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Abstract. Frameworks that support the implementation and execution
of service compositions are a fundamental component of middleware in-
frastructures that support the design of adaptive systems. This paper
discusses the requirements imposed by adaptive middleware on service
composition frameworks, and discusses how they have been addressed by
previous work. As a result, it describes the design of a novel adaptation-
friendly service composition framework that takes into consideration the
requirements at three different levels: service programming model level,
adaptation-friendly services level, and kernel mechanisms level.

1 Introduction

Today’s applications need to be designed to operate in a wide range of het-
erogeneous devices, including servers, PCs, PDAs, or mobile phones. Given this
diversity, it is fundamental to be able to design and deploy adaptive applications.
An adaptive application is able to change its behavior to better match the (func-
tional and non-functional) expectations of the user. For instance, by adjusting
the multimedia quality exchanged among different participants, according to the
available network bandwidth.

Unfortunately, building distributed applications that can monitor changes in
their execution environment, as well as in the user requirements, and react to
those changes by adapting their behavior is an inherently complex task. A task
that can be greatly simplified by the use of appropriate adaptive middleware.
A key component of a middleware platform to support the construction and
execution of adaptive applications is a software framework that facilitates the
composition of services. By allowing services to be composed in different man-
ners, and supporting the dynamic reconfiguration of service compositions, it
becomes easier to adapt the behavior of applications that are built in a modular
manner.

Network protocols have been specified for a long time in a modular way, using
the layer abstraction. Typically, a communication system is built from a vertical
composition of multiple protocols layers. Therefore, it comes as no surprise that
many software frameworks to build configurable communication services have
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been designed, implemented, and used in different contexts. Some of the most
relevant protocol composition frameworks are x-kernel [1], Cactus [2], Horus [3],
Ensemble [4], Appia [5], Eva [6], and Samoa [7]. Given the significant amount of
experience that has been gathered with these systems, they become obvious
candidates to inspire the construction of a service composition framework to
include as part of a middleware platform to support adaptive applications.

This paper looks at existing protocol composition frameworks from the point
of view of their adequacy to support the implementation of adaptive services.
Based on our experience in building a generic architecture to support adapta-
tion [8], we identify a number of requirements that need to be satisfied by any
service composition framework. We then analyze how existing protocol compo-
sition frameworks address these requirements. The contribution of this paper is
the identification of a set of features, lacked by many of the existing protocol
composition frameworks, that are key to support the dynamic reconfiguration
of service compositions. Moreover, we describe how we have addressed these re-
quirements in the implementation of an adaptation-friendly service composition
framework named RAppia.

The rest of the paper is structured as follows. Section 2 introduces protocol
composition frameworks. Section 3 identifies a set of requirements imposed by
adaptive middleware on composition frameworks, and Section 4 analyses how
these are addressed by existing frameworks. The design and implementation of
RAppia is described in Section 5. Finally, Section 6 concludes the paper.

2 Protocol Composition Frameworks

Protocol composition and execution frameworks aim at simplifying the design,
implementation, and configuration of communication protocols. One of the main
goals of such frameworks is to promote the design of communication services in a
modular way, by encouraging communication functionality fragmentation in dif-
ferent modules, that can be composed in several ways. As a result, the designer
has the opportunity to compose communication services that exactly match the
application needs. A second important goal of these frameworks is to provide
an efficient execution environment for protocol compositions, by providing run-
time services that support the exchange of data and control information among
components, time management services, buffer management services, etc.

The reader should be aware that there are similarities among composition
frameworks and general purpose operation systems. Typically, an operation sys-
tem includes a kernel, services that can be implemented partially in the kernel
and partially in user level (such as windows management), a number of user
level services (for instance, the command interpreter and system utilities), and a
programming model (processes, file system interface, synchronization primitives,
etc). In some sense, a service composition framework is a specialized operating
system (in fact, one of the first protocol composition services was even called a
“kernel” [1]). Thus, in this paper, when we refer to service composition frame-
works we analyze them taking a global perspective, considering both the kernel



functionality, the services typically provided with the framework, and the pro-
gramming model enforced by it.

Multiple protocol composition frameworks have been built [1–7]. Although
all of these frameworks aim at achieving similar goals and are based on the
same foundations, inspired by the original work of x-kernel [1], there are some
significant differences among them.

In x-kernel, Horus, Ensemble, Cactus, and Appia, communication among
protocols is performed by the exchange of events. With the exception of Cactus,
all frameworks support vertical protocol compositions, i.e., events are processed
in order by all the protocols in the stack. In Cactus, events can be processed
in parallel. In x-kernel and Horus events are delivered to all protocols (which
may process them or just forwards them in the stack). Ensemble proposed some
offline tools to extract fast-paths for most common events. Appia and Cactus
allow each protocol to subscribe only the events it is interested in processing.
On the other hand, both Samoa framework [9] and Bast [10] protocol library
follow different approaches. Samoa also relies in protocol compositions but with
a service-based design. Therefore, the framework kernel is particularly different
from the remaining frameworks. In this case, the interaction between protocols
is achieved using remote method invocations. In this approach, each module
exports a set of executers, listeners, and interceptors, each being responsible for
a different service: requests, replies, and notifications. In Bast each protocol is
an object, thus, interaction relies in method invocation, and the composition
model is not strictly vertical.

Among these frameworks, only Cactus [11], Ensemble [12], and Samoa [9]
have addressed the problem of dynamic adaptation, supporting the runtime re-
configuration of protocol compositions. However, these efforts have considered
only a limited set of protocols (for instance, group communication, in the case of
Ensemble) and specific reconfiguration strategies. As we will discuss later in the
text, none of these frameworks can claim to provide generic support for multiple
reconfiguration strategies.

3 Adaptation Requirements

Our previous work on the development of a generic architecture to support the
adaptation of service compositions [8, 13], gave us insight on the needs, chal-
lenges, and goals that adaptation brings. The highlights of adaptation are re-
lated to context monitoring, to detect changes that will trigger adaptation, and
adaptation management, that conducts and performs all the process of reconfig-
uring the composition. Our experience allowed to identify several requirements
that have to be satisfied by composition frameworks. We note that different
requirements impact different aspects of the composition framework: some re-
quire changes to the runtime support provided by the framework (also known
as the framework kernel), some can be satisfied by adding additional services
to the framework, others affect the programming model enforced by the frame-



work. These requirements are identified and described in detail in the following
sections.

3.1 Context Monitoring

The context information characterizes the execution context. Since the execution
context may change with time, this information has a dynamic nature. Thus,
given that the execution context is dynamic, a particular configuration of the
application, that was adequate in given context may become inadequate later on,
and require adaptation. Therefore, it is of utmost importance to maintain the
context under constant monitoring, such that the context information reflects
the current state of the environment.

The context information may include information from different sources,
ranging from user preferences to hardware characteristics of devices hosting the
application [14]. This information can be generated by the services themselves,
or captured from other origins, such as the operating system or the device.
The information itself can be used to infer other context properties, i.e. higher
level context information, such as system stability, based on low-level context
information such as network error rate, connectivity information, etc. Context
information capture can be performed on-demand, or continuously, in a periodic
manner [15]. Moreover, services can produce notifications that signal infrequent
occurrences, such as the failure of a component, or that some control variable
exceeded a predefined threshold. From these observations on context capture,
the following requirements can be identified:

Requirement 1: the composition framework should support a program-
ming model that makes easier for sources of context information to make
this information easily accessible (in particular when these sources are the
composable service implementations themselves).

Requirement 2: the composition framework should provide the mecha-
nisms to support the capture of context information, both continuously or
on-demand, as well as mechanism to handle notifications generated by con-
text sources.

To perform adaptation is not enough to gather context information; it is also
necessary to analyze the collected information in order to detect relevant changes.
The analysis can be directly embedded in the mechanisms used to collect the
context information or may be performed by an external component. In either
way, the following requirement can be identified:

Requirement 3: the composition framework should include, or be aug-
mented with, services that are able to analyze the context information and
report relevant changes.



3.2 Reconfiguration Actions

In this paper, we are concerned with the construction of adaptive distributed
systems whose adaptation logic can be separated form the core application logic.
In this way, it is assumed that the structure of the application is organized into
two discrete layers, with the core application logic built on the top of a compo-
sition of domain-specific and general middleware services. Adaptiveness results
from the dynamic reconfiguration of this composition of services, in reaction to
changes in the users’ preferences or in the execution context.

There are two main ways in which the application may be adapted. To start
with, the behavior of each individual service may be adapted, usually by setting
pre-defined configuration parameters [16, 17]. Furthermore, when an appropriate
composition framework is used, one may also change the services included in the
service composition and the way these services are composed [18, 19]. When we
restrict ourselves to communication services, reconfiguration of the composition
boils down to the addition, removal, or exchange of protocols. Therefore, we
identify the following requirement:

Requirement 4: the composition framework has to provide support for
dynamic reconfiguration, including mechanisms to perform parameter con-
figuration, and mechanisms to perform the addition, removal, and exchange
of services to a given composition.

When applying a reconfiguration action, the correctness of the service com-
position has to be preserved. To achieve this goal, several issues need to be ad-
dressed during the reconfiguration process. A first issue is related to the amount
of required synchronization among the nodes involved in the reconfiguration.
For instance, in some cases, each node may perform the local reconfiguration of
the service composition without explicit coordination with other nodes; in other
cases, a node may not be allowed to proceed with the local reconfiguration until
it becomes aware that all the other nodes are also ready to reconfigure. Another
issue is related to the state information that may have to be transferred from
one system configuration to the other. The third issue is related to the dynam-
ics of each individual service during reconfiguration. Namely, in some cases, a
service may be required to be placed in a quiescent state before reconfiguration
is performed. Note that different services impose different constraints on the
way issues above are handled and, for any given service, different reconfigura-
tion actions may also impose different constraints [13]. Thus, the mechanisms
enumerated should be rich enough to satisfy a wide range of constraints, such
that the reconfiguration may be performed with the minimal interference on
the execution of the services in the composition. This results in the following
requirement:

Requirement 5: the composition framework should provide, either embed-
ded in its kernel or as a set of additional services, a comprehensive set of
mechanisms to support the coordination among nodes, to transfer service
state information between services, and to enforce a quiescent state of a
service.



3.3 Selection of Adaptation Targets

We are interested in building distributed adaptive applications. Therefore, service
compositions will be executed in multiple nodes of the system. As a result, when
a reconfiguration needs to be performed, it may need to affect all nodes or just
a subset of the nodes involved in the application. Furthermore, only a subset of
the service composition may be affected by the reconfiguration.

When specifying the adaptation logic of a system, it is very hard to specify
it in a generic and reusable manner if one is required to explicitly name each
individual instance of every service that is affected by the adaptation. On the
contrary, it is much more powerful to specify the adaptation target indirectly,
for instance, using service type hierarchies or using meta-information [20] to tag
all services with their properties. The service composition framework may con-
tribute to simplify the implementation of an adaptive system if it provides the
programming abstractions and the runtime mechanisms that allow to map these
high level abstractions (such as service type hierarchies) in run-time artifacts,
for instance, using a reflective approach. Thus:

Requirement 6: the composition framework should provide mechanisms to
reason or obtain information on the system.

4 Adaptation Support in Existing Composition
Frameworks

To understand the suitability of protocol composition frameworks for adapta-
tion, it is important to analyze how each of the requirements identified in the
previous section already is, or can be satisfied, by existing protocol composition
frameworks.

4.1 Addressing the Requirements

Requirement 1: the composition framework should support a programming
model that makes easier for sources of context information, in particular when
these sources are the composable service implementations themselves, to make
this information easily accessible.

Most composition frameworks that have been developed to support protocol
composition are event-based, i.e., different services communicate by exchanging
events. Thus, the preferable method to make context information available is via
the exchange of context events. The event model simplifies the implementation
of context notifications: a service that wants to provide a notification about a
relevant change in the context information needs simply to create and trigger
a new ContextNotification event. When context information needs to be read
on demand, each service must be ready to process ContextQuery events and
respond with ContextAnswer events.



At first sight, it may seem that every protocol composition framework is
equally fitted to satisfy this requirement. However, there are a number of im-
plementation and modelling issues that have a significant impact on how this
support is provided. To start with, context information is often service specific.
Thus, the programmer will likely need to refine the base events provided by the
framework. Thus, the composition framework cannot limit the set of events ex-
changed among services to a set of fixed events defined a priori (as, for instance,
the Horus system). Furthermore, when context is read on-demand, a Contex-
tQuery event needs to be delivered to all services that can potentially answer
the query. To avoid the event to be delivered to every service of the composition
and avoid a performance overhead, the framework should allow each service to
explicitly list which events it is interested in (to our knowledge, only Cactus
and Appia support this feature). Finally, the framework should encourage pro-
grammers to proactively provide support for context gathering in the service
implementations. Thus, the events such as ContextNotification, ContextQuery,
and ContextAnswer should make part of the service implementation model. To
our knowledge, none of the existing protocol composition frameworks provides
this feature explicitly.

Requirement 2: the composition framework should provide the mechanisms
to support the capture of context information, both continuously or on-demand,
as well as mechanism to handle notifications generated by context sources.

When building distributed adaptive applications the adaptation policy typ-
ically depends on the global context, i.e., of the aggregate context information
collected from the different participants in the system. Therefore, it is not enough
to support the local gathering of information. Each node should provide support
for exporting context information to other nodes. To support on-demand read-
ing of context information, each node must accept remote invocation from other
nodes. To disseminate context information, nodes should be connected to a con-
text dissemination bus. This type of support can be added to any of the existing
composition frameworks, given that it may be implemented as a set of additional
services. Still, to our knowledge, no composition framework includes such ser-
vices in their distributions, although a fairly detailed pattern language [21] could
be used to provide the necessary support.

Requirement 3: the composition framework should include, or be augmented
with, services that are able to analyze the context information and report relevant
changes.

As soon as it is possible to gather and distribute local context information,
it becomes possible to analyze and interpret this information to extract the rel-
evant information for the adaptation. Although the analysis can be potentially
executed in a single central location, that collects all the context information
gathered from all the nodes in the system, in some cases this approach may



introduce inefficiencies in the system. For instance, consider that, for adaptation
purposes, one is concerned with the average value of a context variable measured
in a specific node in the system. The average could be computed at a central
location, based on multiple remote readings of the context variable. However,
it is possible to save signaling traffic, if the average is computed directly at the
source node of the context information. To support the later approach, it is re-
quired that the context gathering and dissemination subsystem can be built as a
composition of services itself. This is possible to achieve with any of the existing
protocol composition frameworks.

Requirement 4: the composition framework has to provide support for dy-
namic reconfiguration, including mechanisms to perform parameter configura-
tion, and mechanisms to perform the addition, removal, and exchange of services
to a given composition.

Although all existing protocol composition frameworks support offline con-
figuration of the service compositions, only a few support the modification of
the composition in runtime. From those that support dynamic reconfiguration,
some severely restrict the way a composition may be reconfigured in runtime.
For instance, Ensemble only supports the replacement of a vertical composi-
tion (a protocol stack) to another (even when both stacks have several layers
in common), avoiding the problems caused by having part of the composition
operational while the rest is being changed. From this point of view, Cactus is
the most flexible of all existing composition framework, as it allows for services
to be added and removed in runtime without restrictions.

The reconfiguration process can be also simplified if the addition, removal,
and exchange of services to a given composition can be controlled from a remote
node (for instance, a reconfiguration manager). This means that the composition
framework should include a monitor able to interpret reconfiguration commands
that may be activated, for instance, via remote invocations. To our knowledge,
none of the existing frameworks supports such interpreter.

Requirement 5: the composition framework should provide, either embedded
in its kernel or as a set of additional services, a comprehensive set of mechanisms
to support the coordination among nodes, to transfer service state information
between services, and to enforce a quiescent state of a service.

Several protocol composition frameworks, such as Ensemble, Cactus, or Samoa,
have implemented concrete instances of the mechanisms enumerated above. How-
ever, these mechanisms are usually designed with the goal of implementing a
small number of predefined reconfiguration strategies, i.e, a particular sequence
of operations such as coordination, enforce quiescent state, state transfer, etc.
For instance, Ensemble implements a reconfiguration strategy that requires the
composition of each node to reach a quiescent state; the state is then captured;
a new composition is instantiated and the state loaded into the configuration at



every node; finally, the new composition is restarted. Cactus and Samoa offer
more efficient strategies but, in practice, the mechanisms supported only serve
the predefined, built-in, strategies, and are only applicable in a limited number
of situations. To our knowledge, no composition framework as attempted to offer
a library of mechanisms required to support the coordination among nodes, to
transfer service state information between services, and to enforce a quiescent
state of a service that can be combined in different manners to implement mul-
tiple strategies.

Requirement 6: the composition framework should provide mechanisms to
reason or obtain information on the system.

Some existing protocol composition frameworks offer these mechanisms. These
mechanisms can be based on reflection techniques, provided by the meta-level
architectures offered by the language in which they are implemented. Although
well developed reflective mechanisms are used in different contexts [22, 23], some
even involving protocol compositions [24], their use is rudimentary in protocol
composition frameworks, due to complex issues, s.a. protocol composition consis-
tency and dependencies, or event flow. Ensemble, Cactus, and Appia frameworks
allow to identify the protocols based on their names. Samoa framework supports
the separation between the notion of protocol specification and protocol imple-
mentation but this is not enough when adaptation is not limited to the exchange
of protocol implementations of the same protocol specification (the single adap-
tation action that is currently supported in Samoa).

4.2 Discussion

When discussing how the requirements are addressed by existing protocol compo-
sition frameworks, we have also identified that each requirement can be satisfied
at a different level of abstraction. Some requirements may require specific sup-
port from the protocol composition framework runtime (for instance, the ability
to change the composition in runtime). Other requirements can be satisfied by
a number of complementary services that can be implemented on top of an ex-
isting composition frameworks. Finally, other requirements are better satisfied
by enforcing a particular service programming model. We have observed that,
although most of these requirements have been previously addressed by differ-
ent frameworks, none of the existing composition framework satisfies completely
the full set of requirements. Moreover, some of these requirements identified in
the context of protocol composition frameworks also apply to component-based
frameworks. However, these requirements have to be address in a different man-
ner.

5 An adaptation-friendly Composition Framework

As a result of the previous analysis, we have implemented a service composition
framework, named RAppia, that fulfills the set of requirements we have iden-



tified. This service composition framework has been built as an extension to
one of the protocol composition framework surveyed: the Appia [5]. In the next
paragraphs we describe the design and implementation of RAppia.

5.1 RAppia Basics

RAppia is a service composition framework implemented in the Java program-
ming language. It inherits the composition model from the Appia protocol com-
position framework, that is common to many other similar frameworks (such
as x-kernel, Horus, and Ensemble). In RAppia services can be composed in a
layered manner, creating stacks of services. Typically, services at the bottom
of a service composition offer more basic functionality (such as reliable multi-
cast communication) and services at the top of the service composition support
higher level abstractions (such as distributed shared object, publish-subscribe,
etc).

An instance of a service composition is named a service channel. Each layer
of a service channel is an instance of the corresponding service in the service
composition. Thus, a service channel consists of a stack of service instances. Each
instance maintains the state required to provide the desired service. Note that
an application may create multiple service channels with the same composition
(for instance, to maintain multiple shared objects).

Service instances interact through the exchange of events. Events in RAp-
pia are object-oriented data structures. The Event class has two fundamental
attributes: channel, and direction. The first is a reference to the service channel
where the event will flow, and the second indicates in which direction the event
is flowing along the service stack. Note that a session just forwards an event
up or down in a channel, without having explicit knowledge of the concrete ser-
vice that is executed above and below in the stack. This allows the stack to be
reconfigured without changing the code of each service implementation.

When building distributed applications, many services are distributed. Fur-
thermore, many services require the exchange of messages among different nodes.
The information that needs to be sent over the wire is included in a special field
of the events used for inter-service communication called a Message.

In RAppia, two or more service channels that share a given service may opt
to share the same instance of that service. A shared service implementation may
correlate events exchanged in different service channels with the help of locally
maintained state.

Grounded on these basic mechanisms, the adaptation support is built consid-
ering three different aspects: the service programming model, adaptation-friendly
services, and kernel mechanisms. These aspects are described next.

5.2 Service Programming Model

The adaptation requirements have been taken into consideration in the program-
ming model used to implement services for RAppia. This has been reflected into



three separate aspects: the set of events that need to be taken into considera-
tion by each service implementation (which address requirements 1 and 5 ), how
service properties are exposed (which addresses requirement 6 ), and how ser-
vice implementation may exchange control information in a distributed setting
(which is related to requirement 5 ).

Event Processing In RAppia a service is implemented as a set of event han-
dlers. In runtime, when events are delivered to a service, the appropriate handler
is called. Typically, a handler does some processing and forwards the event to
the next service in the composition. The framework does not restrict the type
hierarchy of events that can be triggered and exchanged in the system. Still
RAppia defines a number of “system” events that should be handled by any
service implementation. These include events to provide easy access to context
information produced by the protocols (see requirement 1 ), events to handle
state transfer and to place the service in a quiescent state (see requirement 5 ).
More precisely, the following events are defined by RAppia:

– ContextQuery, ContextAnswer, and ContextNotification events. The first
event is used to query a service for specific context information (such as
the available bandwidth of a node at the present time), the second to reply
to the query event(the reply with the bandwidth reading), and the later to
allow a service to provide an asynchronous notification of context informa-
tion (for instance, a drop in the bandwidth to zero). It is interesting to notice
that although many composition frameworks define a number of mandatory
events (for instance, an Init event used to initialize a service), to the best of
our knowledge, no previous framework has been concerned with this sort of
functionality, even if this is extremely relevant as these are basic services of
any manageable object (from a systems’ management perspective).

– SetParameter event. This event is used to update configuration parameters
in runtime such as, for instance, timeout values.

– MakeQuiescent and Resume events. The first event is used to request a
service to reach a quiescent state (as we have noted, often reconfiguration
can only be performed if the service is in a quiescent state). This event is
propagated in the channel in the Down direction. When the event reaches
the bottom of the channel, its direction is reversed and when it reaches the
top of the channel, the entire channel is in a quiescent state (as depicted in
part of Figure 1). The second event, Resume, is used to resume the service
after reconfiguration.

– GetState and SetState events. These events allow to transfer the service state
from one instance to another, whenever the reconfiguration requires instances
to be swapped (for instance, to install a software update). As illustrated in
Figure 1, GetState event is propagated in the channel in the Down direction.
When the event is received, each session adds a state object to the event,
which includes all the state information to be transfered. The SetState event
is propagated in the channel in the Up direction, after reconfiguration. Each



session reads the corresponding state object and initializes its state variables
accordingly.

Service A Service A

Service B

Service C

Service X 

Service C

Following configurationPrevious configuration

GetState
Event

1

2

3 4

MakeQuiescent
Event

SetState
Event

Fig. 1. Replacing service B by X: reaching quiescence and state transfer.

Type Hierarchies The definition of adaptation targets meta-information, namely
for individual services and service channels, can be achieved through type hier-
archies. The meta-information from services is defined based on the properties of
the services such as: group communication, ordering, reliable, etc. Each service is
tagged with the properties that it offers, from a well known set. The association
of meta-information with service channels cannot be based in the same principle
since channels with the same composition can be used for different purposes.
Therefore, the meta-information is based on the type of task they perform, for
example: control, audio, text, video, etc.

The association of meta-information with services and service channels allows
to define type hierarchies, based on the tag hierarchy. Therefore it will exist a
hierarchy of service types and another of service channel types. These hierarchies
are domain dependent, in the sense that applications with different domains may
require different hierarchies. Further details on service type specification and
hierarchies can be found in [25].

Message Headers Most composition frameworks support a message abstrac-
tion that can be used by service implementations to exchange data with remote
peers. In a service channel, each service may add/remove its own data to/from
the message. The information added/removed by each service layer is typically
called the service header.

There are two main approaches to manage service headers that have been
implemented in existing protocol composition frameworks. One approach models
the message as a stack of headers, exporting a push/pull interface to add/remove



headers. This is the approach most widely adopted. Unfortunately, this solution
is not very adaptation-friendly as it requires a strong coordination during re-
configuration (for instance, a header cannot be pushed unless the corresponding
service is active in the remote node to perform the matching pull). Another ap-
proach, adopted in the Cactus [2] framework, consists in modelling the message
as a pool of headers. This approach is more flexible, given that the header can
be add/removed in different orders. RAppia adopted this approach.

Each header in the pool is identified by a textual label. The methods available
to handle headers are “addHeader(label,header)”, “getHeader(label)”, “remove-
Header(label)”, and “hasHeader(label)”. The method “addHeader(label,header)”
adds a header associated with the given label; “getHeader(label)” reads the
contents of the header associated with the given label; “removeHeader(label)”
removes from the pool the header associated with the given label, and “has-
Header(label)” checks if the message contains the header with the given label.
The management of the label namespace is orthogonal to the RAppia operation.
However, RAppia requires each protocol to declare the labels of the headers
it produces and requires, which mimics the Appia conventions to received and
produced events. Therefore, the runtime can detect clashes in the header label
namespace.

5.3 Adaptation-Friendly Services

RAppia includes two adaptation-friendly services: a generic and configurable
context sensor (that addresses requirement 2 ) and a reconfiguration monitor
(that addresses requirements 4 and 5 ). These services are described in the next
paragraphs. Note that these services could also be adapted to be integrated in
other composition frameworks, for instance, to Cactus.

Context Sensor The context sensor is a service that is able to locally handle the
capture of context information from running service compositions (as described
in requirement 2 ). The context sensor is depicted in Figure 2, and works as
follows.

The context sensor belongs to multiple service channels: a remote invocation
channel, a context notification dissemination channel, and one or multiple sensed
service channels, whose purpose is described below.

– The remote invocation channel is used to allow remote nodes to query con-
text information on the sensed service channels. The context sensor receives
context queries from this channel and forwards it to all sensed service com-
positions. Subsequently, it collects the correspondent context answers and
sends back a reply on the sensor invocation channel.

– The context notification dissemination channel is used to disseminate to one
or more remote nodes context notifications generated by any of the sensed
compositions. The generic sensor simply intercepts any notification gener-
ated by one of the sensed compositions and forwards it to the notification



dissemination channel. The sensor is oblivious to the composition of the
notification dissemination channel. By selecting an appropriate dissemina-
tion channel, notification can be sent point-to-point to a centralized context
monitor, in multicast to multiple nodes, or injected in a publish-subscribe
infrastructure.

– The sensed service compositions channels are one or more channels whose
context is locally monitored by the generic sensor.

Application

Context Sensor

Sensed Channel 1

Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z 

Service L

Service K

Sensed Channel 2

Remote
Invocation
Channel

Context
Notification
Dissemination
Channel

Fig. 2. Context sensor.

Furthermore, the sensor can be also requested to perform periodic readings of
on-demand readable context information and autonomously generate notification
with a configurable period. Therefore, the sensor is prepared to, upon request,
generate context notifications for variables that otherwise, would have to be read
using explicit polling.

Finally, by carefully composing the notification dissemination channel, the
programmer may easily introduce local processing at the sensed node to reduce
network traffic. For instance, by adding a filter service to notification dissem-
ination channel, one can prevent notifications, whose value is below a given
threshold, to be disseminated to the network. In a similar manner, it is possible
to include more sophisticated services in the notification channel, for instance,
to compute the average of multiple notifications.

Reconfiguration Monitor The reconfiguration monitor is a service that inter-
acts directly with the kernel of the composition service framework and exports
a control channel through which it receives multiple reconfiguration commands.
The reconfiguration monitor is depicted in Figure 3. Each reconfiguration com-
mand instructs the monitor to take one or more particular steps of a given re-



configuration sequence. The commands exported by the reconfiguration monitor
are as follows.

– MakeQuiescent : this command instructs the monitor to put one or more
services in a quiescent state, using the MakeQuiescent event.

– Resume: this command instructs the monitor to resume the activity of a
service that was previously put in a quiescent state.

– Store/LoadState: these commands determine the capture of state informa-
tion, and the loading in the end of the reconfiguration. For this purpose the
monitor uses the GetState and SetState events.

– Reconfigure: this command instructs the monitor to reconfigure the compo-
sition of a given service channel. The reconfiguration involves one or more
of the following actions: remove a service from the service channel, to add
a service to a service channel, or to replace an instance of a service by an
instance of an alternative service.

For more details on the reconfiguration monitor and the commands please
refer to [13].

Application

Reconfiguration Monitor
Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z 

Service L

Service K

Reconfigurable
Channel 2

Reconfigurable
Channel 1

Control
Channel

Fig. 3. Reconfiguration monitor.

5.4 Kernel Mechanisms

To address requirement 4, the kernel of the RAppia composition framework
includes two adaptation-friendly mechanisms that, to our knowledge, are not
supported by any other composition framework: automatic buffering of events
addressed to services in a quiescent state and automatic update of event routes,
as described below.



Event Buffering As we have discussed previously, in order to reconfigure a
service one may be required to put that service in a quiescent state. Typically,
when in a quiescent state, the service is unable to process new events. Therefore,
the RAppia kernel is able to recognize when a service is in a quiescent state and
buffer all events addressed to that service. As soon as the service is resumed, the
RAppia kernel restarts the delivery of events to the service. This functionality
allows a service to be reconfigured without forcing the entire service channel to
be put in a quiescent state.

Dynamic Update of Event Routes The RAppia kernel is able to use infor-
mation about which events are handled by each service to optimize the flow of
events in a service composition. In particular, for each type of event, an event
route is created. This ensures that an event is only delivered to the services that
are interested in handling that event.

In an adaptive setting, the composition of a service channel may change in
runtime. Furthermore, RAppia does not require the entire composition to be
set in a quiescent state in order to perform the reconfiguration. Therefore, the
RAppia kernel is built such that event routes are automatically recomputed
when a reconfiguration occurs.

5.5 Discussion

We have implemented a prototype of the RAppia framework with the described
features. This prototype is currently being used to build middleware systems for
mobile networks, whose dynamic settings demand adaptation support. In this
middleware, the RAppia adaptation-friendly services play an important role.
Sensors can be configured to capture different context information, and the re-
configuration monitor allows to develop several different strategies to apply the
reconfiguration actions, that are tailored to the service being reconfigured. More-
over, these mechanisms allowed us to build both a context monitor (to reason
about context information), and an adaptation manager to control the adapta-
tion process. A detailed description of these additional middleware components
is outside the scope of this paper (the interested reader is referred to [13]).

6 Conclusions

Service composition frameworks are a significant component of any adaptive
middleware infrastructure. Given the large experience in the design and imple-
mentation of composition frameworks oriented for communication protocols, it is
interesting to use them as the basis for a adaptation-friendly service composition
framework. This paper has identified a set of requirements imposed by adaptive
middleware on composition frameworks. Subsequently, we have analyzed how
these requirements have already been addressed in the context of protocol com-
position frameworks. Based on this analysis we propose an adaptive friendly
service composition framework that has been obtained by extending an existing



protocol composition framework with an augmented programming model, new
adaptive services and a set of adaptation-friendly kernel mechanisms.
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7. Wojciechowski, P., Rütti, O., Schiper, A.: SAMOA: A Framework for a
Synchronisation-Augmented Microprotocol Approach. In: Proc. of IPDPS ’04 (18th
International Parallel and Distributed Processing Symposium). Volume 01., Los
Alamitos, CA, USA, IEEE Computer Society (2004) 64–74

8. Rosa, L., Rodrigues, L., Lopes, A.: Building adaptive services for distributed
systems. Technical report, Dept. Informatics, University of Lisbon (2007)
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