
FT-OSGi: Fault Tolerant Extensions to the OSGi
Service Platform∗

Carlos Torrão
INESC-ID/IST

carlos.torrao@ist.utl.pt

Nuno Carvalho
INESC-ID/IST

nonius@gsd.inesc-id.pt

Luís Rodrigues
INESC-ID/IST
ler@ist.utl.pt

Abstract

The OSGi Service Platform defines a framework for the deploy-
ment of extensible and downloadable Java applications. Many of the
application areas for OSGi have significant dependability requirements.
This paper presents and evaluates FT-OSGi, a set of extensions to the
OSGi Service Platform that allow to replicate OSGi services. FT-OSGi
supports replication of OSGi services, including state-transfer among
replicas, supports multiple replication strategies, and allows to apply
a different replication strategy to each OSGi service.

1 Introduction

The OSGi Service Platform [17] (Open Services Gateway initiative) defines a
component-based platform for applications written in the JavaTM program-
ming language. The OSGi framework provides the primitives that allow
applications to be constructed from small, reusable and collaborative compo-
nents. It was developed with several applications in mind, including ambient
intelligence, automotive electronics, and mobile computing. Furthermore, its
advantages made the technology also appealing to build flexible Web appli-
cations [22].

Many of the application areas of OSGi have availability and reliability
requirements. For instance, in ambient intelligence applications, reliability
issues have been reported as one of the main impairments to user satis-
faction [10]. Therefore, it is of utmost importance to design fault-tolerance
support for OSGi.

This paper presents FT-OSGi, a set of fault tolerance extensions to the
OSGi service platform. Our work has been inspired by previous work on
fault-tolerant component systems such as Delta-4 [19], FT-CORBA [14, 7, 4]

∗This work was partially supported by the FCT project Pastramy (PTD-
C/EIA/72405/2006).

1

and WS-Replication [21], among others. Our solution, however, targets prob-
lems that are specific for the OSGi platform. More precisely, the proposed
solution enriches the OSGi platform with fault tolerance by means of replica-
tion (active and passive) in an almost transparent way to the clients, keeping
the same properties already provided by the OSGi platform.

A prototype of FT-OSGi was implemented. This prototype leverages
on existing tools, such as R-OSGi [20] (a service that supports remote ac-
cesses to OSGi services) and the Appia group communication toolkit [12] (for
replica coordination). The resulting FT-OSGi framework can be downloaded
from sourceforge1. The paper also presents an experimental evaluation of the
framework, that measures the overhead induced by the replication mecha-
nisms.

The remaining of the paper is structured as follows. The Section 2 de-
scribes the related work. The Section 3 presents the FT-OSGi extensions,
describing its architecture, system components, how such components inter-
act and how the proposed extensions are used by applications. The Section 4
presents an evaluation of FT-OSGi. Finally, the Section 5 concludes the pa-
per and points to future research.

2 Related Work

This section makes a brief overview of OSGi and of the fault-tolerance tech-
niques more relevant to our work. Then we overview previous work on fault-
tolerant distributed component architectures from which the main ideas were
inherited, including Delta-4, FT-CORBA and WS-Replication. Finally, we
refer previous research that has addressed specifically the issue of augmenting
OSGi with fault-tolerant features.

OSGi The OSGi Framework forms the core of the OSGi Service Plat-
form [17], which supports the deployment of extensible and downloadable
applications, known as bundles. The OSGi devices can download and install
OSGi bundles, and remove them when they are no longer required. The
framework is responsible for the management of the bundles in a dynamic
and scalable way. One of the main advantages of the OSGi framework is
the support for the bundle “hot deployment”, i.e., the support to install, up-
date, uninstall, start or stop a bundle while the framework is running. At
the time of writing of this paper, it is possible to find several implementa-
tions of the OSGi specification, such as Apache Felix [3], Eclipse Equinox [6]
and Knopflerfish [11]. In many application areas, bundles provide services
with availability and reliability requirements. For instance, in ambiance in-
telligence application, a bundle can provide services to control the heating
system. Therefore, it is interesting to search for techniques that allow such

1http://sourceforge.net/projects/ft-osgi

2

services to be deployed and replicated in multiple hardware components,
such that the service remain available even in the presence of faults.

Fault tolerance A dependable computing system can be developed by
using a combination of the following four complementary techniques: fault
prevention, fault tolerance, fault removal and fault forecasting. This paper
focus on fault-tolerance. Fault tolerance in a system requires some form of
redundancy [15], and replication is one of the main techniques to achieve it.
There are two main replication techniques [8]: passive and active replication.
In passive replication, also known as primary-backup, one replica, called the
primary, is responsible for processing and respond to all invocations from
the clients. The remaining replicas, called the backups, do not process direct
invocations from the client but, instead, interact exclusively with the pri-
mary. The purpose of the backups is to store the state changes that occur in
the primary replica after each invocation. Furthermore, if the primary fails,
one of the backup replicas will be selected (using some leader election algo-
rithm previously agreed among all replicas) to play the role of new primary
replica. In the active replication, also called the state-machine approach, all
replicas play the same role thus there is no centralized control. In this case,
all replicas are required to receive requests, process them and respond to the
client. In order to satisfy correctness, requests need to be disseminated us-
ing a total-order-multicast primitive (also known as atomic multicast). This
replication technique has the limitation that the operations processed by the
replicas need to be deterministic (thus the name, state-machine).

Object replication There is a large amount of published work on devel-
oping and replicating distributed objects. The Delta-4 [19] architecture was
aimed at the development of fault-tolerant distributed systems, offering a
set of support services implemented using a group-communication oriented
approach. To the authors’ knowledge, Delta-4 was one of the first archi-
tectures to leverage on group communication and membership technologies
to implement several object replication strategies. Delta-4 supported three
types of replicated components: active replication, passive replication, and
semi-active replication (the later keeps several active replicas but uses a
primary-backup approach to make decisions about non-deterministic events).

Arjuna [18] is an object-oriented framework, implemented in C++, that
provides tools for the construction of fault-tolerant distributed applications.
It supports atomic transactions controlling operations on persistent objects.
Arjuna objects can be replicated to obtain high availability. Objects on
Arjuna can be replicated either with passive and active replication. Passive
replication in Arjuna is implemented on top of a regular Remote Procedure
Call (RPC). Failure recovery is done with the help of a persistence storage.

The Common Object Request Broker Architecture (CORBA) [16] is a

3

standard defined by the Object Management Group (OMG), which provides
an architecture to support remote object invocations. The main component
of the CORBA model is the Object Request Broker (ORB), which act as
intermediary in the communication between a client object and a server ob-
ject, shielding the client from differences in programming languages, platform
and physical location. That communication of clients and servers is over
the TCP/IP-based Internet Inter-ORB Protocol (IIOP). Several research
projects have developed techniques to implement fault-tolerant services in
CORBA [14, 7, 4] eventually leading the design of the FT-CORBA specifi-
cation [13]. All implementations share the same design principles: they offer
fault-tolerance by replicating CORBA components in a transparent man-
ner for the clients. Different replication strategies are typically supported,
including active replication and primary-backup. To facilitate inter-replica
coordination, the system use some form of group-communication services [5].
To implement recovery mechanisms, CORBA components must be respon-
sible to recover, when demanded, the three kinds of state present in every
replicated CORBA object: application state, ORB state (maintained by the
ORB) and infrastructure state (maintained by the Eternal [14]). To enable
the capture and recover of the application state is necessary that CORBA ob-
jects implement Checkpointable interface that contains methods to retrieve
(get_state()) and assign (set_state()) the state for that object.

The WS-Replication [21] applies the design principles used in the devel-
opment of Delta-4 and FT-CORBA to offer replication in the Web Services
architecture. It allows client to access replicated services whose consistency
is ensured using a group communication toolkit that has been adapted to
execute on top of a web-service compliant transport (SOAP).

OSGi replication To the best of our knowledge, no previous work has ad-
dressed the problem of offering fault-tolerance support to OSGI applications
in a general and complete manner, although several efforts have implemented
one form or another of replication in OSGi. Thomsen [23] presents a solution
to eliminate the single point of failure of OSGi-based residential gateways,
using a passive replication based technique. However, the solution is spe-
cialized for the gateways. In a similar context, but with focus in the services
provided through OSGi Framework, Heejune Ahn et al. [1] presents a proxy-
based solution, which provides features to monitor, detect faults, recover and
isolate a failed service from other service. Consequently, this solution adds
four components to the OSGi Framework: proxy, policy manager, dispatcher
and monitor. A proxy is constructed for each service instance, with the pur-
pose of controlling all the calls to that service. The monitor is responsible for
the state checking of each service. Finally, the dispatcher decides and routes
the service call to the best implementation available with the help of the pol-
icy manager. In this work, Heejune Ahn et al. only provide fault tolerance

4

to a stateless service, therefore, the service internal state and persistent data
are not recovered.

3 FT-OSGi

This section presents FT-OSGi, a set of extensions to the OSGi platform
to improve the reliability and availability of OSGi applications. This sec-
tion shows the services provided by such extensions and how their are im-
plemented, describing the several components of FT-OSGi and how these
components interact.

3.1 Provided Services

The FT-OSGi provides fault tolerance to OSGi applications. This is done
by replicating OSGi services in a set of servers. To access the services,
the client application communicates with the set of servers in a transpar-
ent way. The services can be stateless or stateful. State management
must be supported by the application programmer: in order to maintain
the replicated state, the service must implement two methods, one for ex-
porting its state (Object getState()) and another for updating its state
(void setState(Object state)). The FT-OSGi extensions support three
types of replication: active, eager-passive and lazy-passive. The strategy
used for replication of an OSGi service is chosen at configuration time, and
different services with different replication strategies can coexist in the same
FT-OSGi domain.

Replication is supported by group communication. Each replicated ser-
vice may use a different group communication channel or, for efficiency, share
a group with other replicated services. For instance, if two OSGi services
are configured to use the same replication strategy, they can be installed
in the same group of replicas. This solution has the advantage of reducing
the number of control messages exchanged by the group communication sys-
tem (for instance, two replicated services may use the same failure detector
module).

When a service is replicated, multiple replies to the same request may be
generated. There is a proxy installed in the client that collects the replies
from servers and returns only one answer to the application, filtering dupli-
cate replies and simulating the operation of a non-replicated service. The
FT-OSGi proxy supports three distinct modes for filtering the replies from
servers. In the wait-first mode, the first received reply is received and
returned immediately to the client, all the following replies are discarded. In
the wait-all mode, the proxy waits for all the replies from the servers, com-
pares them and returns to the client one reply, if all the replies are equal.
If there is an inconsistency in the replies, the proxy raises an exception.
Finally, the wait-majority returns to the client as soon as a majority of

5

Configuration Replication Reply State Broadcast Views
A Active First Stateless Total regular Partitionable
B Passive First Stateless Reliable regular Primary
C Active Majority Stateful Total uniform Primary
D Passive First Stateful Reliable uniform Primary

Table 1: Examples of configuration options for the proposed architecture.

similar replies is received. Distribution and replication is hidden from the
clients, that always interact with a local instance of the OSGi framework.
Thanks to this approach, the semantic of the OSGi events is maintained.
All the events generated by the services and the OSGi framework itself are
propagated to the clients.

Table 1 shows some examples of how to configure FT-OSGi applications.
It is possible to configure the replication strategy, the filtering mode of server
replies, and the operation of the group communication service.

3.2 System Architecture and Components

Figure 1 depicts the FT-OSGi architecture, representing the client and server
components. Each node has an instance of the OSGi platform, the R-OSGi
extension for distribution, and the FT-OSGi component. The main differ-
ence between a client and a server is the type of services installed. The servers
maintain the services that will be used by clients. The clients contain proxies
that represent locally the services that are installed in the servers. When
a client needs to access a service that is installed remotely (in a replicated
server), a local proxy is created to simulate the presence of that service.

The FT-OSGi is composed of several building blocks to support the com-
munication between the nodes of the system and to support the consistency
between replicas. The building blocks used to support communication and
consistency are the R-OSGi and a Group Communication Service (GCS),
that are described in the next paragraphs:

R-OSGi. R-OSGi [20] is a platform capable of distributing an OSGi appli-
cation through several nodes in a network. R-OSGi is layered on top of the
OSGi platform in an almost transparent way to applications, being possible
to run any OSGi application in the R-OSGi platform with only minor changes
on stateful services. The R-OSGi layer uses proxies to represent a service
that is running in a remote node. To discover the services that are running
in remote nodes, R-OSGi uses the Service Location Protocol (SLP) [9]. For
each service that is advertised by a node in SLP, when another node needs
that service, it creates locally a proxy to represent that service. When the

6

FT-Core

FT Service Handler

jGCS / Appia

FT-OSGi Bundle

JVM

OSGi

FT-Core

FT Service Handler

jGCS / Appia

R
-O

S
G

i

FT-OSGi Bundle

JVM

OSGi

R
-O

S
G

i

Communication

S
e

rv
ic

e
 A

S
e

rv
ic

e
 B

P
ro

x
y
 S

e
rv

ic
e

 B

P
ro

x
y
 S

e
rv

ic
e

 A

Client

Servers

Figure 1: Architecture of a server and a client.

application invokes a method in the proxy, that proxy will issue a remote
method invocation in a transparent way to applications.

Group communication service. AGroup Communication Service (GCS)
provides two complementary services: (i) a membership service, that pro-
vides information about the nodes that are in the group and generates view
changes whenever a member joins, leaves or is detected as failed, and (ii) a
group communication channel between the nodes that belong to the group
membership. The FT-OSGi uses a generic service (jGCS) [5] that can be
configured to use several group communication toolkits, such as Appia [12]
or Spread [2]. The prototype presented in this paper uses Appia, a protocol
composition framework to support communication, implemented in the Java
language. The main goal of Appia is to provide high flexibility when compos-
ing communication protocols in a stack, and to build protocols in a generic
way for reusing them in different stacks. Appia contains a set of protocols
that implement view synchrony, total order, primary views, and the possibil-
ity to create open and closed groups. An open group is a group of nodes that
can send and receive messages from nodes that do not belong to the group.
This particular feature is very important to FT-OSGi. It is also important
to our system that the GCS used gives the possibility to chose the message
ordering guarantees (regular FIFO for passive replication or total order for
active replication), the reliability properties (regular or uniform broadcast)
and the possibility to operate in a partitionable or non-partitionable group.
Appia has also a service that maintains information about members of a
group in a best effort basis. This service is called gossip service and allows
the discovery of group members (addresses) from nodes that do not belong
to the group.

7

On top of the previously described services, the following components were
built to provide fault tolerance to OSGi services:

FT Service Handler. This component provides the information about
the available services on remote nodes that can be accessed by the local
node. In particular, it provides (for each service) FT-OSGi configuration
options, such as, for instance, the replication strategy used and how replies
are handled by the proxy.

FT-Core. This component is responsible for maintaining the consistency
among all the replicas of the service. It also hides all the complexity of repli-
cation from the client applications. The FT-Core component is composed by
four sub-components that are described next: the Appia Channel Factory,
the Client Appia Channel, the Server Appia Channel and the Replication
Mechanisms. The Appia Channel Factory component is responsible for the
definition of the replication service for an OSGi service. Each OSGi service
is associated with a group of replicas, which is internally identified by an
address in the form ftosgi://<GroupName> (this address is not visible for
the clients). The group of replicas support the communication between the
replicas of the OSGi service and communication between the client and the
group of replicas. The client is outside the group and uses the open group
functionality supported by Appia. The communication between replicas uses
view synchrony (with total order in the case of active replication). For each
one of these communication types, an Appia channel is created. The channel
to communicate among replicas is created when a service is registered with
fault tolerance properties and is implemented in the Server Appia Channel
component. The communication channel between clients and service replicas
is created when some client needs to access a replicated service and is im-
plemented in the Client Appia Channel component. Finally, the Replication
Mechanisms component implements the replication protocols used in FT-
OSGi (active and passive replication) and is responsible for managing the
consistency of the replicated services. This component is also responsible for
the recovery of failed replicas and for the state transfer to new replicas that
dynamically join the group. For managing recovery and state transfer, this
components uses the membership service provided by the GCS.

3.3 Replication Strategies

The FT-OSGi extensions support three different types of replication: active
replication, eager passive replication and lazy passive replication. The three
strategies are briefly described in the next paragraphs.

Active replication. This replication strategy follows the approach of stan-
dard active replication [8], where each and every service replica processes

8

invocations from the clients. When some replica receives a new request, it
atomic broadcasts the request to all replicas. All the replicas execute the
same requests by the same global order. One limitation of this replication
strategy is that it can only be applied to deterministic services.

Eager passive replication. In this case only one replica, the primary,
deals with invocations from the clients [8]. The primary replica is the same
for all services belonging to a replica group. The backup replicas receive state
updates from the primary replica for each invocation of stateful services. The
primary replica only replies to the client after broadcasting the state updates
to the other replicas. Attached to the state update message, the backup also
receives the response that will be sent by the primary replica to the client.
This allows the backup to replace the primary and resend the reply to the
client, if needed.

Lazy passive replication. This replication strategy follows the same
principles of eager passive replication. However, the reply to the client is
sent immediately, as soon as the request is processed. The state update
propagation is done in background, after replying to the client. This strategy
provides less fault tolerance guarantees, but is faster and many applications
do not require strong guarantees.

3.4 Replica Consistency

The group of service replicas is dynamic, which means that it supports the
addition and removal of servers at runtime. It also tolerates faults and
later recovery of the failed replica. The following paragraphs describe the
techniques used to manage dynamic replica membership.

Leader election. The replication protocols implemented in the Replica-
tion Mechanisms component need a mechanism for leader election for sev-
eral reasons. In the case of passive replication, leader election is necessary
to choose the primary replica, executing the requests and disseminating the
updates to the other replicas. In the case of active replication, leader election
is used to choose the replica that will transfer the state to replicas that are
recovering or are joining the system. The leader election mechanism can be
trivially implemented on top of jGCS/Appia because upon any membership
change, all processes receive an ordered set of group members. By using this
feature, the leader can be deterministically attributed by choosing the group
member with the lower identification that also belonged to the previous view.

Joining New Servers When one or more replicas join an already existing
group, it is necessary to update the state of the incoming replicas. The state

9

transfer starts when there is a view change and proceeds as follows. If there
are new members joining the group, all replicas stop processing requests.
The replica elected as primary (or leader) sends its state to all the replicas,
indicating also the number of new replicas joining in the view. The state
transfer also contains the services configurations for validity check purposes.
When a joining replica receives the state message, it validates the service
configurations, and updates its own state, it broadcasts an acknowledgment
to all the members of the group. Finally, when all the group members receive
a number of acknowledgments equal to the number of joining replicas, all
resume their normal operation. During this process, three types of replica
failures can occur: i) new joined replica failure; ii) primary (or leader) replica
failure; iii) another (not new, neither primary) replica failure. To address
the first type of failure, the remaining replicas will decrement, for each new
joined replica that fails, the number of expected acknowledgments. The
second type of failure only requires an action when the primary replica fails
before sending successfully the state to all new joined replicas. In this case,
the new primary replica sends the state to the replicas. This solution tries
to avoid sending unnecessary state messages. Regarding the third type of
failure, these failures do not affect the process of joining new servers.

Recovering From Faults Through the fault detector mechanisms imple-
mented on top of jGCS/Appia, it is possible for FT-OSGi to detect when a
server replica fails. FT-OSGi treats a failure of a replica in the same way
treats an intent leave of a replica from the group membership. When a
replica fails or leaves, some approach is necessary to maintain the system
running. If the failed or leaving replica was the leader replica (also known as
primary replica for both passive replication strategies), it is necessary to run
the leader election protocol to elect a new replica to play that role. Other-
wise, the remain replicas just remove from the group membership the failed
replica.

3.5 Life Cycle

This section describes how the FT-OSGi components are created on both
the client and the group of servers. The FT-OSGi uses the SLP [9] protocol
to announce the set of services available in some domain. The replication pa-
rameters are configured using Java properties. This feature allows to read the
parameters, for instance, from a configuration file contained in a service. The
replication parameters are the group name that contain the replicated ser-
vice, the type of replication, the group communication configuration, among
others.

When a new replica starts with a new service, it reads the configuration
parameters for replication and creates an instance of Server Appia Channel
with the specified group name. It creates also an instance of the FT-Core and

10

Gossip

Server

Service A

Service B

ftosgi://GroupA

4 5
6
12

FT-

OSGi

8

11

7

3

13
R-OSGi

FT-

OSGi

FT-

OSGi

Client

R-OSGi

R-OSGi

7

9
10

Service A

Service B

Network messages

Network messages (does not always occur)

Component invocations

Server1

Server2

Legend
8

11

9
10

12

Proxy Serv. A

Proxy Serv. B

1
...

15
2

14

Figure 2: Interaction between components when using active replication.

Replication Mechanisms components with the specified replication strategy.
Finally, the replica registers the service in SLP, specifying the service inter-
face and that it can be accessed using the address ftosgi://<GroupName>.
New replicas will also create an instance of Server Appia Channel, FT-Core
and Replication Mechanisms, but they will join the already existing group.

The client starts by executing a query to SLP, asking for a reference
that implements a service with a specified interface. If the service exists in
the system, the SLP returns the address where the service can be found,
in the form ftosgi://<GroupName>. In a transparent way to the client
application, FT-OSGi creates a proxy that will represent locally the service
and an instance of Client Appia Channel to send messages (requests) to the
group of replicas of the service. After creating these components, a reference
of the proxy is returned to the client application.

At this stage, replicas are deployed by scripts on behalf of the system ad-
ministrator. As future work we plan to implement service factories that can
create replicas on demand and provide support to components that perform
the autonomic management of the membership. The next section describes
how the several FT-OSGi components interact when a client invokes a repli-
cated service.

3.6 Interaction Between Components

The interaction between the system components depends on the replication
strategy used by the service. For simplicity reasons, we will only illustrate
the operation of active replication. The operation of passive replication is
very similar, with the obvious differences of the replication protocol: only the
primary executes the request, if the service is stateful, the primary reliable
broadcasts a state update to all the replicas, and only the primary replies to

11

the client.
The Figure 2 depicts the interaction between the several components of

the FT-OSGi extensions. The client wants to invoke a method provided by
Service A, which is replicated in Group A, and it already has an instance
for the proxy that represents locally the Service A. The client starts by
invoking that method on the local proxy (step 1). The service is actually
deployed remotely, so the proxy invokes a Remote Method Invocation on
R-OSGi (step 2). The original communication channel of R-OSGi was re-
implemented to use an Appia channel, instead of a TCP connection. So,
R-OSGi is actually using FT-OSGi to send the requests, through the Client
Appia Channel component (steps 3 and 6). If the client does not have cached
at least one address of the members of Group A, it queries the gossip service
(steps 4 and 5). This request to the gossip service is also done periodically,
in order to maintain the cache updated and is resent until it is successfully
received by one of the servers. When one of the servers receives the client
request, it atomically broadcasts the request to all the servers on Group A,
using the Server Appia Channel component (step 7). This ensures that
all servers execute the requests in the same global total order. For each
request that is delivered to each replica by the atomic broadcast primitive,
the replica delivers that request to the local instance of R-OSGi, that will
call the method on the Service A and obtain a response (steps 8 to 11).
Notice that these 4 steps are made on all the replicas. All the replicas reply
to the client (step 12) that filters the duplicate replies and returns one reply
to R-OSGi (step 13). Finally, R-OSGi replies to the proxy, that will return
to the client application (steps 14 and 15).

3.7 Programing Example

This section illustrates how a client application and a service are imple-
mented in the FT-OSGi architecture. We will start by showing how to im-
plement and configure a service. The Listing 1 shows a typical HelloWorld
example implemented as an OSGi service. The service implements an in-
terface (HelloService) with two methods that are deterministic (lines 1 to
7). After implementing the service, it must be configured and registered in
the OSGi platform. This is done in the class Activator, where it can be
seen that the service is configured to use active replication, it is stateless,
uses primary views, and it belongs to the group with the following address
ftosgi://GroupA (lines 12 to 18). The registration of the service in the
OSGi platform makes the service available to its clients and is done after the
configuration process (line 19).

The same listing also shown an example of how a client application can
obtain the instance of the replicated HelloService previously registered by
the servers. First of all, in the class Activator, the application starts to
obtain the local service FTFramework (lines 27 to 32). This FTFramework

12

Listing 1: Example code.
1 // server code

public class Hel l oSe rv i c e Imp l implements He l l oS e rv i c e {
3 public St r ing speak () {

return " He l lo World ! " ;
5 }

public St r ing y e l l () { return (" He l lo World ! " . toUpperCase () . concat (" ! ! ! ")) ; }
7 }

public class Act ivator implements BundleActivator {
9 private He l l oS e rv i c e s e r v i c e ;

public void s t a r t (BundleContext context) throws Exception {
11 s e r v i c e = new Hel l oSe rv i c e Imp l () ;

Dict ionary<Object , Object> p r op e r t i e s = new Hashtable<Object , Object >() ;
13 p r op e r t i e s . put (RemoteOSGiService .R_OSGi_REGISTRATION, Boolean .TRUE) ;

p r op e r t i e s . put (FTServiceTypes .FT_ROSGi_REGISTRATION, Boolean .TRUE) ;
15 p r op e r t i e s . put (FTServiceTypes .FT_ROSGi_FT_SERVICE_ID, " He l l oS e rv i c e ") ;

p r op e r t i e s . put (FTServiceTypes .FT_ROSGi_FT_TYPE, FTTypes .ACTIVE_STATELESS) ;
17 p r op e r t i e s . put (FTServiceTypes .FT_ROSGi_FT_GROUPNAME, "GroupA") ;

p r op e r t i e s . put (FTServiceTypes .FT_ROSGi_PRIMARY_VIEW, Boolean .TRUE) ;
19 context . r e g i s t e r S e r v i c e (He l l oS e rv i c e . class . getName () , s e rv i c e , p r op e r t i e s) ;

}
21 public void stop (BundleContext context) throws Exception { s e r v i c e = null ; }

}
23

// c l i en t code
25 public class Act ivator implements BundleActivator {

public void s t a r t (BundleContext context) throws Exception {
27 f ina l Se rv i c eRe f e r ence f tRe f = context . g e tSe rv i c eRe f e r ence (FTFramework . class . getName ()) ;

i f (f tRe f == null) {
29 System . out . p r i n t l n ("No FTFramework found ! ") ;

return ;
31 }

FTFramework ftFramework =(FTFramework) context . g e tS e rv i c e (f tRe f) ;
33 URI helloURI = ftFramework . getFTServiceURI (He l l oS e rv i c e . class . getName ()) ;

He l l oS e rv i c e h e l l o S e r v i c e =
35 (He l l oS e rv i c e) ftFramework . getFTService (He l l oS e rv i c e . class . getName () , hel loURI) ;

i f (h e l l o S e r v i c e == null) {
37 System . out . p r i n t l n ("No He l l oS e rv i c e found ! ") ;

return ;
39 } else {

System . out . p r i n t l n ("Response : " + h e l l o S e r v i c e . speak ()) ; // Can s tar t use service
41 }

}
43 public void stop (BundleContext context) throws Exception {}

}

service is responsible to abstract the interaction with the SLP. Using that
service, the application obtains the address ftosgi://GroupA (line 33), cor-
responding to the address where is located the HelloService. Notice that
this address is actually in an opaque object of type URI, so it could be also
an address of a non-replicated service (for instance, a R-OSGi service). Af-
terwards, with that address, the application can request the service instance
(lines 34 and 35), which if it is successfully executed will create and register
a service proxy of the HelloService in this local OSGi instance. Then, the
proxy instance is returned to the client application, and that instance can
be used like any other OSGi service. In this example an invocation of the
method speak() is executed (line 40), which follows the invocation procedure
of an actively replicated service, like it was described in the Section 3.6.

3.8 Some Relevant OSGi Implementation Details

This section focus in presenting the main issues that emerge by the replica-
tion of an OSGi service.

13

OSGi Service ID. Each OSGi service registered in an OSGi instance has
a service id (SID) attributed by the OSGi framework itself. This SID is a
Long object and identifies the service in an unique manner. R-OSGi uses
this SID to identify remote services through different nodes since that SID is
unique in each node. By extending that concept with an replicated service
through several different nodes, the SID does not identify uniquely each
service replica in all nodes, because the SID can be attributed differently in
each node by the local OSGi instance for the replicated services. To solve
this issue, FT-OSGi defines a replicated service id (RSID), which is defined
by the service developer in the same way as the other service configurations,
through service properties. The RSID was defined as a String object to let
the developer choosing a more descriptive id, allowing unlimited and name
space ids. The integration of RSID with R-OSGi is transparent, FT-OSGi
always converts each RSID to the local OSGi SID in each replicated service
interaction.

Filtering Replicated Events. The OSGi event mechanisms support the
publish-subscribe paradigm. When replicating services, different replicas
may publish multiple copies of the same event. These copies need to be
filtered, to preserve the semantics of a non-replicated service. FT-OSGi ad-
dresses this issue using a similar approach as for filtering replies in active
replication, i. e., the FT-OSGi component in the client is responsible to
filter repeated events from the servers. The difficulty here is related with
the possibility of non-deterministic events generation by different replicas.
In a non-replicated system with R-OSGi, an unique id is associated with
a event. In a replicated system is difficult to ensure the required coordi-
nation to have different replicas assign the same identifier to the replicated
event. Therefore, the approach followed in FT-OSGi consists in explicitly
comparing the contents of every event, ignoring the local unique id assigned
independently by each replica. This approach avoids the costs associated
with the synchronization of replicas for generating a common id for each
event.

4 Evaluation

This section presents an evaluation of the FT-OSGi extensions, that will
focus on the overhead introduced by replication. For these tests, an OSGi
service with a set of methods was built, that (i) receive parameters and return
objects with different sizes, generating requests with a growing message size,
and (ii) have different processing times. The response time on FT-OSGi was
measured with several replication strategies and compared it with R-OSGi,
which is distributed but not replicated.

14

4.1 Environment

The machines used for the tests are connected by a 100Mbps Ethernet switch.
The tests run in three FT-OSGi servers and one client machine. The servers
have two Quad core processors Intel Xeon E5410 @ 2.33 Ghz and 4 Gbytes
of RAM memory. One of the machines was also responsible for hosting the
gossip service, which is a light process that does not affect the processing time
of the FT-OSGi server. The client machine has one Intel Pentium 4 @ 2.80
Ghz (with Hyperthreading) processor and 2 Gbytes of RAM memory. All
the server machines are running the Ubuntu Linux 2.6.27-11-server (64-bit)
operating system and the client machine is running the Ubuntu Linux 2.6.27-
14-server (32-bit) operating system. The tests were made using the Java Sun
1.6.0_10 virtual machine and the OSGi Eclipse Equinox 3.4.0 platform.

All the tests measure the time (in milliseconds) between the request and
the reply of a method invocation on a OSGi service. In R-OSGi, the test was
performed by invoking a service between a client and a server application.
In FT-OSGi, different configurations were considered. The client issues a
request to a group of 2 and 3 replicas. Group communication was configured
using reliable broadcast in the case of passive replication and atomic broad-
cast (reliable broadcast with total order) in the case of active replication.
Both group communication configurations used primary view membership.

4.2 Replication Overhead

This section presents the replication overhead with different replication strate-
gies, message sizes, execution times, and number of replicas. All tests for
the active replication strategies of Figure 3 were executed using the wait-first
reply filtering mode. The tests for both eager and lazy passive replication
strategies were executed using a stateful service with 32 bytes of state. It
was measured the response time with message sizes of 2 KBytes, 4 KBytes,
8 KBytes and 16 KBytes. Figure 3 shows the overhead of replication on
active and passive replication. In the tests with no execution time, all the
delays are due to remote method invocation and inter-replica coordination.
The overhead of the replicated service is due to the extra communication
steps introduced to coordinate the replicas. In the case of R-OSGi, where
the service is located in another machine, but it is not replicated, there are
two communication steps: request and reply. When using FT-OSGi, there
are two extra communication steps for coordinating the replicas. In the case
of the eager passive replication (Figure 3(a)), there is an additional overhead
due to the dissemination of the new service state to the backup replicas. As
expected, the lazy passive replication is the one with lower overhead (Fig-
ure 3(c)). It can also be observed that the message size has a similar impact
on both the R-OSGi and FT-OSGi. On the other hand, as expected, adding
extra replicas causes the overhead to increase. The tests presented in Fig-

15

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(a) Eager passive, no execution time.

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(b) Eager passive, execution time of 5ms.

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(c) Lazy passive, no execution time.

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(d) Lazy passive, execution time of 5ms.

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(e) Active, no execution time.

0

1

2

3

4

5

6

7

8

9

10

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

2KB messages

4KB messages

8KB messages

16KB messages

(f) Active, execution time of 5ms.

Figure 3: Replication overhead on different replication strategies.

ure 3 with an execution time of the invoked method of 5ms, show that the
overhead is smaller in all replication strategies, meaning that the execution
time dominate the overhead of replication.

4.3 Response Filtering Modes on Active Replication

The Figure 4 shows the overhead in the case of active replication with the
three reply filtering modes: wait-first, wait-majority and wait-all. The tests
were configured to call a service method that takes 2ms to execute. The
performance of a replicated system with two and three replicas was compared
with R-OSGi (no replication). As it can be observed, the wait-first filtering
mode does not introduce a large overhead when compared with R-OSGi.
This can be explained by the fact that most of the requests are being received

16

0

1

2

3

4

5

6

7

8

R-OSGi FT-OSGi (2 rep.)FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

first-response

majority-responses

all-responses

no replication

Figure 4: Response time on active replication with the 3 filtering modes.

0

1

2

3

4

5

6

7

8

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

32B state

2KB state

4KB state

8KB state

16KB state

no replication

(a) Eager passive replication.

0

1

2

3

4

5

6

7

8

R-OSGi FT-OSGi (2 rep.) FT-OSGi (3 rep.)

Ti
m

e
 b

e
tw

e
e

n
 a

 r
e

q
u

e
st

/r
e

sp
o

n
se

 (m
s)

32B state

2KB state

4KB state

8KB state

16KB state

no replication

(b) Lazy passive replication.

Figure 5: Passive replication with different state sizes.

by the same node that orders the messages in the total order protocol. When
the tests are configured to use the wait-majority and wait-all modes, the
delay introduced by the atomic broadcast primitive is more noticeable. The
results also show that the response time increases with the number of replicas.

4.4 Effect of State Updates on Passive Replication

Figure 5 presents the results when using passive replication with a stateful
service. We measured the response time with a method execution time of
2ms, and with different service state sizes of 32 bytes, 2 Kbytes, 4 Kbytes,
8 Kbytes and 16 Kbytes. The Figure 5(a) depicts the response times for
the eager passive replication, where the state size has a direct impact in
the replication overhead. On the other hand, in the lazy passive replication
(Figure 5(b)), since the state transfer is made in background, in parallel with
the response to the client, the state size has no direct impact on the response
time.4.5 Failure Handling Overhead

Failure handling in FT-OSGi is based on the underlying view-synchronous
group communication mechanisms. When a replica fails, the failure is de-
tected and the replica expelled from the replica group. FT-OSGi ensures
the availability of the service as long as a quorum of replicas remains active
(depending on the reply filtering strategy, a single replica may be enough to

17

ensure availability). Failure handling is performed in two steps. The first
step consists in detecting the failure, which is based on timeouts. This can
be triggered by exchange of data associated with the processing of requests
or by a background heartbeat mechanism. When a failure is detected, the
group communication protocol performs a view change, that requires the
temporary interruption of the data flow to ensure view synchronous proper-
ties.

To assess the overhead of these mechanisms we artificially induced the
crash of a replica. A non-leader replica is responsible for sending a special
multicast control message that causes another target replica to crash. Since
every replica receives the special message almost at the same time, we can
measure the time interval between the crash and the moment when a new
view, without the crashed replica, is received (and the communication is re-
established). Additionally, we have also measure the impact of the crash on
the client, by measuring the additional delay induced by the failure in the
execution of the client request. We have repeated the same experience 10
time and made an average of the measured results.

The time to install a new group view as soon as a crash has been detected
is, on average, 7ms. The time to detect the failure depends on the Appia con-
figuration. In the standard distribution, Appia is configured to operate over
wide-area networks, and timeouts are set conservatively. Therefore, failure
detection can take as much as 344ms. By tuning the system configuration
for a LAN setting, we were able to reduce this time to 73ms. The reader
should notice that the failure detection time has little impact on the client
experience. In fact, while the replica failure is undetected, the remaining
replicas may continue to process (and reply to) client requests. Therefore,
the worst case perceived impact on the client is just the time to install a
new view and, on average, much smaller than that, and in the same order of
magnitude of other factors that may delay a remote invocation. As a result,
in all the experiments, there were no observable differences from the point
of view of remote clients between the runs where failures were induced and
failure-free runs.

5 Conclusions and Future Work

This paper presents and evaluates FT-OSGi, a set of extensions to the OSGi
platform to provide fault tolerance to OSGi applications. In FT-OSGi, each
service can be configured to use active or passive replication (eager and
lazy) and different services can coexist in the same distributed system, using
different replication strategies. These extensions where implemented in Java
and are available as open source software.

As future work we plan to implement the autonomic management of the
group of replicas of each service. This will allow automatic recovery of failed

18

replicas. We also plan to extend this work to support OSGi services that
interact with external applications or persistent storage systems. Finally,
the current version of FT-OSGi uses a naive approach to disseminate the
state of the objects among the replicas. We intent to improve the current
implementation by propagating only the JVM Heap changes. This approach
will also allow that OSGi application can be integrated in FT-OSGi without
needing any changes.

Acknowledgments: The authors wish to thank João Leitão by his com-
ments to preliminary versions of this paper.

References

[1] Heejune Ahn, Hyukjun Oh, and Chang Sung. Towards reliable osgi
framework and applications. Proceedings of the 2006 ACM symposium
on Applied computing, pages 1456–1461, 2006.

[2] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant archi-
tecture and protocol for wide area group communication. In Proceedings
of the International Conference on Dependable Systems and Networks
(DSN), June 2000.

[3] Apache Foundation. Apache felix. http://felix.apache.org/.

[4] Roberto Baldoni and Carlo Marchetti. Three-tier replication for ft-corba
infrastructures. Softw. Pract. Exper., 33(8):767–797, 2003.

[5] N. Carvalho, J. Pereira, and L. Rodrigues. Towards a generic group
communication service. In Proc. of the 8th Int. Sym. on Distributed
Objects and Applications (DOA), Montpellier, France, October 2006.

[6] Eclipse Foundation. Equinox. http://www.eclipse.org/equinox/.

[7] P. Felber, B. Grabinato, and R. Guerraoui. The design of a CORBA
group communication service. In Proceedings of the 15th IEEE SRDS,
pages 150–159, Niagara-on-the-Lake, Canada, Oct 1996.

[8] R. Guerraoui and A. Schiper. Software-based replication for fault tol-
erance. Computer, 30(4):68–74, Apr 1997.

[9] E. Guttman. Service location protocol: automatic discovery of ip net-
work services. Internet Computing, IEEE, 3(4):71–80, Jul/Aug 1999.

[10] L. Kaila, J. Mikkonen, A.-M. Vainio, and J. Vanhala. The ehome - a
practical smart home implementation. In Proceedings of the workshop
Pervasive Computing @ Home, Sydney, Australia, May 2008.

[11] Knopflerfish Project. Knopflerfish. http://www.knopflerfish.org/.

19

[12] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol
kernel supporting multiple coordinated channels. In Proceedings of the
21st International Conference on Distributed Computing Systems, pages
707–710, Phoenix, Arizona, Apr 2001. IEEE.

[13] P. Narasimhan. Transparent Fault Tolerance for CORBA. PhD thesis,
Dept. of Electrical and Computer Eng., Univ. of California, 1999.

[14] P. Narasimhan, L.E. Moser, and P.M. Melliar-Smith. Eternal - a
component-based framework for transparent fault-tolerant corba. Soft-
ware Practice and Experience, 32(8):771–788, July 2002.

[15] V.P. Nelson. Fault-tolerant computing: Fundamental concepts. IEEE
Computer, 23(7):19–25, Jul 1990.

[16] Object Management Group. Corba: Core specification, 3.0.3 ed., March
2004. OMG Technical Committee Document formal/04-03-01.

[17] OSGi Alliance. Osgi service platform core specification, April 2007.
http://www.osgi.org/Download/Release4V41.

[18] Graham D. Parrington, Santosh K. Shrivastava, Stuart M.Wheater, and
Mark C. Little. The design and implementation of arjuna. Technical
report, 1994.

[19] D. Powell. Distributed fault tolerance: Lessons from delta-4. IEEE
Micro", pages 36–47, Feb. 1994.

[20] Jan Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-osgi: Dis-
tributed applications through software modularization. Middleware,
pages 1–20, 2007.

[21] Jorge Salas, Francisco Perez-Sorrosal, Marta Pati no-Martínez, and Ri-
cardo Jiménez-Peris. Ws-replication: a framework for highly available
web services. In WWW ’06: Proc. of the 15th int. conference on World
Wide Web, pages 357–366. ACM, 2006.

[22] Spring Source. Spring Dynamic Modules for OSGi. http://www.
springsource.org/osgi, 2009.

[23] Jonas Thomsen. Osgi-based gateway replication. Proceedings of the
IADIS Applied Computing Conference 2006, pages 123–129, 2006.

20

