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Abstract. Total order broadcast protocols are a fundamental building
block in the construction of many fault-tolerant distributed applications.
Unfortunately, total order is an intrinsically expensive operation. More-
over, there are certain algorithms that perform better in specific scenar-
ios and given network properties. This paper proposes and evaluates an
adaptive protocol that is able to dynamically switch between different
total order algorithms. The protocol allows to achieve the best possi-
ble performance, by selecting, in each moment, the algorithm that is
most appropriate to the present network conditions. Experimental re-
sults show that, using our protocol, adaptation can be achieved with
negligible interference with the data flow.

1 Introduction

A total order broadcast protocol is a fundamental building block in the construc-
tion of many distributed fault-tolerant applications [1]. Informally, the purpose
of such a protocol is to provide a communication primitive that allows processes
to agree on the set of messages they deliver and, also, on their delivery order.
Uniform total order broadcast is particularly useful to implement fault-tolerant
services by using software-based replication [2].

Unfortunately, the implementation of such a primitive can be expensive both
in terms of communication steps and number of messages exchanged. This prob-
lem is exacerbated in large-scale systems, where the performance of the algorithm
may be limited by the presence of high-latency links. Several total order protocols
have been proposed that use different strategies to offer good performance [3].
There is no protocol that outperforms all others in all scenarios: each protocol
offers best results under different load profiles and/or network conditions.

In this paper we describe and evaluate a total order protocol that combines
different algorithms and adapts itself to the running environment. The protocol
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TO1 - Total order: Let m1 and m2 be two messages that are TO-broadcast. Let pi

and pj be any two correct processes that TO-deliver(m1) and TO-deliver(m2). If pi TO-
delivers(m1) before TO-delivers(m2), then pj TO-delivers(m1) before TO-delivers(m2),
and we note m1 < m2.

TO2 - Agreement: If a correct process in Ω has TO-delivered(m), then every correct
process in Ω eventually TO-delivers(m).

TO3 - Termination: If a correct process TO-broadcasts(m), then every correct pro-
cess in Ω eventually TO-delivers(m).

TO4 - Integrity: For any message m, every correct process TO-delivers(m) at most
once, and only if m was previously TO-broadcast by some process p ∈ Ω.

Table 1. Regular total order properties

allows a fluid transition between algorithms, never stopping the flow of appli-
cation messages. Such feature can be very useful in fault-tolerant safety- and
mission-critical systems, like air traffic or nuclear plant control, where stoppages
and/or significant delays imposed by adaptive mechanisms may be unacceptable.

We evaluate the performance of an implementation of the protocol and show
how it can be optimized to induce a low overhead in resource consumption.
Finally, we discuss how the protocol can be configured to operate using different
classes of failure detectors.

The rest of the paper is structured as follows. Section 2 clarifies the proper-
ties of total order broadcast services. Section 3 describes the adaptive protocol.
Performance evaluation results are presented in Section 4. Section 5 discusses
optimizations that have been applied in the protocol implementation. Failure
detection issues are addressed in Section 6. Section 7 concludes the paper.

2 Total Order Broadcast

Informally, total order broadcast is a group communication primitive that en-
sures that messages sent to a set of processes are delivered by all those processes
in the same order. Such a primitive is useful, for example, in the implementa-
tion of fault-tolerant services [1], for instance, using the state machine approach
(active replication) [4].

Total order broadcast is defined on a set of processes Ω by the primitives (1)
TO-broadcast(m) which issues message m to Ω, and (2) TO-deliver(m) which is
the corresponding delivery of m. When a process pi executes TO-broadcast(m)
(resp TO-deliver(m)), we say that pi “TO-broadcasts m” (resp “TO-delivers
m”). The total order primitive characterized by the properties listed in Table 1
is known as regular total order. A stronger version, called uniform total order [3],
can also be defined. The difference among these definitions is not relevant for
understanding our adaptive protocol, thus we will not delve further in this topic.



Many algorithms exist to implement total order. To give the reader an insight
on the possible alternatives, we briefly introduce two of the most used ones,
namely the sequencer-site [5] and the symmetric [6, 7] approach. Both methods
have advantages and disadvantages.

In the sequencer-site approach one site is responsible for ordering messages
on behalf of the other processes in the system. Sequencer-based protocols are
appealing because they are relatively simple and provide good performance when
message transit delays are small (they are particularly well suited for local area
networks). However, in these protocols, a message sent by a process that is not
the sequencer experiences a delivery latency close to 2D, where D is the message
transit delay between two system processes (i.e., the time to disseminate the
message plus the time to obtain an order number from the sequencer process).
Thus, sequencer-based approaches are inefficient in face of large network delays.
Note that it is possible to design solutions where the sequencer role is rotated
among processes [8].

In the symmetric approach, ordering is established by all processes in a decen-
tralized way, using information about message stability. This approach usually
relies on logical clocks [9] or vector clocks [10, 6]: messages are delivered according
to their partial order and concurrent messages are totally ordered using some
deterministic algorithm. Symmetric protocols have the potential for providing
low latency in message delivery when all processes are producing messages. In
fact, symmetric protocols can exhibit a latency close to D + t, where t is the
largest inter-message transmission time [11]. Unfortunately, this also means that
all (or at least a majority [7]) processes must send messages at a high rate to
achieve low protocol latency.

Several other alternatives exist. For a comprehensive survey, the reader is
referred to [3]. However, from the two examples above, it should be clear that it
is interesting to have a protocol that can dynamically adapt to changes in the
operation envelope by switching, in run-time, from one algorithm to another.

3 An Adaptive Protocol

We now present a protocol that is able to switch from a total order algorithm to
another total order algorithm in response to changes in the operation envelope
(such as changes in the workload, network conditions, number of participants,
etc). In this paper we do not focus on the conditions that trigger adaptation, as
these are highly application dependent (for a concrete scenario, see [12]). Instead,
we are interested in finding a generic switching procedure that can switch from
one algorithm to the other with minimum interference in the data flow.

Such protocol can be built from scratch using a monolithic approach where
all the functionality of every total order algorithm is embedded in a single unity.
A more modular (and generic) way of reaching the same goal is to (re-)utilize
independent implementations of total order algorithms and build the adaptive
behavior on top of them. In steady-state, the adaptive protocol would simply



1: Initialization:
2: deliv ← ∅
3: undeliv ← ∅
4: curAlg ← TO-A {current algorithm}
5: newAlg ← ∅ {next alg.}
6: switching ← false
7: check[1..n] ← false

8: upon changeAlgorithm(newTO) do

9: rBroadcast(switch,newTO)

10: upon rDeliver(switch,newTO) do

11: newAlg ← newTO
12: switching ← true
13: TO-broadcast(curAlg,(flag,null,myself))

14: upon TO-deliver(curAlg,(flag,null,sender))
do

15: check[sender ] ← true

16: upon check[1..n] = true do

17: endSwitch()

18: upon TO-broadcast(msg) do

19: TO-broadcast(curAlg,msg)
20: if switching = true then

21: TO-broadcast(newAlg,msg)

22: upon TO-deliver(alg,msg) do

23: if alg = curAlg ∧ msg /∈ deliv then

24: deliver(msg)
25: deliv ← deliv ∪ {msg}
26: else if msg /∈ deliv then

27: undeliv ← undeliv ∪ {msg}

28: procedure endSwitch()
29: for all msg ∈ undeliv ∧ msg /∈ deliv do

30: deliver(msg)
31: deliv ← deliv ∪ {msg}
32: undeliv ← ∅
33: check[i..n] ← false
34: curAlg ← newAlg
35: switching ← false

Fig. 1. Adaptive Total Order algorithm

receive TO-broadcast/TO-deliver requests/indications and forward them to the
most appropriate algorithms.

To our knowledge, there is little work in the literature on how to efficiently
perform this transition. Previous works on dynamic adaptation require messages
to be buffered during the reconfiguration [13, 14], the message flow to be stopped
in the current protocol [15], or some communication delay to be imposed during
the transition between protocols [16]. Here we describe a generic transition proto-
col that does not require the traffic to be stopped, allowing a smooth adaptation
to changes in the underlying network.

To be able to effectively transition from one algorithm to the other, all nodes
need to agree on the point in the message flow where they switch. Also, both
algorithms must provide FIFO ordering of messages (which is the most common
case). The rational behind our proposal is to start broadcasting messages using
both total order algorithms, during the switching phase, until a safe point is
reached in every process. By using both algorithms simultaneously, no stoppage
in the message flow is necessary. The protocol is listed in Figure 1.

Let us assume that the adaptation protocol is using algorithm TO-A to
order messages and wants to switch to algorithm TO-B. The transition protocol
works as follows. A control message is broadcast to all processes to initiate the
reconfiguration (lines 8–9). When a node receives this message (line 10) it starts
broadcasting messages using both total order algorithms. Also, the first message
it broadcasts using algorithm TO-A is flagged. If no message is to be sent, then
a flagged special null message is broadcast using TO-A, to allow faster protocol
termination (flagged first message is not represented in the algorithm to preserve
clarity). When a process starts receiving messages from both TO algorithms it



performs the following steps (lines 22–27): messages received from TO-A are
delivered as normally; messages received from TO-B are buffered in order. As
soon as a flagged message is received from each and every node (line 15) the
transition is concluded using the following “sanity” procedure (lines 28–35).
Firstly, all messages received from TO-B that have not yet been delivered by
TO-A are delivered in order. Finally, from this point on, all messages received
from TO-A are simply discarded and no further message is sent using TO-A
(until a new reconfiguration is needed). The TO-B algorithm is then used to
broadcast and receive all the messages to be delivered.

Note that, after the transition is concluded, messages received from TO-B
are delivered only if they have not been already received and delivered from
TO-A (line 23). This is a necessary safeguard as the two total order algorithms
do not necessarily deliver messages in the same order, nor at the same time. So
there is a possibility that a message that has already been delivered from TO-A
is received after the termination of the reconfiguration procedure from TO-B.

Also, the protocol presented does not allow concurrent adaptations. For one
adaptation to happen, the previous (if any) should always have concluded.

4 Performance Evaluation

We evaluate the performance of our adaptive protocol from two different per-
spectives. First, we evaluate the overhead of the switching procedure. Then, we
provide a comparative analysis on how different switching strategies interfere
with the traffic flow during the reconfiguration.

4.1 Switching Overhead

To evaluate the switching overhead of our adaptive protocol we compare the
performance of a system that always uses the same total order algorithm, with
that of a system that is periodically switching between two algorithms. To make
the comparison as fair as possible, we made our protocol switch between two
instances of the same total order algorithm, which is also used as the non-
adaptive protocol. Also, the network topology and working conditions did not
change during the tests. In this way, we can isolate the cost of the switching
procedure given that all the remaining factors remain unchanged.

The adaptive protocol was implemented in Java using the Appia [17] protocol
composition and execution framework. The experiments were conducted in the
SSFNet [18] network simulator and the scenario consists of a five node cluster,
where all nodes are connected to each other by 100Mbps bi-directional links.

Two runs of the same experiment were performed: (A) one using a single total
order protocol (non-adaptive), (B) and another using the proposed adaptive total
order protocol, which is forced to switch periodically. Each run consists of every
node broadcasting 5000 messages of 5KB in total order. The experiment ends
when all nodes receive all the broadcast messages. The values presented are
averages of the measurements conducted in each node.
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Fig. 2. TO throughput in non-adaptive,
adaptive and optimized algorithms
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Fig. 3. TO throughput in adaptive and
stop algorithms

Figure 2 presents the overall throughput results when the send rate is made
variable. As depicted, both total order algorithms perform the same until they
reach approximately 400 msg/s. After this point, the throughput of the non-
adaptive protocol continues to grow while its value stabilizes for the adaptive
protocol. This behavior is explained by the overhead introduced by the switching
phase in the adaptive protocol. During this phase, the same set of messages is
being broadcast by two total order algorithms at the same time, leading to an
increase (approximately double) in the bandwidth usage. If the send rate is
too high, the available bandwidth can be exhausted, leading to the stagnation
observed in the throughput.

Thus, we can conclude that our switching protocol offers negligible overhead
as long as there is enough network bandwidth to support the transmission of
data in parallel during the reconfiguration. When the protocol operates close
to the available bandwidth, the switching procedure introduces an overhead.
This limitation can be addressed at the implementation level, by sending the
payload of the messages using just one of the two algorithms. This optimization
is described in Section 5 and its switching overhead is also depicted in Figure 2.

4.2 Comparative Analysis

As we noted in Section 1, most switching protocols require the message flow to
be stopped in order to terminate the reconfiguration process. By not imposing
a gap in the message flow, our protocol provides smooth transitions between
algorithms, thus allowing applications that rely in its services to normally exe-
cute, even during the switching phase. Therefore, it should offer better overall
throughput, as long as enough bandwidth is available to cope with the demand
imposed by the transmission of messages using two algorithms at the same time.
The same experiment described in 4.1 was conducted using a protocol that stops
the message flow. This protocol operates by sending a stop request to all nodes
and awaiting for a confirmation from each of these nodes. After confirming the
stop request a node does not send further messages until the switch is com-
plete. The performance of such protocol when compared to our proposal can
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Fig. 4. Latency in Adaptive TO
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Fig. 5. Latency in RABP

be observed in Figure 3, which clearly shows that our approach always performs
better.

Other protocols that try to minimize the cost of switching between algorithms
have also been proposed. A previous work [16], proposes a solution that has some
similarities with our protocol, but differs from it by not requiring every node to
wait for a “special” (in our algorithm the term is “flagged”) message from every
other node, and also for not making any assumptions about the failure model
where it is executing (see Section 6). In [16], a special reconfiguration message is
broadcast in total order. When a node receives such message, it stops the flow
in the current algorithm, and re-issues all his undelivered messages in the next
algorithm. It then starts using it to broadcast messages in total order. We will
refer to this protocol by RABP (Replacement of the Atomic Broadcast Protocol).

The RABP strategy has the advantage of requiring less bandwidth during
the switching phase. However, some delay is imposed to the message flow during
the retransmission of the undelivered messages. To observe this side effect, the
experiment was now conducted using our protocol and the RABP protocol. In
Figures 4 and 5 we can observe how both compare in terms of latency. The spikes
depicted correspond to the switching phases, in the time-line of the experiment.
The inter-arrival time of messages was also measured and its evolution is shown
in Figures 6 and 7. Finally, the number of messages delivered by a fixed period
of time (10 ms) was also observed and the comparative results are depicted in
Figures 8 and 9.

This experiment clearly showed that our proposal is able to keep a sustained
delivery rate during the switching phase and performs similarly to RABP during
the remaining time. By not significantly delaying the message flow, our proto-
col can best suit environments where application stoppage, due to significant
communication delays, is not desirable.

5 Implementation Optimization

When enough bandwidth is available, the (non-optimized) version of our proto-
col already implements the switching procedure with negligible overhead in the
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Fig. 6. Inter-arrival time in Adaptive TO
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Fig. 7. Inter-arrival time in RABP
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Fig. 8. Delivery rate in Adaptive TO
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Fig. 9. Delivery rate in RABP

message flow. However, the experimental results provided in Section 4 showed
that during the switching phase, when both protocols are being used to broad-
cast the same set of messages, the available bandwidth can be exhausted when
the send rate and/or message payload is too high.

To overcome this problem we now describe an optimization to reduce the
amount of data being transmitted by the adaptive protocol during this phase.
The optimization consists of broadcasting using the first (and current) algorithm
only the identifiers of the messages being transmitted. The messages payload is
only transmitted using the second algorithm. In this manner, the amount of
redundant information transmitted over the wire is reduced substantially. This
optimization has a minor drawback: the protocol cannot deliver a message to
the application until it is received by both total order algorithms. However, since
both algorithms are executed in parallel, the impact of this feature is negligible.

Figure 2 shows that the optimization allows the protocol to continue increas-
ing its throughput after the point where the non-optimized version stabilizes
(approximately 400 msg/s), showing a behavior similar to the non-adaptive pro-
tocol (note that the lines for the optimized and the non-adaptive algorithms
overlap in the figure).



6 On Failure Detection

To simplify the description of our protocol, in Section 3 we have not addressed
the issue of failure detection during the switching protocol. Namely, we have
stated that the protocol moves to the sanity step when it receives a flag from
every participant (Figure 1, line 16). Without further changes, the protocol
would simply block in the presence of a single failure. We now discuss how our
protocol can be adapted to operate in the presence of faults. Our algorithm can
operate in asynchronous systems augmented with failure detectors [19].

We start by discussing the operation of the protocol in a system augmented
with a Perfect Failure Detector (P) [19], i.e., a system where processes fail by
crashing and crashes can be accurately detected by all correct processes. In this
model, the transition condition should be set to “a flag is received by all correct
processes”. This model is actually used in all of our implementations, where the
failure detection is encapsulated by a view-synchronous interface [20].

The protocol can also be modified to operate in an asynchronous system
augmented with an unreliable failure detector (such as the ⋄S failure detector
proposed in [19]) as long as a majority of processes do not fail (naturally, in this
case, the underlying total order algorithms, must also be designed for such a
model). In this model, the transition condition should be set to “a flag is received
by a majority of processes”. However, in this configuration, correct processes that
do not belong to the majority may be required to retransmit some messages. It
is interesting to observe that the strategy proposed before for the P detector
(perform the switch when a flag is received from all correct processes) and the
strategy proposed in [16] (perform the switch when the first flag is received) can
be seen as extreme point of a spectrum. Between these extreme cases, there is a
range of alternative switching points, from which the “majority of processes” is
the one that ensures less disruption in ⋄S model.

7 Conclusions and Future Work

Several total order protocols exist that use quite different strategies. Such strate-
gies may perform better in specific environments and/or working conditions. We
presented an adaptive total order protocol that is able to switch in run-time be-
tween different total order algorithms. When the environment is dynamic, this
allows the system to use the ordering strategy that is most favorable.

If one is not careful, the procedure to switch between algorithms can disrupt
the message flow. Our work tackles this issue by proposing a novel switching
strategy that performs the reconfiguration with negligible impact on the observed
delivery rate. Evaluation results of an implementation of the protocol showed
performance improvements in regard to competing approaches.

Planned future work on this subject will aim at embedding the resulting pro-
tocol in a database replication service based on the state machine approach [4].
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