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Abstract

Many existing applications demand the si-
multaneous use of several communication
channels with different Quality of Service
(QoS) requirements. For optimal perfor-
mance, the application designer should be
able to to specify a protocol stack that meets
hers/his QoS requirements through the com-
position of micro-protocols.

The paper gives examples of applications
where the stacks supporting different QoSs
are not independent. We show that these
dependencies are hard to express with cur-
rent communication architectures and pro-
pose a novel approach that supports a style
of micro-protocol composition that satisfies
both inter-QoS and intra-QoS constraints.

1 Introduction

Distributed applications are becoming in-
creasingly complex, offering rich and power-
ful services to their users. In order to offer
satisfactory performance, these applications
are also becoming increasingly demanding in
terms of communication support. It is easy
to find applications that require the simulta-
neous use of several communication channels
with different Quality of Service (QoS) re-
quirements. Typical examples can be found
in multimedia applications, where different
channels for data, audio and video are used.
The same sort of requirements can also be
found in less obvious contexts. For instance,
in replication management one might use dif-
ferent ordering properties for write and read
operations.

The implementation of each QoS class re-
quires the use of a specific protocol stack.
For instance, network omissions are treated
in a different way according to the type of
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information being transmitted. Depending
on the compression algorithm, a video frame
may be dropped, but a data lock request
needs to be delivered in a reliable way. In or-
der to avoid re-writing communication stacks
for each new application, the new generation
of communication services allow the applica-
tion designer to specify a protocol stack that
meets her/his QoS requirements through the
composition of micro-protocols. We call the
requirements that constraint the composition
of the stack satisfying a single QoS an intra-
QoS requirement.

In this paper we show that intra-QoS pro-
tocol composition is not enough and that ex-
isting communication architectures still lack
some features that are essential to support
applications with multiple QoS requirements.
We provide examples of applications where
the communication stacks that support dif-
ferent QoSs are not independent. Instead,
the application requires the implementation
of inter-QoS constraints that can be ex-
pressed in an elegant way if the commu-
nication stacks share common layers. We
show that these dependencies are hard to
express with current architectures and pro-
pose a novel approach that supports a style
of micro-protocol composition that satisfies
both inter-QoS and intra-QoS constraints.

The paper is organized as follows. In sec-
tion 2 we motivate the problem by present-
ing some examples of the class of problems
that impose inter-QoS constraints. Section 3
proposes a solution to the problem. Section 4
relates this work with several communication
frameworks. Section 5 concludes this paper.

2 Motivation

In this section we provide examples of classes
of problems that require the use of multi-
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Figure 1: Two stack definition approaches:
a) regular b) cactus like

ple QoS with both intra-QoS and inter-QoS
constraints. To illustrate a possible imple-
mentation of these requirements we will use
stacks built from the composition of micro-
protocols. Most recent architectures [10, 13,
5] support this type of composition, since
modularization is essential to the develop-
ment of powerful communication systems.
Using protocol composition to obtain richer
semantics simplifies the implementation and
validation of protocols and allows applica-
tions to pay the services that they need in-
stead of what the tool has to offer [6].

According to this approach, a stack can
be built by “piling” layers of micro-protocols.
Most existing systems support just indepen-
dent stacks where messages have only a single
path, i.e., messages cross all stack layers, get-
ting all their properties. Some systems (e.g.
Horus [14]) allow stacks to assume a cactus
style, as illustrated in Figure 1, allowing mes-
sages to follow different paths when they are
sent from different stack access points. The
cactus can also be upside-down [13]. We will
show that this type of composition is not
rich enough to support complex QoS require-
ments.

2.1 Synchronized streams with

different QoS

This example is representative of multime-
dia applications. To support interaction,
the application opens different communica-
tion channels, one for each type of media
(namely audio, video and data). These two
streams require different transport protocols,
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Figure 2: A multimedia stack with diamond
shape

thus different communication stacks are used.
However, all streams need to be synchro-
nized. To achieve this goal, an inter-stream
synchronization layer can be used as pro-
posed in [2].

Another problem of using different stacks
is that failures can be detected in a non-
consistent way by the protocols in each stack.
The Maestro [1] system tackles this issue by
creating a “core” stack in charge of coordi-
nating the others. The core stack coordinates
by sharing joins, leaves and failure detectors.

An elegant solution based on protocol com-
position could use the stack of Figure 2. This
approach consists of having a common failure
detection layer at the bottom of each stream
and a synchronization layer in the upper lay-
ers. The combination of the several “paths”
creates a “diamond” structure. This type of
structure can be found in other systems [11]
but as we will show, with a limited scope.

2.2 Operations with different

semantics

When making remote invocations on dis-
tributed objects, the performance is im-
proved if the appropriate QoS is used. Often,
different operations have different semantics.
We have already referred the case of read
and write operations. Usually writes need
to be totally ordered while reads are commu-
tative. Several other operations share this
type of constraints. We will use the following
example presented by Georges Brun-Cottan
in the Ensemble [5] mailing list. Consider



one application that needs to implement a
distributed semaphore. A distributed fault-
tolerant semaphore can be implemented as a
replicated shared variable satisfying the fol-
lowing constraints:

o Test & set operations are delivered in
FIFO and Total order with regard to
each other to every group member.

e Release operations may be delivered
only in FIFO order with regard to each
other and with regard to test € set ones.

One way to satisfy these constraints is to
build a new layer that offers two different
QoS such as the one presented in [12]. An-
other solution is to achieve the same seman-
tics through protocol composition. Having a
single stack (similar to the stack of Figure 1a)
imposes unnecessary delays, since release op-
erations are also totally ordered.

The cactus like stack (Figure 1b) does not
satisfy the constraints also: in this case the
process would handle two stack access points,
a structure that cannot enforce preservation
of the desired FIFO order. The problem is
the following: suppose that some process p
sends a test & set message m; followed by a
release message my. Since m; is a totally or-
dered message it might be blocked within the
total layer, waiting for previous message from
some other process. This would allow mes-
sage mq, which is not forced to go through
the total layer, to be delivered to the appli-
cation before m;.

A correct composition would require a
structure such as the one depicted in Fig-
ure 3. The reader will notice that the pro-
tocol “path” associated with each QoS forms
a “diamond” like structure similar to our pre-
vious example.

2.3 Discussion

The previous examples share some common
properties that can be identified:

1. Several QoS channels need to be sup-
ported;

2. these channels are not independent of
each other;

3. the resulting protocol composition ex-
hibits a “diamond” like structure.
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Figure 3: A stack for a distributed semaphore
with diamond shape

ation

These characteristics are not restricted to
the examples above and can be found in other
contexts. In the following section we will dis-
cuss mechanisms to support the development,
of protocol structures with these properties.

3 A protocol fabric

Protocol composition must be supported by
a number of abstractions, tools and run-
time mechanisms. Relevant run-time mecha-
nisms include memory management for mes-
sage structures, timeout management, thread
management, etc. A classical example of
work in this area is the z-kernel [8], which
provides a powerful set of features to develop
communication stacks. From the point of
view of protocol composition, the function of
the protocol kernel is to support the exchange
of events between adjacent layers. This pa-
per focus exclusively on the layer composition
aspects of protocol kernels and does not ad-
dresses orthogonal issues such as buffer man-
agement, timer management, etc.

It should be noted that, in order to main-
tain layer independence, the micro-protocols
should not be aware of the way they are in-
terconnected. No explicit reference to a par-
ticular upper or lower layer should be al-
lowed. Instead, each protocol should only
invoke generic “up-event” and “down-event”
calls. The events are delivered to the appro-
priate protocols by the kernel according to
the bindings established when the stacks are
created (possibly, at run-time). We propose



a novel architecture that allows the routing
of events to be based not only on QoS pa-
rameters (intra-QoS constraints) but also on
inter-QoS constraints. The protocol kernel
acts as a switching fabric, routing messages
between layers and ensuring that a path sat-
isfying the desired QoS is followed.

3.1 The model

We define a layer as the implementation of a
protocol. All protocols implement the same
event interface, which defines the types of
events each one is able to consume and pro-
duce. The format and semantics of these
events is irrelevant to our exposition. Typ-
ical examples of events are data transmission
requests, indication and confirmations. Ex-
amples of layers are “datagram transport”,
“positive acknowledgment”, “total order”,
“checksum”, etc. Good examples of rele-
vant layers and events in the context of fault-
tolerant applications can be found in [5].

We define a session as an instance of a
layer [9]. The session maintains state that
is used by the layer code to process events.
A layer that implements ordering may keep a
sequence number or a vector clock as part of
the session state. In connection oriented pro-
tocols, the session also maintains information
about the endpoints of the connection. Note
that it is often useful to maintain several ac-
tive sessions for the same layer even when
they share the same endpoints: for instance,
one might want to have different FIFO chan-
nels for different priority streams.

The clear separation between layers and
sessions is key to our design. These two
concepts can be combined to satisfy multi-
ple QoS requirements as follows:

A QoS is defined as an ordered set of lay-
ers. The QoS defines which protocols must
act on the messages and by which order they
must be traversed. A channel is an instan-
tiation of a QoS and is' characterized by a
stack of sessions of the corresponding layers.
For sake of clarity we assume that all QoS
that interact with the application are termi-
nated on top by a layer that we simply call
the “Application”. A session of the Applica-
tion layer is also called an endpoint. A stack

LAt a finer level of granularity, one could also con-
sider different parameterizations of each protocol as
an independent QoS.
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is a set of non-disjoint channels (i.e., each
channel shares at least one session with some
other channel of the same stack). Figures 4,
5, 6 illustrates these concepts.

3.2 Requirements revisited

We can now revisit the requirements of appli-
cations demanding the management of multi
non-independent quality of services in face of
our definitions. The requirements are pre-
sented in Table 1.

Requirement RQ-1 is the basic motivation
for our service. It is satisfied by allowing
users to send messages over different chan-
nels. Requirement RQ-2 reflects the fact
that, at the recipient site, the message should
be processed by the peer entities of the pro-
tocols transversed during transmission. Re-
quirement RQ-3 imposes that inter-QoS con-
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straints need to be taken into account and
stacks with “diamond” structures need to
be built. Finally, in requirement RQ-4, we
state that micro-protocols should be com-
bined without the need to re-write any code.
This preserves the flexibility of the system,
allowing an existent platform to be extended
instead of recreated.

3.3 The protocol kernel

The protocol kernel is responsible for main-
taining meta-structures about the active
stacks and for supporting exchange of events
between adjacent layers. When an event is
pushed down or popped up in the stack, it
has to be “routed” to the appropriate ses-
sion of the appropriate layer. This routing is
sometimes performed in a different way for
descending and ascending events.

To illustrate how associations between
adjacent layers can be managed, consider
the following “traditional” implementation of
a stack containing PRESENTATION, con-
nection oriented TRANSPORT and NET-
WORK layers (our example is generic, and
independent of any specific protocol family).
When a message is sent (descending event),

RQ-1 The user should be allowed to send a
message using different Qualities of Service.

RQ-2 The message should follow peer chan-
nels in different nodes.

RQ-3 Channels may or may not share ses-
sions of common layers. In particular, they
may share the same endpoint.

RQ-4 Micro-protocols independence should
be preserved.

Table 1: Implementation requisites

the presentation layer selects a given session
of the transport protocol. It then calls a func-
tion of the transport layer specifying the ses-
sion in a parameter of the call. The transport
adds a header to the data message containing
a connection identifier and pushes the data
further down by calling a function of the net-
work layer. When the message is received
(ascending event), the network layer reads
the network protocol header, which indicates
that the event must be routed to the trans-
port layer. The network layer is unable to
read the transport header so he cannot for-
ward the message directly to the “session”.
Instead, a generic function of the transport
protocol is called to extract the connection
identifier from the transport header. The
connection identifier is then used to obtain
the correct transport “session” state, which
is needed to process the event.

The previous approach has several draw-
backs. To start with, it implements a form
of static binding, where each layer is aware
of its adjacent layers. For instance, if a new
TRANSPORT?2 is added to the system, the
code of the network layer needs to be mod-
ified in order to exchange events with that
layer. This strongly limits the modularity
of the system. Additionally, it requires “ses-
sion” identifiers to be added and extracted
from headers at all layers where this infor-
mation is needed.

In our case we propose to use a scheme in-
spired in the Horus [13] and Ensemble [5] sys-
tems, where events between adjacent layers
are routed based on “tags” associated with



the events. Tags are obtained from QoS and
inter-QoS constraints. In the Ensemble sys-
tem these tags are associated with stacks,
since Ensemble only supports a one-to-one
mapping between stacks and sessions. In our
case the tags are associated with channels
and the kernel meta-structures register which
sessions are transversed by a given chan-
nel. The technique has similarities with tag-
switching techniques used in network routing
(for instance in ATM switching) and offers
similar advantages: events can be delivered
immediately to the appropriate session and
both space and processing time is saved by
avoiding redundant headers.

3.4 Stack interface

In this paper we assume that every stack in-
terfaces the application by at least one ses-
sion of the APPLICATION layer. Each ses-
sion of this layer serves as a serial access point
to the stack: messages are sent to the lower
layers by the order they are injected in the
access point by the application. Similarly,
messages are delivered to the application by
the order they are received from the lower
layers. A tag is assigned to each descend-
ing event by this layer, based on the channel
specified by the user. This tag is preserved
when the event descends the stack.

The stack interfaces the communication
media through a DEVICE layer. This layer
is just an abstraction of any protocol out-
side the control of our communication kernel
(for instance, many fault-tolerant stacks in-
terface TCP or UDP transports). The DE-
VICE layer is responsible for adding to the
message a global identifier of the peer chan-
nel and for assigning a channel tag to the
ascending events (ascending events are trig-
gered by the reception of messages from the
device).

3.5 Multi-channel sessions

Due to inter-QoS constraints, multiple chan-
nels can transverse a single session at one or
more layers. These sessions are called multi-
channel sessions.

When a multi-channel session receives an
event it must register the channel on which
the event is flowing; if the event is propagated
in the stack the associated channel must be

used. Consider again our multimedia exam-
ple. When the intermedia synchronization
layer is requested to send an audio frame, it
should pass this frame to the audio layer of
the audio channel; when a video frame is re-
ceived it should be passed to the video layer.

Sometimes, multi-channel session may
spontaneously generate events which are not
bound a priori to a given channel. For in-
stance, the intermedia synchronization layer
may exchange non-audio and non-video con-
trol information with its peers. To avoid am-
biguities, every multi-channel session must
be associated to a “default” channel that is
used to route all events which are not specifi-
cally bound to a given channel. In our exam-
ple, control information could be routed by
default through the data channel.

3.6 Defining stacks

A stack can be defined as a sequence of
channels that may share sessions. Each
channel is defined as a sequence of pairs
(Layer,Session). Stacks can be easily defined
in graphical form, such as illustrated in Fig-
ure 5. However, we believe that, for most
practical purposes, graphs can be specified
using a string with a simple syntax. We pro-
pose the syntax presented on Figure 7 for
stack definition.

Stack=“Channell:
Layer[Session] |
Layer[Session]

Channel2:
Defaults:
Layer[Session] -> channel;

ey

Figure 7: Stack definition syntax

Channel is a name that identifies a given
path, allowing system to satisfy requirements
RQ-1 and RQ-2; Layer specifies a layer name
and Session its instance. Session identifiers
are simple integer numbers; note that the ses-
sion identifier has a scope that is local to the
stack specification since, by definition, chan-
nels that share a session of a given layer be-



long to the same stack.
users can:

With this syntax

e Use different instances of the same pro-
tocol for different channels by specifying
different session numbers;

e Force channels to share layers by speci-
fying the same session number.

The stack of our first example, graphically
represented in Figure 5, would be specified as
follows:

stack="audio: APPLICATION[1] |
INTERMEDIASYNC[1] | AUDIOPROTO[1] |
FIFO[1] | FAILDETECT[1] | DEVICE[1];
video: APPLICATION[1] |
INTERMEDIASYNC[1] | VIDEOPROTO[1] |
FIFO[2] | FAILDETECT[1] | DEVICE[1]; data:
APPLICATION[1] | INTERMEDIASYNC[1] |
DATAPROTO[1] | FIFO[3] | FAILDETECT[1] |
DEVICE[1]; defaults: INTERMEDIASYNC[1]
-> data"

Note that audio and video channels share
sessions of the APPLICATION, MEDI-
ASYNC and FAILDETECT layers but have
their own local sessions of the FIFO layer.

3.7 Execution overhead

At first glance, one might think that the ad-
ditional flexibility offered by our approach
comes at the expense of some execution over-
head. At this point, we still do not have a
running prototype of our architecture. How-
ever, our experience with the Ensemble sys-
tem lead us to expect a small overhead only
during stack creation: the meta-structures
required by our approach are more complex
than those used in that system. On the other
hand, the complexity of event routing should
not be seriously affected.

4 Related work

The problem of inter-QoS constraints can be
addressed using “ad-hoc” solutions. The so-
lution described in [2] for the inter-media
synchronization uses a monolithic layer. A
monolithic layer is also proposed by Moste-
faoui and Raynal [12] to address an ordering
problem similar to the one presented earlier.
Two classes of messages are supported by a

single layer: unordered and causally ordered.
Unordered messages can de delivered in any
order regarding to each other, but ordered
with regard to causal messages.

Horus [13] is a flexible group communica-
tion where protocols, in form of layers, are
dynamically stacked by user request. Some
complex constructs can be found in the ar-
chitecture: the hierarchical membership layer
(PARCLD) offers a reversed cactus stack and
the light-weight groups layer (LWG) offers
a standard cactus stack. However, these
compositions are layer-dependent and are
not maintained by the kernel meta-structures
(for instance, the LWG layer has a single ses-
sion).

The Ensemble [5] system follows the Horus
project emphasizing the use of formal meth-
ods to validate the correctness of protocols.
It offers more restrictive layering conditions.
Stacks are not allowed to be joined (as in
PARCLD layer in Horus) nor to be splited.
The Ensemble team has also focused on QoS
problems [1]. The Maestro’s key concept is to
have a “core” stack coordinating others, shar-
ing joins, leaves and failure detectors. Al-
though accomplishing an improvement on re-
sources consumption, Maestro doesn’t allow
any layer sharing which could optimize the
tool even more.

Bast is an object-oriented library of reli-
able distributed protocols [3]. The use of
the Strategy Design Pattern [4] produces a
quite intuitive model for the protocol de-
signer and user. Porting our model to Bast
would be probably quite easy if requirement
RQ-4 could be ignored since Bast’s supports
only static bindings between protocols.

Consul [11] is a fault tolerant distributed
system implemented on the x-Kernel [9]. The
system presents interesting features towards
our proposal, namely a divider layer that
performs routing of events based on message
classes and allows events to be processed in
parallel. However, layers must explicitly no-
tify the divider layer of the classes of mes-
sages they are interested in. It is our be-
lief that our approach could be implemented
on top of Consul, but with a non-negligible
amount of code changes. This work has
been extended in [7]. The extended model is
based on three components: micro-protocols,
events and frameworks. The system is event-
driven and micro-protocols must register in



the framework the set of events they are
ready to process. The events may be deliv-
ered in parallel or sequentially to the layers.
Layers can create new event types. However,
the framework does not explicitly manage the
notion of session. On the other hand, the
work of Hiltunen provides horizontal com-
pound, which we still not address in our ar-
chitecture.

5 Conclusions

This paper presented the case for consider-
ing both intra-QoS and inter-QoS constraints
when designing communication stacks to sup-
port application with multiple QoS require-
ments. We have presented a model where
channels are composed of layer sessions and
inter-QoS constraints are modeled by making
channels share some sessions of common lay-
ers. The model can be implemented in an ef-
ficient way by using tag-switching techniques
to support the routing of events between ad-
jacent layers.
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