
Group Communication Support for Dependable Multi-User Object Oriented
Environments∗

Hugo MIRANDA

Universidade de Lisboa

hmiranda@di.fc.ul.pt

Miguel ANTUNES

INESC

Miguel.Antunes@inesc.pt

Luı́s RODRIGUES

Universidade de Lisboa

ler@di.fc.ul.pt

António Rito SILVA

INESC

Rito.Silva@inesc.pt

Abstract

Distributed multi-user interactive systems have a rich
and complex set of requirements including the need for de-
pendable operation. A promising approach to tackle the
complexity of these systems is to rely on configurable archi-
tectures that are able to support component re-utilization
and composition.

The MOOSCo project, Multi-user Object-Oriented envi-
ronments with Separation of Concerns, addresses the diffi-
culties in applying a component-based approach in a ver-
tical and integrated manner, from analysis to implementa-
tion, to the design of this class of systems. To support com-
munication among distributed entities, the project will use
a configurable group communication system called Appia.
The paper discusses the role of Appia in the MOOSCo ar-
chitecture.

1. Introduction

Distributed multi-user interactive systems are an ex-
tremely relevant application area. Applications such as vir-
tual environments, distributed simulation, computer sup-
ported collaborative work (CSCW), multi-user games or
dungeons (MUDs), and multi-user object-oriented environ-
ments (MOOs) are becoming increasingly pervasive. These
applications pose a very rich and complex set of require-
ments from the analysis, software engineering and system
support point-of-view. A promising approach to tackle the
complexity of these systems is to rely on configurable ar-
chitectures that are able to support component re-utilization
and composition.

∗This work was partially supported by Praxis/C/EEI/12202/1998, TOP-
COM.

The MOOSCo project, Multi-user Object-Oriented envi-
ronments with Separation of Concerns, addresses the diffi-
culties in applying a component-based approach in a verti-
cal and integrated manner, from analysis to implementation,
to the design of this class of systems. The project will de-
fine an architecture that will be applied in the MOOs con-
text. MOO environments constitute a challenge for object-
oriented distributed systems theory and practice due to its
unique requirements for dependability, scalability, adapt-
ability, usability, dynamic changes, non-functional domains
to be considered, and efficiency.

The project intends to design and implement an archi-
tecture to the support of multi-user object-oriented environ-
ments. The architecture is based on component composi-
tion and addresses three abstraction layers: user models,
middleware abstractions, and infrastructure communication
protocols. This last building block will be based on a con-
figurable protocol kernel supporting group communication,
calledAppia. Due to the compositional characteristics of
the architecture, including theAppiasystem, it is possible to
use middleware abstractions and communication protocols
tailored to the specific user models needed in each case.

2 Related work

Compositional approaches are attractive and becoming
more and more fashionable. However, it is dangerous to
have a naive approach to development with components.
There are very hard open problems that current research
results have identified but that are far from being solved.
The main problems are related to the composition of non-
orthogonal components, components which composition
semantics is more than the sum of the parts. Existing sys-
tems, such as AVIARY[7], MASSIVE [13] and DIVE [7],
fail, from a software engineering perspective, to provide a

1



fully-fledged compositional, reusable and customizable ap-
proach to the design and implementation of MOO environ-
ments. As result of its monolithic structure these systems
are restricted to a single user model, to a restricted set of
middleware abstractions.

All the existing systems provide support for informa-
tion sharing. DIVE [7] and SPLINE [2] use a replicated
database approach. All user’s and application’s interac-
tion is done through the replicated database. Although
they offer a clean separation between the application and
the replicated database, applications have little control over
the replication issues. For instance, dead-reckon algorithms
are used to reduce position updates. Nevertheless, none
of these systems allow the application developer to spec-
ify customized algorithms. Furthermore, from the point of
view of communications support existing MOO systems are
usually tied to a single quality of service. For instance,
NPSNET [11]) only uses unreliable communication while
DIVE only use reliable communication. SPLINE support
both reliable and unreliable with ordering for messages re-
garding the same object. However in some situations it
could be useful to force message ordering for a particular
set of objects. In all systems existing systems there is no
support for quality of service adaptation that takes in con-
sideration application specific requirements.

In recent years, there has been a significant progress in
the development of group communication infrastructures.
The latest systems offer a very impressive range of con-
figuration facilities. For instance, Horus [14] allows com-
munication stacks to be changed in runtime; BAST [8] al-
lows different protocols to be selected to implement the
same services under different usage patterns; Coyote [3] al-
lows the same message to be processed by different proto-
cols in parallel. Unfortunately, few of these new advances
are currently used in the MOO design, eventually due to
a phenomenon of interface mismatch that has not yet been
cleanly understood.

The MOOSCo project is trying to build an integrated
middleware solution that tackles composition in an inte-
grated manner, from the application to the group commu-
nication support.

3 Configurable middleware

In the MOOs context there is not a unique and best so-
lution. Solutions should be contextual. On the other hand,
the complete satisfaction of MOO requirements for consis-
tency, adaptability, scalability, and efficiency, is not easy
and may result in conflicting and inconsistent solutions. For
instance, due to latency, messages might arrive in different
orders at different machines. This results in a consistency
problem, different users get different views of the environ-
ment. A simple solution uses a centralized server to seri-

alize messages. However, there will be a problem scaling
to a large number of users because of the burden of cen-
tralization. Another solution can be based on infrastruc-
ture protocols that provide total ordering and causal order-
ing for messages in the system, but efficiency may be com-
promised because of the required number of messages that
needs to be exchange. In addition, domain-specific require-
ments may consider different levels of consistency and even
their change at runtime. For instance, in a virtual space, as
a user is approaching a group that is holding a conversa-
tion his awareness of the conversation increases as he ap-
proaches the group. This means that the users perception of
the conversation is not consistent with the perception of an-
other user that it is in the group. Moreover, both perceptions
become “more” consistent has they get closer.

Due to these requirements MOOs design and develop-
ment will profit from an approach that allows the customiza-
tion of contextual solutions by the tuning and composition
of predefined reusable components. The MOOSCo project
addresses the several concerns involved in the development
of MOOs, such as object interaction, awareness manage-
ment, distributed communication, information sharing and
so forth. For a preliminary discussion of how these con-
cerns can be composed see [1]. In the following text, we
focus on the issues related to the composition of the dis-
tributed communication and replication concerns provides
support for replicating MOOs across different processes.

The following elements are defined in this composition:

• Distributed Consistency Protocol. It represents a
distributed protocol that enforces a particular consis-
tency criteria so that shared state can be maintained
consistent among all distributed replicas. Each par-
ticular protocol will be implemented using a multicast
channel with the proper quality of service in order to
support a particular consistency criteria. For instance,
strong consistency protocols may use channels with
reliable, and total order message transmission. Weak
consistency protocols may use reliable or even unreli-
able channels.

• Distributed Replica Manager. This component en-
sures that every state update and shared behavior
events are sent to an object shared state through one
or more distributed consistency protocols.

• Distributed Membership Protocol. Represents a dis-
tributed protocol for managing participants in the ap-
plication. It uses the notion ofMember, a concept
from the distributed communication concern, to man-
age space members as they join and leave a shared
space. It coordinates with Distributed Replica Man-
agers to transmit the shared state of the replicated ob-
jects, to every new member that has joined the shared
space according to a particular newcomers policy.



The above definitions of protocols express some natural
dependencies: the replica managers rely on membership in-
formation to ensure consistency. These dependencies exist
also at the underlying group communication level. In mod-
els such as virtual synchrony [5], which are fundamental to
provide dependable implementations of the distributed con-
sistency protocols, reliability of communication is related to
the notion of membership information in the form ofgroup
views.

More subtle dependencies are derived from the simulta-
neous and concurrent use of different consistency criteria at
the application level. In a naive implementation, each repli-
cated object would use its own consistency criteria, which
would be supported in run-time by a independent protocol
stack. Unfortunately, such approach would make very hard
to implement global consistency constraints across differ-
ent objects. For instance, it might be interesting to use the
same causal communication layer for all stacks such that
causal dependencies are preserved across objects. Global
reconfiguration procedures, that require all stacks to be in
a quiescent state, can also be strongly simplified by having
different communication stacks sharing common synchro-
nization layers.

4 Appia

Appia 1 is a communication architecture that allows
different communication channels, each with its own
QoS, to be integrated in a coherent multi-channel pro-
tocol stack [12]. Furthermore, the architecture allows
the application designer to specify the protocol stack that
meets her/his QoS requirements through the composition of
micro-protocols. A requirement constraining a single chan-
nel is calledintra-QoSrequirement. The integration of dif-
ferent media contents in a single application also imposes
inter-QoSrequirements.

In the previous section, we have already identified some
inter-QoS requirements in the MOOs design such as the
need for preserving causal order across different stacks or
to perform global operations on all stacks. Similar exam-
ples have been identified by other research teams. The work
of CCTL [15] also uses different communications chan-
nels which are managed by a single control channel. The
work with Maestro [4] illustrates the difficulties of main-
taining consistent failure detection when channels with di-
verse characteristics are used concurrently.Appiaaddresses
these problems by providing a stack composition model that
allows to expressinter-QoSrequirements. For instance, one
can build a stack where several channels share common
causalandfailure detectionstate.

Stack composition inAppia relies on a clear separation

1Appiawas started in the context of the previous project, TOPCOM.

Strong
Consistency

Weak
Consistency

(A)

(B)

TOTAL

CAUSAL

FIFO

NETWORK

FAILURE DETECTION

FIFO

RELIABILITY

Figure 1. Two objects with different dis-
tributed consistency requirements in Appia

between two related concepts:layersandsessions. We de-
fine alayer as the implementation of a protocol. All proto-
cols implement the sameevent interface, which defines the
types of events each one is able to consume and produce.
The format and semantics of these events is irrelevant to
our exposition. Typical examples of events are data trans-
mission requests, indication and confirmations. Examples
of layers are “datagram transport”, “positive acknowledg-
ment”, “total order”, “checksum”, etc. Good examples of
relevant layers and events in the context of fault-tolerant
applications can be found in [9]. We define asessionas
an instance of a layer [10]. The session maintains state that
is used by the protocol code to process events. A protocol
that implements ordering may keep a sequence number or
a vector clock as part of the session state. In connection
oriented protocols, the session also maintains information
about the endpoints of the connection. Note that it is often
useful to maintain several active sessions for the same layer
even when they share the same endpoints: for instance, one
might want to have different FIFO channels for different
priority streams.

Figure 1 shows howAppia can coordinate different
objects with independent consistency requirements. The
square object (A) requires totally ordered updates upon ev-
ery group member. The elliptical object (B) does not need
to enforce such a strong property. The figure illustrates two
inter-stack requirements: (1) updates on any of the objects
should respect causal ordering and (2) both channels share
a common failure detector module; this way, inconsisten-
cies motivated by the unreliability of failure detection are
avoided. Additionally, the event propagation mechanisms
for coordination among layers allows the upper layers to



configure the failure detection module according to appli-
cation specific requirements as suggested in [6].

Appia handles this sort of requirements in a clean way:
property sharing is achieved by allowing protocol instances
to be present in the required channels. The figure presents
two distinctAppiachannels, one for object (A) and another
for object (B), and behaving as such for the application pro-
grammer. Despite the flexibility of the model, developing
protocols forAppia is not harder than for previous proto-
col frameworks. Depending on protocol behavior, partici-
pation of an instance in several channels can be transparent
to the implementation. The causal protocol, for instance,
can be coded without concern with the number of channels
that may share a single session.

It is our belief that theAppia model may simplify the
development of complex dependable systems: coordination
tasks that are usually implemented by the application pro-
grammer, namely those that impose constraints on multiple
channels, can now be easily encapsulated in the communi-
cation stack, sometimes in a transparent way. Given its rich
set of requirements, the MOOSCo project is an excellent
target to assess the effectiveness of the approach.

The type of protocols that can be supported by theAppia
system is not restricted to group communication protocols,
even if these were the first to be implemented. SinceAppia
uses an open event mode, letting the user to create the set
of events more suitable for a given application class, it is
possible to define a broad class of protocols. Furthermore,
the Appia kernel is independent of the way the events are
processed by each layer. The use ofAppia for other appli-
cation areas is currently under evaluation, so we expect that
the number of available protocols continues to grow.

In what regard to the validation compositions of chan-
nels, Appia provides a limited support, in the form on
checks on the consistency of the set of events that are gener-
ated, subscribed, and required by each layer. At this point,
it is the responsibility of the application to ensure that the
combination of different QoS are consistent.

5. Conclusions

MOOSCo is a recently approved project that will ex-
plore the difficulties in applying a component-based ap-
proach to Multi-user Object-Oriented environment. To ad-
dress the dependability requirements of this type of environ-
ments, MOOSCo relies on a configurable group communi-
cation infrastructure, calledAppia. This framework allows
the design of compositional and customizable infrastruc-
ture protocols, offering different qualities of service.Ap-
pia makes possible to implement, in a clean way, inter-QoS
constraints. This is a key mechanism to support the con-
struction of dependable MOO applications that are easily
tuned and can evolve.

References

[1] M. Antunes and R. Silva. Using separation and composition
of concerns to build multiuser virtual environments. InPro-
ceedings of the 6th International Workshop on Groupware -
CRIWG’2000, Madeira, Portugal, 2000. IEEE.

[2] J. Barrus, R. Waters, and D. Anderson. Locales: Supporting
Large Multiuser Virtual Environments. InIEEE Computer
Graphics and Applications, pages 16(6):50–100, Nov. 1996.

[3] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu.
Coyote: A system for constructing fine-grain configurable
communication services.ACM Transactions on Computer
Systems, 16(4):321–366, Nov. 1998.

[4] K. Birman, R. Friedman, and M. Hayden. The maestro group
manager: A structuring tool for applications with multiple
quality of service requirements. Technical report, Cornell
University, Ithaca, USA, Feb. 1997.

[5] K. Birman and R. van Renesse, editors.Reliable Distributed
Computing With the ISIS Toolkit. Number ISBN 0-8186-
5342-6. IEEE CS Press, Mar. 1994.

[6] F. Cosquer, L. Rodrigues, and P. Verı́ssimo. Using tailored
failure suspectors to support distributed cooperative applica-
tions. InProceedings of the 7th IASTED/ISMM International
Conference on Parallel and Distributed Computing and Sys-
tems, pages 352–356, Washington (DC), USA, Oct. 1995.

[7] E. Frcon and M. Stenius. Dive: A Scalable Network Archi-
tecture for Distributed Virtual Environments. InDistributed
systems Engineering Journal(Special Issue on Distributed
Virtual Environments), number Vol. 5, No 3, pages 91–100,
September 1998.

[8] B. Garbinato and R. Guerraoui. Flexible protocol compo-
sition in Bast. InProceedings of the 18th International
Conference on Distributed Computing Systems (ICDCS-18),
pages 22–29, Amsterdam, The Netherlands, May 1998.
IEEE Computer Society Press.

[9] M. Hayden.The Ensemble System. PhD thesis, Cornell Uni-
versity, Computer Science Department, 1998.

[10] N. Hutchinson and L. Peterson. Design of the x-Kernel. In
Proceedings of the SIGCOMM’88: Communications Archi-
tectures and Protocols, Stanford, USA, Aug. 1988. ACM.

[11] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and
P. Barham. Exploiting Reality with Multicast Groups. In
IEEE Computer Graphics and Applications, pages 15(5):38–
45, September 1995.

[12] H. Miranda and L. Rodrigues. Flexible communication sup-
port for CSCW applications. In5th Internation Workshop on
Groupware - CRIWG’99, pages 338–342, Cancún, México,
Sept. 1999. IEEE.

[13] J. Pubrick and C. Greenhalg. Extending Lo-
cales: Awareness Management in MASSIVE-3. In
URL:http://www.crg.cs.nott.ac.uk/research/systems/MASSIVE-
3, September 1999.

[14] R. V. Renesse, K. P. Birman, B. B. Glade, K. Guo, M. Hay-
den, T. Hickey, D. Malki, A. Vaysburd, and W. Vogels. Ho-
rus: A flexible group communications system. Technical Re-
port TR95-1500, Cornell University, Computer Science De-
partment, Mar. 23, 1995.

[15] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group com-
munication support for distributed collaboration systems. In
Proceedings of the 17th International Conference on Dis-
tributed Computing Systems, pages 43–50, Balitmore, Mary-
land, USA, May 1997. IEEE.


	-1em. Introduction
	Related work
	Configurable middleware
	Appia
	-1em. Conclusions

