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Abstract

GlobData is a project that aims to design and implement a middle-
ware tool offering the abstraction of a global object database repository.
This tool, called Copla, supports transactional access to geographically
distributed persistent objects independent of their location. Additionally,
it supports replication of data according to different consistency criteria.
For this purpose, Copla implements a number of consistency protocols
offering different tradeoffs between performance and fault-tolerance. This
paper presents the work on strong consistency protocols for the Glob-
Data system. Two protocols are presented: a voting protocol and a non-
voting protocol. Both these protocols rely on the use of atomic broadcast
as a building block to serialize conflicting transactions. The paper also
introduces the total order protocol being developed to support large-scale
replication.

1 Introduction

GlobData 1 [1] is an European IST project started in November 2000 that
aims to design and implement a middleware tool offering the abstraction of

∗This work has been partially supported by the project IST-1999-20997, GlobData.
†Sections of this report where published in the Eurasia-ICT 2002 conference proceedings.
1The GlobData partners are: Instituto Tecnológico de Informática de Valencia (ITI),

Spain; Faculdade de Ciências da Universidade de Lisboa (FCUL), Portugal; Universidad
Pública de Navarra (UPNA), Spain; GFI Informatique (GFI), France; Investigación y De-
sarrollo Inforático (IDI EIKON), Spain.
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a global object database repository. The tool, called Copla, supports trans-
actional access to geographically distributed persistent objects independent of
their location. Application programmers have an object-oriented view of the
data repository and do not need to be concerned of how the objects are stored,
distributed or replicated. The Copla middleware supports the replication of
data according to different consistency criteria. Each consistency criteria is im-
plemented by one or more consistency protocols, that offer different tradeoffs
between performance and fault-tolerance.

This paper reports the work on strong consistency replication protocols for
the GlobData system that is being performed by the Distributed ALgorithms
and Network Protocols (DIALNP) group at Universidade de Lisboa. Based on
the previous work of [17, 16], two protocols are being implemented: a voting pro-
tocol and a non-voting protocol. Each of these protocols supports two variants,
namely eager updates and deferred updates. The protocols are executed on top
of an off-the-shelf relational database that is used to store the state of persis-
tent objects and protocol control information. All protocols rely on the use of
atomic broadcast as a building block to help serialize conflicting transactions.
A specialized total order protocol is being implemented in the Appia system [14]
to support replication in large-scale. The atomic protocol inherits ideas from
the hybrid protocol of [19]. The paper introduces the GlobData architecture,
and resumes both the consistency protocols and the atomic multicast primitive
that supports them.

This paper is organized as follows: Section 2 describes the general Copla
architecture. Section 3 presents the consistency protocols. Section 4 presents the
atomic multicast primitive that supports the protocols. Section 5 presents some
optimizations to the basic protocols. Section 6 describes the recovery procedure
for failed nodes. Section 7 discusses related work that studies database replica-
tion based on atomic broadcast primitives. Section 8 concludes this paper.

2 Copla System Architecture

Copla is a middleware tool that provides transparent access to a replicated
repository of persistent objects. Replicas can be located on different nodes of
a cluster, of a local area network, or spread across a wide are network span-
ning different geographic locations. To support a diversity of environments and
workloads, Copla provides a number of replica consistency protocols.

The main components of the Copla architecture are depicted in Figure 1.
The upper layer is a “client interface” module, that provides the functionality
used by the Copla applications programmer. The programmer has an object-
oriented view of the persistent and distributed data: it uses a subset of Object
Query Language [7] to obtain references to distributed objects. Objects can be
concurrently accessed by different clients in the context of distributed transac-
tions.

For fault-tolerance, and to improve locality of read-only transactions, an
object database may be replicated at different locations. Several consistency
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Figure 1: Copla architecture

protocols are supported by Copla; the choice of the best protocol depends on
the topology of the network and of the application’s workload. To maintain the
user interface code independent of the actual protocol being used, all protocols
adhere to a common protocol interface (labeled CP-API in the figure). This al-
lows Copla to be configured according to the characteristics of the environment
where it runs.

The uniform data store (UDS) module (developed by the Universidad Pública
de Navarra) is responsible for storing the state of the persistent objects in an
off-the-shelf relational database management system (RDBMS). To perform this
task, the UDS exports an interface, the UDS-API, through which objects can
be stored and retrieved. It also converts all the queries posed by the application
into normalized SQL queries. Finally, the UDS is used to store in a persis-
tent way the control information required by the consistency protocols. This
control information is stored and accessed through an dedicated interface, the
PER-API.

Architectural challenges The GlobData project is characterized by a unique
combination of different requirements, that make the design of the consistency
protocols a challenging task. Namely, the GlobData aims to satisfy the fol-
lowing requirements:

• Large-scale: the consistency protocols must support replication of objects
in a geographically dispersed system, in which the nodes communicate
through the Internet. This prevents the use of protocols that make used
of specific network properties (such as the low-latency or network-order
preservation properties of local-area networks [18]).

• RDBMS independence: a variety of commercial databases should be sup-
ported as the underlying data storage technology. This prevents the use
of solutions that require adaptations to the database kernel.

3



• Protocol interchangeability : Copla must be flexible enough to adapt to
changing environment conditions, like the scale of the system, availabil-
ity of different communication facilities, and changes in the application’s
workload. Therefore it should allow the use of distinct consistency proto-
cols, that can perform differently in several scenarios.

• Object-orientation: even if Copla maps objects into a relational model,
this operation must be isolated from the consistency protocols. In this
way, the consistency algorithms are not tied to any specific object repre-
sentation.

3 Strong Consistency Protocols

In GlobData, the application programmer may trade fault-tolerance for perfor-
mance. Therefore, a suite of protocols with different behavior in the presence of
faults is being developed by different teams. Another project’s partner, the ITI,
is developing a suite of protocols based on the notion of object ownership [15]:
Each node is the manager for the objects created in it, and is responsible for
managing concurrent accesses to those objects. On the other hand, the DIALNP
team at Universidade de Lisboa, is developing two protocols that enforce strong
consistency even in the presence of faults. In fact, the two protocols reported
here can also be configured to trade reliability for performance, by implementing
a deferred updates scheme. The strong consistency protocols rely extensively on
the availability of an uniform atomic broadcast primitive. The implementation
of this primitive will be addressed later in the paper.

3.1 Interaction Among Components

We now describe the strong consistency protocols designed for Copla. Both
protocols cooperate with the Uniform Data Store to obtain information about
which objects are read or updated by each transaction. This information, in the
form of a list of unique object identifiers (OIDs), allows the protocols to have
fine-grain information about which transaction conflict with each other. Since
the consistency protocols only manipulate OIDs, they remain independent from
the representation of objects in the database.

The Copla transactional model In Copla, the execution of a transaction
includes the following steps:

1. The programmer signals the system that a transaction is about to start.

2. The programmer makes a query to the database, using a subset of OQL.
This query returns a collection of objects.

3. The returned objects are manipulated by the programmer using the func-
tions exported by the client interface. These functions allow the applica-
tion to update the values of object’s attributes, and to read new objects
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through object relations (object attributes that are references to other
objects).

4. Steps 2-3 are repeated until the transaction is completed.

5. The programmer requests the system to commit the transaction.

Interaction with the consistency protocols The common protocol inter-
face basically exports two functions: a function that must be called by the
application every time new objects are read by a transaction, and a function
that must be called in order to commit the transaction.

The first function, that we call UDSAccess(), serves two main purposes:
to make sure that the local copies of the objects are up-to-date (when using
deferred updates, the most recent version may not be available locally); and to
extract the state of the objects by calling the UDS (the access to the underlying
database is not performed by the consistency protocol itself; it is a function of
the UDS component). It should be noted that in the actual implementation
this function is unfolded in a collection of similar functions covering different
requests (attribute read, relationship read, query, etc.). For clarity of exposition,
we make no distinction among these functions in the paper.

The second function, called commit(), is used by the application to commit
the transaction. In response to this request the consistency protocols module
has to coordinate with its remote peers to serialize conflicting transactions and
to decide whether it is safe to commit the transaction or if it has to be aborted
due to some conflict. In order to execute this phase, the consistency protocol
request the UDS module to provide the list of all objects updated by the current
transaction. Additionally, the UDS also provides the consistency protocols with
an opaque structure containing the state of the updated objects. It is the
responsibility of the consistency protocol to propagate these updates to the
remote nodes.

Replication strategies Using the classification of database replication strate-
gies introduced in [21], the strong consistency protocols of Copla can be clas-
sified as belonging to the “update everywhere constant interaction” class. They
are “update everywhere” because they perform the updates to the data items in
all replicas of the system. This approach was chosen because it is easier to deal
with failures (since all nodes maintain their own copy of the data) and it does
not create bottleneck points like the primary copy approach. They are “con-
stant interaction” because the number of messages exchanged by transaction is
fixed, independently of the number of operations in the transaction. Given that
the cost of communication in most GlobData configurations is expected to be
high, this approach is much more efficient than a linear interaction approach.
The protocols described below explore the third degree of freedom: the way
transactions terminate (voting or non-voting).
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Interaction with the atomic broadcast primitive An atomic broadcast
primitive broadcasts messages among a group of servers, guaranteeing atomic
and ordered delivery of messages. Specifically, let m and m′ be two messages
sent by atomic broadcast to a group of servers g. Atomic delivery guarantees
that if a member of g delivers m (resp. m′), then all correct members of g
deliver m (resp. m′). Ordered delivery guarantees that if any two members of
g deliver m and m′, they deliver them in the same order. These two proper-
ties are used by both consistency protocols: the order property is used by the
conflict resolution mechanism, and atomic delivery is used to simplify atomic
commitment of transactions.

3.2 The Non-Voting Protocol

This protocol is a modification of the one described in [17], altered to use a ver-
sion scheme for concurrency control [6], and adapted to the Copla transactional
model.

The protocol uses the following control information for each object: a version
number and a flag that states whether or not the local copy of this object is up-
to-date. If an object is out-of-date, the identifier of the node that has the latest
version of the object is also kept. Note that in the basic protocol, all replicas are
up-to-date when a transaction commits. Only in the deferred updates mode, it is
possible that some replicas remain temporarily out of date. All this information
is maintained in a consistency table, which is stored in persistent storage, and
is updated in the context of the same transaction that alters data (i.e., the
consistency information is updated only if the transaction commits).

When an object is created, its version number is set to zero. Each time
a transaction updates an object, and that transaction commits, the object’s
version number is incremented by one. This mechanism keeps version numbers
synchronized across replicas, since the total order ensured by atomic broadcast
causes all replicas to process transactions in the same order.

When enforcing serializability, two kinds of conflicts must be considered by
the protocol: read/write conflicts and write/write conflicts. Read/write conflicts
occur when one transactions reads an object, and another concurrent transac-
tions writes on that same object. Write/write conflicts occur when two concur-
rent transactions write on the same object. In GlobData, all objects are read
before they are written (as shown above in the Copla transactional model), so
a write/write conflict is also a read/write conflict. Considering this definitions,
in the version number concurrency control scheme, conflicting transactions are
defined as follows:

Two transactions t and t′ conflict if t′ has read an object with version
vo and when t′ is about to commit, object o’s version number in the
local database, v′o, is higher than vo. That means that t′ has read
data that was later modified (by a transaction t that modified o
and committed before t′, thus increasing o’s version number), and
therefore t′ should be aborted.
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• UDSAccess(t,l):

1. Add the list l of objects to list of objects read by transaction t.

• commit(t):

1. Obtain from the UDS the list of objects read (RSt) and its version
numbers, and the list of objects written (WSt) by this transaction.

2. Send < t,RSt,WSt > through the atomic broadcast primitive.

3. When the message containing t is delivered by the atomic broadcast:

(a) If t does conflict with some other transaction

i. Abort.

(b) else (consistent transaction)

i. Abort all transactions conflicting with t

ii. Commit the transaction.

Figure 2: Non-voting protocol

The general outline of the non-voting algorithm is now presented:

1. All the transaction’s operations are executed locally on the node where
the transaction was initiated (this node is called the delegate node).

2. When the application requests a commit, the set of read objects and its
version numbers, and the set of written objects is sent to all nodes using
the atomic broadcast primitive.

3. When a transaction is delivered by the atomic broadcast protocol, all
servers verify if the received transaction does not conflict with other local
running transactions. There is no conflict if the versions of the objects
read by the arriving transaction are greater or equal to the versions of
those objects present in the local database. If no conflict is detected, then
the transaction is committed, otherwise it is aborted. Since this proce-
dure is deterministic and all nodes, including the delegate node, receive
transactions by the same order, all nodes reach the same decision about
the outcome of the transaction. The delegate node can now inform the
client application about the final outcome of the transaction.

Note that the last step is executed by all nodes, including the one that
initiated the transaction.

Depicted in Figure 2 is a more detailed description of the algorithm. It is
divided in two functions, corresponding to the interface previously described.
Both functions accept the parameter t, the transaction to act upon. UDSAc-
cess() also accepts a parameter, l, which is the list of objects that t has read
from the UDS. Note that step 3 of the commit() function is executed by all
nodes, including the delegate node.
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The algorithm uses the order given by atomic broadcast for serializing con-
flicting transactions: if a transaction is delivered and is consistent, it has priority
over other running transactions. This implies that if there are two conflicting
transactions, t1 and t2, and t1 is delivered before t2, then t1 will proceed, and
t2 will be marked as conflicting (in step 3(a)), because it has read stale data.

The decision is taken in each node independently, but all nodes will reach the
same decision, since it depends solely on the order of message delivery (which
is guaranteed to be consistent at all replicas by the atomic broadcast protocol).
When a commit is decided, the version number of the objects written by this
transaction are incremented, and the UDS transaction is committed.

Note that to improve performance, local running transactions that conflict
with a consistent transaction are aborted, in step 3(b). There is a conflict
when the running transaction has read objects that the arriving transaction has
written. This would cause the transaction to carry old versions of read objects
on its read set, which would cause it to be aborted later on in step 3(a). This
way an atomic broadcast message is spared2.

Aborting a transaction does not involve any special step. In this case, the
commit() function is never called, and all that has to be done is to release the
local resources associated with that transaction.

3.3 The Voting Protocol

This protocol is an adaptation of the protocol described in [13] adapted to the
Copla transactional model. It consists in two phases, a write set broadcast
phase, and a voting phase.

The general outline of the algorithm is as follows:

1. All the transaction’s operations are executed locally on the delegate node,
obtaining (local) read locks on read objects (note that, in order to be
written, an object must be previously read).

2. When the application requests a commit, the set of written objects is sent
to all nodes using atomic broadcast.

3. When the write set of a transaction t is delivered by atomic broadcast,
all nodes try to obtain local write locks on all objects in the set. If there
is a transaction that holds a write lock on any object of the write set of
t, t is placed on hold until that write lock is relinquished. Transactions
holding read locks on any object of the write set of t are aborted (sending
an abort message through atomic broadcast). When the delegate node has
obtained all write locks, sends a commit message to all servers, through
atomic broadcast.

4. Upon the reception of a confirmation message, a node applies the transac-
tion’s writes to the local database and subsequently releases all locks held

2This optimization may not be effective in all cases : if the running transaction has already
sent its message, then there is no saving, the transaction is merely aborted sooner. When its
message arrives, it will be discarded.
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• UDSAccess(t,l):

1. For each object in the list l obtain a read lock. If any of those objects is
write-locked, t is place on hold until that object’s write lock is released.

• commit(t):

1. Obtain from the UDS the list of objects written (WSt) by t.

2. Send < t,WSt > through the atomic broadcast primitive.

3. When the message containing t is delivered by atomic broadcast:

(a) For each object o in WSt, try to obtain a write lock on it, executing
the following steps atomically:

i. If there is one or more read locks on o, every t′ that has that
read lock is aborted (by sending an at′ message using atomic
broadcast), and the write lock on o is granted to t.

ii. If there is a write lock on o, or all the read locks on o are
from transactions trecv whose message < trecv,WStrecv > has
already been delivered, t will be placed on hold until those write
locks are released.

iii. If there is no other lock on o, grant the lock to t.

(b) If this node is the delegate node for t, send ct by atomic broadcast.

4. When a ct message is delivered: commit t, writing all its updates in the
database and releasing all locks held by t. All transactions t′waiting to
obtain write locks on an object written by t are aborted (a at′ message
is sent through atomic broadcast).

5. When a at is delivered: If t is a local transaction the message is ignored,
otherwise abort t, releasing all its locks.

Figure 3: Voting protocol

on behalf of that transaction. Upon the reception of an abort message,
the delegate node aborts the transaction an releases all its locks (other
nodes ignore that message).

A detailed description of the algorithm is shown in Figure 3. The algorithm
uses the order given by atomic broadcast to serialize conflicting transactions.
The final transaction order is given by the order of the < t,WSt > messages.
Conflict detection is done using locks.

Write/write conflicts, that occur when two concurrent transactions try to
write over the same object, are detected by the lock system (two transactions
try to obtain a write lock on the same object). Since write locks are obtained
upon reception of < t,WSt >, the order of these messages determines the lock
acquisition order. As seen in Figure 3, if a transaction t obtains a write lock,
it will force a later transaction t′ to wait when it tries to obtain its lock. If t
commits it will force t′ to abort.
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Read/write conflicts, that occur when two concurrent transactions access
the same object, one for reading and the other for writing, are solved by giving
priority to writing transactions. When a < t,WSt > message is delivered, write
locks are obtained, causing transactions that have read locks on objects in WSt
to abort. This rule does not apply to transactions whose write set has already
been delivered (step 3(a)ii): in this case t will be placed on hold until the decision
is taken regarding the transaction(s) that own the read lock.

All nodes obtain the same write locks in the same order, because the order
of the < t,WSt > messages is the same in all nodes, and the lock procedure is
deterministic. As such, all nodes will be able to respect the decision issued by
the delegate node.

Optimization This protocol can be further improved, to avoid aborting un-
necessary number of transactions. In the lock acquisition phase (after< t,WSt >
is delivered), instead of immediately aborting transactions that hold read locks
on objects in WSt, they can be placed on an alternative state, called execut-
ing abort. This is to consider situations where t is latter aborted, which means
that the other transactions that interfered with t were needlessly aborted.

Transactions in the executing abort state can proceed executing, but cannot
commit. If they attempt to, they will be placed on hold. If t commits, then all
transactions in executing abort because of t will be aborted. If t aborts, then the
transactions in executing abort will return to normal execution state (if there is
no other transaction t′ that is placing t in executing abort).

Read-only transactions that try to commit and are in executing abort state
do not need to be put on hold - they can commit immediately. The final
serialization order is as these transactions executed before the transaction that
placed them in executing abort.

4 The Atomic Broadcast Protocol

The two strong consistency protocols implemented in the Copla middleware
make extensive use of the properties of an atomic multicast protocol. To ef-
ficiently support the consistency protocols, a protocol designed for large-scale
operation has been implemented [20].

The protocol is an adaptation of the hybrid total order protocol presented
in [19]. The hybrid protocol combines two very known solutions for total order:
sequencer based and logical clocks. A process may be active or passive: if it is
active then it orders messages for itself and others; if it is passive then it has an
active process that orders his messages. If more that one active process exists,
then the order is established using logical clocks. The processes can change is
role depending on the number of messages transmitted and the network delay
between themselves and the other processes. These characteristics optimize the
protocol behavior in large-scale networks.

Unfortunately, the original protocol as presented in [19] supports only a non-
uniform version of atomic multicast, i.e., the order of messages delivered to
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crashed processes may differ from the order of messages delivered to correct
processes. In the database context, this may lead to the state preserved in
the database of a crashed process to be inconsistent. Therefore, in Copla,
one needs an uniform total order protocol, i.e. a protocol that ensures that if
two messages are delivered by a given order to a process (even if this process
crashes), they are delivered in that order to all correct processes.

The new protocol also supports the optimistic delivery of (tentative) total
order indications [8, 18]. Given that the order established by the (non-uniform)
total order protocol is the same as the final uniform total order in most cases
(these two orders only differ when crashes occur at particular points in the
protocol execution), this order can be provided to the consistency layer as a
tentative ordering information. The consistency protocols may optimistically
perform some tasks that are later committed when the final order is delivered.

Typically, the most efficient total order algorithms do not provide uniform
delivery and assume the availability of a perfect failure detector. Such algo-
rithms may provide inconsistent results if the system assumptions do not hold.
On the other hand, algorithms that assume an unreliable failure detector always
provide consistent results but exhibit higher costs. The most interesting feature
of the protocol derived for Copla is that it combines the advantages of both
approaches. On good periods, when the system is stable and processes are not
suspected, the algorithm operates as if a perfect failure detector is assumed.
Yet, the algorithm is indulgent, since it never violates consistency, even in runs
where processes are suspected.

5 Optimizations to the Basic Protocols

The basic protocols described in Section 3 can be optimized in two different
ways. One consists in delaying the propagation of updates, the deferred up-
dates mode. Other consists in exploiting the optimistic delivery of the atomic
multicast algorithm.

5.1 Deferred Updates

Both algorithms presented before can be configured to operate on a mode called
deferred updates. This mode consists in postponing the transfer of updates until
such data is required by a remote transaction, trading fault-tolerance for perfor-
mance. Note that, when using deferred updates, the outcome of a transaction
is no longer immediately propagated to all replicas: it is stored only at the del-
egate node. If this node crashes, transactions that access this data must wait
for the delegate node to recover. On the other hand, network communication is
saved because updates are only propagated when needed.

The changes to the protocol required to implement the deferred updates
mode are encapsulated in the getNewVersions(t,l) function, which is depicted in
Figure 4. In both protocols, the function is called after step one, i.e., it becomes
step two of UDSAccess().
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• For each OID in l:

1. Check if the object’s copy in the local database is up-to-date.

2. If the object is out-of-date, get the latest version from the node that
holds it.

Figure 4: getNewVersions(t, l)

Associated with each OID, there is a field, called owner, that contains the
identifier of the node holding the latest version of that object’s data. If that
field is empty, then the current node holds the latest version.

When deferred updates mode is not used, modified data is written to the
database at the end of the commit procedure. This step is modified to implement
deferred updates: only the delegate node writes the altered data on its database,
setting the owner field to empty. All the other nodes write the identifier of the
delegate node in their databases. The only information that is sent across the
network is merely a list of changed OIDs (instead of that list plus the data
itself).

5.2 Exploiting Optimistic Atomic Delivery

As described above, the atomic broadcast primitive developed in the project
has the possibility of delivering a message optimistically (opt-deliver), i.e., the
message is delivered in a tentative order, which is likely to be the same as the
final order (u-deliver). This can be exploited by both consistency protocols.
The tentative order allows the protocols to send the transaction’s updates to
the database earlier. Instead of waiting for the final uniform order to perform
the writes, they are sent to the database as soon as the tentative order is know.
When the final order arrives, all that is required is to commit the transaction.
This hides the cost of witting data behind the cost of uniform delivery, effectively
doing both things in parallel.

Non-voting protocol Upon reception of an opt-deliver message, all steps in
the commit() function are executed, with the following modifications: in step
3(a), conflicting transactions are not aborted, but placed on hold (transactions
on hold can execute normally, but are suspended when they request a commit,
and can only proceed when they return to normal state); in step 3(b-ii), the
data is sent to the UDS, but the transaction is not committed.

When the message is u-delivered, and its order is the same as the tentative
one, all transactions marked on hold on behalf of the current one are aborted,
and the transaction is committed. If the order is not the same, then the open
UDS transaction is aborted, all transactions placed on hold on behalf of this
one are returned to normal state, and the message is reprocessed as if it arrived
at that moment.
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Voting protocol (This modification is for the optimized version of the pro-
tocol) Upon reception of an opt-deliver message for transaction t, all steps in
the commit() function are executed, with the following modifications: in step
3(b), the ct message is not sent; instead the transaction is placed in a waiting
state, and the updates are sent to the database. When the same message t is u-
delivered, if the order was maintained, the transaction is placed in normal state,
the ct message is sent, and the rest of the procedure is the same. If the order
differs, then all transactions waiting for the final message ordering opt-delivered
before t, and not yet u-delivered, are aborted.

6 Node Recovery

To support recovery of nodes, the Copla consistency algorithms store informa-
tion about every committed transaction in a persistent log (the log is maintained
by the PER-API of the UDS module). Writes to the log are performed in the
context of the corresponding transaction. Therefore, the UDS ensures that if
the transaction commits the log update is also committed. The log consists of a
table with three columns: the transaction’s sequence number, the transaction’s
unique identifier and the set of changes performed by the transaction. Each line
corresponds to a transaction log record.

There are two complementary methods to perform recovery that are used
by the Copla consistency algorithms. The less efficient but simpler method
consists in transferring to the recovery nodes a complete, up-to-date, copy of
the entire database. This method is only used for nodes that have been failed
or disconnected for a long period. The other approach consists in sending to
the recovery node the transaction it missed during the period it was crashed or
disconnected. The information required to replay these transactions is stored
the Copla log. Note that the log has finite size. That is why a complete copy
of the database may be required after long crashes.

Both the voting and the non-voting algorithms operate as described in the
previous sections as long as the local node remains in a majority partition. If
due to failures or due to a network partition a node finds itself in a minority
partition it stops processing write transactions. It is possible to configure the
system to let read-only transaction to read (possibly stale) data in a minority
partition. The total number of servers in the system and their locations is
a configuration parameter that is provided by the system manager. As such,
establishing whether or not a given group of nodes is a minority (if there are n
servers, a minority group is one with n/2 members or less) is trivial.

The recovery procedure consists of the protocols that allow a node bring its
state up-to-date with the state of the nodes in the majority partition (or to
form a new majority partition after a total failure and recovery). To support
the recovery procedure, the consistency protocol maintain three complementary
views of the server membership. These views are the following:

• The up-to-date process group view P (t) contains all nodes that are capable
of processing transactions at time t.
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• The recovery group view R(t) contains all nodes that are connected with
the nodes on P (t) at time t. It therefore contains the process group view
and all the nodes that are updating their state but noy yet capable of
processing transactions.

• The static group view S contains all the nodes in the system and is spec-
ified in the initial node configuration. This view is static and does not
change with time.

A majority (or minority) partition is always defined compairing the up-to-
date process group view P (t) with the static group view S, i.e, we consider
that P (t) has become a minority group if #P (t) ≤ #S

2 Note that, by definition,
P (t) ⊆ R(t) at any given time t. In the normal case, R(t) = P (t) = S, i.e., all
nodes are up and can process transactions.

The recovery method outlined below assumes that is possible to assign a
unique sequence number to every transaction processed in the system. This
sequence number is used during recovery to identify which transactions have
been missed by the recovering nodes. This number is derived from the total
order algorithm which is used by both consistency protocols: when the system
starts up, all nodes will set the initial transaction number to the number of the
last committed transaction. Whenever a new total order message containing
a transaction arrives, the counter is increased, and its value is the number of
the arriving transaction. Since all nodes receive the same messages in the same
order, the number given to each transaction is the same in all nodes.

When a node recovers, that node must synchronize its database with the
nodes that belong to P (t). This is done in the following manner:

1. The recovering member r joins the group of replicas, and is placed in R(t).

2. While recovering is taking place, processes that belong to the up-to-date
process group view may continue to accept and process new transactions.
Therefore, the recovering node must immediately start collecting all trans-
actions it receives. Since it does not have its state up-to-date, it does not
process these updates: they are kept in a pending state. The unique
identifier (not the sequence number) of the first transaction added to the
pending state is stored in a variable pendingr.

3. A node p ∈ P (t) is selected to be the peer node for the recovering node.
The peer node will be responsible for helping the recovering node to syn-
chronize its database.

4. The recovering node r sends to p the sequence number of the last trans-
action that it processed successfully (lastr) and the identifier of the first
transaction added to pending (pendingr). The transactions in this interval
are all the transactions the recovery node has missed.

5. The peer node p then checks if all the transactions missed by the recovering
node are registered in p’s log. If yes, the outcome of these transactions are
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transfered to the recovering node. If not, this means that the recovering
node has been crashed or disconnect for too much time. In this case, a
copy of the complete database is initiated.

6. After receiving all missed transaction, the recovering nodes processes the
transactions that have been stored in pending until its state is fully syn-
chronized with the group of up-to-date replicas. At this point, r joins the
P (t) and start processing transactions normally.

7 Related Work

In the database literature, one can find different alternatives to enforce replica
consistency. Some authors [10, 9] suggested voting schemes, where a certain
number of votes is given to each node, and a transaction can only proceed if
there are enough replicas to form a sufficient quorum. This quorum must be
defined in such a way that at least one replica detects conflicting transactions.
The scalability problems of this technique (and of other related replication tech-
niques) are identified in [11]. One of the main problem consists on the large
number of deadlocks that may occur in the face of concurrent access to the
same data: the number of deadlocks grows in the proportion of n3 for n nodes.
It has been suggested that a technique to circumvent this problem is to im-
plement some sort of master-slave approach: each object belongs to a master
node, and to avoid reconciliation problems, nodes that do not own an object
make tentative updates, and then contact that object’s master node to confirm
those updates.

An alternative approach followed in Copla consists in using an active repli-
cation scheme based on the use of efficient atomic multicast primitives. Sys-
tems such as [17, 12, 16], use the message order provided by atomic broadcast
to aid in the serialization of conflicting transactions. An example of such a sys-
tem is the Dragon [2] project, that uses extensively replicated algorithms that
take advantage of the ordering properties of atomic broadcast in order to avoid
deadlocks [21, 22, 13]. However, unlike our approach, the Dragon protocols are
implemented at the database-kernel level, and cannot be used with off-the-shelf
database systems.

Concurrently with our work, the CNDS group [3] has developed a system [4,
5] similar to GlobData. Their approach also separates the consistency protocol
from the database module. However, unlike our protocols, their system does not
provide fine grain conflict detection. In Copla, because a node knows the read
and write set of the transactions that is executing, it can: a) Detect if a given
query (read-only transaction) can be applied immediately (i.e., if it does not
conflict with pending update transactions); b) abort transactions earlier, saving
an expensive atomic broadcast message.
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8 Conclusion

This paper presented the strong consistency protocols supported by the Copla
middleware, a tool that provides transactional access to persistent transparently
replicated objects. These protocols are based on the use of atomic broadcast
primitives to serialize conflicting transaction and to enforce the consistency in
the transaction commit phase. The protocols satisfy a set of challenging re-
quirements imposed by the GlobData architecture, namely: large-scale oper-
ation, RDBMS independence, protocol interchangeability and support for an
object-oriented access to data. The paper also introduced the atomic broadcast
algorithm that has been designed to support the execution of the consistency
protocols.

Currently we are completing the implementation of both consistency proto-
cols and the atomic broadcast protocol. We then plan to evaluate the impact
of different loads on both algorithms under varying conditions, as well as the
performance of the atomic broadcast primitive in the those varying conditions.
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[16] M. Patiño Mart́ınez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scal-
able replication in database clusters. In Proceedings of the 14th Interna-
tional Symposium on Distributed Computing (DISC), Toledo, Spain, Octo-
ber 2000.

[17] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic broadcast in
replicated databases. In Proceedings of EuroPar (EuroPar’98), Southamp-
ton, UK, September 1998.

[18] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings
of the 12th International Symposium on Distributed Computing (DISC’98),
Andros, Greece, September 1998.

[19] L. Rodrigues, H. Fonseca, and P. Veŕıssimo. Totally ordered multicast in
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