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Abstract

In this paper we present and evaluate a novel mechanism, called Hop
Level, that creates and maintains long range contacts (LRCs) in overlay
networks. The Hop Level mechanism owns the following characteristics:
i) lazy creation of the LRCs, ii) support for unbalanced node distribu-
tion, iii) support for multidimensional spaces and iv) near-optimal path
lenght/node degree trade-off. These characteristics make Hop Level spe-
cially suited for overlay networks that support range data queries (as
opposed to distributed hash tables that only support exact queries) with
one or more dimensions. Furthermore, and unlike previous similar work,
Hop Level can handle churn very well, because it postpones creation of
the LRCs until it is necessary. In this way, nodes that have short lives do
not overload the network with their state update requests.

1 Introduction

Distributed hash tables (DHTs) have recently emerged as an important com-
ponent for distributed systems. A DHT is a dictionary that outputs values in
exchange of keys. A common aspect to the most well-known DHTs [9, 16, 14,
17, 6, 7, 13] is that they operate in the application layer as an overlay network.
To overcome the limitations inherent to DHTs, some researches have proposed
a shift to a more powerful paradigm: the distributed storage systems [4, 5, 8]
(DSSs). Unlike DHTs that only perform exact queries, DSSs allow efficient
range queries. As a consequence, when compared to a DHT, the design of a
DSS is more complex. First, in a DSS, we cannot assume that data is uniformly
distributed in space. Second, we cannot assume that entrance and departure
patterns of data items will favor balancing. On the contrary, DHTs were based
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on the assumption that consistent hashing would result in a perfect balance of
node identifications and data items.

Often, in overlay networks, it is possible to distinguish between two differ-
ent types of contacts: “nearby” contacts, forming a kind of connected lattice
between nodes that have close virtual identifications, and “long range contacts”
(LRCs) between nodes that have “distant” virtual node identifications. While
the former type of contacts may be important in certain overlays, to ensure
connectedness and routing convergence, short path lengths actually depend on
the latter type of contacts. In fact, it is the capability to “jump” over many
close nodes in a single hop that makes it possible to achieve short path lengths.
Therefore, in this paper, we present the Hop Level mechanism, which creates
and maintains LRCs in overlay networks. The Hop Level mechanism can be used
in many different overlay networks to reduce path lengths, including DHTs and
DSSs. Nevertheless, it is particularly well suited to DSSs, because it can cope
with unbalanced distribution of nodes and it supports single as well as multi-
dimensional data. We believe that this is one of the most innovative aspects
of Hop Level, because most overlay networks are tied to unidimensional ad-
dress spaces, where nodes must be numerically or alphabetically ordered (e.g.,
SkipNets [6]).

Since node degree and diameter of a network cannot be arbitrarily and si-
multaneously reduced, the trade-off between these two metrics is often used as
a fundamental efficiency measure of an overlay network. For an O(1) node de-
gree, the expected diameter can be at best O(log n), while for an O(log n) node
degree, the expected diameter cannot be shorter than O(log n/ log log n) [7], for
an n-node network. Given this limitation, path lengths of Hop Level achieve a
nearly optimal trade-off with node degree. Furthermore, unlike existing overlay
networks that implement DHTs and DSSs, when a node using the Hop Level
mechanism enters the network, it postpones the creation of the LRcs to sim-
plify the entrance. Later, it progressively creates the LRCs as they are needed
to route real messages. In fact, lazy creation of the LRCs is one of the most
significant aspects of Hop Level, as this reduces control traffic with only a minor
effect on routing performance. In this way, behavior of Hop Level under churn
is very good.

The remainder of the paper is organized as follows: Section 2 states the
problem we are solving. Section 3 overviews previous work. Our long range
contact mechanism is described and evaluated, respectively in Sections 4 and 5.
Section 6 concludes the paper.

2 Problem Statement

Throughout this paper we will consider that routing convergence is ensured by
nearby contacts already existing in the overlay network, e.g., as in [10] or [9].
Although these are examples of two-dimensional networks (of which we tested
the Delaunay triangulation of [10]), there is however no restriction to the number
of dimensions of the overlay network. A crucial point here is that distribution
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of nodes does not need to follow any specific pattern.
Hence, we will consider the following conditions: i) nodes are organized into

a multidimensional underlying overlay network having only nearby contacts;
and ii) identification of nodes is arbitrary (as a result, distribution of nodes in
space may be unbalanced). The goal of condition ii is to maintain locality, by
preventing arbitrary conversion of node addresses from one space of identifica-
tions to another, e.g., by an hash function. There are many practical examples
where this restriction holds. In a DSS, nodes may receive their identification
according to the data items that they store. In [4], the overlay structure directly
reflects the contents of the data, which is organized in a sequential order. In this
way, it is possible to make range queries efficiently. On the contrary, hashing
data to obtain some balance in a different identification space would defeat this
goal. Another example where the condition ii holds occurs in systems where
identification of a node bears some relation with its physical location, like in [3]
or when using landmark ordering [13].

Furthermore, we will consider the use of a routing scheme where i) the
preprocessing algorithm can only collect information of O(1) nearby peers and
O(log n) distant peers per node and ii) the routing algorithm will select, among
the forwarding node’s contacts (either short or long range), the one which is
closest to destination in terms of Euclidean distances1. Given these conditions,
our goal is to design a mechanism that creates and maintains a set of LRCs at
each node such that routing convergence is guaranteed with O(log n) expected
path lengths despite non-uniform node distribution. Moreover, each node should
store O(log n) LRCs and this number must not depend on the size of the virtual
identification space, but only on the nodes effectively existing in the system.
Balancing the workload among the peers in the DSS is not a goal of this paper;
such issue is orthogonal to our work and is already tackled in previous work,
like [4].

Before presenting the Hop Level mechanism we will overview previous re-
search in the topic of overlay networks to capture the relevant features that
should be owned by efficient sets of LRCs.

3 Related Work

There is a huge body of work related with overlay networks and, in particular,
with DHTs. In some DHTs it is possible to do an explicit separation between
nearby and long range contacts (e.g., in DHTs based on a ring). However,
there are also many other systems where this separation is only implicit or
non-existent. In constrat to the previous cases, CAN [13] exhibits no LRCs but
only short range contacts, thus having longer path lengths. To overcome this
limitation, Xu and Zhang [17] proposed a mechanism called “expressways for

1There is no loss of generality in assuming Euclidean distances, as other metrics could
also be used if more appropriate to the structure of the lattice, e.g., Manhattan distance or
unidimensional virtual identification distance.
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CAN” that augments basic CAN with LRCs. This work and others, like [9]
and [11] are very similar in spirit to the Hop Level mechanism.

All the DHTs referred before assume a balanced distribution of nodes in
space. Unlike these, LAND [1] copes with unbalanced distribution of nodes, but
it does not meet the conditions stated in Section 2, because it hashes identi-
fiers of objects. SkipNet [6] was also designed from scratch to cope with the
unbalanced use of identification space. In fact, SkipNet is more appropriate to
support a DSS, because it supports range queries. However, the identification
space of a SkipNet is unidimensional and generalization to higher-dimensional
spaces does not seem trivial. Unlike SkipNet, [4, 5, 8] have explicit support for
complex load balancing mechanisms without impairing efficient range queries.
Of these, only Mercury [5] supports multidimensional range queries. However,
Mercury requires a different data structure (a ring of nodes) for each queriable
attribute (including a copy of the data). When compared to these systems, sup-
port of multidimensional range queries is inherent to the Hop Level mechanism
and does not need to be mapped to multiple unidimensional queries.

4 Hop Level LRCs Mechanism

We now describe our proposal to build LRCs in unbalanced overlays. Using our
Hop Level mechanism, LRCs are established automatically whenever a message
goes through b consecutive hops. Consider, for instance, that some node F
is forwarding a message m to node N1 originated at node S and destined to
node D. If node F realizes that N1 will be the b-th hop of m it triggers the

creation of a LRC from S to N1, denoted by S
1
→ N1. To do this F sends

a control message to S. The process is repeated from N1 onwards: if after b

hops, message m reaches N2, N1 will create a LRC to N2, N1
1
→ N2, and so

on. Let us call these LRCs, level-1 LRCs. If the message path is very long, it

may happen that a sequence of b level-1 LRCs occurs, for instance: S
1
→ N1,

N1
1
→ N2, . . ., Nb−1

1
→ Nb. In this case, a new LRC from S directly to Nb

should be created. This new LRC, S
2
→ Nb, is one level above of the previous

ones. This mechanism should be applied recursively for all levels. Hence, a LRC
of level-l jumps over bl hops.

To bound the number of LRCs per node, we limit the number of LRCs that
exist in each level. This allows the number of LRCs to grow with the size of the
network. The shape of this growth is evaluated in Section 5.

4.1 Algorithm

Our implementation of Hop Level algorithm requires a minimum of three vari-
ables per level l to be carried in each message m: the number of hops, nhm[l],
the node that may receive a new LRC of that level, sm[l], and whether this
node has space for an additional LRC, am[l]. Whenever level counter nhm[l−1]
reaches the limit b, a new LRC, starting at sm[l] should be created. To conserve
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Algorithm 1 Hop Level algorithm
{Executed at node F when forwarding m to node N}
{Control information carried in message m:}
{maxm — highest valid level; pm — level of LRC used to reach F ;}
{∀k ∈ [0, maxm] : nhm[k], sm[k], am[k] — resp., number of hops, first node and whether there

are available slots in the first node for level-k;}

1: l← level of LRC from F to N (F
l

→ N)
2: if pm = ⊥ or pm < l then

3: maxm ← l + 1; lim ← maxm

4: else

5: lim ← pm

6: end if

7: for all k ∈ {l, . . . , lim − 1} do

8: sm[k + 1]← F ; am[k + 1]← aF [k + 1]; nhm[k]← 0
9: end for

10: nhm[l]← nhm[l] + 1
11: while nhm[l] ≥ b do

12: nhm[l] = 0
13: if am[l + 1] > 0 then

14: instruct sm[l + 1] to create LRC sm[l + 1]
l+1
→ N

15: end if

16: l← l + 1;
17: if maxm == l then

18: maxm ← maxm + 1; nhm[maxm − 1]← 0
19: sm[maxm]← sm[maxm − 1]; am[maxm]← am[maxm − 1]
20: end if

21: nhm[l]← nhm[l] + 1
22: end while

space we do not discuss signaling cost here, but it is possible to leave some of
this temporary information at the nodes to shorten messages.

When a forwarding node uses a LRC of level-l to send a message, it must
check the LRC used by the previous hop node, say level-p. If l > p, neither one
of the LRCs that preceded this hop can be used to create new LRCs (e.g., if
a level-3 LRC is being taken after a previous level-2 LRC). Now, consider that
message m is going to be sent along its b-th consecutive hop of level-l to node
N . In this case, forwarding node F sends a control message to the node that
initiated the sequence of level-l, prompting it to create a LRC of level-(l + 1) to
node N . Then, node F sets the number of hops of level-l to 0 and increments
the number of hops of level(l + 1) by 1. Should this substituting hop become
the b-th hop of level-(l + 1), the same process is repeated for level-(l + 1), and
so on, until a level with fewer than b hops is reached.

To implement this algorithm, messages must carry the level pm of the LRC
used by the previous hop to reach F , and an indication of the highest level of the
array that contains valid information, maxm. Each node F , when forwarding
the message m to N , executes Algorithm 1. aF [k] is a boolean variable that
indicates whether F has slots available at level k to store additional LRCs. If F
is the source of the message, F = S, it is necessary to set previous level pm ←

⊥. In this case, the execution of the algorithm will initialize maxm ← l + 1,
sm[max]← S, am[max]← aS [max] and nhm[max− 1]← 0.

To maintain the LRCs evenly distributed in face of membership changes, we
periodically delete the least recently used LRC of some randomly selected levels.
In our experiments, path lengths did exhibit low sensitivity to variations of the
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deletion period. Nodes should also purge hanging LRCs that point to neighbors
that left. To do this, nodes can send periodic beacons to their neighbors. Al-
ternatively, we can trade this beacon traffic by latency, by using, again, a lazy
approach. In this latter solution, nodes only detect that a LRC is hanging when
they try to use it. For the highest churn rates we tested in Section 5, when
using a lazy apprach, 13.3% of the messages tried to follow hanging LRCs. This
figure goes down to 1.2% for the lowest churn rate.

5 Evaluation

Experiment Settings In this section we experimentally evaluate Hop Level
with b = 2. Most experiments, including the comparison with eCAN-like mech-
anism (to be presented ahead) use a Delaunay triangulation as the underlying
lattice [10]. However, for benchmarking purposes we have also used a mapping
of a two-dimensional space into a unidimensional ring. In our experiments we
evaluate the following aspects: i) the behavior of Hop Level, when different
limits for LRCs by level are used; this includes knowing the distribution of the
LRCs by the levels; ii) the behavior of Hop Level when compared to the eCAN-
like mechanism, both in balanced and extremely unbalanced scenarios; iii) the
behavior of Hop Level in a ring; iv) the cost of the bootstrap mechanism of Hop
Level and, finally; v) the behavior of Hop Level in dynamic settings, including
settings with strong membership variation, i.e., under churn.

In the tests, arbitrary pairs of nodes exchange a large number of messages in
networks with sizes ranging from 100 to 50, 000 nodes. To route the messages we
have used the greedy routing algorithm, because it has good performance and
it works both in the underlying lattice and with LRCs, without requiring any
extensions. Furthermore, it agrees to the conditions of Section 2. Hence, next
hop is always the neighbor (connected by a short or long range contact) closest
to destination. To let Hop Level LRC scheme converge, and depending on the
network size, we routed up to 1, 000, 000, 000 different messages and only used
the final 3000 paths in the evaluation of path lengths. Nevertheless, we also
show that our mechanism achieves good routing performance much earlier than
that. To test unbalanced distributions of nodes we used a truncated Gaussian
bivariate distribution with standard deviations of 0.01 in a [0, 1]× [0, 1] square.

Number of LRCs per Level The first aspect that we evaluate is the per-
formance achieved by different configurations of the Hop Level mechanism. The
goal is to determine the limit for the number of LRCs per level that ensures
the most reasonable compromise between path lengths and node degrees. Fig-
ures 1(a) and 1(b) respectively show the average path lengths (in number of
hops) and the average number of LRC used by each node for different network
sizes and for different configurations of the Hop Level mechanism: with 1, 2, 4,
6 and 8 LRCs per level. We can see that all configurations achieve an approx-
imately logarithmic/logarithmic trade-off (a logarithmic growth is represented
by a straight line). We believe that this is quite an interesting aspect, because
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Figure 1: Path length and number of LRCs

it minimizes the need for manual configuration of parameters. In the rest of our
experiments we set the limit to 6 LRCs per level. Figure 1(c) shows how many
LRCs exist on the entire network and the average length of those LRCs for each
hop level. To do this evaluation, we have used a 50, 000 node network with a
balanced distribution of nodes, because a balanced distribution allows to reason
in terms of distance. From the growth of the number of levels it is possible to
determine the growth of the number of LRCs per node. Given that the distance
growth from one level to the next is approximately exponential this figure points
to the conclusion that the number of levels is approximately logarithmic.

Comparison with “eCAN-like” and Hop Level in a Ring To offer some
comparative measurement, we ran our scheme against a benchmark mecha-
nism called “eCAN-like”. This benchmark results from an adaptation of the
eCAN [17] logarithmic/logarithmic node degree/path length mechanism (whose
applications most closely resemble those of our own algorithm). Although we
made some simplifications to the original eCAN, we believe that our implemen-
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tation of expressways mimics the eCAN LRC mechanism with enough accuracy
to allow a fair comparison. The idea in eCAN-like is to make a first level divi-
sion of the entire space in four big squares. Each node keeps LRC to the two
neighboring squares. Then, the four big squares are further divided in other
four smaller squares. This time, nodes inside squares have a total number of
four LRC (above, below, right and left). This process is repeated for as many
levels as wanted. In our context, we fixed the number of levels to 8, in a total
of 30 LRCs. The actual LRC will be the node responsible for the central point
of each neighboring square. Comparison of Hop Level against the eCAN-like is
depicted in Figure 1(d), for unbalanced networks. The number of LRCs is not
depicted because it is constant in eCAN-like. Bad behavior of the eCAN-like
mechanism is easily explainable: density of LRCs is no longer enough near the
center and routing to nearby nodes will tend to become linear with the number
of hops in the lattice, instead of logarithmic. On the contrary, node distribution
has a very little impact on Hop Level.

Due to lack of space, we do not show results of mapping a two-dimensional
space into a ring (the same could be done for any number of dimensions). As
expected, path lengths in a ring are also logarithmic, but paths are shorter in a
multidimensional space due to the higher connectivity of nodes. This result is
interesting not only for benchmarking, but also because it shows that hashing
nodes into a ring can have its costs in performance (not to mention a possible
loss of locality information).

Network Convergence Figures 2(a) and 2(b) depict for two network sizes
the growth in the number of LRCs of the entire network and the reduction in
the path lengths. In both cases, we can observe that for all network sizes under
test, a short number of messages suffices to let the network reach a state similar
to a steady state. For all network sizes we tested, path lengths within 3 times
the optimal can be achieved before 5 messages have been generated by each
node.

Dynamic Settings In this section we will use settings similar to the ones
described in Araneola [12], which are based on real measurements [2, 15]. Hence,
we assume that around 7% of the nodes are permanent. The remaining 93% of
the nodes are non-permanent and can enter or leave the network at any instant
and repeatedly do so. When a node enters the network it becomes active, when
it leaves it goes to sleep state. When network starts, non-permanent nodes
are neither active nor sleeping, but in a fourth state that we can call as out.
This means that the network starts with 7% of the permanent nodes. Then,
a bootstrap process starts, bringing 50 new nodes from out to active or sleep
states with equal probabilities at each time step2. After each time step, any non-
permanent node that is either active or sleeping can switch from one state to
the other with a given fixed probability 3 — this simulates the churn (note that

2A time step is counted after 50 messages.
3Hence, an exponential distribution can model joins and leaves.
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Figure 2: Dynamic performance

nodes reenter the network in a fresh state, i.e., without any LRCs originating or
pointing to it). A node can never return to the out state. The main parameter
to vary in this experiment is the rate at which nodes enter and leave the network
or, in other words, the average lifetime of non-persistent nodes. The probability
of switching state after a time step is varied from 0.00005 to 0.0025. In the Hop
Level mechanism, churn is associated with two types of costs: the signaling cost
of changing network topology and the cost of worse routing performance.

Figure 2(c) shows the number of LRCs created in the network under churn
(signaling cost). From the perspective of active non-persistent nodes, the shorter
the lifetime, the fewer LRCs such a node will create. This corresponds to the
line deemed “LRCs p/ node”. On the other hand, the load for the network
and for the persistent nodes increases with churn. This is represented in the
line deemed “LRCs p/ active node”, which shows the total number of LRCs
created in the network, divided by the average number of active nodes. We
can see that even with very small lifetimes, the growth in the number of LRCs
created per active node is moderate. Churn also degrades routing performance.
This is illustrated in Figure 2(d) for a non-persistent node’s lifetime of 10% of
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experiment up time. The pattern depicted in this graphic is similar for other
average lifetimes. Some time after the number of nodes stabilizes, the number
of LRCs per (new entering) node starts to decay until it stabilizes to a value
that depends on the churn rate.

6 Conclusions

In this paper we presented the Hop Level mechanism that manages Long Range
Contacts (LRCs) in overlay networks. Experimental results showed that per-
formance of Hop Level is nearly optimal and independent of node distribution
in space. Furthermore, Hop Level resists churn very well without compromis-
ing performance in fresh networks. For these reasons, we believe that the Hop
Level mechanism is applicable to a broad class of overlay networks, including
multidimensional range queries in Distributed Storage Systems.
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