yet another statistical test, which takes into account the bi-grams for a contiguous
series of inter-packet times. This test combines the overhead of constructing the bi-gram model with the
computation of inter-packet times difference. Therefore, it represents the most computation intensive
test presented in this section.

The classification results for the above feature sets are depicted in Table 5.5. The bin size which
allowed for an overall better classification accuracy for a particular network setting is represented under
the results obtained for each classifier. The experiments’ outcome shows that the classifier attains at
least 85% accuracy in distinguishing between regular and irregular Skype streams, even when using
traffic features other than the frequency distribution of packet sizes of a given Skype connection. For
unperturbed network conditions, the accuracy of the classifier based on bi-grams of inter-packet times
matches that of the simpler packet length-based classifier, attaining a classification accuracy of 88%.

When alternative traffic features were used to classify streams in constrained networks, the classifier
generally followed a decline in accuracy versus unrestricted conditions. However, classifiers based on
different traffic features are able to obtain better classification accuracy in specific network constraints
settings. For a bandwidth restriction of 500Kbps, the use of bi-grams of inter-packet times yields the
best classification accuracy among the different traffic features, peaking at 88% accuracy. For a network
with bandwidth throttled to 300Kbps, the classifiers based on the analysis of packet sizes were able to
achieve a better accuracy (75%). For packet loss restrictions and the introduction of network jitter, the
analysis of bi-grams of packet lengths results in the best overall accuracy among the remaining traffic
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features. For such restrictions, the accuracy of the classifier is comprehended between 68% - 82%
and 82% - 85%, respectively. It is also possible to observe that classifiers based on the analysis of
inter-packet times and respective bi-grams suffer a high decrease in accuracy when used in networks
with artificial jitter introduction, resulting in a classification accuracy comprehended between 67% - 75%
and 62% - 77%, respectively. Thus, these results suggest that the introduction of artificial jitter prevents
the construction of an accurate model for distinguishing between regular / irregular streams when using
inter-packet times for feature extraction.

It is possible to conclude that, although the use of the frequency distribution of packet sizes may
not be the absolute best traffic feature to inspect in every test-case scenario, it still offers a consistent
and reasonable classification accuracy while providing a sound and lightweight approach for building
classification models. The analysis of the frequency distribution of packet lengths has also shown to be
the best approach to classify streams in unperturbed network environments. Hence, the analysis of such
traffic feature may be advantageous to a censor which attempts to classify streams while refraining itself
from introducing network perturbations that can affect the visual quality of legitimate Skype streams.

5.6.2 Exploring Alternative Similarity Functions

While the EMD translates into the hard cost of transforming one probability distribution into another,
the 2-sample Kolmogorov-Smirnov (KS) measures the maximum vertical distance between the empirical
cumulative distribution functions of two given samples. Although the KS test for statistical significance
has been successfully applied for traffic classification in related literature, it was found that EMD provides
a better traffic classification accuracy in the context of this thesis. A comparison between EMD and KS
distance-based classifiers, for all previously studied traffic features, is presented in Table 5.5. In a
general way, the use of KS translates in a worse classification accuracy. Particularly, for unrestricted
network conditions, the combination of the KS similarity metric and the analysis of inter-packet times
yields 82% accuracy, 6% short of the maximum classification accuracy that can be achieved by EMD
under the same network conditions (88%).

5.7 Finding a Proper Calibration Period for DeltaShaper

The evaluation process conducted thus far has admitted the use of packet traces captured in a
30 seconds time-span. Naturally, this implies that a censor is considered to attempt the classification
of Skype streams within this time interval. In practice, a real-world censor is expected to attempt the
classification of regular / irregular streams as quickly as possible so that it may rapidly detect and block
the transmission of prohibited content. Although 30 seconds already comprises a relatively short time-
span, Section 5.2 has shown that the analysis of packet traces captured over this period is sufficient for
a censor to distinguish between regular / irregular streams with a high degree of confidence. However,
it is arguable whether a classifier applied by a censor is able to correctly distinguish between regular /
irregular streams in shorter time-spans.

In the interest of choosing adequate parameters for the transmission of covert data, DeltaShaper’s
calibration period shall be set for the time-span a censor is expected to obtain packet traces of a given
stream, deploying its own traffic analysis techniques thereafter. Naturally, this calibration period should
match the censor’s packet traces’ collection time-span that is more advantageous for distinguishing
between regular / irregular streams. To check how the classification of Skype streams is affected by
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Traffic Collection Duration 5s 10s 15s 20s 25s 30s
Classifier Accuracy 72% 82% 82% 82% 85% 88%

Table 5.6: Classifier accuracy when distinguishing Skype streams with varying traffic collection times.

Use Case With DeltaShaper Without DeltaShaper Overhead

A. Wget 1m 9s 830ms 7ms 9,975.7×
B. FTP 2m 45s 8s 528ms 19×
C. SMTP 2m 42s 37s 913ms 4.3×
D. SSH 1m 51s 493ms 6s 485ms 17.2×
E. Telnet 1m 17s 471ms 7s 670ms 10.1×
F. Netcat Chat 1s 147ms 11ms 133×
G. SSH Tunnel 3m 46s 55ms 21s 940ms 10.3×

Table 5.7: Execution time for DeltaShaper use cases.

the duration of the collected packet traces, the original 30 seconds packet traces were increasingly split
in 5 seconds intervals. Then, the classifier based in EMD and packet lengths was used to classify the
resulting partial streams.

Table 5.6 depicts the results of this study for the 6 different time-spans obtained. It is possible
to observe that the accuracy of the classifier follows the increase of the time period dedicated to the
collection of Skype streams’ packet traces. Clearly, traffic signatures obtained from captures lasting for
5 seconds translate into a weak classification accuracy (72%). However, a significant improvement of
the accuracy of the classifier is noticeable when applied over traffic captures within the range of 10 - 25
seconds (82% - 85%). Lastly, a traffic capture with the duration of 30 seconds has allowed the classifier
to hit 88% accuracy, as already detailed in previous sections. These results suggest that the increase
of the traffic collection period translates into the gathering of higher amounts of data which can then be
used to build more accurate signatures for Skype streams. For instance, the collection of packet traces
over small periods of time may fail to collect data that better characterize irregular streams, such as
scene changes or quick motion scenes in the transmitted videos.

5.8 Use Cases

Given that the data throughput that can be achieved while preserving unobservability is relatively
small, DeltaShaper is not adequate for the transmission of bulk data. Nevertheless, it can sustain the
execution of applications that are not bandwidth hungry and are latency tolerant. To confirm this hypoth-
esis, DeltaShaper has been tested with seven use cases: fetching a 4KB web page from the receiver
(Case A), downloading a 4KB file from an FTP server running on the receiver (Case B), tunneling a
small email (two small sentences) through an SMTP server running on the receiver (Case C), issuing
an SSH session to the receiver and performing the “ls” command (Case D), issuing a telnet session to
the receiver and performing the “ls” command (Case E), sending a message directed at a netcat server
running on the receiver, mimicking a text chat (Case F), tunneling an SSH session to a remote SSH
server through the receiver, and performing the “ls” command (Case G). In use cases A-F, the client
communicates only with the receiver over a DeltaShaper channel. In case G, the receiver acts as a re-
lay by tunneling traffic between the client and a remote party. Excepting case A, all other use cases are
performed interactively, where a proficient user types the commands required to establish the different
types of connections in a terminal.

Table 5.7 provides a summary of the execution time for each use case when performed with and

58



without DeltaShaper, i.e., using overt communication channels between client and receiver. As depicted,
the execution time is several orders of magnitude higher in DeltaShaper than in overt channels. For
instance, the establishment of Telnet and SSH sessions implies a added time overhead between 10× -
20×. In a similar way, the FTP session establishment and subsequent file download implied an added
time overhead of about 20×. As for sending an email through an SMTP server available on the callee
machine, about half of the experiment time was spent in the Telnet session establishment. The remaining
time was used for issuing commands through the Telnet session in order to connect to the SMTP server
and send the email message. Nevertheless, in spite of the high delay experienced by users, all tested
use cases are fully functional.

Such large overheads are expected given the low throughput and high latency that DeltaShaper is
currently able to deliver. However, although DeltaShaper is able to correctly forward IP packets between
the system’s endpoints, in some circumstances the client / server applications took some added time
to produce the expected answer. This happened even after the confirmation that a packet had been
successfully delivered to the receiver network stack. Some exploratory work regarding this issue lead
to the acknowledgment of the concept of bandwidth-delay product (BDP). The BDP consists in the
product of a data link’s capacity (in bps) and its round-trip time (in seconds), resulting in the maximum
amount of data that can travel through a network link at any given time. To operate at peak efficiency,
a sender shall send a sufficiently large quantity of data before being required to stop and wait until an
acknowledgment is received from the counterpart endpoint. If the sent data is insufficient for filling the
link, when compared with the BDP, then the link is not being used at its fullest capacity. Several TCP
optimization techniques for high bandwidth-delay product / high-latency links focus on the redefinition of
the size of internal buffers and TCP receive window sizes. To address this issue in further iterations of
DeltaShaper, specific TCP tuning may need to be performed at the network stack level.

5.9 Security Considerations

The following paragraphs discuss relevant security properties of DeltaShaper against attacks
launched by a censor, with particular emphasis on the mismatches that can be observed between covert
and cover channels introduced in Section 2.2.6:

Defense Against Active Probing: In order to thwart active probing attempts, DeltaShaper servers can
be configured to only accept calls from added contacts, ignoring calls from unknown Skype IDs. To
advertise DeltaShaper servers, volunteers may share circumvention servers’ Skype IDs and respective
access credentials (like a password) through some out-of-band channel among users within the cen-
sored region. A client can then place a contact request, including the corresponding credential, to a
DeltaShaper server. When a DeltaShaper server receives such request, it is able to validate the cre-
dential, allowing video-conferencing calls to take place. In this way, the circumvention server does not
blindly accept calls from Skype endpoints which may be controlled by the censor.

Architectural Mismatches: To use DeltaShaper, citizens living in repressive regimes need to place
a call to an entity out of the censor’s control. Such entity may be a friend or relative living outside of
the censor’s sphere of influence, although volunteers or service providers may also set up DeltaShaper
servers to aid in circumvention. In DeltaShaper, the only contact information that must be shared in the
clear is in the form of Skype IDs, preventing the censor from directly acting upon particular IP ranges.
However, to avoid having their IPs identified as Skype calls’ hotspots, volunteers can further rotate their
servers’ IPs frequently.
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Content Mismatches: Given that DeltaShaper generates covert streams indistinguishable from regular
streams, censors may not block covert streams without causing considerable disruption of the Skype
service. Nevertheless, it is possible that by replaying the same carrier video for covert channel mod-
ulation purposes, repeatable packet distribution patterns can emerge and be spotted by a censor. To
mitigate this attack, the carrier video may be rotated periodically by DeltaShaper so as to limit pattern
exposure to the censor. Further iterations of DeltaShaper may also allow for a live webcam feed to be
used as carrier video.

Channel Mismatches: The censor may manipulate the traffic so as to launch a denial of service attack
or delay the delivery of IP frames. Such could be achieved by dropping or delaying packets of active
Skype streams. However, shall this attack prevent DeltaShaper from delivering a given IP frame, the
TCP layer is trusted to actively recover from losses by retransmitting missing packets automatically. If
the censor extends its attack period, the Skype connection will experience a reduction in quality which
will also affect the Skype calls of legitimate users.

Utilization Mismatches: The censor may attempt to identify a DeltaShaper connection by detecting the
abnormal duration of video-conferencing calls. Despite the high latency offered by DeltaShaper’s covert
channel, a client is still able to execute several applications within reasonable times a regular video-
conferencing call is expected to hold. Ultimately, DeltaShaper can be configured with time thresholds
aimed at keeping the connection alive or tearing it down automatically (and warn users), preventing a
covert transmission to last for an unusual duration.

Summary

This chapter introduced the experimental evaluation of DeltaShaper, detailing the experiments con-
ducted in order to assess the unobservability of its covert channels. While DeltaShaper offers a high-
latency and low-throughput covert channel, it is sufficient for the execution of several common TCP/IP
applications. DeltaShaper has shown to be resilient against traffic analysis while exhibiting an interesting
trade-off between unobservability and achievable performance. The perturbation of network conditions
has shown to negatively impact the classification accuracy of Skype streams. Thus, apart from possibly
impacting the quality of legitimate streams, a censor has no apparent gain in perturbing the network to
establish thresholds aimed at detecting DeltaShaper connections. Regular and irregular Skype streams
have also been classified with several traffic features and similarity functions. As a result, the analysis of
the frequency distribution of packet lengths has shown to accurately classify streams, when used in tan-
dem with EMD. This chapter concludes by discussing relevant security considerations of DeltaShaper,
describing how the system is able to prevent mismatches between its cover / covert protocol and how it
is able to defend itself against active probing attempts perpetrated by a censor. The next chapter con-
cludes this document by summarizing the main findings of this thesis and introducing some directions
for future work.
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6Conclusions and Future

Work

Repressive regimes around the world have employed Internet censorship techniques so as to pre-
vent their citizens from accessing or publishing rightful information. To tackle this issue, increasingly
sophisticated censorship circumvention systems have been proposed over the last few years. Recent
efforts have focused on enabling covert channels over popular protocols that a censor may be unwilling
to block due to collateral damage. In particular, relevant interest has grown on offering covert channels
over multimedia streaming applications. For this approach to be successful the covert channel must be
unobservable, i.e, a censor must not be able to distinguish regular call streams from streams carrying
covert data. Although recent systems are able to deploy unobservable covert channels over multimedia
applications, these systems fail to provide a covert channel which allows for the interactive transmission
of arbitrary data and that yields a sufficient throughput for the use of typical TCP/IP applications.

In this thesis, we have described the design and implementation of DeltaShaper, a novel Internet
censorship circumvention system which leverages the video layer of video-conferencing systems to build
a covert channel. By synthesizing and overlaying carefully crafted data into video frames, DeltaShaper
offers a covert channel which allows for the tunneling of network layer packets, thus supporting the
forwarding of high-level application protocols. The main technical challenge addressed was to design
an encoding scheme that was able to preserve the unobservability of the covert channel while providing
acceptable throughput.

The experimental evaluation conducted over DeltaShaper shows that a careful choice of encod-
ing parameters is able to produce synthesized video streams which transmission is indistinguishable
from typical video-chat sessions. Moreover, the covert channel offered by DeltaShaper is sufficient to
withstand the execution of applications that can tolerate a high-latency and low-throughput, enabling
interactive sessions of several high-level application protocols with an added time cost between ten to
twenty times when compared to the use of overt channels.

Our current evaluation assumes an almost exclusive use of the video-conferencing software along-
side with either DeltaShaper or the video processing pipelines that enables us to perform a simple video
transmission. However, the processor workload may affect the video encoding process, leading to fur-
ther discrepancies on the generated network traffic.

An important direction for future work comprises a deeper study of traffic patterns generated by
video-conferencing applications upon which DeltaShaper may run. Firstly, it would be interesting to
generate traffic analysis models which can better capture the impact of the endpoints’ CPU activity on
network traffic. Secondly, traffic analysis can be extended in order to study a wider range of network
perturbations that may be introduced by a censor. Lastly, further analysis is necessary in order to
assess whether traffic patterns change significantly with the introduction of real chat audio transmission
alongside video.
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