
Subscription Latency in Publish-Subscribe
Systems

Filipa Salema Roseta Pedrosa
filipa.s.r.pedrosa@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. The publish-subscribe abstraction has emerged as a funda-
mental tool to build distributed systems that preserve strong decou-
pling among information consumers and producers. The most common
strategy to implement this abstraction in large-scale systems consists
of using a network of message brokers, to relay events from publish-
ers to consumers. These brokers require coordination to o↵er quality of
service guarantees to message subscribers. Typical guarantees are reli-
able (gapless) FIFO delivery, reliable causal delivery, or even reliable
totally ordered delivery of events. In this work, we study the impact of
these guarantees on the latency of the subscription operation for di↵er-
ent subscription models, in particular, for topic-based and content-based
publish-subscribe systems. We aim at finding techniques to optimize the
broker topology as well as the coordination tasks associated with the sub-
scription process. Both can minimize the subscription latency, i.e., the
time the subscriber needs to wait, after issuing a subscription request,
to receive the first event of its subscribed stream.

1

Table of Contents

1 Introduction . 3
2 Goals . 4
3 Properties of Publish-Subscribe Systems . 4

3.1 Event Graph and Subscription History . 5
3.2 Delivery Order . 6
3.3 Reliability . 7
3.4 Other Relevant Features . 8
3.5 Network Overlays and Fault Tolerance . 8
3.6 Event Routing . 9
3.7 Subscription Latency . 10
3.8 Reducing the Subscription Latency . 11

4 Existing Systems . 11
4.1 Systems . 12
4.2 Comparison . 23

5 Architecture . 27
5.1 Subscriber Join Semantics . 28
5.2 Subscription Starting Cut . 30
5.3 Overlay Reconfiguration . 31

6 Evaluation . 32
6.1 Subscription Latency . 32
6.2 Overlay Reconfiguration . 32

7 Scheduling of Future Work . 32
8 Conclusions . 33

1 Introduction

The publish-subscribe abstraction[1] has emerged as a fundamental tool to
build distributed systems that preserve strong decoupling among participants.
Participants can be information producers or consumers. Producers of informa-
tion are named publishers and produce events. An event is a data unit that can
be modeled as a tuple containing multiple fields; in most publish-subscribe sys-
tems, one of these fields is a topic, typically a name in a hierarchical namespace,
that characterizes the content of the information included in the event. For in-
stance, an event can be h/Nasdaq/XPTO, $100i, where XPTO represents some
company trading on Nasdaq and $100 is the trading value of their stock.

Consumers of information are named subscribers, which receive events they
subscribe to. A participant may express interest in a given content by subscribing
to a topic. Systems that support this type of subscription are referred to as
topic-based publish-subscribe systems. A participant alternatively can express
constraints on the content of the event’s fields, such as only receiving events
where the stock value is lower than $200. This type of system is called a content-
based publish-subscribe system. A Publish-Subscribe system has two prominent
features. On the one hand, publishers do not have to be aware of the identity or
number of subscribers. On the other hand, subscribers do not need to know the
number and identity of event producers.

The most common strategy to implement a large-scale publish-subscribe sys-
tem consists of using a network of message brokers that can relay events from
publishers to consumers. Publishers connect to a broker of this network and
forward events to it, while subscribers connect to other brokers and express in-
terest in events with their subscriptions. Brokers coordinate with each other to
make sure the events are forwarded in the broker overlay, from the publishers
to the interested subscribers. Brokers need to coordinate to o↵er quality of ser-
vice guarantees to message subscribers. Typical guarantees are reliable (gapless)
FIFO delivery, reliable causal delivery, or even reliable totally ordered delivery
of events.

A subscriber may need to wait a certain amount of time after issuing a
subscription request until it receives the first event of its subscribed stream.
The amount of time required to process a subscription may depend on several
factors: the type of subscription (topic-based or content-based), the quality of
service requested by the subscriber or the topology of the broker network. In this
work, we study how the interplay of these factors a↵ects the subscription latency
experienced by subscribers. Our ultimate goal is to find techniques to optimize
the broker topology and the coordination tasks associated with the subscription
process, which can minimize the subscription latency.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present an overview of
the properties of Publish/Subscribe systems and in Section 4 we present all the
background related to our work. Section 5 describes the proposed architecture
to be implemented and Section 6 describes how we plan to evaluate our results.

3

Finally, Section 7 presents the schedule of future work and Section 8 concludes
the report.

2 Goals

This work addresses the problem of reducing subscription latency in large-
scale publish-subscribe systems. In detail:

Goals: We aim at studying how parameters such as the quality of
service requested by the subscribers, the broker network topology, or
the subscription patterns a↵ect the latency experienced by subscribers.
From this study, we expect to get insights that help us find techniques
to optimize the broker topology as well as the coordination tasks associ-
ated with the subscription process, which can minimize the subscription
latency.

We will start by surveying the di↵erent subscription protocols that have
been proposed in the literature. We define several criteria to help us compare
the performance of these protocols, depending on the system’s characteristics.
Then we identify several key techniques that can be used to reduce the subscrip-
tion latency. Examples of such techniques are event forwarding approaches that
deliver messages respecting the requested quality of service, even in the pres-
ence of faults. Other examples include dynamic topology adaptation, to position
subscribers closer to relevant publishers. The project will produce the following
expected results.

Expected results: The work will produce i) a set of metrics to compare
the performance of di↵erent subscription protocols; ii) the design of a
publish-subscribe system that minimizes the subscription latency; iii) an
implementation of the system; iv) an extensive experimental evaluation
of its performance using latency as a metric in di↵erent scenarios.

3 Properties of Publish-Subscribe Systems

The role of a publish-subscribe system is to deliver events produced by pub-
lishers to all interested subscribers. Di↵erent Pub/Sub systems ensure di↵erent
properties on the history of events delivered to di↵erent subscribers, in terms of
reliability and order. The set of properties for message delivery defines the level
of service a system provides. In turn, these properties may have an impact on
the time it takes for a subscriber to start receiving events after a subscription
is made. In this section, we make an overview of the key properties provided
by di↵erent Pub/Sub systems, of how these properties a↵ect the subscription
latency, and of the di↵erent techniques that can be used to reduce this latency.

4

p1 p2 p� s1

SXbscribe Rede1.1

UnsXbscribe

SWarWing CXW

Ending CXW

e1.2
e1.3

e1.�

e1.�

e2.1

e2.2

e2.3

e2.�

e2.�

e3.1

e3.2

e3.3

e3.�

e3.�

e3.�

e1.3

e1.�
e2.2
e3.2
e3.3
e2.�

e3.�

Fig. 1. Message and execution flow in a Pub/Sub system.

3.1 Event Graph and Subscription History

Before we discuss the properties of Pub/Sub systems in more detail, we
introduce the concepts of event graph, subscription history, subscription starting

cut, and subscription ending cut. These concepts are introduced with the help of
the example depicted in Figure 1. We assume a Pub/Sub system, with multiple
publishers, where each one produces a sequence of events.

Events may be causally related. We use the notion of causal order from
Lamport[2], where if two events e1.1 and e1.2 produced by the same publisher
p1, where e1.2 is produced after e1.1, then e1.2 may be causally dependent of
e1.1, denoted e1.1 ! e1.2. Publishers may also subscribe to events from other
publishers, creating potential cause-e↵ect relations between events from di↵erent
publishers. Again, we use Lamport’s definition, and if publisher p3 produces
some event e3.2 after delivering event e2.1 from publisher p2, we also say that
e2.1 ! e3.2. This defines a partial order on the events that are produced in the
system, that can be represented by an event graph where edges represent causal
relations. The events may have di↵erent topics, contents or both: in the example
of Figure 1, we have white and red events.

We denote the subscription event history, for a given subscription at a given
subscriber, as the sequence of events that are delivered to that subscriber and
are associated with a given subscription; the subscription history is bound by
a special subscribe event, that is locally generated at the subscriber when it
issues the subscription. Another special unsubscribe event is generated when the
subscriber terminates the subscription. Figure 2 shows the subscription history
associated with a subscription of red events by di↵erent subscribers.

The set of events composed by the first event from each publisher that ap-
pears in the subscription history defines a cut in the event graph, which is the

5

subscription starting cut. In our example, the starting cut for the subscription of
s1 is defined by events e1.2, e2.2, and e3.2. Similarly, the set of events composed
by the last event from each publisher that appears in the subscription history
defines a cut in the event graph, which is the subscription ending cut. In our
example, the ending cut for the subscription of s1 is defined by events e1.4, e2.4,
and e3.5.

s1 s2 s3 s4 s�

e1.3

e2.2

e1.�

e3.2

e3.3

e2.�

e3.�

e1.3 e1.3 e1.3 e1.3

e1.� e1.� e1.�e2.1

e1.�e2.2 e2.2

e2.2e3.2 e3.2 e3.2

e3.3 e3.3 e3.3 e3.3

e2.�

e2.� e2.�

e2.�

e3.�

e3.� e3.�

e3.�

Fig. 2. Examples of subscription event histories.

3.2 Delivery Order

Pub/Sub systems di↵er in the ordering properties of the subscription history.
In particular, how the serial order of events in the subscription history relates
to the partial order of the global event graph. The following ordering properties
are relevant:

FIFO (First-In, First-Out) order : A Pub/Sub system enforces FIFO order
if, for any two events in subscription s, produced by the same publisher, the
order by which these events appear in s is the same as the order by which these
events appear in the event history. An example of a subscription event history
that respects this ordering can be seen in Figure 1.

Causal order : A Pub/Sub system enforces causal order if the order of appear-
ance for any two events in s, produced by the same or by di↵erent publishers,
respects the partial order by which these events appear in the event history. The
subscription history of s4, depicted in Figure 2, does not respect this ordering.
The history contains e2.1, as such it must also contain every event that is causally
dependent on it, however, e3.2 is missing.

6

The two ordering properties presented above are defined for a single subscrip-
tion history. It is also possible to define ordering properties that relate multiple
subscription histories, namely:

Total order : A Pub/Sub system enforces total order if, for any two subscrip-
tions s and s0 (by di↵erent subscribers), and for any two events x and y such
that {x, y} 2 s and {x, y} 2 s0, if x appears before y in s then x also appears
before y in s0. Both the subscription history from s1 and s2 from Figure 2 respect
this ordering. Total ordering is violated in the history from s3 since it does not
contain every event by the same order as in s1.

3.3 Reliability

We can define the reliability of a Pub/Sub system using the notion of event
graph and subscription history. Let s be a given subscription history and Es

be the set of events from the event graph that simultaneously: i) match the
subscription specification and; ii) belong to the subgraph of the event graph
that is delimited by the starting and ending cut of s. We say that a Pub/Sub
system o↵ers reliable delivery if, for any subscription s, all events from Es belong
to the subscription history of s. For instance, using the example of Figure 1, the
subscription history s1 does not violate reliable delivery. All red events between
the starting cut and the ending cut belong to its history. On the other hand,
illustrated in Figure 2, s5’s event history violates reliable delivery, given that
event e2.2 is not included in the subscription history. In some works, reliable
delivery is also named gapless delivery.

The definition of reliable delivery above does not prevent the Pub/Sub system
from delivering one event more than once to a given subscriber. Most systems
avoid this by providing exactly once delivery of each event, what is sometimes
called strong reliability [3]. Conceptually, ensuring this type of delivery is sim-
ple: the interface can keep a log of the events that have been delivered to the
subscriber. Brokers also filter out duplicate events that have already been for-
warded. In practice, this may be a limitation if memory is constrained unless it
is possible to compress the event log e�ciently.

Finally, we are also interested in a stronger form of reliability that we call
causal completeness. We say that a subscription history s is causal incomplete if
there is an event x and two other events beforex and afterx, such that beforex !
x ! afterx, and beforex 2 s, afterx 2 s, but x 62 s. Note that a history can
be reliable without being causal complete; this can happen if the subscription
starting cut is not consistent with causality. We denote the property of ensuring
causal completeness, strong causal reliability.

Some systems do not enforce reliability and deliver events to subscribers in
a best-e↵ort manner. Others only ensure reliability with high probability. In our
work, we will focus mainly on systems that can o↵er strong reliability.

7

3.4 Other Relevant Features

The literature on Pub/Sub systems is extensive and detailed, thus, all rele-
vant features that have been proposed or implemented are hardly covered in this
report. Still, for self-containment, we list a few of the most important features
not covered in detail.

Durability:[4] A quality that some systems provide, which consists of storing
events that match a subscription to tolerate failures of the subscriber. By stor-
ing those events, the system can send any missed events to a subscriber that
reconnected after being disconnected for a certain period.

Timeliness:[5] The ability to enforce either hard or soft real-time guarantees
on event delivery is a relevant property in many areas. For instance, ensuring
that an event is delivered before some target deadline after it is produced. As will
be clear later in the report, our work is somewhat orthogonal to these aspects.

Configurable QoS:[6] In some systems, the set of properties enforced on a
given subscription may be selected by the subscriber when issuing the subscrip-
tion.

Support for Subscriber Mobility:[7] Most Pub/Sub systems are only able to
enforce reliability and ordering properties if a subscriber remains attached to the
same broker. Supporting subscriber mobility allows a subscriber to disconnect
from a broker and connect to a di↵erent one while preserving a single causal
history.

3.5 Network Overlays and Fault Tolerance

The structure of the network topology impacts delivery guarantees and sub-
scription latency. One possibility consists of organizing publishers and sub-
scribers in a clique, such that publishers can connect directly to every subscriber
without using any type of intermediary. This configuration can lead to scalability
problems, considering that every subscriber must establish communication with
every publisher. As such, we will only be focusing on Pub/Sub systems that use
a distributed broker network.

The distributed broker network can be modeled as a graph, where each broker
is a vertex and the communication links are the edges between them. The broker
topology can be organized according to di↵erent types of graphs. One of the most
common strategies organizes brokers in a tree, an acyclic and directed graph
where each vertex has at most one parent node but may have several child
nodes. Other systems organize brokers in a DAG (Directed Acyclic Graph), also
an acyclic directed graph but where each vertex can have several parent and
child nodes. On the other hand, some systems use graphs in which the edges are
undirected, allowing messages to be exchanged in both directions of the link.
Finally, some systems also use cyclic or general graphs, which have several paths
connecting any pair of nodes.

Clients (that can be publishers, subscribers, or both) connect to one of the
brokers on the network, that they use as an access point to start publishing or
receiving events. Some systems specify that clients can only access edge brokers;

8

in a tree topology these are the root and leaf brokers, and in a DAG these are
the brokers at the edge of the network. On the other hand, some systems allow
clients to connect to any broker on the network.

Each topology, and each strategy to connect clients to brokers, has its ad-
vantages and disadvantages. In a tree-based architecture, many events may need
to be routed via the root, which can become overloaded. Also, in a tree, every
inner broker on the network is a single point of failure. Ensuring that the broker
network is acyclic, as required in DAG architecture, can be di�cult without a
centralized administration. Also, by construction, DAGs lack path redundancy.
In a general graph architecture, the redundant paths can be used as a fault tol-
erance mechanism, o↵ering more flexibility when establishing connections. How-
ever, maintaining ordering and reliability guarantees when messages can travel
through di↵erent paths is more challenging.

The fault-tolerant mechanisms implemented by di↵erent publish-subscribe
systems are often dependent on the network topology. Commonly addressed
issues are broker failures and link failures. The most common broker failures
are crash failures, that make a broker inoperative. The most common link fail-
ures are omissions (that cause the link to lose some messages at random) and
link partitions (that cause the link to become inoperative until the partition is
healed).

Systems can either use redundant brokers or redundant paths to deal with
failures. To mask the failure of a physical server, the topology can use the no-
tion of virtual nodes: in this approach, each vertex of the graph is implemented
by a group of brokers, that act as a single, reliable, broker. Thus, although at
the logical level, there is only a virtual link connected adjacent vertexes, at the
physical level, several redundant paths are connecting the di↵erent replicas that
implement these virtual nodes. Another alternative consists in using other bro-
kers on the network as backups in case of failure of a given broker, creating
additional edges that are only used when failures happen. A general graph ar-
chitecture, that has multiple paths among any two nodes, inherently provides
fault tolerance.

3.6 Event Routing

The broker network is used to deliver events from publishers to the interested
subscribers. A simple approach for implementing this task consists of broadcast-
ing all events to all brokers (for instance, using flooding) and then let each broker
filter the events that are relevant to its local subscribers. This strategy may be
very ine�cient, as bandwidth is spent forwarding events to brokers that are not
interested in them.

A better strategy consists of only forwarding an event to brokers that that
are in the path to the relevant subscribers. But in other to do so, brokers must
be aware of the location of subscribers, creating routing tables that help in
forwarding events in the right paths. This is possible if information regarding
the subscriptions is propagated in the network and brokers set up their routing
tables accordingly. Subscriptions need to be broadcast in the network but, since

9

they are generally much less frequent than event notifications, the relative cost
of subscription broadcast can be small.

The cost of subscription broadcast can be avoided, by forwarding the sub-
scription information only to the brokers that are in the path from the publishers
to the subscribers. This is only possible if the location of the publishers is known.
For this purpose, some systems also use advertisements, special messages used by
publishers to announce their presence in the network. Announcements need to
be broadcast in the network but they are assumed to be even less frequent than
subscriptions. Based on the advertisements, brokers can create routing tables to
propagate subscriptions towards relevant publishers.

3.7 Subscription Latency

When a subscriber makes a new subscription, it may need to wait a certain
amount of time before it starts receiving the events associated with that sub-
scription. We define the subscription latency as the time elapsed between the
moment a subscriber issues a subscription request and the first event associated
with that subscription being delivered. Naturally, we would like the subscription
latency to be as small as possible. However, as we have seen, most Pub/Sub
systems require routing tables to have the subscription on brokers that are in
the path from the publisher to the subscriber. Before these routing tables are
updated, event delivery cannot be ensured. Thus, in many cases, the subscription
latency will be proportional to the end-to-end delay between the publisher and
the subscriber. In the worst case, the subscription latency will be proportional
to the diameter of the network.

There are many other aspects of the operation of the Pub/Sub system that
may also a↵ect the subscription latency. Consider, for instance, an overlay net-
work that uses multiple paths for fault-tolerance. In this case, routing tables may
need to be set up in all paths, introducing additional delays. Systems that use
a single path and rely on virtual nodes, also introduce additional delays. This
is due to replicas of a given vertex needing to coordinate to ensure that they
have consistent information regarding the routing table of their virtual node. In
some cases, a consensus protocol may need to run among the replicas of a vertex,
every time a subscription is propagated via that virtual node.

The reliability of the event delivery service also has an impact on subscription
latency. Consider for instance the case where multiple paths can be used to
propagate an event from a publisher to a subscriber. Consider that the routing
tables have already been set up in one of these paths (that we denote the stable

path) but not in the other(s). In this case, depending on the route an event
takes, it may be forwarded or dropped. A system that aims at o↵ering gapless
delivery may need to wait for all paths to be stable. However, a system that can
tolerate event losses may start delivering the events as soon as one path becomes
stable.

Finally, the latency of a subscription is a↵ected by previous subscriptions
already in place. Consider the case where a subscriber makes a subscription that
is covered by a previous subscription made at the same broker. A subscription

10

covers another if all messages matching one also match the other. In this case,
there is no need to update the routing tables, and the subscriber can start to
be served immediately. Thus, the location and subscriptions of other subscribers
are relevant aspects when analyzing the subscription latency. Systems that do
not support subscription covering require every broker on the network to have
every issued subscription on their routing table.

3.8 Reducing the Subscription Latency

There are a few techniques that can be used to reduce the latency experienced
by subscribers. We discuss two relevant strategies in this context.

The first technique consists in re-organizing the broker overlay to group sub-
scribers that have similar subscriptions. The subscribers are brought closer to
the publishers that are relevant to their subscriptions. This reduces the path
length from the publisher to the subscribers, reducing the time it takes to set
up the routing tables. Also, it makes it more likely that a new subscription is
covered by a previous subscription.

A second technique consists of using di↵erent event forwarding strategies
when paths are stable and when paths are unstable. For instance, if a publisher
becomes aware of a subscription, but it is not sure if all paths are stable, it can
force events to be flooded in the network. This is to prevent incorrect forwarding
decisions while subscription information on the brokers is inconsistent. This will
trade bandwidth for a lower subscription latency.

4 Existing Systems

In this section, we will survey several relevant Pub/Sub systems. In the anal-
ysis, we will emphasize on the following concerns:

– Network Overlay and Fault Tolerance Addresses how the systems structure
their overlays as well as the location for the access points. Addresses also the
type of faults the systems tolerate and the techniques they use to achieve
fault-tolerance.

– Ordering Addresses the ordering properties enforced by the system and the
algorithms used to implement them.

– Reliability Addresses the level of reliability they o↵er to their subscribers
and which mechanisms they use to enforce it.

– Subscription Starting Cut Addresses how the systems define the point when
a subscriber can start receiving messages, depending on the guarantees they
want to provide. The subscription latency is also an important factor in-
fluenced by the level of service, topology and any relevant optimizations to
reduce the latency.

– Routing Events Addresses the problem of how systems route events on the
broker network along with which metadata or storage is used by brokers to
make forwarding decisions.

11

4.1 Systems

LoCaMu The goal of the LoCaMu[8] system is to provide reliability and causal
ordering guarantees using localized multicast on a distributed broker network.
Subscription information is already pre-established in the routing tables and
each broker joins a group using a subscription.

Network Overlay and Fault Tolerance The brokers are arranged in an acyclic
undirected graph and act as clients that can publish and subscribe to groups.
It uses the concept of neighborhood, which is the set of nodes that are at an
established distance from a broker, to define the partial view each broker has of
the network. The system tolerates f number of failures in a given neighborhood
of size 2f + 1. This is accomplished by using redundant paths where brokers
create additional edges to the closest available neighbors on that path to bypass
the nodes that have failures.

Ordering To ensure causal ordering guarantees, LoCaMu tags events with
metadata about the broker’s neighborhood. Nodes keep separate sequence num-
bers for each neighbor they may forward events to. The ones assigned to the
event are the ones corresponding to the brokers on the event’s forwarding path.
Brokers store locally the sequence numbers they have seen from their neighbor-
hood, which defines the node’s past. This is used to tag events such that they
will carry information about the sender’s causal past. By comparing the local
causal past with the one attached to the event, nodes can verify if it is safe to
forward messages.

Reliability Brokers verify if delivering an event respecting causal order is
possible by comparing the local causal past with the event’s metadata. If not,
then the event is bu↵ered and a request for retransmission of missed events is
triggered.

Routing Events Brokers use routing tables to know which neighbors they
have to forward a message to, such that it can be delivered to the members of
the addressed group.

SIENA The SIENA[9] system is a content-based Pub/Sub system that focuses
on giving expressiveness and flexibility to subscriptions. Another of its goals is to
provide scalability by optimizing the subscription propagation process. It serves
as a building block for many of the presented systems, which use techniques
described in this solution.

Network Overlay and Fault Tolerance This system uses a general graph to
structure the broker network. Clients can publish and subscribe by connecting
to any broker. Using this graph structure provides multiple paths between any
pair of brokers, requiring less coordination when a new broker joins the network.

Subscription Starting Cut SIENA uses subscription forwarding combined
with advertisement forwarding to disseminate subscriptions on the network. Sub-
scribers use filters, which are a set of constraints on event notifications, to specify
the events they are interested in receiving. In this approach, brokers store adver-
tisements on their tables and only forward subscriptions towards event sources
that match those subscriptions. Advertisements set paths for subscriptions, and

12

these, in turn, set the paths for events to be forwarded. Brokers maintain a struc-
ture called a filters poset. This poset is a DAG of constrains, defining a partial
order on the set of filters a broker knows of. It supports subscription covering,
that defines the covering relations in the filters poset. A root filter covers all
other subscriptions and is the most generic one.

The events start being delivered to a subscriber when its subscription reaches
a broker with a connected publisher. The stability of multiple paths does not
need to be verified, considering that SIENA does not support any type of quality
of service guarantees. As such, the subscription latency is related to the distance
from the subscriber to the event source, although this can be shortened by using
subscription covering.

Routing Events Brokers use their filters poset to make forwarding decisions
on events. If an event matches a filter then it is forwarded to the node where the
subscription came from. An additional algorithm is used to maintain a minimal
spanning tree for each publisher. The tree is used to avoid cycles when routing
events as well as to choose the shortest routing path.

Gryphon The goal of Gryphon[10] is to build a system capable of o↵ering strong
reliability with FIFO message ordering while maintaining high availability and
scalability. The system is described in various papers, such as [3], [11] , and [4],
which characterize its di↵erent qualities. It is a content-based Pub/Sub system
in which subscribers use a set of conjunctions to specify interest in events.

Fault Tolerance and Overlay Network This system uses a tree topology for
the broker network, where each intermediate node is a virtual node that contains
several redundant brokers. Publishers connect to the root node (publisher con-
necting broker) and subscribers connect to any leaf node (subscriber connecting
broker).

Ordering To guarantee a FIFO message ordering, it uses a sequence number
for each publisher. A publisher tags the events it publishes with the sequence
numbers, incremented for each event. Every subscribing broker must receive an
ordered stream of events from a publisher. If the event happens to be filtered by
a broker on the network, then a silence token with the sequence number replaces
the event and is sent downstream instead.

Reliability The subscribing brokers start bu↵ering events if sequence numbers
are missing in the event stream from a publisher. To recover the missed events
or silence tokens the subscribing brokers send a curiosity message upstream with
the lost sequence numbers. Intermediate brokers receive these curiosity messages
and can retransmit the events or tokens if they have them locally. Otherwise,
they forward the received message to their parent broker. This mechanism allows
for an exactly once reliable delivery since it can detect duplicate or missed events,
enabling brokers to retransmit the events that were lost.

Subscription Starting Cut The main challenge to be solved is deciding a start-
ing cut. Messages can travel along di↵erent paths, which can cause gaps in the
delivery. To solve this, each leaf broker, where subscribers can connect to, has
a virtual time clock. For each new subscription or set of subscriptions, it will

13

increment this clock and assign the subscription a virtual sst (subscription start-
ing time). This subscription needs to be propagated upstream to the publisher,
creating a stable path, for the subscriber to start receiving events. The contents
in which the subscriber is interested in and its starting time will be included in
this message.

Other nodes on the system will maintain a vector V b with an entry for each
subscriber broker. When a node receives a new subscription it compares the sst
with the entry in its V b for the broker where the subscription came from. To
accept this new subscription from node i and update its V b it must obey the
following constraint: V b[i] = sst� 1. The subscription is propagated with its sst
towards the publisher broker, the root of the tree topology, meaning that the
experienced delay is equal to the network diameter.

Only one of the redundant brokers needs to forward the subscription up-
stream towards the publisher. As such, the rest of the redundant brokers on the
intermediate node are on unstable paths and can make incorrect forwarding de-
cisions. The V b vectors kept by each broker are what determines path stability
from a publisher to a subscriber. The timestamps are used to verify if a broker
has a consistent subscription set and belongs to a stable path. Gryphon sup-
ports subscription covering by using a DAG to store subscription information.
However, it still has to flood the subscription upstream toward the publishing
broker due to the increment in the clock of the leaf brokers.

Routing Events To route an event downstream, a vector V m is used; this
vector is attached to a published event by the publisher broker and can be equal
to its current V b. For an intermediate broker to detect if it belongs to a stable
path, it must compare the received V m with its V b. For each entry i, if V b[i]
V m[i], then it is safe to perform matching using the information in its routing
table, forwarding the event through the links in the results. Otherwise, the broker
has to flood the event to all its downstream nodes to guarantee that there is no
gap in the delivery. When the subscribing broker finally receives the event it
verifies if it matches any of its subscriptions. If it does, then it must compare its
entry in V m, with the sst for the subscriber. If V m[subscribingbroker] sst
then it is safe to deliver the event. It means that the subscription has reached
the publisher connecting broker, creating at least one stable path between the
subscriber and the publisher.

�-fault-tolerant Kazemzadeh and Jacobsen [12] [13], propose �-fault-tolerant.
The first goal is to develop a system that is reliable and maintains availability
when � broker failures occur. In the second paper, this is expanded to include
tolerance to partitions in the network with the same service guarantees. In this
context, � refers to the concurrent broker or link failures that can happen. It is
a content-based Pub/Sub system where subscriptions specify a set of predicates.
The subscriptions are stored on the brokers’ routing tables and have to be known
to the whole network.

Fault Tolerance and Overlay Network The system’s overlay is an acyclic undi-
rected graph where clients can connect to any broker on the network. Each bro-

14

ker contains a partial view of the network, which includes brokers that are �+1
hops away; this is to enable a broker to bypass up to � unreachable neighbors
by creating additional links to do so.

Ordering To achieve FIFO ordering, each publisher can only have one event in
transit at a time. As such, event propagation for each publisher is not concurrent.
It is only possible to publish another event after the system confirms that the
previous has been delivered to every interested subscriber.

Reliability For strong reliability, the system uses end-to-end acknowledg-
ments. Brokers forward the event, after performing matching to select the links,
and wait for a confirmation that the event has been delivered. The edge brokers
receive the event and send an acknowledgment back to the link where it came
from. These acknowledgments are propagated back to the broker with the lo-
cal publisher. When an acknowledgment arrives at this broker, it can confirm
that every subscriber received the event and new events can be published. Se-
quence numbers are added to each event by brokers that forward them. Brokers
maintain 2� + 1 sequence numbers, so there is at least one common broker to
compare sequence numbers. This mechanism is used to detect duplicate events,
preventing them from being forwarded multiple times through the same link.

Subscription Starting Cut The problem with having partitioned brokers is
that these create inconsistent subscription sets. The subscription did not reach
nodes on the partition, introducing gaps in the delivery. A safety condition has
to be followed by the system to avoid this situation, ”a publication is delivered
to a matching subscriber only if it is forwarded by brokers that are all aware of
the client’s subscription”. There is an important distinction between two types
of partitions: the partition island and the partition barrier. In the first type, the
broker cannot reach a sequence of neighbors, but it can bypass them with a link
to another available broker on its partial view. In the second type, the broker
cannot create any new link to bypass the partition.

The broker with a connected subscriber starts by flooding its subscription.
It will wait for a confirmation that every broker on the network received the
subscription. When the subscription arrives at an edge broker it sends an ac-
knowledgment back to the link where the subscription came from. Brokers on
the network will wait to receive acknowledgments from the links they flooded
the subscription to. Afterward, they send a confirmation to its upstream node
that the subscription has been received by all its downstream neighbors. When
the broker with a connected subscriber receives an acknowledgment then it can
start delivering events to its subscriber. In this system, the delay experienced
by the subscribers will be equal to the network diameter. After this process is
finished all the paths on the network are stable.

If there are partition islands the broker bypasses the sequence of unreach-
able nodes with a new link. It sends the subscription through it, waiting for an
acknowledgment from that link only. If a broker that is beyond the partition
can connect to any node in it then it can propagate the subscription inside the
partition. It uses a tag on the event for the subscription to be propagated only
between the nodes included in that pid (partition identifier, contains every bro-

15

ker on the partition and which broker detected its existence). In case there are
partition barriers, the acknowledgments that are sent back must be tagged with
a pid. The tag indicates that brokers beyond the partition in pid did not receive
the subscription. The broker with the local subscriber stores the subscription
in the routing table, plus the several tagged pid, when this acknowledgment is
received. That way, it knows that events coming from, or beyond, that partition
cannot be safely delivered to the subscriber.

Routing Events There are two conditions to deliver a publication to a sub-
scriber: if it matches the subscription’s predicates; and if the safety condition is
not violated. When a broker receives an event it starts by checking if the event is
duplicate. If not then the broker stores the event, which will be removed once all
its downstream active links have confirmed its reception. Secondly, the broker
verifies if the event came from any partition known by it. If it did, then the event
can be tagged with that pid. Next, it matches the event with the subscriptions
in its routing table to select active neighbors to forward the event to. The tags
in the events are used by the brokers with connected subscribers to verify the
safety condition. In case the event came from or beyond a partition that did
not know about the subscription then the delivery to the subscriber cannot be
made. The broker knows this locally by comparing the tags on the event with
the tags that are stored in the routing table for the subscription. If there is at
least an identical pid then it is not safe to deliver the publication.

Dynamic Message Ordering for Pub/Sub The main objective of Dynamic
Message Ordering[14] is to ensure that two subscribers that are interested in the
same two or more topics will deliver the events respecting total order. There is
no specified overlay for the network of the Pub/Sub system. It assumes a generic
Event Notification Service (ENS). This ENS o↵ers a topic-based interface for the
clients to publish events or subscribe to already pre-established topics.

The system assumes the existence of a special broker, called topic manager,
for each topic. This manager can be created statically or through a DHT (Dis-
tributed Hash Table) that selects these nodes dynamically. Considering that no
additional assumptions are made there is an additional challenge in providing
order. Specifically, two events can follow distinct paths through the ENS and be
delivered out-of-order to the subscribers.

Ordering The system ensures TNO (Total Notification Order), meaning that
if event e1 is delivered to a subscriber before event e2 then no subscriber will
deliver e1 before e2. Every topic manager contains every subscription with its
topic and a sequence number. All topics in the system are ordered by a prece-
dence relation, which can be predefined or changed dynamically. Every event is
forwarded through the relevant topics respecting the precedence order, so they
can be ordered with respect to other events.

To publish an event on the ENS a publisher must first request a vector clock
for that event. Its creation is carried out by the sequencing group of the topic
T . The group consists of the topics that precede T and are included in at least
two subscriptions, along with T . The vector has an entry for each of the topic

16

managers in the group. The event is forwarded first to the manager of the topic
the event is being published to. The manager increments the topic’s sequence
number and adds it to the corresponding vector clock entry. The event is then
forwarded, according to the precedence order, to each member of the sequencing
group. After every topic manager has filled its entry the event can be published
on the ENS.

Reliability The system also o↵ers reliable delivery by using message retrans-
mission. Topic managers store the partially filled-in vector clocks they have seen,
so these can be forwarded again. Publishers can solicit the creation of the times-
tamp again in case the request was lost or a timer on the publisher has expired.

Subscription Starting Cut To decide the starting cut for each topic, the sub-
scriber must request the creation of a vector clock. This request is sent to all
topic managers for the subscription’s topics. The subscriber sends an empty
vector, with one entry for every topic, to the last topic manager according to
the precedence order. When the manager receives the request it increments its
sequence number and fills the corresponding entry on the clock. It then updates
its set of subscriptions with the new subscriber and every topic it is subscribed
to. Afterward, it forwards the subscription to the next manager in the order.
When the last topic manager fills its entry, the timestamp is sent back to the
subscriber. It will now use the timestamp as its local subscription clock. The
subscriber must wait until its request goes through every relevant topic manager
to start delivering events.

When the subscriber is notified about a new event matching its subscription,
it must compare and verify for every entry i that: localclock[i] < timestamp[i].
If the comparison holds then the subscriber updates its local clock with the
sequence numbers in the timestamp. Otherwise, it tags the event as being out-
of-order and bu↵ers it until it can be delivered in order. This ensures that the
subscriber can only deliver events that went through topic managers that know
of its subscription’s existence.

XNET One of the main goals of XNET[15] is to provide reliability in the
delivery, ensuring that the shared state of the system is consistent at all times.
The shared state is defined as the knowledge each broker on the network has
of each subscription. This has to be consistent with the subscriber population,
such that the routing paths reflect the registered subscriptions. Another goal is
to reduce tra�c and minimize the size of the routing tables by integrating a
routing protocol called XROUTE[16], also developed by the same authors.

This system supports content-based Pub/Sub by allowing publishers to gen-
erate events with an XML structure. Subscribers can specify predicates for
the events with a subscription language that uses the XML standard. It uses
XROUTE to propagate events, which supports subscription covering. Brokers
aggregate subscriptions to eliminate redundant knowledge and improve routing
performance.

Fault Tolerance and Overlay Network The system uses an acyclic undirected
graph for the overlay, where each publisher or subscriber can connect to the

17

edge brokers. To ensure fault tolerance, it can use redundant paths. The system
creates more than a single path from each pair of edge brokers, making a general
graph overlay. Alternatively, it can use a redundant broker strategy, in which
there are designated backup brokers that can be used in case of failure of the
direct neighbors.

Ordering To provide FIFO order to the delivery all the links connecting the
brokers are TCP, which enforces this type of order. Additionally, each time a
broker forwards a message through a link it uses an increasing sequence number
unique to that link. Nodes store the highest sequence number they have received
from each downstream broker plus the highest number they have sent to their
upstream node.

Reliability To o↵er a reliable exactly once delivery guarantee, it uses end-to-
end acknowledgments. Brokers store the events until confirmation of reception
has been sent back. The sequence numbers used for each link are used to also
detect duplicate messages.

Subscription Starting Cut XNET propagates the subscriptions on the net-
work using subscription forwarding along with three di↵erent strategies to pre-
vent faults. The first is called Crash/Recover, where brokers bu↵er advertise-
ments; in this context, these correspond to a subscription or unsubscription.
They bu↵er those until they receive an acknowledgment from the upstream node
to confirm it has updated its routing table with the new subscription. If a broker
crashes, all of the advertisements that were supposed to be sent to it are bu↵ered
on its downstream routers. The Crash/Recover strategy is used when failures are
only transient.

The downtime of a broker can be very long, which can cause bu↵ers to over-
flow or to recover very slowly. When the broker eventually recovers, it can create
a bottleneck when processing all of the downstream advertisements. For these
situations, there is a second strategy called Crash/Failover that uses backup
nodes. This can be a node that is on another location on the network, to which
a broker will connect to when its upstream router fails. The chosen node must
guarantee a valid routing path to the subscriber. When switching from the up-
stream broker to the backup one, it needs to send advertisements to the backup
again. This is to create a new routing path by registering the subscriptions on the
backup broker. The upstream broker of the crashed node must advertise unsub-
scription of downstream subscriptions. This removes the previously established
routing path.

Both schemes cause the system to be unavailable while recovering. To main-
tain availability there is a third strategy called Redundant Paths. In this strategy,
it is assumed that each broker has at least one alternate route to the publishers.
The routing tables are replicated on both routes. When one broker on a route
fails the brokers on the other path can still deliver the event to the subscriber.
The nodes on this available route maintain information that is consistent with
the consumer population. The subscriber can start delivering events once its
subscription reaches a publisher, creating one stable path. Events are flooded to
both alternate routes, such that at least the stable path forwards the event to

18

the subscriber. In this system, the delay is equal to the network diameter since
clients connect only to the edge brokers.

Routing Events Brokers receive published events and match them against
the patterns in their routing table. This is done to decide the downstream links
through which they must forward the event, only sending it if there is at least
one interested subscriber.

Semi-Probabilistic Pub/Sub Costa and Picco [17] propose Semi-Probabilistic
Pub/Sub to address situations with a highly dynamic and reconfigurable bro-
ker network. The solution trades delivery guarantees for scalability and fault
tolerance. Routing events in a deterministic way, using a tree-based topology
and global subscription knowledge brings an additional overhead. It is ine�cient
in these scenarios and only provides a single route between any pair of bro-
kers on the network. The system supports content-based Pub/Sub by allowing
subscribers to use predicates on the published events, providing added expres-
siveness.

Fault Tolerance and Overlay Network The topology of the overlay network
is a general graph and clients can connect to any broker of the network. This
type of graph inherently provides multiple routes between any two brokers.

Subscription Starting Cut The system floods the subscriptions to establish
routes that are followed by events. However, subscriptions should not be propa-
gated to all brokers since each of their routing tables can quickly become stale.
To solve this issue each broker of the network only knows a limited portion of
the subscriptions made. This is determined by a parameter called subscription
horizon �. The parameter determines the size of the neighborhood that has the
subscription in its routing table. The routing tables contain an additional field
indicating the distance of that node from the broker that issued the subscrip-
tion. Considering that the system does not give any guarantees on the delivery
of messages, there is no need to verify path stability. The subscriber can start
receiving events as soon as its subscription is set up in the vicinity of the broker
it is connected to.

Routing Events The subscriptions are only known in a limited portion of
the network. Therefore, events are not forwarded in a purely deterministic way.
When there is no subscription information available, brokers make probabilistic
routing decisions, sending the event to a random subset of the node’s neighbors.
This set is used to propagate the events and is a percentage of all the neighbors
the broker has defined by a threshold ⌧ . The selection of the forwarding set
prioritizes neighbors with subscriptions matching the event. It also prioritizes
the closest subscribers, avoiding sending the event through a stale route. If the
set does not reach the required percentage, the broker adds random links to
forward the event. Brokers recognize duplicate events by storing identifiers of
the ones they have forwarded. This avoids the creation of forwarding loops since
events are not forwarded through the same links twice.

19

GEPS The goal of Gossip-Enhanced Pub/Sub[18] is to maintain a high delivery
rate to the subscribers while also providing high system availability. A tree-
based topology does not o↵er path redundancy, so there is a need to create
extra links around failed brokers. For scalability purposes, these must be created
avoiding global knowledge of the network structure or the existing subscriptions.
It supports content-based Pub/Sub where clients can subscribe using predicates
that will be matched against events. It also uses advertisement forwarding and
subscription covering.

Fault Tolerance and Overlay Network The chosen topology is a tree-based
network where clients can only connect to the edge brokers. When forward-
ing through the direct links is not possible, it creates redundant paths using
a similarity-based approach to bypass brokers with failures. This strategy was
chosen instead of using a random approach, which selects a random set of nodes
from the network.

The main focus of GEPS is on fault tolerance, by creating links to bypass
failures using the similarity metric. To achieve this, each broker maintains a par-
tial view of the system, which is a subset of the broker’s siblings (brokers with
the same depth in the network overlay). Sibling brokers use gossip to periodi-
cally update their sibling views, and find other similar brokers at their depth
or to discover failed/recovering siblings. In each gossip round brokers heartbeat
their views to their alive siblings along with the nodes perceived as failed or
recovering. This provides a distributed fault detection mechanism inside each
sibling group. Brokers maintain two additional partial views, the parent view,
which is the upstream node’s sibling view, and the child view, which is a set of
the downstream nodes’ sibling views.

Subscription Starting Cut The system combines subscription forwarding with
advertisement forwarding to create routing paths for events. Publishers send ad-
vertisements about the events they will publish; these are flooded on the network
using an advertisement forwarding strategy. Subscriptions are forwarded further
if they match any advertisement the broker is aware of. The subscription must
reach an edge broker with a publisher whose advertisement matches it. When a
stable path between the subscriber and a publisher is created then event deliv-
ery can start. Therefore, the delay is equal to the network diameter. The system
does not give any guarantee regarding message delivery so there is no need to
verify if paths are stable when defining a starting cut.

Routing Events Brokers also maintain a counter for each advertisement with
the number of subscriptions in its routing table that match it. This counter serves
to compare the similarity between two brokers when creating sibling views. The
similarity is based on the subscription as well as advertisement knowledge of the
brokers; the more they have in common the more similar they are. Forwarding
events to similar brokers means there is a higher chance that other subscribers
with common interests will receive the events. Brokers forward events through
the links that have subscriptions matching the advertisement. In case the direct
links are not available to forward messages, the brokers use the child or parent

20

partial views to gossip the messages to the nodes in them. Brokers that receive
gossip messages also route those messages using gossip to their views.

JEDI The purpose of JEDI[7] is to build a Pub/Sub system with a distributed
Event Dispatcher (ED), which delivers a published event to all interested sub-
scribers. Its components are called dispatching servers (DS). In this context,
the clients that connect to the ED are called active objects (AO); they interact
with each other by producing and consuming events. It supports content-based
Pub/Sub by allowing AOs to subscribe to a specific event or an event pattern.
Patterns are regular expressions that express constraints on event notifications.

Overlay Network The system’s DSs are organized in a tree-based topology
and AOs can connect to any DS in the network. The links between components
are also TCP.

Ordering To provide causal ordering, the system uses reliable TCP links.
The event dissemination paths guarantee that if an AO delivers first event e1
and then publishes e2 (e2 was caused by the generation of event e1), then every
subscriber must deliver e1 before e2. The events generated by the same publisher
are delivered to the subscribers respecting FIFO order.

Subscription Starting Cut To propagate subscriptions in the ED it uses a
hierarchical strategy in which subscriptions are only propagated upwards on the
tree. They are sent until they reach the root DS, to avoid having to propagate
them to the entire network. The AO can start receiving events as soon as there
is a stable path between it and a publisher. Although, the subscription has to
be propagated until the root of the tree.

Routing Events When a DS receives an event from a downstream node then
it forwards the event to its parent node. If the event came from upstream then
the DS forwards it to interested downstream nodes. If it has a connected AO
with a subscription that matches the event then it delivers the event to the AO.
The event needs to be forwarded to the root DS since this node knows of all the
system’s existing subscriptions. Subscribers on other subtrees are unknown to
intermediate DSs.

Sequencing Graph The goal of Decentralized Message Ordering[19] is to build
a graph of forwarding brokers, called sequencers, that will order events. The
events are delivered respecting causal order across topics. A topic defines a group
of brokers that publish and subscribe to it. The challenge is for events to be de-
livered in the same order by the subscribers of double-overlapped groups. These
are groups that have more than two common members. The common subscribers
by themselves can make inconsistent ordering decisions when delivering causally
related events. Although, messages to unrelated groups may be delivered in any
order by its subscribers. The key properties of the system are that all members
of a group will deliver events in causal order if the publisher is part of the group;
and that every subscriber can verify if an event is out of order, bu↵ering the
event if needed.

21

Overlay Network The construction of the sequencing graph follows two cri-
teria: the first is there can only exist a single path that connects every sequencer
associated with a double-overlapped group. The second is that the final graph
must be loop-free to avoid circular dependencies between events. When a message
leaves the sequencing network it is forwarded to a tree-based graph that con-
nects a group’s subscribers. The system assumes that each group’s subscribers
are globally known, forming a membership matrix. The global membership ma-
trix is used to create a sequencer for each pair of double-overlapped groups. The
new sequencer must be added to the graph, forming a path to the newly added
group, following both described criteria.

Ordering The system’s sequencing network determines the order of messages
by having a sequence number for each double-overlapped set of groups. It also
makes the paths to those groups intersect in a sequencer that will be associated
with the overlap. When a sequencer receives a message it checks if the message
is addressed to one of the groups it represents. Then it increments its sequence
number and assigns it to the message, forwarding it to the next sequencer in the
path to the group. The links between the sequencers provide FIFO ordering and
the graph is acyclic. This ensures that the order of arrival of two messages at
one node on the graph will be preserved.

Reliability To o↵er reliability, it uses end-to-end acknowledgments between
sequencers. When a sequencer forwards an event to another it bu↵ers the event,
waiting for an acknowledgment from the sequencer to which it sent the message.

Epidemic Algorithms for Pub/Sub The main objective of Epidemic Algo-
rithms [20][21] is to o↵er reliability, minimizing loss of events in a highly recon-
figurable scenario. The system uses epidemic algorithms to provide a probabilis-
tic reliable delivery and scalability since those are resilient to reconfiguration.
Content-based Pub/Sub is supported where subscriptions contain expressions
and the brokers perform matching of events to deliver them to the subscribers.
Using gossip protocols in this type of setting to prevent message loss is challeng-
ing. Considering that events can match multiple subscriptions, which can make
detecting missed messages a di�cult task.

Fault Tolerance and Overlay Network This system assumes an acyclic undi-
rected graph overlay for the network, where clients can connect to any broker.
The links between brokers are assumed to be unreliable, causing messages to
be lost. To tolerate this type of fault, caused by unreliable links and a highly
reconfigurable scenario, the system uses di↵erent gossip[22] techniques. Three
solutions are proposed with di↵erent gossip strategies in mind. We will be focus-
ing on one category which contains two of the solutions. This is the pull-negative
approach, in which brokers gossip about the events they have missed. Brokers
send the gossip messages soliciting the transmission of missed events from other
nodes.

Ordering The gossip schemes guarantee a FIFO ordering of messages per-
publisher, using sequence numbers incremented at the publisher. In the pull
approaches the events are ordered by using a sequence number for each pattern

22

at the publishing source. When publishing an event to the network the broker
must go through its entire routing table. It then selects the patterns matching
the event, tagging the event with the corresponding patterns’ sequence numbers.

Reliability All of the gossip strategies provide probabilistic reliability guar-
antees. The strategies allow brokers to recover lost messages and deliver those
to the subscribers. Two di↵erent pull-approaches can be used in combination. In
subscriber-based pull, each broker disseminates a gossip message by selecting a
random pattern from its local subscriptions. The message contains the sequence
numbers of events the broker knows it has missed. The gossip message is routed
as a regular event with that specific pattern, forwarded only to a random subset
of interested neighbors. Brokers in the network cache events they have forwarded.
When a broker receives a gossip message it can send the requested events, if it
has them stored. The gossip messages must be forwarded towards subscribers of
the same pattern so the likelihood of recovering events is much higher.

In the publisher-based pull method, the events are also tagged with the route
they have followed until reaching a subscriber. A broker creates a gossip message
by selecting a publisher, instead of a pattern. The message contains every event
it has missed from that particular publisher. It is then disseminated using a
route the broker is aware of that leads to the publisher. This route is chosen to
increase the likelihood of reaching a broker that cached the event.

Subscription Starting Cut Brokers flood the subscription on the network,
establishing the routes for the published events to follow. A subscriber can start
delivering messages as soon as there is a stable path between it and a publisher.
When the subscription reaches the publisher, the events start being tagged with
the sequence number relative to the subscription’s pattern. At that point, the
subscription is known to the publisher and the subscriber can start delivering
the events from it.

Routing Events When a broker receives an event it matches the event with
the subscriptions on the routing table. It then forwards the event to the resulting
links.

4.2 Comparison

In this section, we analyze how the techniques can be applied to LoCaMu,
which will be the building block for our work. Additionally, we will make a de-
tailed comparison of the systems. We will be comparing how the di↵erent systems
provide a set of guarantees to the subscribers, exploring di↵erent techniques for
di↵erent levels of service. If the system does provide any type of guarantees we
want to consider how it verifies path stability when delivering events to the sub-
scribers. This directly correlates with the starting cut for a subscription; when
the system verifies that all paths are stable then it can define a cut in the event
graph. Finally, it is also of importance if systems use any type of technique to
shorten the delay required to start delivering events.

Not every system characterizes its behavior on every relevant topic. As such
in Figure 3 we have the concerns that the given systems approach, with only
four systems addressing every important topic. We will be comparing the systems

23

per section. In Table 1 we summarize the most important characteristics of the
systems. If the system does not address a specific concern then it is not specified
(N/A).

ReliabiliW\
O
Ud
e
Ui
n
g F

a
X
lW

T
o
le
Ua
n
c
e

SWaUWing
CXW

Gryphon

delta-FT

XNET

EA

Se
qu
en
ci
ng

G
ra
ph

D
M
O

JED
I

Se
m
i-PG

EP
S

Fig. 3. Addressed concerns by respective system.

Systems Latency Reliability Ordering Fault Tolerance
Gryphon Network Diameter Strong FIFO RB
�-FT Network Diameter Strong FIFO RP
XNET Network Diameter Strong FIFO RP/RB

Epidemic Algorithms Publisher Probabilistic FIFO Gossip
Semi-Probabilistic Local N/A N/A RP

GEPS Network Diameter N/A N/A RP
JEDI Publisher N/A Causal N/A

Dynamic Ordering Topic Managers Strong Total N/A
Sequencing Graph N/A Strong Causal N/A

Table 1. Systems’ guarantees and strategies for each topic.

Fault Tolerance Most presented systems consider a failure model encompass-
ing node and link failures, mainly using one of three techniques to tolerate these
faults. Redundant Paths are used in XNET and Semi-Probabilistic by creat-
ing multiple routes between brokers. �-fault-tolerant and GEPS also use this
strategy, creating additional links on failure. The former uses a topology-based

24

approach while the latter uses a similarity-based approach. Gryphon uses re-
dundant brokers by having virtual nodes in the topology, while XNET uses this
technique by having backup brokers. Epidemic Algorithms uses gossiping to re-
cover undelivered events.

Ordering Most systems provide one of three levels of ordering by using sequence
numbers, a counter that is incremented for each event. Others additionally use
TCP for the communication links. Systems like Gryphon, XNET and Epidemic
Algorithms use sequence numbers to ensure FIFO ordering for messages. �-fault-
tolerant also provides this type of ordering by not allowing parallel events for each
publisher. Sequencing Graph uses sequence numbers to provide causal ordering,
while JEDI uses TCP as well as a single path between every broker on the
network. Dynamic Message Ordering uses sequence numbers to provide a total
ordering for events.

Reliability In terms of reliability guarantees, the systems divide themselves
mainly into two levels o↵ering either strong reliability or probabilistic/best-e↵ort
reliability. The ones that o↵er exactly once reliable delivery by using message
retransmissions are Gryphon and Dynamic Message Ordering. This strategy re-
quires brokers to store forwarded events and to know paths in the network to
recover missed events. Others o↵er this guarantee by using end-to-end acknowl-
edgments, such as �-fault-tolerant, XNET and Sequencing Graph. In this case,
brokers store messages until the nodes that must receive the message acknowl-
edge its reception. Epidemic Algorithms o↵er probabilistic reliability by using
several gossip strategies.

Subscription Starting Cut In most systems the latency to start delivering ei-
ther depends on the network diameter or the distance to the closest publisher. In
systems like Gryphon, which disseminates subscriptions toward the root broker,
�-fault-tolerant and XNET, which flood the subscriptions and GEPS, which uses
advertisement forwarding, the latency depends on the diameter of the network.
On the other hand, some systems can start delivery as soon as the subscription
reaches a publisher. Epidemic Algorithms, that flood the subscription, and JEDI,
that uses a hierarchical strategy, have this type of latency. Semi-Probabilistic
propagates the subscriptions in the vicinity of a broker. In Dynamic Message
Ordering, a subscriber must wait for its subscription to go through every rele-
vant topic manager.

There is also a di↵erence in the experienced delay between systems that sup-
port topic-based versus content-based Pub/Sub. In the former, there is an estab-
lished group to disseminate the subscription, determined by the topic, as in Se-
quencing Graph and Dynamic Message Ordering. Meanwhile, in content-based,
there is not a clear notion of a group; therefore the subscription usually needs
to be propagated to the entire network, such as in Gryphon, �-fault-tolerant,
XNET, Epidemic Algorithms, Semi-Probabilistic, and GEPS.

25

XNET and GEPS both support subscription covering, which can influence
the subscription latency depending on the subscriber population. This technique
can make the latency equal to the network diameter in a worst-case scenario
when the subscription is not covered by any other. Gryphon and XNET use
event flooding to compensate for unstable paths on the network. Sequencing
Graph reconfigures the topology according to a global membership matrix.

Issues with current approaches for LoCaMu Keeping in mind the char-
acteristics and qualities of LoCaMu described earlier, we will analyze how the
several subscription techniques from the studied systems can be applied to it.
JEDI is similar to LoCaMu; however, it does not consider the fault tolerance
and reliability aspects.

Gryphon and GEPS have a tree-based topology in which the subscriptions
are not flooded to the entire network, only until the root node. On the other
hand, LoCaMu uses an acyclic undirected graph for the overlay, as such the
subscriptions will have to be flooded to every broker. Although like JEDI, the
system allows clients to connect to any broker. Thus, events from a set of pub-
lishers can start being delivered without waiting for the subscription to reach
the whole network.

There are several options to verify path stability on the network, ensuring
the subscription event history obeys the guarantees provided by LoCaMu. One
option can be the strategy in �-fault-tolerant that floods the subscription on
the whole network before starting delivery. This solution causes the latency to
grow with the network diameter. We want to avoid these types of solutions, as
to guarantee a smaller latency to the subscribers.

XNET uses a Crash/Recovery scheme which can be applied to LoCaMu.
Although, the system has to wait for every broker on a path to acknowledge a
subscription. It has to confirm if a path is stable to prevent brokers from making
incorrect forwarding decisions. This may make the subscription latency grow.

In Epidemic Algorithms, publishers have sequence numbers for each unique
subscription. This leads to a huge overhead when publishing an event. If an event
matches almost every subscription on the system then the metadata will have
one entry for each matching.

Using virtual time as in Gryphon does not work as-is for LoCaMu due to
their di↵erent characteristics. In Gryphon, we have vector clocks with an entry
for each leaf node, which is the access point for subscribers of the system. In
LoCaMu, a client can connect to any broker on the network, which requires using
a virtual timestamp with an entry for every node. This method brings a huge
overhead to event forwarding with timestamps that contain one entry for each
broker on the system.

Optimizations can be applied to the system to shorten the subscription
latency. Flooding the events while paths are unstable is a viable strategy in
Gryphon or XNET where the clients only connect to the edge brokers and both
provide FIFO order. On the other hand, LoCaMu allows access points on every

26

node of the network. As such, if events were flooded the strong causal reliability
property may not be ensured.

Another possibility consists of using subscription covering, XNET and GEPS
take advantage of this technique. Although, in LoCaMu it is not possible to use
this technique since it bypasses brokers with failures. This means that there
may be inconsistencies in subscription knowledge on a given path, making each
broker’s covering relations inconsistent.

Another technique to reduce the delay is to reconfigure the topology dynami-
cally according to the subscription population. This is used in Sequencing Graph
and is more suitable for LoCaMu.

Propagating the subscriptions locally on a selected horizon is the best opti-
mization, as in Semi-Probabilistic Pub/Sub. However, with probabilistic routing
decisions, the system may not be able to provide a strong causal reliability guar-
antee.

Dynamic Message Ordering provides total order for messages, which is not
o↵ered by the LoCaMu system. As such, this property will not be supported, as
it requires a graph of brokers to order every event from the publishers.

Conclusion To support any type of ordering or reliability guarantees there is
a need to verify stability on the routing paths on the network. When a broker
receives an event it has to make forwarding decisions with the matching results.
These can be inconsistent with other brokers, due to the di↵erences in the sub-
scription sets, violating the guarantees provided by the system. The subscriber
may have to wait for the subscription to be flooded on the whole network to
start receiving events, such as in XNET or �-fault-tolerant. However, we want
to minimize the delivery delay while using flooding, thus the latency depending
on the network diameter is to be avoided. To make the latency depend on the
distance to the publisher and verify path stability we can use virtual timestamps
as in Gryphon. However, the metadata must not contain the global subscription
state of every broker to avoid adding major overhead to event routing.

5 Architecture

There are three main objectives that the architecture will have to fulfill. The
first is to provide di↵erent levels of service to subscribers during the joining pro-
cess. Each level has a well-defined set of delivery guarantees. When a subscriber
joins using a subscribe event, it can specify what type of guarantees it wants for
the message delivery. The system will ensure that events will be delivered to the
subscribers according to the level of service they requested.

The second is to verify the path conditions necessary to start delivering
the events, to define a subscription starting cut. The system must be able to
perform a cut on the event graph for the subscription history while preserving
the guarantees for delivery. Each broker will have enough information available
to avoid introducing gaps in the delivery or to incorrectly order messages. The

27

conditions and definition of a starting cut will be di↵erent depending on the
chosen level of service, resulting in di↵erent algorithms for each.

The final objective is to reconfigure the topology in a way that brokers with
connected subscribers are brought closer to brokers with connected publish-
ers. This shortens the path between a subscriber and event sources that match
its subscription. This will cause the delivery delay to be smaller, due to the
smaller number of hops an event has to go through. The system starts with
a pre-established topology that will be changed dynamically to better suit the
subscriber population that exists at a given time.

The mechanisms to enable the system have to be scalable, by not depending
on the number of nodes on the network. Availability is also a desirable quality,
considering that a broker’s forwarding decision has to be made locally without
requiring any type of consensus protocols.

The LoCaMu[8] system, which already provides topology and guarantees, will
be the building block for our subscription semantics. During the joining process,
a subscriber can select weaker delivery guarantees than the ones LoCaMu o↵ers.
Although after the subscription is known in the whole network, its history will
respect strong causal reliability. This is due to LoCaMu already providing this
guarantee when the subscriptions are set up on every broker.

5.1 Subscriber Join Semantics

The system must enable di↵erent joining semantics for each level of service
a subscriber might choose. Each level defines a di↵erent set of guarantees and
constraints on the subscription event history. The distinct semantics will also
signify that brokers have to make di↵erent forwarding decisions, to preserve the
requested guarantees by the subscriber. There can be two di↵erent subscribers
that request di↵erent sets of guarantees for the same subscription. The brokers
must then decide which events will be forwarded and be contained in each sub-
scription event history without violating any guarantee. For each service the
system will have to verify di↵erent path stability conditions before starting de-
livery to the subscribers, defining the subscription starting cut.

When a subscriber connects to the system it must specify which level of
service it wants to receive along with the subscription predicates. The system will
flood the subscription on the whole network. Brokers keep routing tables with
subscriptions, the corresponding level of service required for each, and where
they came from. The tables are used to perform matching of the subscription
predicates with the events that arrive at the broker.

The system must make available three distinct levels of service to the sub-
scribers during the joining process. In the best-e↵ort level, the subscription event
history does not need to obey any constraint, as the system will only provide
best-e↵ort unordered delivery. A broker with a local subscriber can start deliver-
ing events to it as soon as the join process starts, as the subscription only needs
to be in the local routing table. Brokers do not need to verify path stability when
forwarding an event. They only need to verify if it matches any subscription on
their routing tables. As such, the starting cut for each publisher can be on any

28

event that arrives at a broker with a subscriber and matches its subscription. As
illustrated in Figure 4, C receives event e1.1 from A, due to a failure on B. It will
now decide if it should forward the event to F since it matches the subscription
from s1. If s1 requested a best-e↵ort level for event delivery then C can send e1.1
to F for it to then be delivered.

X

e1.1

e1.1

s1

s1

A

B

p1

D

C

E

F

G

V1p2

Fig. 4. Example of subscription propagation and event forwarding.

In the FIFO level, the system must ensure strong reliability with FIFO or-
dering guarantees for the subscribers. The subscription event history has to obey
a strong reliability property, so the system has to verify path stability between a
subscriber and a publisher. A broker with a connected subscriber has to wait un-
til there is a stable path between itself and a publisher to start delivering events
from it. Brokers need to verify that their downstream and upstream neighbors
that belong to this path know of the subscription for events to be forwarded.
After this process of defining the starting cut for that publisher is finished then
the events from that source can start being delivered. As an example, in Figure
4, A and B do not know about s1’s subscription yet, as such B will not forward
events to C. In case B fails, if s1 requested the FIFO level of service, then it is
not safe for C to forward the event to F yet.

In the causal level of service, the system provides strong causal reliability
guarantees to the subscribers. This level implies that the subscription event his-
tory has to be causal complete and obey strong causal reliability. There is an
additional challenge in causality, as the cause-e↵ect relations between events
must be preserved in the subscription event history. These occur when a pub-
lisher subscribes to events from other publishers. Keeping this in mind, a broker
with a local subscriber can start delivering events from a publisher when two

29

conditions are met. The path between this publisher and the subscriber must be
stable. Additionally, every path between this publisher and all other publishers
it subscribed to must also be stable. Brokers have to verify if all their relevant
upstream and downstream neighbors know the subscription before forwarding
an event. After the conditions are met the events can start being delivered to the
subscriber. Using Figure 4 as an example, p1 subscribed to content published by
p2 and s1 subscribed to content from both publishers, requesting a causal level.
When C receives event e1.1 from A it cannot forward it to F. Neither the brokers
on the path to p1 nor the path to p2 know the subscription.

5.2 Subscription Starting Cut

There are several issues to keep in mind when defining a subscription starting
cut and also reducing the experienced latency by the subscribers. Bypassing
neighbors when disseminating subscriptions introduces inconsistencies on the
routing tables of brokers on a path. Even though the subscription information
reached the publisher it does not mean the path between it and the subscriber
is stable. For the subscriber to not wait for the paths to be stable the system
must be able to compensate for di↵erences in subscription information.

Using local information along with metadata carried by events the brokers
can assess their neighbor’s subscription state, verifying if a path is stable. Af-
terward, it makes forwarding decisions according to the state of the path, as
to not introduce gaps or an incorrect ordering in the event history. If a broker
belongs to an unstable path it can use metadata to compensate for its lack of
subscription information, enabling it to make forwarding decisions.

The main idea to define a starting cut and shorten the subscription delay is
to use virtual time as in Gryphon[10]. The virtual timestamps symbolize how
many subscriptions a broker knows of. However, it is not scalable to apply this
algorithm as-is to our setting. To reduce the size of the vectors, we use ideas from
�-fault-tolerant[12], which defines the concept of the neighborhood as a partial
view of the system. By applying virtual time, we remove the delay of propagating
the subscriptions to the entire network to start delivering messages. Brokers can
compensate for inconsistencies in their routing tables with local knowledge of
neighborhood subscriptions and the virtual time attached to events.

Each broker will maintain a vector clock, each entry being a pair (Node:Value).
The Node corresponds to a broker on its neighborhood along with a Value de-
noting the number of subscriptions they have forwarded. The goal is for a broker
to locally verify path stability and the conditions to be met for a given level of
service requested by downstream subscribers. The broker cannot rely on its local
timestamp only to make forwarding decisions since it might not be aware of the
system’s current subscription state. As such, the events must carry metadata,
which corresponds to the vector timestamp of the broker that forwarded it. This
metadata conveys information about the sender and the broker’s neighborhood.

When a broker receives an event it compares the received vector timestamp
with the one it has locally. This is to verify if the path is stable by confirming if
either the upstream or downstream path has a consistent subscription set. The

30

event is forwarded downstream if it notices it is lacking subscription information.
Otherwise, it can use its routing table to perform matching and decide if an event
should be sent downstream or not. If forwarding an event causes the constraints
on a subscription’s event history to be violated then the broker must not forward
it downstream. The size of the neighborhood to keep subscription information is
� + 2 hops. This allows timestamp comparison for the entry of at least the next
direct neighbor on the path.

5.3 Overlay Reconfiguration

The main idea to accelerate the delivery is to reconfigure the overlay, by
grouping together subscribers who share similar interests. These neighborhoods
must be created closer to event sources that will match their subscription con-
tent.

We will use ideas from Sequencing Graph[19] along with GEPS[18] to re-
configure the overlay. Sequencing Graph uses a global membership matrix to
create a graph to order the events addressed to di↵erent groups. To maintain a
global membership matrix can bring a huge overhead to the system, thus instead
brokers can use their partial views to infer memberships. The reconfiguration
must follow a constraint, that is also applied in Sequencing Graph, which is to
maintain an acyclic graph. This avoids circular dependencies between events.
LoCaMu also relies on this topology constraint to causally order messages, as
such after reconfiguration the network must remain loop-free. Additionally, the
resulting overlay must still maintain consistent routing paths using the partial
membership view.

From GEPS we will take the idea of similarity between brokers to create
neighborhoods of similar subscribers. GEPS uses similarities between a sibling
group of brokers to build the broker’s partial view. The similarity metric will be
used to find similar neighborhoods of brokers. Publishers must advertise the con-
tent of the events they will publish on the network and brokers keep these adver-
tisements on their routing tables. Using this mechanism, brokers know the paths
in their neighborhood to reach an event source and which subscriptions match
their content. Advertisements and localized subscription information enable the
system to use the similarity metric, creating neighborhoods of subscribers with
similar interests. With the use of advertisements, the neighborhoods can also be
brought increasingly closer to event sources.

Using a dynamic topology will a↵ect the operation of LoCaMu, as it uses lo-
calized neighborhood information to provide reliable causal delivery guarantees.
A simple approach to consider is to have di↵erent versioned graphs. The system
starts with a pre-established broker network and for each reconfiguration creates
a new graph with a di↵erent version. Brokers can only deliver messages from a
new overlay once all the messages from the previous one have been delivered
to all relevant subscribers. When all events have been delivered, brokers begin
using the connections defined in the new graph to forward events. With this
approach, the algorithm from LoCaMu can be used as-is to o↵er reliable causal
delivery.

31

6 Evaluation

Our main goal is to analyze how the proposed system and optimizations a↵ect
subscription latency. To do so, we will use a simulated environment for the system
to be tested. To evaluate we will consider two di↵erent topics: 1) experienced
latency by the subscribers; 2) the impact of reconfiguring the network overlay.

6.1 Subscription Latency

Our system will o↵er several di↵erent quality of service guarantees to the
subscribers, as such, we want to measure latency on the di↵erent levels. The
subscription latency can be defined as the time between a subscriber joining using
a subscribe event and the first event that is delivered to it by the system. The
requested level of service, as well as the current subscriber population connected
to the system, will influence the latency value. Therefore it is also important to
analyze how di↵erent population scenarios a↵ect the latency. We will consider
distinct cases, ranging from few subscribers to a dense population along with
identical subscriptions to dissimilar ones.

Our solution will be compared to an implementation of Gryphon and �-fault-
tolerant regarding subscription latency. Both systems only support gapless FIFO
message delivery, so we will only use the FIFO level described in our system
to measure and compare the delay. We will be taking into account di↵erent
subscriber population scenarios when comparing the systems.

6.2 Overlay Reconfiguration

Since our system uses a dynamic topology we will be analyzing the impact
it has on the subscription latency when compared to a static network. We want
to analyze the overhead of reconfiguring the network considering the latency
improvements it may provide. We will use as a baseline the described approach,
which is very slow to move brokers to a new overlay, to analyze how improvements
to it can influence the latency.

We will be taking into account two di↵erent scenarios. One with similar
subscriptions where brokers can be easily grouped to form a cluster, and another
with distinct subscriptions. The scenarios will be used to assess if a dynamic
topology will bring any benefits to the delivery latency, even in an unfavorable
situation.

7 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

32

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

8 Conclusions

In this report we have addressed the problem of implementing the publish-
subscribe paradigm in large scale-systems using a distributed broker network.
We gave particular emphasis to the semantics of the subscribe operation and how
these semantics a↵ect the subscription latency, i.e., the time a subscriber needs to
wait before it start receiving events associated with a given subscription. We aim
at designing a system that supports multiple subscription semantics, including
guarantees of causal completeness, a property that most systems do not o↵er.
Furthermore, we aim at studying techniques that can reduce the subscription
latency. In this context, we have identified some possible strategies to reduce
the subscription latency. The first includes the use of a more conservative event
forwarding strategy while a subscription is propagated in the network, that can
compensate for possible inconsistencies in the routing tables of di↵erent brokers.
The second consist in adapting the overlay, to better fit the subscriber population
at a given time. The report also discusses the di↵erent metrics that we plan to
use to evaluate the resulting system.

Acknowledgments We are grateful to Nivia Quental for the fruitful discussions
and comments during the preparation of this report.

References

1. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys, 35(2) (jun 2003)

2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7) (jul 1978)

3. Bhola, S., Strom, R., Bagchi, S., Zhao, Y., Auerbach, J.: Exactly-once delivery
in a content-based publish-subscribe system. In: International Conference on De-
pendable Systems and Networks. (jun 2002)

4. Bhola, S., Zhao, Y., Auerbach, J.: Scalably supporting durable subscriptions in
a publish/subscribe system. In: International Conference on Dependable Systems
and Networks. (jun 2003)

5. Esposito, C., Platania, M., Beraldi, R.: Reliable and timely event notification for
publish/subscribe services over the internet. IEEE/ACM Transactions on Net-
working, 22(1) (feb 2013)

6. Carvalho, N., Araujo, F., Rodrigues, L.: Scalable qos-based event routing in
publish-subscribe systems. In: IEEE 4th International Symposium on Network
Computing and Applications. (jul 2005)

7. Cugola, G., Di Nitto, E., Fuggetta, A.: The jedi event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software
Engineering, 27(9) (sep 2001)

33

8. Santos, V., Rodrigues, L.: Localized reliable causal multicast. In: IEEE 18th
International Symposium on Network Computing and Applications. (sep 2019)

9. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems, 19(3) (aug
2001)

10. Zhao, Y., Sturman, D., Bhola, S.: Subscription propagation in highly-available
publish/subscribe middleware. In: ACM/IFIP/USENIX International Conference
on Distributed Systems Platforms and Open Distributed Processing. (oct 2004)

11. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: Symposium on Principles of
Distributed Computing. (may 1999)

12. Kazemzadeh, R.S., Jacobsen, H.A.: Reliable and highly available distributed pub-
lish/subscribe service. In: IEEE 28th International Symposium on Reliable Dis-
tributed Systems. (sep 2009)

13. Kazemzadeh, R.S., Jacobsen, H.A.: Partition-tolerant distributed pub-
lish/subscribe systems. In: IEEE 30th International Symposium on Reliable Dis-
tributed Systems. (oct 2011)

14. Baldoni, R., Bonomi, S., Platania, M., Querzoni, L.: Dynamic message ordering
for topic-based publish/subscribe systems. In: IEEE 26th International Parallel
and Distributed Processing Symposium. (may 2012)

15. Chand, R., Felber, P.: Xnet: a reliable content-based publish/subscribe system. In:
IEEE 23rd International Symposium on Reliable Distributed Systems. (oct 2004)

16. Chand, R., Felber, P.: A scalable protocol for content-based routing in overlay
networks. In: IEEE 2nd International Symposium on Network Computing and
Applications. (apr 2003)

17. Costa, P., Picco, G.P.: Semi-probabilistic content-based publish-subscribe. In:
IEEE 25th International Conference on Distributed Computing Systems. (jun
2005)

18. Salehi, P., Doblander, C., Jacobsen, H.A.: Highly-available content-based pub-
lish/subscribe via gossiping. In: ACM 10th International Conference on Distributed
and Event-based Systems. (jun 2016)

19. Lumezanu, C., Spring, N., Bhattacharjee, B.: Decentralized message ordering for
publish/subscribe systems. In: ACM/IFIP/USENIX International Conference on
Middleware. (nov 2006)

20. Costa, P., Migliavacca, M., Picco, G.P., Cugola, G.: Introducing reliability in
content-based publish-subscribe through epidemic algorithms. In: 2nd Interna-
tional Workshop on Distributed Event-based Systems. (jun 2003)

21. Costa, P., Migliavacca, M., Picco, G.P., Cugola, G.: Epidemic algorithms for reli-
able content-based publish-subscribe: An evaluation. In: IEEE 24th International
Conference on Distributed Computing Systems. (mar 2004)

22. Eugster, P.T., Guerraoui, R.: Probabilistic multicast. In: International Conference
on Dependable Systems and Networks. (jun 2002)

34

