
LoCaPS: Localized Causal Publish-Subscribe

Filipa Salema Roseta Pedrosa

Thesis to obtain the Master of Science Degree in

Information Systems and Software Engineering

Supervisor: Prof. Luís Eduardo Teixeira Rodrigues

Examination Committee

Chairperson: Prof. Francisco António Chaves Saraiva de Melo
Supervisor: Prof. Luís Eduardo Teixeira Rodrigues

Member of the Committee: Prof. Sérgio Marco Duarte

October 2020

ii

Acknowledgments

First, I would like to express my gratitude for all the support that my thesis advisor, Professor

Lúıs Rodrigues of the Instituto Superior Técnico at Universidade de Lisboa, provided me. Thank

you for the countless discussions, meetings, and all the feedback throughout the year. All of it

made this thesis possible.

I also want to express my gratitude towards my colleagues from room 501 of INESC. You

made my days there so much more fun and were always very supportive, making me feel very

welcomed.

Finally, I want to thank my dear friends and family, who always supported me during my

student journey throughout all these years, and will continue to do so. Thank you, Mariana

Farias, Mariana Rosa, Dorin Gujuman, and Tiago Gonçalves for being there for me when I most

needed help. Thank you, Pedro Remédios, for doing almost every class project with me and

making me laugh every time. Enduring those hard years of IST with you made it much more

manageable. Thank you to my wonderful sister, Leonor Pedrosa, and brothers, Petr Terletskiy

and Nicolas Pedrosa, for always being so cheerful and making me forget the bad days. Coming

this far would not have been possible without any of you.

This work was partially supported by the FCT via project COSMOS (via the OE with ref.

PTDC/EEI-COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua

componente FEDER” with ref. Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/

2020.

iii

iv

Abstract

This thesis addresses the problem of o↵ering low latency to subscribers in a reliable causal

publish-subscribe system. The publish-subscribe abstraction has emerged as a fundamental tool

to build distributed systems that preserve strong decoupling among information consumers and

producers. The most common strategy to implement this abstraction in large-scale systems

consists of using a network of message brokers that relay events from publishers to consumers.

These brokers require coordination to o↵er quality of service guarantees to message subscribers.

In most systems that enforce reliability guarantees, a subscriber needs to wait until its subscrip-

tion has been propagated to every broker in the system, and known by all relevant publishers,

before starting to receive events. Curiously, this happens even when a subscription is covered

by a previously deployed one. To the best of our knowledge, previous reliable causal systems

do not focus on reducing the observed latency by subscribers nor on the coverage relationships

between subscriptions. In this thesis, we study the properties that need to be satisfied to reduce

subscription latency. We also propose a new publish-subscribe system that leverages causal

order multicast to o↵er low subscription latency when subscriptions achieve such properties.

Experimental results show that our algorithm can outperform previous solutions in terms of

subscription latency.

Keywords: Distributed Systems, Publish-Subscribe, Causality, Reliability, Latency

v

Resumo

Esta tese aborda o problema de oferecer baixa latência aos subscritores num sistema fiável e

causal de edição-subscrição. A abstração de edição-subscrição emergiu como uma ferramenta

fundamental para construir sistemas distribúıdos que preservam dissociação forte entre consum-

idores e produtores de informação. A estratégia mais comum para concretizar esta abstração

em sistemas de larga escala consiste em usar uma rede de intermediários, que transmitem even-

tos dos editores para os consumidores. Estes nós intermediários necessitam de coordenação

para oferecer garantias de qualidade de serviço aos subscritores de mensagens. Na maior parte

dos sistemas que oferecem garantias de fiabilidade, um subscritor precisa de esperar até a sua

subscrição ter sido propagada a todos os intermediários no sistema, e ser conhecida por todos

os editores relevantes, antes de poder começar a receber eventos. Curiosamente, isto acontece

mesmo quando uma subscrição está coberta por uma anteriormente instalada. Tanto quanto

sabemos, trabalho anterior em sistemas de edição-subscrição fiáveis e causais não se foca em

reduzir a latência observada pelos subscritores nem nas relações de cobertura entre subscrições.

Nesta tese, estudamos as propriedades que têm de ser satisfeitas para reduzir a latência de sub-

scrição. Também propomos um novo sistema de edição-subscrição que tira partido de difusão

causal em grupo para oferecer baixa latência quando essas propriedades são verificadas. Re-

sultados experimentais mostram que o nosso algoritmo tem melhor desempenho que soluções

anteriores em termos de latência de susbcrição.

Palavras-chave: Sistemas Distribúıdos, Edição-Subscrição, Causalidade, Fiabilidade,

Latência

vi

Contents

Acknowledgments . iii

Abstract . v

Resumo . vi

List of Tables . x

List of Figures . x

Glossary . 1

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Results . 3

1.4 Research History . 3

1.5 Thesis Outline . 4

2 Background 5

2.1 Definitions . 5

2.1.1 Event Graph and Subscription History . 5

2.2 Properties of Publish-Subscribe Systems . 7

2.2.1 Delivery Order . 7

2.2.2 Reliability . 8

2.2.3 Other Relevant Features . 9

2.2.4 Network Overlays and Fault Tolerance . 9

2.2.5 Event Routing . 10

2.3 Subscription Latency . 11

2.3.1 Reducing Subscription Latency . 12

2.4 Summary . 12

vii

3 Related Work 15

3.1 Relevant Properties . 15

3.2 Systems . 16

3.2.1 LoCaMu . 16

3.2.2 SIENA . 17

3.2.3 Gryphon . 18

3.2.4 �-fault-tolerant . 19

3.2.5 Dynamic Message Ordering for Publish-Subscribe 21

3.2.6 XNET . 22

3.2.7 Semi-Probabilistic Publish-Subscribe . 23

3.2.8 GEPS . 24

3.2.9 JEDI . 25

3.2.10 Sequencing Graph . 26

3.2.11 Epidemic Algorithms for Publish-Subscribe 26

3.2.12 VCube-PS . 28

3.2.13 P2PPS . 28

3.2.14 Publish-Subscribe Middleware with DSM 29

3.2.15 Comparison . 29

3.3 Summary . 32

4 Subscription Semantics 33

4.1 Semantics . 33

4.2 Su�cient Conditions for Semantics Enforcement 35

4.2.1 System Model . 35

4.2.2 Subscription Stability . 37

4.2.3 Stability-Based Conditions . 37

4.2.4 Evaluating Full Stability . 38

4.2.5 Impact on Latency . 39

4.3 A Necessary (and Su�cient) Condition for Semantics Enforcement 39

4.3.1 Causality-Based Condition . 39

4.3.2 Leveraging Causality . 40

4.3.3 Correctness . 41

4.4 Leveraging Coverage . 43

4.4.1 Single-Prefix Coverage . 44

4.4.2 Multi-Prefix Coverage . 45

viii

4.5 Subscription Coverage Optimized Algorithm . 47

4.5.1 Correctness . 48

4.6 Summary . 50

5 LoCaPS 51

5.1 Goals . 51

5.2 LoCaPS . 51

5.2.1 LoCaMu . 52

5.2.2 LoCaPS Algorithm . 54

5.3 Implementation . 55

5.3.1 Development Environment . 56

5.3.2 Framework . 56

5.3.3 LoCaPS . 56

5.4 Summary . 57

6 Evaluation 59

6.1 Goals . 59

6.2 Experimental Settings . 59

6.3 Analyzing the Su�cient and Necessary and Su�cient Conditions 60

6.4 Analyzing Subscription Coverage . 62

6.5 Analyzing Localized Algorithms . 64

6.6 Discussion . 64

6.7 Summary . 65

7 Conclusions 67

7.1 Future Work . 67

Bibliography 68

ix

List of Tables

3.1 Systems’ guarantees and strategies for each topic. 32

x

List of Figures

2.1 Message and execution flow in a Pub/Sub system. 6

2.2 Examples of subscription event histories. 7

3.1 Addressed concerns by respective system. 30

4.1 Subscription semantic examples. 34

4.2 Single path subscription coverage. 44

4.3 Multi-path subscription coverage. 45

5.1 LoCaMu’s underlying acyclic graph and extended graph. 53

6.1 LoCaPS vs Delta under di↵erent settings . 61

6.2 LoCaPS vs the Delta and Gryphon algorithms 62

6.3 LoCaPS vs Delta under di↵erent neighborhood scenarios 63

xi

xii

Chapter 1

Introduction

This thesis addresses the problem of o↵ering low latency to subscribers in a reliable causal

publish-subscribe system. Typically, systems that enforce these properties have a higher latency

than others with weaker guarantees in terms of ordering and reliability. For properties to

be enforced they require the subscription to be propagated to every broker in the overlay.

Not surprisingly, this results in higher latency. On the other hand, best-e↵ort systems have

used covering relations between subscriptions to reduce latency. However, to the best of our

knowledge, previous reliable publish-subscribe systems have not been able to exploit coverage to

speed up subscriptions. In this thesis, we define the necessary and su�cient conditions needed

to achieve reliable causal delivery. Interestingly, these conditions do not require every publisher

to receive the subscription to ensure reliable delivery to the subscribers. We then analyze how

systems can use subscription coverage to decrease latency, and we propose an algorithm that

o↵ers both strong delivery guarantees and low subscription latency.

1.1 Motivation

The publish-subscribe abstraction [EFGK03] has emerged as a fundamental tool to build dis-

tributed systems that preserve strong decoupling among participants. These can be either

information producers or consumers. Producers are named publishers and generate events. An

event is a data unit that can be modeled as a tuple containing multiple fields. Consumers are

named subscribers, which receive events they subscribe to. Participants can express interest

in a given content by subscribing to a topic. Systems that support this type of subscription

are referred to as topic-based publish-subscribe systems. Alternatively, participants can express

constraints on the event’s fields. This type of system is called a content-based publish-subscribe

system.

1

The most common strategy to implement a large-scale publish-subscribe system consists

of using a network of message brokers that can relay events from publishers to consumers.

Publishers connect to a broker of this network and forward events to it, while subscribers connect

to other brokers and express interest in events with their subscriptions. Brokers coordinate with

each other to make sure events are forwarded in the broker overlay, from publishers to interested

subscribers. Messages are matched with subscriptions by brokers to verify if they are relevant

to a subscriber. Brokers need to coordinate to o↵er quality of service guarantees to message

subscribers. Typically o↵ered properties are reliable (gapless) FIFO delivery, reliable causal

delivery, or even reliable ordered delivery of events.

In this thesis, we are particularly interested in studying the subscription latency in reliable

publish-subscribe systems. This latency corresponds to the delay between the time a subscriber

performs a subscription and the time at which it receives the first event from any publisher.

Said delay varies between di↵erent systems: it is a function of the number of steps the algorithm

needs to execute, in the routing broker overlay, to deploy the state required to enforce the desired

reliability guarantees.

We consider only two variants of reliable delivery: gapless FIFO delivery (GFD) and gapless

causal delivery (GCD). Informally, GFD ensures that, once a subscriber starts receiving events

from a given publisher, it receives all subsequent events produced by that publisher that match

the subscription. Gryphon [ZSB04, BSB+02] is a well-known system that o↵ers this type of

reliability. GFD is defined for each publisher, regardless of the interactions between publishers

through their events. These interactions are rather common and occur when a client is both a

publisher and a subscriber. GCD is a stronger reliability criterion for publish-subscribe systems

that avoids anomalies resulting from missing cause-e↵ect relations among events. The cause-

e↵ect relations are established from several interactions among publishers. Examples of systems

that o↵er GCD are [CDNF01, PRS96, PLTP08, NDA+14, dAADJ+19].

This work answers the following interesting question: given that GCD is stronger than GFD,

is the subscription latency for the former necessarily greater than for the latter? Surprisingly,

we show that the answer is no. In fact, by ensuring causality in the propagation of messages

among event brokers, we demonstrate that GCD can be guaranteed quickly. It becomes possible

to enforce GCD as soon as a condition is met: All brokers in a single path, from one of the

publishers to the subscriber, must know the subscription. This property is substantially weaker

than the one considered by existing implementations, such as [KJ09, dAADJ+19]. These require

the subscription to be known by all brokers in all paths from all publishers.

One of the core characteristics of publish-subscribe systems is the covering relation that

2

exists between subscriptions. Informally, subscription Sa is said to cover subscription Sb if

all events that match Sb also match Sa. Another enthralling question we address is the fol-

lowing: can coverage relations be used to decrease the subscription latency? If yes, in which

conditions? Covering relations have been used to decrease subscription latency in best-e↵ort

systems [CRW01, SDJ16]. However, to the best of our knowledge, previous reliable publish-

subscribe systems have not been able to exploit coverage to speed up subscriptions. Therefore,

we also study the conditions that allow a system to decrease subscription latency for covered

subscriptions.

Finally, we introduce this dissertation’s resulting algorithm, which supports GCD and makes

use of our findings. LoCaPS expands previous work on localized causal multicast [SR19] to

implement e�cient subscription protocols. These o↵er low subscription latency when brokers

observe suitable coverage relations between a new subscription and previously deployed ones.

Experimental results show that by taking into consideration coverage relationships, the system

can considerably reduce the latency observed by subscribers.

1.2 Contributions

This thesis makes two contributions:

• It states the necessary and su�cient conditions for implementing Gapless FIFO Delivery

and Gapless Causal Delivery;

• It proposes a novel algorithm, named LoCaPS, which leverages these conditions and the

notion of subscription coverage to reduce the subscription latency;

1.3 Results

The work described in this dissertation has achieved the following results:

• An implementation of LoCaPS on the PeerSim [MJ09] simulator;

• An experimental evaluation of the system and a comparison of its performance with other

algorithms that provide similar properties.

1.4 Research History

This work was performed in the context of a research project, named Cosmos, that aims at

o↵ering causal consistency on the network edge. My work builds on the work of Valter Santos,

3

which has designed LoCaMu[SR19], acting as a Localized Reliable Causal Multicast layer to

propagate both subscriptions and events in a broker network. In LoCaMu, multicast groups are

static and, therefore, on-line subscriptions are not supported. We were interested in studying if

LoCaMu could help in the implementation of a publish-subscribe system that could o↵er strong

guarantees and fast subscriptions. Our system LoCaPS has been implemented as an extension

to LoCaMu.

This work was partially supported by the FCT via project COSMOS (via the OE with ref.

PTDC/EEI-COM/29271/2017 and via the “Programa Operacional Regional de Lisboa na sua

componente FEDER” with ref. Lisboa-01-0145-FEDER-029271) and project UIDB/ 50021/

2020.

1.5 Thesis Outline

The rest of the document is organized as follows: Chapter 2 presents an overview of the dif-

ferent properties and characteristics of publish-subscribe systems; Chapter 3 describes all the

background related to our work, categorizing several publish-subscribe systems under distinct

properties; Chapter 4 defines conditions to enforce GCD semantic and presents a novel algorithm

that supports it, as well as optimizations leveraging already deployed subscriptions; Chapter 5

describes LoCaPS, an implementation that materializes our findings; Chapter 6 presents the

results of the evaluation performed on each algorithm and compares our system’s performance

with previous work and Chapter 7 concludes this dissertation, with a summary of the presented

contributions.

4

Chapter 2

Background

This chapter begins with Section 2.1 by introducing concepts relevant to describe characteristics

of publish-subscribe systems. Section 2.2 presents an overview of the essential properties of these

systems. Then Section 2.3 describes in detail what subscription latency is and which methods

are usually employed by systems aiming to reduce it.

2.1 Definitions

The role of a publish-subscribe system is to deliver messages produced by publishers to all

interested subscribers. Di↵erent systems ensure distinct properties on the history of events

relayed to subscribers, in terms of reliability and order. The set of properties for message

delivery defines the level of service a system provides. In turn, these properties have an impact

on the time taken for a subscriber to start receiving events after a subscription is issued. In this

section, we make an overview of the essential properties provided by several publish-subscribe

systems, of how these properties a↵ect subscription latency, and of the di↵erent techniques that

can be used to reduce this latency.

2.1.1 Event Graph and Subscription History

Before we discuss the properties of publish-subscribe systems in more detail, we introduce the

concepts of event graph, subscription history, subscription starting cut, and subscription ending

cut. These concepts are introduced by relying on the example depicted in Figure 2.1. We assume

a publish-subscribe system, with multiple publishers, where each one produces a sequence of

events.

Events can be causally related. We use the notion of causal order from Lamport[Lam19],

where if two events e1.1 and e1.2 produced by the same publisher p1, where e1.2 is produced

5

p1 p2 p3 s1

Subscribe Rede1.1

Unsubscribe

Starting Cut

Ending Cut

e1.2
e1.3

e1.4

e1.5

e2.1

e2.2

e2.3

e2.5

e2.4

e3.1

e3.2

e3.3

e3.4

e3.5

e3.6

e1.3

e1.4
e2.2
e3.2
e3.3
e2.4

e3.5

Figure 2.1: Message and execution flow in a Pub/Sub system.

after e1.1, then e1.2 will be causally dependent of e1.1, denoted e1.1 ! e1.2. Publishers can

also subscribe to events from other publishers, creating potential cause-e↵ect relations between

events originated from such di↵erent sources. Again, we use Lamport’s definition, whereas if

publisher p3 produces some event e3.2 after delivering event e2.1 from publisher p2, we also say

that e2.1 ! e3.2. This definition specifies a partial order on the events produced in the system

and can be represented by an event graph, where edges represent causal relations. The events

can have di↵erent topics, contents, or both, depends if the system is topic-based or content-

based. In the example of Figure 2.1, we have a topic-based publish-subscribe system, white and

red topics and events.

We denote the subscription event history as the sequence of events that are delivered to a

given subscriber. The subscription history starts with a special subscribe event, which is locally

generated by the subscriber when it issues the subscription. Another special unsubscribe event

is issued when the subscriber terminates the subscription. Figure 2.2 shows the subscription

history associated with a subscription of red events by di↵erent subscribers.

The set of events composed by the first event from each publisher, appearing in the sub-

scription history, defines a cut in the event graph, which is the subscription starting cut. In

our example, the starting cut for the subscription of s1 is defined by events e1.3, e2.2, and e3.2.

Similarly, the set of events composed by the last event from each publisher appearing in the

subscription history defines a cut in the event graph, which is the subscription ending cut. In

our example, the ending cut for the subscription of s1 is defined by events e1.4, e2.4, and e3.5.

6

s1 s2 s3 s4 s5

e1.3

e2.2

e1.4

e3.2

e3.3

e2.4

e3.5

e1.3 e1.3 e1.3 e1.3

e1.4 e1.4 e1.4e2.1

e1.4e2.2 e2.2

e2.2e3.2 e3.2 e3.2

e3.3 e3.3 e3.3 e3.3

e2.4

e2.4 e2.4

e2.4

e3.5

e3.5 e3.5

e3.5

Figure 2.2: Examples of subscription event histories.

2.2 Properties of Publish-Subscribe Systems

In this section, we introduce the properties of publish-subscribe systems essential to understand

how each scenario a↵ects the observed latency.

2.2.1 Delivery Order

Publish-subscribe systems di↵er in the ordering properties of the subscription history. In par-

ticular, how the serial order of events in the subscription history relates to the partial order of

the global event graph. The following ordering properties are relevant:

FIFO (First-In, First-Out) order [BSB+02, KJ11]:A system enforces FIFO order if, for any

two events in subscription s, produced by the same publisher, the order by which these events

appear in s is the same as the order by which these events occur in the event history. An example

of a subscription event history that respects this ordering can be seen in Figure 2.1.

Causal order [dAADJ+19, NDA+14]: A system enforces causal order if the order of ap-

pearance for any two events in s, produced by the same or by di↵erent publishers, respects the

partial order by which these events appear in the event history. The subscription history of s4,

depicted in Figure 2.2, does not respect this ordering. The history contains e2.1. As such, it

must also contain every event that is causally dependent on it. However, e3.2 is missing.

The two ordering properties presented above are defined for a single subscription history. It

is also possible to define ordering properties that relate multiple subscription histories, namely:

Total order [PLTP08, BBPQ12]: A system enforces total order if, for any two subscriptions s

and s
0 (issued by di↵erent subscribers), and for any two events x and y such that {x, y} 2 s and

7

{x, y} 2 s
0, if x appears before y in s then x also appears before y in s

0. Both the subscription

history from s1 and from s2 in Figure 2.2 respect this ordering. Total ordering in violated in the

subscription history of s3 when compared to that of s1, since it does not contain every event in

the same order.

2.2.2 Reliability

We can define the reliability of a publish-subscribe system using the notion of event graph and

subscription history. Let s be a given subscription history and Es be the set of events from

the event graph that simultaneously: i) match the subscription specification and; ii) belong to

the subgraph of the event graph that is delimited by the starting and ending cut of s. We say

that a publish-subscribe system o↵ers reliable delivery [KJ09, CF04] if, for any subscription s,

all events from Es belong to the subscription history of s. For instance, using the example of

Figure 2.1, the subscription history s1 does not violate reliable delivery. All red events between

the starting cut and the ending cut belong to its history. On the other hand, illustrated in

Figure 2.2, the event history of s5 violates reliable delivery, given that event e2.2 is not included

in the subscription history. In some works, reliable delivery can also be named gapless delivery.

The definition of reliable delivery above does not prevent the system from delivering one

event more than once to a given subscriber. Most systems avoid this by providing exactly once

delivery of each event, which is sometimes called strong reliability [BSB+02]. Conceptually,

ensuring this type of delivery is simple: the interface can keep a log of the events that have

been delivered to the subscriber. Brokers also filter out duplicate events that have already been

forwarded. In practice, this could be a limitation if memory is constrained, unless it is possible

to compress the event log e�ciently.

Finally, we are also interested in a stronger form of reliability that we call causal complete-

ness [dAADJ+19]. We say that a subscription history s is causal incomplete if there is an event

x and two other events beforex and afterx, such that beforex ! x ! afterx, and beforex 2 s,

afterx 2 s, but x 62 s. Note that a history can be reliable without being causal complete. This

can happen if the subscription starting cut is not consistent with causality.

Some systems do not enforce reliability and deliver events to subscribers in a best-e↵ort man-

ner [CRW01, CP05]. Others only ensure reliability with high probability [CMPC04, CMPC03].

In our work, we will mainly focus on systems that can o↵er strong reliability.

8

2.2.3 Other Relevant Features

The literature on publish-subscribe systems is extensive and detailed, thus, all relevant features

that have been proposed or implemented are hardly covered in this report. Despite not being

covered, for self-containment, we list in detail some of the most significant features.

Durability [BZA03]: Storage of events matching a given subscription in order to tolerate sub-

scriber failures. By keeping those events, the system can send any missed events to a subscriber

that reconnected, after being disconnected for a certain period.

Timeliness [EPB13]: Corresponds to the ability of enforcing either hard or soft real-time

guarantees on event delivery. Ensuring that an event is delivered before some target deadline

after being issued is a relevant property in several areas. As will be plain later in the report,

our work is somewhat orthogonal to these aspects.

Configurable QoS [CAR05]: In some systems, the set of properties enforced on a given

subscription can be selected by the subscriber when issuing the subscription.

Support for Subscriber Mobility [CDNF01]: Most publish-subscribe systems are only able to

enforce reliability and ordering properties if a subscriber remains attached to the same broker.

Supporting subscriber mobility allows a subscriber to disconnect from a broker and connect to

a di↵erent one, while preserving a single causal history.

2.2.4 Network Overlays and Fault Tolerance

The networkk topology structure impacts both delivery guarantees and subscription latency.

One possibility consists of organizing publishers and subscribers in a clique [NDA+14], such

that publishers can connect directly to every subscriber without using any intermediary. This

configuration can lead to scalability problems, considering that every subscriber must establish

communication with every publisher. As such, we will only be focusing on publish-subscribe

systems that use a distributed broker network.

The distributed broker network can be modeled as a graph, where each broker is a vertex,

and the communication links are the edges between them. The broker topology can be organized

according to di↵erent types of graphs. One of the most common strategies arranges brokers in a

tree [ZSB04], which is an acyclic and directed graph where each vertex has, at most, one parent

node but can have several child nodes. Other systems organize brokers in a DAG (Directed

Acyclic Graph) [CF04], also an acyclic directed graph, but where each vertex can have several

parent and child nodes. On the other hand, some systems use graphs in which the edges are

undirected, allowing messages to be exchanged in both directions of the link. Finally, some

systems also use cyclic or general graphs [CP05], which have several paths connecting any pair

9

of nodes.

Clients (that can be publishers, subscribers, or both) connect to one of the brokers on the

network that they use as an access point to start publishing or receiving events. Some systems

specify that clients can only access edge brokers [SDJ16]; in a tree topology, these are the root

and leaf brokers, while in a DAG these are the brokers at the edge of the network. On the other

hand, some systems allow clients to connect to any broker on the network [CMPC04].

Each topology, and each strategy to connect clients to brokers, has its advantages and dis-

advantages. In a tree-based architecture, many events need to be routed via root, which can

become overloaded. Also, in a tree, every inner broker on the network is a single point of failure.

Ensuring that the broker network is acyclic, as required in DAG architecture, can be di�cult

without centralized administration. Also, by construction, DAGs lack path redundancy. In a

general graph architecture, redundant paths can be used as a fault tolerance mechanism, o↵ering

more flexibility when establishing connections. However, maintaining ordering and reliability

guarantees when messages can travel through di↵erent paths is more challenging.

The fault-tolerant mechanisms implemented by di↵erent publish-subscribe systems are often

dependent on the network topology. Commonly addressed issues are broker failures and link

failures. The most common broker failures are crash failures that render a broker inoperative.

The most common link failures are omissions (causing it to lose some messages at random) and

link partitions (causing it to become inoperative until the connection is re-established).

Systems can either use redundant brokers or redundant paths to deal with failures. The

topology can use the notion of virtual nodes [BRVR17, ZSB04] to mask the fault of a physical

server: in said approach, a group of brokers represents a vertex of the graph and acts as a

single, reliable broker. Thus, although at the logical level, there is only a virtual link connecting

adjacent vertexes, at the physical level, several redundant paths are connecting the di↵erent

replicas that implement these virtual nodes. Another alternative consists in using other brokers

on the network as backups [SDJ16, KJ09] in case of failure of a given broker, creating additional

edges, only used when failures happen. A general graph architecture having multiple paths

among any two nodes inherently provides fault tolerance.

2.2.5 Event Routing

The broker network is required to deliver messages from publishers to interested subscribers. A

simple approach for implementing this task consists of broadcasting all events to all brokers (us-

ing flooding, for instance) and then let each broker filter events relevant to its local subscribers.

This strategy can be very ine�cient, as bandwidth is wasted forwarding events to brokers that

10

are not interested in them.

A better strategy consists of only forwarding an event to brokers that are in the path to

relevant subscribers. But in order to do so, brokers must be aware of the location of subscribers,

creating routing tables that help them forwarding events through the right paths. This is possible

if information regarding the subscriptions is propagated through the network, and brokers set

up their routing tables accordingly. Subscriptions need to be broadcast in the overlay, but since

they are generally much less frequent than event notifications, the relative cost of subscription

broadcast can be small.

The cost of subscription broadcast can be avoided by forwarding subscription information

only to brokers that are in the path from the publishers to the subscribers. This forwarding

strategy is only possible if the location of the publishers is known. For this purpose, some

systems also use advertisements [CRW01], which are messages used by publishers to announce

their presence in the network. Announcements need to be broadcast in the network, but they

are assumed to be even less frequent than subscriptions. Based on these advertisements, brokers

can create routing tables to propagate subscriptions toward relevant publishers.

2.3 Subscription Latency

When a subscriber makes a new subscription, it needs to wait a certain amount of time before

it starts receiving events associated with that subscription. We define the subscription latency

as the time elapsed between the moment a subscriber issues a subscription request and the first

event that matches the subscription being delivered. Naturally, we would like the subscription

latency to be as small as possible. However, as we have seen, most publish-subscribe systems

require routing tables to have the subscription on brokers that are in the path from the publisher

to the subscriber. Before these routing tables are updated, event delivery cannot be ensured.

Thus, in many cases, the subscription latency will be proportional to the end-to-end delay

between the publisher and the subscriber. In the worst case, the subscription latency will be

proportional to the diameter of the network.

There are many other aspects of the operation of the system that can also a↵ect subscription

latency. Consider, for instance, an overlay network that uses multiple paths for fault-tolerance.

In this case, routing tables need to be set up in all routes, introducing additional delays. Systems

that use a single path and rely on virtual nodes also introduce extra delays. This delay is due to

the need of replicas of a given vertex to coordinate as to ensure they have consistent information

regarding the routing table of their virtual node. In some cases, a consensus protocol needs to

be run among the replicas of a vertex every time a subscription is propagated via that virtual

11

node.

The reliability of the event delivery service also has an impact on subscription latency.

Consider, for instance, the case where multiple paths can be used to propagate an event from a

publisher to a subscriber. Consider that the routing tables have already been set up in one of

these routes (that we denote the stable path) but not in the other(s). In this case, depending on

the way an event takes, it can be forwarded or dropped. A system that aims at o↵ering gapless

delivery needs to wait for all routes to be stable. However, a system that can tolerate event

losses can start delivering events as soon as one path becomes stable.

Finally, the latency of a subscription is a↵ected by previous subscriptions already in place.

Consider the case where a subscriber makes a subscription that is covered by an already deployed

one, made at the same broker. A subscription covers another if all messages matching one

subscription also match the other. In this case, there is no need to update the routing tables,

and the subscriber can start to be served immediately. Thus, the location and subscriptions

of other subscribers are relevant aspects when analyzing subscription latency. Systems that

do not support subscription covering require every broker on the network to have every issued

subscription on their routing table.

2.3.1 Reducing Subscription Latency

There are a few techniques that can be used to reduce the latency experienced by subscribers.

We discuss two relevant methods in this context.

The first technique consists of re-organizing the broker overlay to group subscribers that

have similar subscriptions [LSB06]. Subscribers are brought closer to the publishers that are

relevant to their subscriptions. This positioning reduces the path length from the publisher to

the subscribers, reducing the time it takes to set up routing tables. Additionally, it increases

the likelihood that a new subscription is already covered.

A second technique consists of using di↵erent event forwarding strategies when paths are

either stable or unstable [CF04, ZSB04]. For instance, if a publisher becomes aware of a sub-

scription, but it is not sure if all routes are stable, it can force events to be flooded in the

network. This flooding prevents incorrect forwarding decisions while subscription information

on the brokers is inconsistent, which will trade bandwidth for a lower subscription latency.

2.4 Summary

This chapter provided an overview of several important properties of publish-subscribe systems

and discussed some of their advantages and limitations. In particular, we have addressed the

12

potential impact that the di↵erent guarantees o↵ered by publish-subscribe systems can have on

the subscription latency and discussed a number of techniques that can be used to reduce this

latency.

13

14

Chapter 3

Related Work

In this chapter we survey several relevant publish-subscribe systems. In Section 3.1 we list

relevant properties to consider when analyzing the solutions. Section 3.2 starts by describing a

system that will be used by ours, as a causal multicast layer, and afterward analyzes the studied

publish-subscribe systems.

3.1 Relevant Properties

In this chapter, we survey several relevant publish-subscribe systems. We start by describing

LoCaMu[SR19], which will be used by our system as a causal multicast layer. In the analysis,

we emphasize the following concerns:

• Network Overlay and Fault Tolerance Addresses how systems structure their overlays as

well as the location for the access points. Addresses also the type of faults the systems

tolerate and the techniques they use to achieve fault-tolerance.

• Ordering Ordering properties enforced by the system and the algorithms used to implement

them.

• Reliability Level of reliability systems o↵er to their subscribers and which mechanisms

they use to enforce it.

• Subscription Starting Cut How systems define the point when a subscriber can start re-

ceiving messages, depending on the guarantees they want to provide. The subscription

latency is also an essential factor influenced by the level of service, topology, and relevant

optimizations.

• Routing Events How systems forward events on the broker network, along with which

metadata or storage is used by brokers to make forwarding decisions.

15

3.2 Systems

In this section, we start by introducing the LoCaMu algorithm, which will be used as a base

layer to provide causal delivery by our solution. Afterward, we present the studied publish-

subscribe systems that vary widely in their characteristics, o↵ered guarantees, and which topics

they approach. Finally, we discuss and compare the analyzed solutions and how we could apply

their properties to LoCaMu.

3.2.1 LoCaMu

The goal of the LoCaMu[SR19] system is to provide reliability and causal ordering guarantees

using localized multicast on a distributed broker network. Subscription information is already

pre-established in the routing tables, and each broker belongs to a multicast group.

Network Overlay and Fault Tolerance Brokers are arranged in an acyclic undirected graph

and act as clients that can publish to groups. It uses the concept of neighborhood, which is

the set of nodes at an established distance from a broker, to define the partial view each broker

has of the network. The system tolerates f number of failures in a given neighborhood of size

2f + 1. This fault-tolerance mechanism uses redundant paths. Brokers create additional edges

to the closest available neighbors on that path to bypass nodes that have failures. LoCaMu

ensures that a broker forwards a message m to relevant available neighbors, and nodes that

are temporarily unavailable will receive all events when they recover. Safety neighborhood and

safe paths are also relevant concepts for this system. The safety neighborhood is defined by the

2f + 1 distance nodes in the base graph, and a safe path is any path of 2f + 1 nodes, where

there are at most f faulty nodes. If a route has more than f faulty nodes, then messages cannot

be forwarded through it.

Ordering To ensure causal ordering guarantees, LoCaMu tags events with metadata about

the broker’s neighborhood. The size of such metadata is limited because each node is only

required to maintain metadata regarding messages sent or received by other nodes in their

safety neighborhood. Nodes keep separate sequence numbers for each of their neighbors. Those

assigned to the event are the ones corresponding to the brokers on the event’s forwarding path.

Brokers locally store the sequence numbers they have seen from their neighborhood, defining the

node’s past. This past is useful to tag events, such that they will carry information about the

sender’s causal history. By comparing the local causal past with the one attached to the event,

nodes can verify if it is safe to forward messages. In practice, since causal order is transitive,

16

only the most recent sequence numbers need to be preserved in the node’s past.

Reliability LoCaMu does not require a perfect failure detector. As such, nodes have di↵erent

perceptions of which neighbors are available. This misleading perception can make the broker

forward messages using a redundant path, creating duplicate messages. Duplicate events can

be eliminated using the events’ metadata and the node’s causal past. Brokers verify if deliv-

ering an event respecting causal order is possible by comparing the local causal past with the

event’s metadata. If such delivery is not possible, the event is then bu↵ered, and a request for

retransmission of missed events is triggered.

Routing Events Brokers use routing tables to know which neighbors they have to forward a

message to, such that it can be delivered to the members of the addressed group.

3.2.2 SIENA

SIENA[CRW01] is a content-based publish-subscribe system that focuses on giving expressive-

ness and flexibility to subscriptions. Another of its goals is to provide scalability by optimizing

the subscription propagation process. It serves as a building block for many of the presented

systems, which use techniques described in this solution.

Network Overlay and Fault Tolerance This system uses a general graph to structure the

broker network. Clients can publish and subscribe by connecting to any broker. Using this

graph structure provides multiple paths between any pair of brokers, requiring less coordination

when a new broker joins the network.

Subscription Starting Cut SIENA uses subscription forwarding combined with advertise-

ment forwarding to disseminate subscriptions on the network. Brokers maintain a structure

called a filters poset. This set is a DAG of constrains, defining a partial order on the set of filters

known by a broker. It supports subscription covering, represented in the covering relations in

the filters poset. From the set, a root filter stands out as the most generic one, covering all other

subscriptions.

Events start being delivered to a subscriber when its subscription reaches a broker with a

connected publisher. The stability of multiple paths does not need to be verified, considering

SIENA does not support any quality of service guarantees. As such, subscription latency is

related to the distance from the subscriber to the event source, although this can be shortened

significantly by subscription covering.

17

Routing Events Brokers use their filters poset to make forwarding decisions on events. If an

event matches a filter, then it is forwarded to the nodefrom where the subscription originated.

An additional algorithm is executed to maintain a minimal spanning tree for each publisher.

The tree is used to avoid cycles when routing events, as well as to choose the shortest routing

path.

3.2.3 Gryphon

The goal of Gryphon[ZSB04] is to build a content-based publish-subscribe system capable of of-

fering strong reliability with FIFO message ordering, while maintaining high availability and scal-

ability. The system is described in various papers, such as [BSB+02], [ASS+99] , and [BZA03],

which characterize its di↵erent qualities.

Fault Tolerance and Overlay Network This system uses a tree topology for the broker

network, where each intermediate node is a virtual one containing several redundant brokers.

Publishers connect to the root node (publisher connecting broker), and subscribers connect to

any leaf node (subscriber connecting broker).

Ordering To guarantee a FIFO message ordering, it uses a sequence number for each pub-

lisher. A publisher tags the events it publishes with sequence numbers, incremented for each

event. Every subscribing broker must receive an ordered stream of events from a publisher. A

silence token is forwarded downstream if an event happens to be filtered. The sequence number

for the token is the same as the one in the filtered event.

Reliability The subscribing brokers start bu↵ering events if sequence numbers are missing

in the event stream from a publisher. To recover missed messages, the subscribing brokers

send a curiosity message upstream stating the missed sequence numbers. Intermediate brokers

receive these curiosity messages and can retransmit the events or tokens if they have them

locally. Otherwise, they forward the received message to their parent broker. Consequently, this

mechanism allows for an exactly-once reliable delivery.

Subscription Starting Cut Messages can travel along di↵erent paths, which can cause gaps

in the delivery. To solve this challenge, each leaf broker, where subscribers can connect to,

has a virtual time clock. For each new subscription or set of subscriptions, the leaf broker will

increment this clock and assign the subscription a virtual sst (subscription starting time). This

subscription needs to be propagated upstream to the publisher, creating a stable path for the

18

subscriber to start receiving events. The contents in which the subscriber is interested in and

its starting time will be included in this message.

Other nodes will maintain a vector V b with an entry for each subscriber broker. When a

node receives a new subscription, it compares the sst with the entry in its V b, corresponding to

the subscriber broker. To accept this new subscription from node i and update its V b it must

obey the following constraint: V b[i] = sst�1. The subscription is propagated with its sst toward

the publisher broker, the root of the tree topology, which means the experienced delay is equal

to the network diameter. Timestamps serve to verify if a broker has a consistent subscription

set and belongs to a stable path. Gryphon supports subscription covering by using a DAG to

store subscription information. However, it still has to flood the subscription upstream toward

the publishing broker, due to clock updates of leaf brokers.

Routing Events To route an event downstream, a vector V m is used; this vector is attached

to a published event by the publisher broker and can be equal to its current V b. For an

intermediate broker to detect if it belongs to a stable path, it must compare the received V m

with its V b. For each entry i, if V b[i] V m[i], then it is safe to perform matching using

the information in its routing table, forwarding the event through the links in the matching

results. Otherwise, the broker floods the event downstream to ensure a gapless delivery. Upon

receiving the event, the subscribing broker verifies if such event matches any of its subscriptions.

If V m[subscribingbroker] sst, then it is safe to deliver the event.

3.2.4 �-fault-tolerant

Kazemzadeh and Jacobsen [KJ09] [KJ11], propose a content-based publish-subscribe system

named �-fault-tolerant. The goal is to develop a system that is reliable and maintains availability

when � broker failures occur, including tolerance to network partitions.

Fault Tolerance and Overlay Network The system’s overlay is an acyclic undirected graph

where clients can connect to any broker. Each broker contains a partial view of the network,

which includes brokers that are �+1 hops away; enabling a broker to bypass up to � unreachable

neighbors by creating additional links.

Ordering To achieve FIFO ordering, each publisher can only have one event in transit at

a time. As such, event propagation for each publisher is not concurrent. It is only possible

to publish another event after the system confirms the previous has been delivered to every

interested subscriber.

19

Reliability For strong reliability, the system uses end-to-end acknowledgments. Brokers for-

ward the event after performing matching to select the links and wait for a confirmation that

it has been delivered. Edge brokers receive the event and send an acknowledgment back to the

sender. These acknowledgments are propagated back to the broker with the local publisher.

When an acknowledgment arrives at this broker, it can confirm that every subscriber received

the event and new messages can be published. Sequence numbers are added to each event by

the brokers forwarding them. Brokers maintain 2� + 1 sequence numbers, so there is at least

one broker in common to compare sequence numbers. This mechanism is employed to detect

duplicate events.

Subscription Starting Cut The safety condition, “a publication is delivered to a matching

subscriber only if it is forwarded by brokers that are all aware of the client’s subscription”, has

to be followed by the system to enforce the guarantees. The broker with a connected subscriber

starts by flooding its subscription. When the subscription arrives at an edge broker, it sends an

acknowledgment back to the sender. Brokers on the network will wait to receive a confirmation

from the links they flooded the subscription. Afterward, a broker sends a confirmation to its

upstream node, which attests to the reception by all its downstream neighbors. When the broker

with a connected subscriber receives an acknowledgment, it can then start delivering events to

its subscriber. In this system, the delay experienced by subscribers will be equal to the network

diameter. After this process, every path in the network is stable for the subscription.

If there are partition islands, the broker bypasses the sequence of unreachable nodes with a

new link. It sends the subscription through it, waiting for an acknowledgment from that link

only. If a broker beyond the partition can connect to any node inside, then it can propagate

the subscription there. It uses a tag on the event for the subscription to be disseminated,

only between the nodes included in that pid (partition identifier, contains every broker on the

partition and which broker detected its existence). In case there are partition barriers, the

acknowledgments sent back must be tagged with a pid. The tag indicates that brokers beyond

the partition in pid did not receive the subscription. The broker with a subscriber creates a new

entry in its routing table when a confirmation is received. This entry includes the pid tagged in

the subscription. That way, it knows that events coming from, or beyond, that partition cannot

be safely delivered to the subscriber.

Routing Events There are two conditions to deliver a publication to a subscriber: if it

matches the subscription’s predicates; and if the safety condition is verified. When a broker

receives an event, it checks if the event came from any partition known by it. If it did, the

20

event can be tagged with that pid. Next, it matches the event with the subscriptions in its

routing table, to select active neighbors to forward the event. The tags in the events are used

by brokers with connected subscribers, to verify the safety condition by comparing them with

the subscription’s stored tags. If there is at least an identical pid, then it is not safe to deliver

the publication.

3.2.5 Dynamic Message Ordering for Publish-Subscribe

The main objective of Dynamic Message Ordering[BBPQ12] is to ensure that two subscribers

interested in the same two or more topics will deliver the events respecting total order. There

is no specified overlay for the network of the publish-subscribe system, which assumes a generic

Event Notification Service (ENS). This service o↵ers a topic-based interface for clients to publish

events or subscribe to already pre-established topics. The system assumes the existence of

specific brokers, called topic managers. These managers can be created statically or through a

DHT (Distributed Hash Table) that selects these nodes dynamically.

Ordering To achieve total order, every topic manager contains every subscription with its

topic and a sequence number. The system arranges topics using a precedence order, which can

be predefined or changed dynamically. Every event is forwarded through the relevant managers

respecting the precedence order so they can be arranged concerning other events.

To publish an event on the ENS, a publisher must first request a vector clock for that event.

The sequencing group of topic T creates the timestamp. The group consists of T and preceding

topics included in at least, two subscriptions, along with T . The timestamp has an entry for

each topic manager in the sequencing group. The system delivers the event to each member of

the sequencing group, according to the precedence order. Managers increment their sequence

numbers and update their entry. After every topic manager has filled its entry, the event can

be published on the ENS.

Reliability The system also o↵ers reliable delivery by using message retransmission. Topic

managers store partially filled-in vector clocks they have seen, so these can be forwarded again.

Publishers solicit the creation of a new timestamp in case the request was lost.

Subscription Starting Cut To decide the starting cut for each topic, the subscriber must

request the creation of a vector clock V s. The system sends the request to all relevant topic

managers. The subscriber sends an empty vector, with one entry for every topic, to the last

topic manager, according to the precedence order. When the manager receives the request, it

21

increments its sequence number and fills the corresponding entry on the clock. It then updates

its set of subscriptions with the new subscriber and every relevant topic. Afterward, it forwards

the subscription to the next manager in the order. When the last topic manager fills its entry,

the system sends the timestamp back to the subscriber. It will now use the timestamp as its

local subscription clock.

When the subscriber is notified about a new event matching its subscription, it must compare

and verify, for every entry i, that: V s[i] < timestamp[i]. If the comparison holds, then the

subscriber updates its local clock with the sequence numbers in the timestamp. Otherwise, it

tags the event as being out-of-order and bu↵ers it, to be delivered in order when possible.

3.2.6 XNET

One of the main goals of XNET[CF04] is to provide a reliable content-based publish-subscribe

system. This system also aims at reducing tra�c and minimizing the size of routing tables by

integrating a routing protocol called XROUTE[CF03], which supports subscription covering.

Fault Tolerance and Overlay Network The system uses an acyclic undirected graph for

the overlay, where each publisher or subscriber can connect to edge brokers. To ensure fault

tolerance, it can use redundant paths. The system creates more than a single route from each

pair of edge brokers, making a general graph overlay. Alternatively, it can use a redundant

broker strategy, in which there are designated backup brokers used in case of failure of the

direct neighbors.

Ordering To provide FIFO ordering, all links connecting brokers are TCP, which enforces

this property. Additionally, each time a broker forwards a message through a link, it uses an

increasing sequence number, unique to that link. Nodes store the highest sequence number they

have received from each downstream broker plus the highest number they have sent to their

upstream node.

Reliability To o↵er a reliable exactly-once delivery guarantee, end-to-end acknowledgments

are used. Brokers store events until confirmation of reception has been sent back. The sequence

numbers used for each link are useful for detecting duplicate messages.

Subscription Starting Cut XNET propagates subscriptions on the network using sub-

scription forwarding along with three di↵erent strategies to prevent faults. The first is called

Crash/Recover, where brokers bu↵er subscriptions until they receive an acknowledgment from

22

the upstream node to confirm reception. If a broker crashes, its downstream routers bu↵er

the subscriptions. The system uses this strategy when failures are only transient. If a broker

fails for a prolonged amount of time, there is a second strategy called Crash/Failover that uses

backup nodes. The backup is on another location in the network, and brokers connect to their

backups when their upstream routers fail. The chosen node must guarantee a valid routing path

to the subscriber. When switching from the upstream broker to the backup one, the first broker

again needs to send subscriptions to the latter. The new forwarding creates a routing path by

registering subscriptions on the backup broker. The upstream broker of the crashed node must

unsubscribe every entry to remove the previously established routing path.

Both schemes cause the system to be unavailable while recovering. There is a third strategy

called Redundant Paths that maintains availability. In this strategy, each broker has at least

one alternate route to publishers. Brokers replicate the routing tables on both paths. When one

broker fails, brokers on the alternate route can still deliver the event to the subscriber. Brokers

flood events to both alternate paths, such that at least the stable path forwards the event to

the subscriber. In this system, the delay is equal to the network diameter, since clients connect

only to the edge brokers.

Routing Events Brokers receive published events and match them against the patterns in

their routing table. This matching decides the downstream links through which brokers must

forward the event, only sending it if there is at least one interested subscriber.

3.2.7 Semi-Probabilistic Publish-Subscribe

Costa and Picco [CP05] propose Semi-Probabilistic Pub-Sub to address situations with a highly

dynamic and reconfigurable broker network. The solution trades delivery guarantees for scala-

bility and fault tolerance, supporting content-based publish-subscribe.

Fault Tolerance and Overlay Network The overlay topology is a general graph, and clients

can connect to any broker of the network.

Subscription Starting Cut Subscriptions are not propagated to all brokers, since each of

their routing tables can quickly become stale. Thus, each broker in the network only knows a

limited portion of the subscriptions made. A parameter called subscription horizon � determines

the neighborhood size having the subscription in its routing table. The routing tables contain an

additional field indicating the distance of that node from the broker that issued the subscription.

Considering the system does not give any guarantees on the delivery of messages, there is no

23

need to verify path stability. The subscriber can start receiving events as soon as its subscription

is deployed in its broker’s vicinity.

Routing Events In this system, brokers do not forward events in a purely deterministic

way. When there is no subscription information available, brokers make probabilistic routing

decisions, sending the event to a random subset of the node’s neighbors. This set is used to

propagate events and constitutes a percentage of all the broker’s neighbors, defined by a threshold

⌧ . The selection of the forwarding set prioritizes neighbors with subscriptions matching the

event. It also prioritizes the closest subscribers, while avoiding the event to be sent through a

stale route. If the links do not reach the required percentage, the broker adds random links to

forward the event.

3.2.8 GEPS

The goal of Gossip-Enhanced Pub-Sub[SDJ16] is to maintain a high delivery rate to subscribers

while also providing high system availability. It supports content-based publish-subscribe and

uses both advertisement forwarding and subscription coverage.

Fault Tolerance and Overlay Network The chosen topology is a tree-based graph where

clients can only connect to edge brokers. When forwarding through direct links is not possible,

it creates redundant paths using a similarity-based approach to bypass brokers with failures.

This strategy was preferred instead of using a random method, selecting a random set of nodes

from the network.

The main focus of GEPS is on fault tolerance by creating links able to bypass failures using

the similarity metric. Each broker maintains a partial view of the system, which is a subset

of the broker’s siblings (brokers with the same depth in the network overlay). Sibling brokers

use gossip to update their views, finding more similar brokers at their level or failed/recovering

ones. In each round, brokers heartbeat their sets to alive siblings, in addition to any faulty

nodes. This mechanism provides a distributed fault detection mechanism inside each sibling

group. Brokers maintain two additional partial views, the parent view, which is the upstream

node’s sibling view, and the child view, which is a set of the downstream nodes’ sibling views.

Subscription Starting Cut The system combines subscription forwarding with advertise-

ment forwarding to create routing paths for events. When a stable path between the subscriber

and a publisher exists, delivery can start. Therefore, the delay is equal to the network diameter.

The system does not give any guarantee regarding message delivery, disregarding the need to

24

verify if paths are stable when defining a starting cut.

Routing Events Brokers also maintain a counter for each advertisement with the number

of subscriptions in their routing table that match it. This counter serves to compare the simi-

larity between two brokers, when creating sibling views. The method bases the metric on the

subscription as well as advertisement knowledge of the brokers; the more they have in common,

the more similar they are. Forwarding events to similar brokers means there is a higher chance

that other subscribers with common interests will receive the events. Brokers forward events

through the links having subscriptions matching the advertisement. In case direct links are not

available, brokers use the child or parent partial views to gossip messages to the nodes in them.

Brokers that receive gossip messages also route those messages using gossip in the same way.

3.2.9 JEDI

The purpose of JEDI[CDNF01] is to build a content-based publish-subscribe system with a

distributed Event Dispatcher (ED), which delivers a published event to all interested subscribers.

Dispatching servers (DS) act as the system’s brokers. In this context, clients that connect to the

ED are active objects (AO); they interact with each other by producing and consuming events.

Overlay Network The system organizes the DSs in a tree-based topology, and AOs can

connect to any DS in the network.

Ordering To provide causal ordering, the system uses reliable TCP links. The event dissemi-

nation paths guarantee that if an AO delivers first event e1 and then publishes e2 (e2 was caused

by the generation of event e1), then every subscriber must deliver e1 before e2.

Subscription Starting Cut It uses a hierarchical strategy to propagate subscriptions in the

ED, and these are only propagated upwards on the tree. Propagating only to the root node

avoids having to flood them to the entire network. The AO can start receiving events as soon as

there is a stable path between it and a publisher. However, the subscription has to be propagated

until the root of the tree.

Routing Events When a DS receives an event from a downstream node, then it forwards

the event to its parent node. If the message came from upstream, then the DS forwards it to

interested downstream nodes. If it has a connected AO with a subscription that matches the

event, then it delivers the event to the AO. The event needs to be forwarded to the root DS

25

since this node knows all the system’s existing subscriptions. Subscribers on other subtrees are

unknown to intermediate DSs.

3.2.10 Sequencing Graph

The goal of Decentralized Message Ordering[LSB06] is to build a graph of forwarding brokers,

called sequencers, that will order events. The system delivers events according to causal order

across topics. Essential properties of the system are that all members of a group will deliver

events in causal order if the publisher is part of the group; and that every subscriber can verify

if an event is out of order, bu↵ering it if needed.

Overlay Network The construction of the sequencing graph follows two criteria: the first

is, there can only exist a single path that connects every sequencer associated with a double-

overlapped group. These are groups that have more than two members in common. The second

is that the final graph must be loop-free to avoid circular dependencies between events. When

a message leaves the sequencing network, the sequencer forwards it to a tree-based overlay that

connects a group’s subscribers. The system assumes that each group’s subscribers are globally

known, forming a membership matrix. The system uses the global membership matrix to create

a sequencer for each pair of double-overlapped groups. The new sequencer must be added to

the graph, forming a path to the newly added group, following both described criteria.

Ordering The system’s sequencing network determines the order of messages by having a

sequence number for each double-overlapped set of groups. It also makes the paths to those

groups intersect in a sequencer that will be associated with the overlap. When a sequencer

receives a message, it checks if the event is addressed to one of the groups it represents. Then it

increments its sequence number and assigns it to the event, forwarding it to the next sequencer

in the path to the group. The links between the sequencers provide FIFO order, and the graph

is acyclic.

Reliability To o↵er reliability, it uses end-to-end acknowledgments between sequencers. Se-

quencers wait for confirmation of the reception of events by their neighboring brokers.

3.2.11 Epidemic Algorithms for Publish-Subscribe

The main objective of Epidemic Algorithms [CMPC03][CMPC04] is to o↵er reliability, mini-

mizing loss of events in a highly reconfigurable scenario. This content-based publish-subscribe

system uses epidemic algorithms to provide a probabilistic reliable delivery and scalability.

26

Fault Tolerance and Overlay Network This system assumes an acyclic undirected graph

overlay for the network, where clients can connect to any broker. The system uses a base

gossip[EG02] algorithm to tolerate faults caused by unreliable links and a highly reconfigurable

scenario. The authors propose three solutions, which use that algorithm di↵erently. We will

focus on one category, which contains two of said solutions. This category is the pull-negative

approach, in which brokers gossip about events they have missed. Brokers send gossip messages

soliciting the transmission of missed events from other nodes.

Ordering Gossip schemes guarantee a FIFO ordering of messages per-publisher, using se-

quence numbers incremented at the publisher. In the pull approaches, events are ordered by

using a sequence number for each pattern at the publishing source. When publishing an event,

the broker must go through its entire routing table. The node then selects expressions matching

the event, tagging it with the corresponding patterns’ sequence numbers.

Reliability All of the gossip strategies provide probabilistic reliability guarantees, which allow

brokers to recover lost messages. In subscriber-based pull, each broker disseminates a gossip

message by selecting a random pattern from its local subscriptions. The message contains the

sequence numbers of events the broker knows to have missed. The gossip message is routed

as a regular event with that specific pattern, forwarded only to a random subset of interested

neighbors. The brokers in the network cache events they have seen. When a broker receives a

gossip message, it can send the requested events, if it has them stored. Brokers must forward

gossip messages toward subscribers of the same pattern, so that the likelihood of recovering

events is much higher.

In the publisher-based pull method, brokers tag events with the route they have followed

until reaching a subscriber. A broker creates a gossip message by selecting a publisher, instead

of a pattern. This message contains every event it has missed from that particular publisher.

The broker then disseminates said message using a route the broker is aware of leading to the

publisher. This choice increases the likelihood of reaching a broker that cached the event.

Subscription Starting Cut Brokers flood the subscription on the network, establishing

routes for published events to follow. A subscriber can start delivering messages as soon as

there is a stable path between it and a publisher. When the subscription reaches the publisher,

it starts tagging its events with the sequence number relative to the subscription’s pattern. At

that point, the subscriber can commence delivering events from it.

27

Routing Events When a broker receives an event, it is matched with the routing table

subscriptions and then forwarded to the resulting links.

3.2.12 VCube-PS

VCube-PS [dAADJ+19, dAAD+17] is a topic-based publish-subscribe system that uses dynam-

ically built spanning trees to propagate events. Brokers deliver subscriptions and published

events according to causal order.

Fault Tolerance and Overlay Network Brokers are organized in a hypercube-like topology

and create hierarchical spanning trees when they want to broadcast a message to a group. This

tree is rooted in the message’s publisher. The sender also creates the tree with all brokers

that subscribe to a topic. Nodes are assumed to be available, and only leave or join groups

dynamically.

Ordering This system implements causal broadcast by applying Causal Barriers [PRS96],

which only keeps track of the message’s direct dependencies. This causal broadcast primitive

is more suitable for dealing with dynamic membership. VCube-PS guarantees per-source FIFO

reception order, and subscribers will never receive previously published messages.

Reliability This solution uses end-to-end acknowledgments of published messages to ensure

reliable delivery. A source node can only broadcast a new message in the spanning tree after

every member of it has confirmed the reception of the previously published event.

Subscription Starting Cut When a node subscribes to a topic, it propagates its subscription

to every member of the network, using a spanning tree. Brokers update their views of the group

after receiving either a subscription or unsubscription. The system can start delivering messages

to a subscriber once every broker on the tree has acknowledged the reception of its subscription.

Thus, the latency in this system will be equal to the network diameter for every subscription.

3.2.13 P2PPS

The goal of P2PPS [NDA+14] is to create a publish-subscribe system based on the peer-to-peer

architecture where events are delivered by peers respecting their causal dependencies. A peer

waits for notifications of only events for which it subscribes, and it can subscribe to groups.

28

Ordering P2PPS uses a hybrid clock to provide causal order, as it would be impossible to

adapt a vector clock to a scalable group due to message length. Peers order some pairs of

messages unnecessarily in the linear clock protocol, due to concurrency issues. As such, this

type of clock reduces unnecessary ordering by mixing linear and physical clocks. The physical

one shows the precise time by synchronizing with a time server.

Subscription Starting Cut The system notifies brokers when an event is published. Nodes

can only deliver events to subscribers once a condition is verified: the published event must

have the subscription in its causal past. For that condition to be checked, the publisher must

have received the subscription beforehand. Since the system uses a generic publish-subscribe

abstraction, the latency values cannot be inferred.

3.2.14 Publish-Subscribe Middleware with DSM

The goal of Publish-Subscribe Middleware with DSM [PLTP08] is to use this abstraction with

an architecture based on distributed shared memory to maintain event ordering. It uses a topic-

based generic publish-subscribe middleware where brokers synchronize with each other using

shared logical clocks. This system provides total and causal order of messages to its subscribers.

Ordering This solution uses vector clocks to enforce a total and causal ordering for delivery.

The shared memory computes the timestamp as a consistent global snapshot of a distributed

system. Each group has an associated logical clock to tag messages, which will maintain causal

relations between all events in that group. This group clock can be accessed via DSM, such that

brokers can keep a consistent view of the timestamp’s values. The DSM orders events within a

group. As such, every member will deliver them in the same order.

Subscription Starting Cut The DSM also stores a hash map that associates groups with

subscriptions. When a broker issues a subscription, the DSM receives it and inserts it in the

hashmap. Thus, brokers know which subscribers will receive which events, and how to route

messages to them. A subscriber can start receiving events as soon as the published events have

a higher group clock value. This system uses a generic publish-subscribe abstraction. Thus the

latency values are not explicit.

3.2.15 Comparison

In this section, we analyze how the techniques can be applied to LoCaMu, which will be the

building block for our work. Additionally, we will make a detailed comparison of the systems. We

29

will be comparing how the several systems provide a set of guarantees to subscribers, exploring

di↵erent techniques for di↵erent levels of service. When possible, we also want to consider how

it verifies path stability when delivering events to subscribers, which directly correlates with

the starting cut for a subscription. Finally, it is also of importance if systems use any type of

technique to shorten the delay required to start delivering events. Not every system characterizes

its behavior on every relevant topic. As such, in Figure 3.1, we have the concerns that the given

systems approach, with only four systems addressing every subject.

Reliability

O
rd
e
ri
n
g F

a
u
lt

T
o
le
ra
n
c
e

Starting
Cut

Gryphon

delta-FT

XNET

EA

Se
qu
en
ci
ng

G
ra
ph

D
M
O

JED
I

Se
m
i-P

G
EP
S

V
C
u
b
e
-P
S

P2PPS

PS/D
SM

Figure 3.1: Addressed concerns by respective system.

Fault Tolerance Most presented systems consider a failure model encompassing node and

link failures, mainly using one of three techniques to tolerate these faults. Redundant Paths

are used in XNET and Semi-Probabilistic by creating multiple routes between brokers. �-fault-

tolerant and GEPS also use this strategy, creating additional links on failure. The former uses a

topology-based approach, while the latter uses a similarity-based one. Gryphon uses redundant

brokers by having virtual nodes in the topology, while XNET uses this technique by having

backup brokers. Epidemic Algorithms uses gossiping to recover undelivered events.

Ordering Most systems provide one of three levels of ordering by using sequence numbers,

which is a counter incremented for each event. Others additionally use TCP for the commu-

nication links. Systems like Gryphon, XNET, and Epidemic Algorithms use sequence numbers

30

to ensure FIFO ordering for messages. �-fault-tolerant also provides this type of delivery by

not allowing parallel events for each publisher. Sequencing Graph and PS/DSM use sequence

numbers to provide causal ordering, while JEDI uses TCP as well as a single path between every

broker on the network. P2PPS uses a mix of sequence numbers with physical time to enforce

causal delivery. Dynamic Message Ordering and PS/DSM uses sequence numbers to provide a

total ordering for events.

Reliability In terms of reliability guarantees, the systems divide themselves mainly into two

levels o↵ering either strong reliability or probabilistic/best-e↵ort reliability. The ones that pro-

vide exactly once reliable delivery by using message retransmissions are Gryphon and Dynamic

Message Ordering. This strategy requires brokers to store forwarded events and to know paths in

the network to recover missed events. Others o↵er this guarantee by using end-to-end acknowl-

edgments, such as �-fault-tolerant, XNET, Sequencing Graph, and VCube-PS. In this case,

brokers store messages until the nodes that must receive them acknowledge their reception.

Epidemic Algorithms o↵er probabilistic reliability by using several gossip strategies.

Subscription Starting Cut In most systems, the latency to start delivering either depends

on the network diameter or the distance to the closest publisher. In ones like Gryphon, which dis-

seminates subscriptions toward the root broker, �-fault-tolerant, VCube-PS, and XNET, which

flood subscriptions and GEPS, which uses advertisement forwarding, the latency depends on the

network diameter. On the other hand, some systems can start delivery as soon as the subscrip-

tion reaches a publisher. Epidemic Algorithms that flood the subscription, and JEDI that uses a

hierarchical strategy, have this type of latency. Semi-Probabilistic propagates the subscriptions

in the vicinity of a broker. In Dynamic Message Ordering, P2PPS, and PS/DSM, the latency

does not depend on a network element and cannot be explicitly inferred.

XNET and GEPS both support subscription coverage, which can influence the subscription

latency depending on the subscriber population. This technique can make latency equal to

the network diameter in a worst-case scenario when the subscription is not covered by any

other. Gryphon and XNET use event flooding to compensate for unstable paths on the network.

Sequencing Graph reconfigures the topology according to a global membership matrix.

In Table 3.1, we summarize the essential characteristics of those systems. If a system does

not address a specific concern, then it is not specified (N/A).

As we can observe, systems that focus on o↵ering stronger guarantees have higher latency.

This latency is proportional to the network diameter each time a subscriber joins the system.

Others can make the latency depend only on a neighborhood. However, to achieve this goal,

31

Systems Latency Reliability Ordering Fault Tolerance
Gryphon Network Diameter Strong FIFO RB
�-FT Network Diameter Strong FIFO RP
XNET Local Strong FIFO RP/RB

Epidemic Algorithms Publisher Probabilistic FIFO Gossip
Semi-Probabilistic Local N/A N/A RP

GEPS Local N/A N/A RP
JEDI Publisher N/A Causal N/A
P2PPS Network Diameter N/A Causal N/A
PS/DSM Update DSM N/A Causal N/A

Sequencing Graph N/A Strong Causal N/A
VCube-PS Network Diameter Strong Causal N/A

Dynamic Ordering Topic Managers Strong Total N/A

Table 3.1: Systems’ guarantees and strategies for each topic.

they do not provide delivery guarantees to the subscriber.

3.3 Summary

This chapter analyzed several publish-subscribe systems with vastly di↵erent characteristics in

terms of reliability, ordering, and fault tolerance. If subscription latency was a concern for these,

we also considered optimizations they used to reduce it. In the following, we aim at identifying

the exact conditions that allow subscription latency to be reduced.

32

Chapter 4

Subscription Semantics

This chapter introduces our causal subscription algorithms. Section 4.1 provides a precise char-

acterization of Gapless FIFO Delivery (GFD) and Gapless Causal Delivery (GCD). Section 4.2

presents the system assumptions and model, as well as the su�cient conditions required to en-

force both semantics. Section 4.3 illustrates, in detail, the algorithm to provide GCD using a

weaker requirement, with correctness proofs. Section 4.4 describes how subscription coverage

can optimize the observed latency. Section 4.5 explains in detail the optimized algorithm to

enforce GCD and proves its correctness.

4.1 Semantics

We consider two di↵erent semantics that can be found in the literature, namely Gapless FIFO

Delivery and Gapless Causal Delivery. We define them based on the notion of starting cut and

ending cut. Let G be an event graph, and let Si be a subscription performed by some subscriber

si. Considering H(Si) to be the subscription history for subscriber si, then H(Si, pj) is the set

of events from H(Si) that have been published by pj . For each publisher pj , we denote ej.start,

the event from that publisher that defines the starting cut of H(Si). Additionally, we define

ej.end as the event from that publisher defining the ending cut of H(Si). Necessarily, we have

that ej.start ! ej.end. An event e matches Si if matches(e, Si), and a publisher pj ’s advertisement

matches a subscription if matches(pj , Si). Finally, let matching(G,Si, pj) be the set of events

published by pj after ej.start and before ej.end that match the subscription Si.

Gapless FIFO Delivery (GFD): There are no constraints on the set of events from

G that belong to the starting cut and ending cut of a subscription Si. Only H(Si, pj) =

matching(G,Si, pj) needs to be verified, i.e, all matching events between ej.start and ej.end need

to be included in the subscription history.

33

p1 p2 p3 s1

Subscribe Rede1.1

Unsubscribe

Starting Cut

Ending Cut

e1.2
e1.3

e1.4

e1.5

e2.1

e2.2

e2.3

e2.5

e2.4

e3.1

e3.2

e3.3

e3.4

e3.5

e3.6

e1.3

e1.4
e2.2
e3.2
e3.3
e2.4

e3.5

(a) A subscription that satisfies Gapless Causal Delivery.

p1 p2 p3 s2

Subscribe Rede1.1

Unsubscribe

Starting Cut

Ending Cut

e1.2
e1.3

e1.4

e1.5

e2.1

e2.2

e2.3

e2.5

e2.4

e3.1

e3.2

e3.3

e3.4

e3.5

e3.6

e1.3

e1.4
e2.1
e2.2
e3.3
e2.4

e3.5

(b) A subscription that satisfies Gapless FIFO Delivery.

Figure 4.1: Subscription semantic examples.

34

Gapless Causal Delivery (GCD): The subscription must satisfy the conditions of defini-

tion 4.1 plus the following property: Let j and k be two distinct publishers, let ej.cause be some

event such that ej.cause 2 H(Si, pj), and let ek.e↵ect : ej.cause ! ek.e↵ect ! ek.end. Gapless Causal

Delivery states that ek.e↵ect 2 H(Si).

Figure 4.1 illustrates the di↵erence between Gapless FIFO delivery and Gapless Causal

delivery. The two subscription event histories have been obtained from exactly the same event

graph. In both cases, subscriptions match red events only, however, the starting cut in each

subscription is di↵erent. Subscription S1, in Figure 4.1(a) satisfies GCD: the starting cut is

defined by events {e1.3e2.2, e3.2} and all events that are in the causal future of the starting cut

are included in the event history. The subscription s2, in Figure 4.1(b) satisfies only GFD: the

starting cut is defined by events {e1.3e2.1, e3.3}, but event e3.2 is not included in the event history

of s2 even if e2.1 ! e3.2 ! e3.3.

Considering a subscriber will eventually stop processing events, and it can stop whenever it

desires, in the rest of this work, we do not discuss unsubscription in detail. Instead, we focus

on the di�cult challenge of defining an appropriate subscription starting cut.

4.2 Su�cient Conditions for Semantics Enforcement

In this section, we focus on a particular class of publish-subscribe implementations, arguably the

most common, based on the use of a network of event brokers. For these systems, we identify the

properties that need to be satisfied to o↵er Gapless FIFO Delivery and Gapless Causal Delivery.

4.2.1 System Model

We consider a content-based publish-subscribe system which supports three types of participants:

publishers, subscribers, and event brokers. Publishers and subscribers are also denoted clients,

and event brokers are named servers. Clients may connect to any server, but exclusively to one.

A server can attend multiple clients.

Publishers produce events that need to be delivered to interested subscribers. To route

events from publishers to subscribers, servers are organized in a network, that can be modeled

by a general (cyclic) undirected graph. While some implementations use flooding to propagate

events in the broker network, in this paper we consider the case where event flooding is avoided.

Subscribers consume events by using subscriptions, which are only issued once by each client.

Servers keep two di↵erent types of routing tables to avoid the use of event flooding, namely:

subscription routing tables and event routing tables. Servers use the former to forward subscrip-

tions from subscribers to publishers, and the latter to send events from publishers to subscribers.

35

Publishers are required to send special advertisement messages to build the subscription routing

tables. Advertisements are the only messages flooded in the network. We now describe the

creation and contents of both routing tables for a system with these characteristics.

Advertisement Propagation and Subscription Routing Table

An advertisement includes a template of the type of events a publisher produces. Advertise-

ments are flooded in the broker network and used to populate the subscription routing table at

every server. To simplify the explanation, we assume that advertisements collect the path they

have followed when servers propagate them in the network. This collection allows servers to

discard advertisements from edges that would create routing loops. When a server receives an

advertisement, without creating a loop (i.e., the message does not include the receiving server

in its path), the following steps are performed:

• It adds an entry to the publisher to its subscription routing table, associated with the

ingress server’s edge;

• It propagates the advertisement to all edges except to the ingress edge.

Brokers drop advertisements that would originate a loop in the subscription routing table. When

a broker receives this type of message, it creates an entry in its subscription routing table. This

entry contains the publisher’s identifier and event template, as well as which neighbors sent it.

When the advertisement propagation is complete, all servers know the publisher exists, what

type of events it produces, and all possible paths, through neighbors, to that publisher.

Subscription Propagation and Event Routing Table

The event routing tables of message brokers are populated using special subscription messages,

generated when a client issues a new subscription. The subscription message includes both

client and broker identifiers, as well as constraints for the matching events. Servers send sub-

scriptions to all publishers with an advertisement that matches it. A subscriber can receive

messages from a publisher if it produces events that match its subscription. Instead of flood-

ing subscriptions, brokers propagate them along the paths established during the advertisement

propagation procedure, explained above. When a server forwards a subscription, the following

steps are performed:

• It adds an entry to the subscriber to its event routing table. This entry contains the

subscriber identifier, its subscription constraints, and which neighbor sent it;

36

• It propagates the subscription to all edges that belong to paths to the subscriber (defined

by the subscription routing tables).

Event Routing

When a broker bk receives some event e from publisher pj , via link l, it checks if there is one or

more matching subscriptions Si, such that matches(e, Si). This match is performed by verifying

the local event routing table of bk. If there is no subscription matching e, then the broker

discards the event. If there is, let L be the set of downstream links that are in a path from bk

to si. These links refer to all links that connect bk to other brokers, except for the one through

which bk received the message. The L link set is stored in bk’s event routing table. For every

link l 2 L, bk adds l to a set named link-matches(k, e). Broker bk does this for every subscription

Si that matches the event e. Finally, e is forwarded on all links in link-matches(k, e).

4.2.2 Subscription Stability

We now define several properties relevant to capture the su�cient conditions for achieving

Gapless FIFO delivery and Gapless Causal delivery. Let Si be a subscription performed by

subscriber si. We say that a subscription is known to a broker when it creates an entry to its

event routing table for the subscription. Additionally, we use the term stability to express a

property that does not change over time since the broker overlay is not dynamic. In the following,

we present novel definitions that help us better understand how to achieve the requirements.

Link Stability: Let brokers ba and bb be two neighbors in the broker network and linkab be

the network link connecting these two brokers. We say that a subscription Si is link stable on

linkab, denoted link-stable(Si, lab), if Si is known both by ba and bb.

Path Stability: Let pj be a publisher and let Pk be a path in the broker network, connecting

pj to si. We say that a subscription Si is path stable, denoted path-stable(Si, Pk), i↵, for every

link l 2 Pk, we have link-stable(Si, l).

Publisher Stability: We say that Si is stable regarding publisher pj , denoted pub-stable(Si, pj),

i↵, for every path Pk connecting pj to si, we have path-stable(Si, Pk).

Full Stability: We say that Si is fully stable, denoted F-stable(Si), i↵, for every publisher

pj that matches Si, we have pub-stable(Si, pj).

4.2.3 Stability-Based Conditions

Using the definitions above, we can define two su�cient conditions to enforce Gapless FIFO

Delivery and Gapless Causal Delivery.

37

Su�cient condition for enforcing Gapless FIFO Delivery: Let Si be a subscription

performed by subscriber si that is attached to broker bi. Let e be some event from publisher pj

received by bi such that matches(e, Si). To deliver e to si without risking violating GFD it is

su�cient that e has been sent by pj after pub-stable(Si, pj).

Su�cient condition for enforcing Gapless Causal Delivery: Let Si be a subscription

performed by subscriber si that is attached to broker bi. Let e be some event from publisher

pj received by bi such that e matches Si. To deliver e to si without risking violating GCD it is

su�cient that e has been sent by pj after F-stable(Si).

4.2.4 Evaluating Full Stability

The su�cient conditions expressed above are relevant because they are used by di↵erent publish-

subscribe systems to enforce both Gapless FIFO Delivery and Gapless Causal Delivery. We now

briefly describe the algorithms these systems use to evaluate the moment when a subscription

has reached full stability.

An example of a system that o↵ers GFD and relies on full stability is described in [KJ09,

KJ11]. This system uses an acknowledgment collection method to verify if a subscription has

achieved full stability. As such, the subscriber’s server needs to receive confirmation from all

paths between publishers and the subscriber. When a subscriber joins, its server sends a sub-

scription message to all its neighbors. These brokers, in turn, send the subscription to their

neighbors, until the subscription messages reach the publishers. These generate an acknowledg-

ment message and propagate it back to the subscriber using the reverse path of the subscription.

Each broker collects acknowledgments from all downstream brokers before forwarding one up-

stream, making the acknowledgment collection process to operate as an aggregation tree. A

subscriber si knows it is F-stable(Si) in the system once its server receives the aggregated ac-

knowledgments from its server.

It is also possible to find examples of systems that use full stability to implement GCD, such

as VCube-PS [dAADJ+19]. Similarly to [KJ09, KJ11] above, this system also uses acknowledg-

ment messages to detect full stability. To forward a subscription, the client’s broker creates a

spanning tree, which contains every node on the network, and uses it to disseminate the sub-

scription to every broker. The server then waits for every broker to send an acknowledgment for

the subscription. A subscriber si knows it is F-stable(Si) as soon as it receives the aggregated

acknowledgments.

38

4.2.5 Impact on Latency

These su�cient conditions, and their use in existing systems, suggest that the subscription

latency for GFD can be smaller than the subscription latency for GCD. For instance, consider

two di↵erent publishers pj and pk that match some subscription Si. Assume that some event

e is sent by publisher pj after pub-stable(Si, pj), but before pub-stable(Si, pk). According to

the conditions above, a subscriber Si would be able to deliver e under GFD, but not under

GCD. However, as we show next, these conditions are stricter than needed, and it is possible to

define weaker necessary conditions that allow a system to enforce both semantics with a shorter

subscription latency.

4.3 A Necessary (and Su�cient) Condition for Semantics En-

forcement

As noted above, although the su�cient conditions expressed in Section 4.2 are enough to enforce

gapless delivery, they are stronger than strictly needed. The Gryphon[ZSB04] system enforces

Gapless FIFO Delivery with a weaker guarantee. Namely, it starts delivering events as long as

one (and only one) of the paths Pk from a publisher to the subscriber si is path-stable(Si, Pk).

As mentioned in the Related Work chapter, Gryphon uses logical clocks to verify when at least

one path is stable, by having the publisher update its clock when it receives a subscription.

However, Gryphon enforces GDF with only one stable path at the cost of resorting to flooding,

when brokers propagate events on non-stable paths. This issue raises the interesting question of

knowing if it is possible to use weaker conditions while still avoiding resorting to event flooding.

Below, we show that this is, in fact, possible.

4.3.1 Causality-Based Condition

Our work departs from the following observation: Gapless Causal Delivery requires events to be

delivered in causal order, regardless of the algorithm used to identify the subscription starting

cut. Any system that provides GCD must necessarily include an algorithm to keep track of

causal dependencies and to ensure the delivery of messages in causal order. However, it also

requires an additional mechanism to explicitly identify the starting and ending cuts, as causal

delivery does not guarantee a subscription history will respect GCD. An algorithm to process

subscriptions can then leverage causality to define a necessary and su�cient condition that is

weaker than the su�cient conditions presented before, concretely:

39

Necessary and su�cient condition for enforcing both Gapless FIFO Delivery and

Gapless Causal Delivery: Let Si be a subscription performed by subscriber si that is attached

to broker bi. Let e be some event from publisher pj received by bi such that e matches Si. For

e to be delivered to si without risking violating GFD or GCD it is necessary and su�cient that

e has been sent by pj after there is some path Pk from pj to si, such that path-stable(Si, Pk).

Note that, Conditions 4.2.3 and 4.2.3 require all paths from the publisher to the subscriber or

all paths from all publishers to be stable, respectively. Contrary to those, Condition 4.3.1 does

not impose such strict requirements. Instead, a single path needs to be stable. This condition

is valid for both GFD and GCD, which indicates that GCD does not necessarily impose higher

subscription latencies than GFD. Another advantage of Condition 4.3.1 is that it is possible to

derive simple algorithms that allow subscribers to verify if their subscriptions have achieved the

condition.

4.3.2 Leveraging Causality

We now describe the generic subscription propagation algorithm that leverages Condition 4.3.1.

The algorithm, depicted in Algorithm 1, assumes a system with the characteristics described in

Section 4.2.1. We abstract from the underlying message forwarding substrate used to propagate

messages on the broker network. Our subscription algorithm is independent of the method used

to propagate subscription and event messages in the broker network as long as it is reliable and

enforces causal order. We reiterate that the availability of a causal reliability substrate is required

to enforce Gapless Causal Delivery, regardless of the algorithm used to manage subscriptions.

All the described procedures are executed locally by brokers.

From the previously mentioned Algorithm 1, when a client si issues subscription Si (lines 4

- 8), its broker bi adds Si to its local connected subscribers. It then sets the starting cut of Si to

null and proceeds to forward Si to its neighbors by calling the subscriptionForward method. It

sends Si only to brokers in the path to a publisher whose advertisements match the subscription.

When a broker bk receives a subscription Si (lines 9 - 18) from si on a given path Pk, it

starts by creating an entry for it in its event routing table. This is executed by calling method

updateEventRoutingTable. Afterward, it sends the subscription to its neighbors in a path to a

relevant publisher by executing the subscriptionForward procedure. If bk has a publisher client

pj then it knows that path-stable(Si, Pk). Then pj knows that Condition 4.3.1 has been achieved.

To announce this, pj issues a marker, M j
Si
, if it has not already done so. This marker is sent to

all subscribers that subscribed to pj by calling the eventForward method.

When another publisher pk receives marker M j
Si

(lines 19 - 31), it also becomes aware that

40

Si has achieved the necessary and su�cient condition. This publisher then announces this fact

by publishing the marker Mk
Si

to all its subscribers by calling the eventForward method. Notice

that every publisher px that sends an event, in the causal future of M j
Si
, also sends M

x
Si

by

executing the eventForward procedure. When broker bi receives one for its local subscriber si, it

sets Si’s starting cut to this marker. The set from all publishers defines the subscription starting

cut. Brokers use these to know which events to deliver, since the events will be in the future of

the markers in the starting cut (MSi ! e).

When broker bi receives an event from publisher pj (lines 35 - 43) it decides whether to

deliver the event to si or not. First, bi forwards the event to neighbors in the path to interested

subscribers by calling the eventForward procedure. Events from pj , sent before the marker M j
Si
,

are discarded by bi. The first event received from pj , after receiving its marker M j
Si
, defines the

starting cut of the subscription. All events sent after the marker are accepted.

The reader may notice the similarities between our subscription algorithm above and the

Chandy-Lamport [CL85] algorithm to compute distributed snapshots. A subscription starting

cut is nothing more than a causally-consistent cut of the distributed execution. This cut is

defined by the sequence of actions on events in the broker overlay, such as producing, forwarding,

and receiving events.

4.3.3 Correctness

We now prove the correctness of Condition 4.3.1 and of Algorithm 1.

Theorem. Condition 4.3.1 is a necessary condition.

Proof. Assume that bi serves two subscribers, si and sj . Subscriber sj has previously issued

a subscription Sj , and publisher pk produces events that match Sj . Assume that si makes

a subscription Si and that bi needs to define the starting cut for that subscription. Assume

two events e1 and e2 such that e1 ! e2, matches(e1, Si) ^ matches(e1, Sj), matches(e2, Si) ^

¬matches(e2, Sj). Assume that F-stable(Si) but that Condition 4.3.1 is not satisfied, i.e., there

is no Pk from pk to sj , such that path-stable(Sj , Pk). Thus, bk that serves publisher pk does not

know of subscription Sj . Because bk does not know Sj it will drop e2, thus accepting e1 would

violate both GFD and GCD.

Theorem. Condition 4.3.1 is a su�cient condition.

The proof, based on the correctness of Algorithm 1, depends solely on Condition 4.3.1.

Intuitively, the algorithm works because marker MSi causally depends on Si (i.e, Si ! MSi).

Thus, the marker is always delivered to any broker after Si has been delivered to that broker.

41

Algorithm 1 Subscription Algorithm
1: subsc(bk) . local subscribers attached to broker bk
2: pubs(bk) . local publishers attached to broker bk
3:

4: procedure subscribe(si, Si) at bk
5: subs(bk) subs(bk) [{si}
6: starting-cut[Si, pj] ?, 8pj : matches(pj , Si)

7: subscriptionForward(subscription, si, Si)

8: end procedure
9: procedure process(subscription, si, Si) at bk
10: updateEventRoutingTable(si, Si)

11: subscriptionForward(subscription, si, Si)

12: if 9px 2 pubs(bk) : matches(px, Si) then
13: if ¬markersent[px, si, Si)] then
14: markersent[px, si, Si] true
15: eventForward(event, px,marker(si, Si))

16: end if
17: end if
18: end procedure
19: procedure process(event, pj ,marker(si, Si)) at bk
20: stable-paths stable-paths [{(bk, pj , Si)}
21: eventForward(event, pj ,marker(si, Si))

22: if 9px 2 pubs(bk) : matches(px, Si) then
23: if ¬markersent[px, si, Si)] then
24: markersent[px, si, Si] true
25: eventForward(event, px,marker(si, Si))

26: end if
27: end if
28: if 9si 2 subsc(bk) : starting-cut[Si, pj] = ? then
29: starting-cut[Si, pj] marker
30: end if
31: end procedure
32: procedure publish(pj , event(e)) at bk
33: eventForward(event, pj , event(e))
34: end procedure
35: procedure process(event, pj , event(e)) at bk
36: eventForward(event, pj , event(e))
37: if 9si 2 subsc(bk) : matches(e, Si) ^ starting-cut[Si, pj] 6= ? then
38: if starting-cut[Si, pj] = marker then
39: starting-cut[Si, pj] e . Si’s starting cut

40: end if
41: deliver(si, e)
42: end if
43: end procedure

42

Any event e sent after the marker is transitively also in the future of Si, and delivered to any

broker after Si. This transitivity implies that, when a broker processes an event in the future

of the subscription starting cut, it already knows the subscription and will not drop the event.

Proof. The proof is by contradiction. Let e1 be some event published by pk such thatmatches(e1, Si).

Assume also that e1 is sent by pk after there is some path Pk between pk and si, such that

path-stable(Si, Pk). From Algorithm 1, broker bk that serves pk sends marker Mk
Si

as soon as Pk

becomes stable. Therefore, we have Mk
Si
! e1. Assume that there is some event e2 published by

ph, such that e1 ! e2. By transitivity of causality, we have Si !M
k
Si
! e1 ! e2. Additionally,

from Algorithm 1, broker bh that servers ph sends marker Mh
Si

as soon as it receives Mk
Si
. Thus,

we have Si !M
k
Si
!M

h
Si
! e2. If e2 is received by bi after Mh

Si
, then e2 is delivered to si. For

e2 not to be delivered to si we would require: i) a broker to receive e2 before knowing Si, and

failing to forward e2 (a contradiction, as this violates causality) or ii) bi that serves si to process

e2 before M
h
Si

(again, a contradiction as this would also violate causality).

4.4 Leveraging Coverage

We now discuss how subscription coverage can help in further reducing subscription latency.

Let Si and Sj be two subscriptions performed by subscribers si and sj , respectively. Before

proceeding, we introduce the following auxiliary definitions:

Subscription Coverage: We say that a subscription Si covers subscription Sj denoted

covers(Si, Sj), i↵ for every event e : matches(e, Sj) then matches(e, Si).

Link Coverage: Let ba and bb be two neighbors in the broker network and lab be the

link connecting these two brokers. We say that a subscription Sj is link covered on lab, if

there is a subscription Si such that covers(Si, Sj) and link-stable(Si, lab). We denote this by

link-covered(Sj , lab).

(Sub-)Path Coverage: Let Pk be a path in the broker network connecting brokers bi and

bj . We say that a subscription Sj is path-covered(Sj , Pk), i↵ for every link l 2 Pk, we have

link-covered(Sj , l).

We now show how subscription coverage can be used by systems to reduce subscription

latency. We consider first the case where there is a single common prefix among the paths used

by both the covering and covered subscriptions. This situation is illustrated in Figure 4.2. Then

we discuss how the result can be generalized for the case where there are multiple prefixes.

43

6�

%�

%�

%�

%�

%�

%�

3�

%�

%�

6�

3�

Figure 4.2: Single path subscription coverage.

4.4.1 Single-Prefix Coverage

We first propose an optimization to Algorithm 1 that allows a system to reduce the subscription

latency when there is a single common prefix among covered and covering subscriptions. This

optimization is based on the concept of pivot broker, that is defined as follows:

Pivot Broker: Let pk be a publisher. Let si and sj be two subscribers that perform

subscription Si (respectively Sj) such that matches(pk, Si) and matches(pk, Sj). Let P(pk, si)

be the set of paths from publisher pk to subscriber si and P(pk, sj) be the set of paths from

publisher pk to subscriber sj . Let LCP(pk, si, sj) = {pi, b1, b2, . . . , bn} be the longest common

prefix among all paths in P(pk, si) and P(pk, sj). We call broker bn, which is the last broker in

the LCP , the pivot broker, denoted pivot(pk, Si, Sj).

Consider the example depicted in Figure 4.2 of a publish-subscribe broker overlay with two

subscribers, s1 and s2, and two publishers, p1 and p2. The blue links are link-stable for subscrip-

tion S1, and the red links for S2 respectively. Green links are link-stable for both subscriptions.

In this example, s1 has already been deployed on the broker network (on paths from publish-

ers p1 and p2 to s1). Subscriber s2 makes a new subscription S2 such that covers(S1, S2).

There are two paths from p1 to s2 (one via b2 and the other via b4). In this case, the

LCP(p1, s1, s2) = {p1, b8, b7, b6, b5} and the pivot broker pivot(p1, S1, S2) is broker b5.

Pivot as a proxy for publisher: Assume that subscription Sj is already covered by some

other subscription Si on LCP(p1, si, sj). In this case, the pivot broker bk = pivot(pk, Si, Sj)

can generate a marker on behalf of pk and soon as it receives Sj . Note that, any event that

is forwarded by bk, after the marker has been sent, will have Sj in its causal past and will,

44

6�

%�

%�

6�

%�

%� %�

%�%�

%��

%��

%��

%��

%�

%��
%��

%��

3�

%�

Figure 4.3: Multi-path subscription coverage.

necessarily, be processed by a broker after Sj .

In the example of Figure 4.2, the subscription latency for subscriber s2 is significantly reduced

by this optimization. With Algorithm 1 the marker is produced by publisher p1. This requires

the subscription to make 6 hops toward the publisher and the marker another 6 hops on the

reverse path. The propagation amounts to a total of 12 hops before the subscriber starts receiving

events. With the optimization, the marker is generated by the pivot broker b5, taking a total of

just 4 hops to be received. Note that, also in this example, similar reasoning can be applied to

publisher p2. Thus, the pivot broker b5 would send markers on behalf of both p1 and p2.

4.4.2 Multi-Prefix Coverage

We now consider a more complex optimization that aims at addressing the case where a sub-

scriber has partially disjoint paths to the publisher. The same algorithm can perform both the

previously mentioned optimization in 4.4.1 and the new one. Another subscription partially

covers each of these paths.

Consider the example depicted in Figure 4.3. As before, we have a broker network with two

subscribers, s1 and s2, and a publisher p1. Subscription S1 is link-stable in the blue links, and

red links represent link-stability for S2. Green links are link-stable for both subscriptions, and

yellow brokers are the first brokers to have both subscriptions. Subscription S1 has already been

deployed on the overlay (on paths from publisher p1 to s1). Then s2 issues a new subscription

S2 that is covered by S1. In this case the LCP(p1, s1, s2) = {p1, b1, b2} and the pivot broker

45

pivot(p1, S1, S2) is broker b2. Using the optimization described in the previous section, broker b2

could send a marker on behalf of publisher p1 for subscription S2. However, in this case we can

observe that S2 is already covered by S1 on the following path prefixes: P1 = {p1, b1, b2, b3, b5, b7}

and P2 = {p1, b1, b2, b4, b6, b8}. We now discuss how brokers b7 and b8 can cooperate to reduce

the latency of S2. Our optimization is based on the concept of a partial pivot set, defined as

follows:

Partial Pivot Set: Let pk be a publisher. Let si and sj be two subscribers that per-

form some subscription Si (respectively Sj) such that matches(pk, Si) and matches(pk, Sj). Let

P(pk, si) = {Pi,1, Pi,2, . . . , Pi,n} be the set of paths from publisher pk to subscriber si and

P(pk, sj) = {Pj,1, Pj,2, . . . , Pj,n0} be the set of paths from publisher pk to subscriber sj . Let

pairwise-lcp(Pi,x, Pj,y) be the longest common prefix to Pi,x 2 P(pk, si) and Pj,y 2 P(pk, sj).

Let max-pairwise-lcp(Pi,x,P(pk, sj)) = {p1, b1, b2, . . . , bn} be the longest pairwise-lcp(Pi,x, Pj,y)

for every Pj,y 2 P(pk, sj). We define bn to be the best partial pivot for path Pi,x 2 P(pk, si) with

regard to Sj . We define the Partial Pivot Set for Si with regard to Sj , denoted PPSet(pk, Si, Sj),

the set of the best partial pivots for all Pi,x 2 P(pk, si).

In the example depicted in Figure 4.3, PPSet(p1, S1, S2) = {b7, b8} defines the partial pivot

set. One challenge in using partial pivots is that a partial pivot cannot proxy the publisher and

send a marker on its behalf. This issue arises due to a partial pivot only forwarding a subset

of the events produced by the publisher. We overcome this challenge by using partial makers.

Each partial pivot in PPSet(pk, Si, Sj) produces a partial marker for Sj on behalf of publisher pk.

Brokers use the union of all partial markers from all partial pivots as evidence that subscription

Sj is covered in all paths that belong to P(pk, si). This results in the following optimization:

Partial pivot proxy for publisher: Assume a subscription Si that is already F-stable(Si).

Consider a new subscription Sj that is covered by Si. Each partial pivot in PPSet(pk, Si, Sj)

produces a partial marker for Sj on behalf of publisher pk. Subscriber sj uses the partial markers

to define the first event from pk that belongs to Si’s starting cut.

Another challenge in using partial pivots is that it complicates the definition of the starting

cut. When using a full marker, the first event e from publisher pk, received after the one from

pk, belongs to the starting cut of the subscription. Furthermore, all events in the future of e

are guaranteed to be received by brokers after e. With partial markers, this no longer applies,

and a more complex algorithm is needed to find a safe starting cut. We propose the following

algorithm to select the first event from pk to belong to the starting cut of the subscription:

- The subscription broker keeps a bu↵er for each set of paths that lead to each partial pivot.

Note that there is a di↵erent set of routes for each pivot broker.

46

- All events from pk, received via a given partial pivot, before a partial marker from that

partial pivot is received, are discarded.

- All events from pk received via a given partial pivot, after a partial marker from that partial

pivot is received, are bu↵ered.

- The receiving broker waits until all bu↵ers have at least one event from pk. When its bu↵ers

verify this condition, it selects the most recent event e among them to be part of the starting

cut. After this selection, it can deliver all events in the future of e. Additionally, all messages

in the past of e are discarded, including bu↵ered ones in e’s past.

- Another publisher that receives a partial marker for a given subscription sends its full one

for that subscription as in Algorithm 1. After a subscriber receives a full marker, it can start

delivering events from all publishers.

4.5 Subscription Coverage Optimized Algorithm

In this section we present our subscription algorithm, updated with both the single-prefix and the

multi-prefix optimizations from Section 4.4. Algorithm 2 illustrates an extension to Algorithm 1.

We now describe the parts of the optimized algorithm that di↵er from our base one.

When a broker bk receives a subscription Si (lines 1 - 29) from subscriber si, it can only send

a marker or partial marker if:

• There exists a local publisher pk, which has not sent a marker M j
Si

for Si yet. This step is

the same as in Algorithm 1, and serves to signal that Condition 4.3.1 has been achieved.

• There exists a subscription Sj such that bk is the pivot broker for both Sj and Si, regarding

pk. Additionally, Sj must cover Si, and it must have a stable path to pk in the network.

Broker bk can then send a full marker Mk
Si

on behalf of publisher pk, if it hasn’t sent one

yet.

• There exists a subscription Sj such that bk is the partial pivot broker for both Sj and Si

regarding pk. Additionally, Sj must cover Si and it must have a stable path to pk in the

network. Broker bk can then send a partial marker PM1,n
Si

on behalf of publisher pk, if it

hasn’t sent one yet.

When a broker bk receives a partial marker PM1,n
Si

(lines 30 - 39) and has a local publisher

bk it can forward a full marker M j
Si

for Si, if it hasn’t sent one yet.

When broker bi, which has si as a local subscriber, receives an event e from publisher pk, it

has to decide whether or not to deliver e to si. The decision process, described in lines 40 - 59,

is as follows:

47

• Starting Cut Unknown: Subscriber si is joining the system and has not received any

marker or partial marker. In this state, all events are discarded.

• Starting Cut with Marker: Either subscriber si has received a marker Mk
Si

from pk, or

from a pivot broker on behalf of pk. In this state, the next event ek to be processed by bi

will be delivered. Event e will define the starting cut for Si.

• Starting Cut with Event: Subscriber si can now deliver all events from every publisher

that are in the future of the starting cut’s event.

• Starting Cut with Partial Marker: Subscriber si received a partial marker from a

partial pivot broker bx on behalf of publisher pk on path Px. In this state, the next event

ex from pk forwarded by bx on path Px will be stored in its respective bu↵er.

• Starting Cut with Events in Every Bu↵er: Subscriber si has received all partial

markers from every broker bx in the partial pivot set of Si and Sj regarding pk. Addition-

ally, Sj must cover Si. An event was also forwarded by every broker in this set and stored

in its respective bu↵er. The most recent event ex, according to causal order, among every

bu↵er, will define the starting cut.

4.5.1 Correctness

We now prove the correctness of these optimizations. The reader should note that the single-

prefix optimization is just a particular case of the multi-prefix optimization, i.e., when a partial

pivot set has a single broker, this broker is a pivot broker. Therefore, we only prove the more

general optimization described in Section 4.4.2. Our proofs assume the system executes Algo-

rithm 2 on top of a multicast layer that enforces causal order. As described later, this is required

to enforce GCD, regardless of the subscription algorithm.

We want to show that the optimized subscription coverage algorithm can safely enforce a

GCD semantic for subscribers. To do so, we consider that we are using a system that guarantees

causal message delivery.

Theorem. Let e1 and e2 be two events that match Sj , such that e1 is delivered by sj and

e1 ! e2. Then, when using Algorithm 2, e2 is necessarily delivered to sj .

Proof. Let p1 be the publisher of e1 and p2 be the publisher of e2. Let bj be the broker that

serves subscriber sj . We have 5 di↵erent cases:

case 1: 6 9S1 : PPSet(p1, S1, Sj) 6= ;^ 6 9S2 : PPSet(p2, S2, Sj) 6= ;. In this case, no

optimization is triggered and the proof from Theorem 4.3.3 still applies.

48

Algorithm 2 Optimized Algorithm (only parts that di↵er from Algorithm 1)
1: procedure process(subscription, si, Si) at bk
2: updateEventRoutingTable(si, Si))

3: subscriptionForward(subscription, si, Si)

4: // publisher px sends the marker (default)

5: if 9px 2 pubs(bk) \ pubs(bk) : matches(px, Si) then
6: if ¬markersent[px, si, Si)] then
7: markersent[px, si, Si] true
8: eventForward(event, px,marker(si, Si))

9: end if
10: end if
11: // broker bk sends marker on behalf of px (proxy marker)

12: if 9px, Sx : bk = pivot(px, Sx, Si) then
13: if covers(Sx, Si) ^ {(bk, px, Sx)} 2 stable-paths then
14: if ¬markersent[px, si, Si)] then
15: markersent[px, si, Si] true
16: eventForward(event, px,marker(si, Si))

17: end if
18: end if
19: end if
20: // broker bk sends partial marker on behalf of px
21: if 9px, Sx : bk = PPSet(px, Sx, Si) then
22: if covers(Sx, Si) ^ {(bk, px, Sx)} 2 stable-paths then
23: if ¬pmarkersent[px, si, Si, Sx)] then
24: pmarkersent[px, si, Si, Sx] true
25: eventForward(event, px, pmarker(bk, si, Si, Sx))

26: end if
27: end if
28: end if
29: end procedure
30: procedure process(event, pj , pmarker(bx, si, Si, Sx)) at bk
31: pmarkers pmarkers [{(pj , bx, si, Si, Sx)}
32: eventForward(event, pj , pmarker(bx, si, Si, Sx))

33: if 9px 2 subsc(bk) \ pubs(bk) : matches(px, Si) then
34: if ¬markersent[px, si, Si)] then
35: markersent[px, si, Si] true
36: eventForward(event, px,marker(si, Si))

37: end if
38: end if
39: end procedure
40: procedure process(event-message, pj , event(e)) at bk
41: eventForward(event-message, pj , event(e))
42: if 9si 2 subsc(bk) then
43: if starting-cut[Si, pj] 6= ? then
44: if starting-cut[Si, pj] = marker then
45: starting-cut[Si, pj] e
46: deliver(si, e)
47: else if starting-cut[Si, pj]! e then
48: deliver(si, e)
49: end if
50: else if 9bx 2 path(e) : {(pj , bx, si, Si)} 2 pmarkers then
51: bu↵er[Si, pj , bx] = bu↵er[Si, pj , bx] [{e}
52: if 9Sj : covers(Sj , Si) ^ 8bx 2 PPSet(pj , Si, Sj) : bu↵er[Si, pj , bx] 6= ; then
53: e mostRecent(bu↵er[Si, pj , bx], 8bx 2 PPSet(pj , Si, Sj))

54: starting-cut[pj , Si] e
55: deliver(si, e)
56: end if
57: end if
58: end if
59: end procedure

49

case 2: 6 9S1 : PPSet(p1, S1, Sj) 6= ; ^ 9S2 : PPSet(p2, S2, Sj) 6= ;. Since there is no S1 for

which a set of partial pivot brokers for p1 exists, then it needs to send a marker M1
Sj

explicitly

before event e1, for e1 to be delivered by bj to sj (M1
Sj
! e1). From causal order, p2 will receive

M
1
Sj

before receiving e1, and will therefore send an explicit M
2
Sj

before sending e2. Also from

causality, bj will receive M
2
Sj

before e2 and will deliver e2 ro sj .

case 3: 9S1 : PPSet(p1, S1, Sj) 6= ;^ 6 9S2 : PPSet(p2, S2, Sj) 6= ;. If sj delivers e1 then,

either p1 sends M1
Sj
! e1 (no optimization was triggered) or every bx 2 PPSet(p1, S1, Sj) sends

a partial marker PM1,k
Sj
! e1, on behalf of p1. Note that every path from p1 to p2 includes

some bx 2 PPSet(p1, S1, Sj) (if another path would exist, there there would be a path from

sj to p1, passing via p2, that will not include members of PPSet(p1, S1, Sj) which would be a

contradiction). From causality, p2 will receive M
1,x
Sj

from some bx 2 PPSet(p1, S1, Sj) before

receiving e1, and will send M
2
Sj
! e2 before sending e2. Also from causality, bj will receive M

2
Sj

before e2 and will deliver e2 to sj .

case 4: 9S1 : PPSet(p1, S1, Sj) 6= ; ^ 9S2 : PPSet(p2, S1, Sj) 6= ; ^ PPSet(p1, S1, Sj) 6=

PPSet(p2, S1, Sj). The reasoning from case 3 also applies, with the proof being the same.

case 5: 9S1 : PPSet(p1, S1, Sj) 6= ; ^ 9S2 : PPSet(p2, S1, Sj) 6= ; ^ PPSet(p1, S1, Sj) =

PPSet(p2, S1, Sj). If bj delivers e1 to sj then M
1
Sj
! e1, either because p1 sends M1

Sj
explicitly

or because every bx 2 PPSet(p1, S1, Sj) sends a partial marker PM1,x
Sj
! e1, on behalf of p1.

However, because PPSet(p1, S1, Sj) = PPSet(p2, S1, Sj), every bx that sends PM1,x
Sj

also sends

immediately PM2,x
Sj

on behalf of p2. Thus, because e1 ! e2, when e2 is received by bj a partial

marker PM2,x
Sj

has already been received from every bx 2 PPSet(p2, S2, Sj) (together with PM1,x
Sj

),

and thus, if e1 is delivered, e2 is also delivered.

4.6 Summary

This chapter addressed our GCD subscription algorithms, which both enforce Gapless Causal

Delivery and reduce latency by using coverage. Firstly, we defined the su�cient condition and

characteristics required by publish-subscribe systems to provide GCD. Then we provided a less

strict requirement when assuming a causal multicast layer and described our base subscription

algorithm. Secondly, we considered how subscription coverage improves the latency and how

systems that enforce GCD can apply that method. Finally, we defined an optimized subscription

algorithm, which leverages the proposed necessary and su�cient condition with coverage to

provide strong delivery guarantees with low latency.

50

Chapter 5

LoCaPS

This chapter introduces LoCaPS, the first Localized Causal Publish-Subscribe system. Sec-

tion 5.1 starts the chapter by explaining the implementation objectives. Section 5.2 presents

LoCaMu, the base system used as a causal multicast layer, and how LoCaPS applies the proposed

optimized subscription algorithm. Finally, Section 5.3 describes the relevant details concerning

the implementation of LoCaPS, as well as the used technologies and framework.

5.1 Goals

Several publish-subscribe systems enforce a GCD semantic, as previously seen. However, none

of the studied algorithms approach every relevant topic mentioned in Section 3.2.15, required to

provide a GCD semantic, such as fault tolerance. Additionally, none consider optimizations to

subscription latency. When designing LoCaPS, there were several objectives in mind. The first

was to use a causal multicast layer capable of upholding three of the mentioned topics (ordering,

reliability, and fault tolerance). The second was to tackle the subscription starting cut topic.

Thus, we presented an algorithm in Section 4.3, which leverages Condition 4.3.1 to enforce

GCD, while using the mentioned multicast layer. Finally, to reduce the subscription latency, we

implement the optimized algorithm, presented in Section 4.5, which uses subscription coverage in

conjunction with the condition. In the rest of the chapter, we will describe the causal multicast

layer and how the implementation provides GCD with low latency.

5.2 LoCaPS

In the previous chapter, we have proposed several optimizations that allow us to reduce sub-

scription latency. In particular, systems achieve this reduction when using covering subscriptions

already deployed in the network. Unfortunately, these optimizations are hard to implement in

51

general topologies. In fact, in those overlays, it is hard, or even impossible, for a broker to

know if it is a pivot broker. In the case of a subscriber, it is hard to identify the size of the

PPSet when it receives a partial marker. Without this information, the subscriber cannot start

delivering events earlier and needs to receive an acknowledgment directly from the publisher.

This issue can explain why most implementations that o↵er Gapless FIFO Delivery or Gapless

Causal Delivery fail to leverage the coverage property to speed up the subscription process.

However, not all publish-subscribe systems use arbitrary broker topologies. When systems

use suitable overlays, it is possible to leverage our findings to derive an e�cient implementation

that can o↵er low subscription latency. In this section, we give a concrete example that shows

it is, in fact, possible.

We describe a new system, named LoCaPS, that leverages the necessary and su�cient con-

dition presented in Section 4.3 and the optimizations from Sections 4.4 to build an e�cient

publish-subscribe system. LoCaPS also o↵ers low subscription latency in favorable conditions

and is built on top of LoCaMu [SR19], a causal multicast substrate for publish-subscribe sys-

tems. We start by describing LoCaMu and then describe how we can exploit the properties of

LoCaMu for applying the proposed optimized subscription algorithm from Section 4.5.

5.2.1 LoCaMu

LoCaMu [SR19] is a causal multicast substrate for publish-subscribe systems. LoCaMu only

supports static subscriptions: in its current form, all subscriptions must be statically deployed

in the network before it starts operating. LoCaPS extends LoCaMu with dynamic subscriptions

that have low latency.

The main feature of LoCaMu is that it works by using localized information, i.e., each node

only needs to maintain metadata regarding a set of nodes in its neighborhood. Although the

localized feature of LoCaMu is interesting, it is not the most relevant to the work described in

this paper. The most prominent characteristic of LoCaMu that is relevant to our system is its

particular broker topology, which is inherited from [KJ11].

Figure 5.1 presents the topology of the broker network used by LoCaMu. This system

organizes brokers in an undirected acyclic graph, as depicted in Figure 5.1(a). In this underlying

base graph, there is a single path connecting a subscriber to a publisher. The underlying graph

is not fault-tolerant: if a broker fails, the broker topology becomes disconnected. The system

augments the underlying graph with additional links to achieve fault-tolerance. These extra

links allow a path to circumvent f failed nodes. This is illustrated in Figure 5.1(b) for the case

of f = 1. As such, LoCaMu can o↵er reliable causal delivery and tolerate f faulty nodes in each

52

6�

%�

%�

%�

%�

%�

3�

%�

6�

(a) Underlying acyclic graph

6�

%�

%�

%�

%�

%�

3�

%�

6�

(b) Extended graph

Figure 5.1: LoCaMu’s underlying acyclic graph and extended graph.

53

local neighborhood.

To summarize, the LoCaMu system has several properties that we use in the implementation

of LoCaPS, namely:

• LoCaMu delivers messages according to causal order.

• LoCaMu organizes the broker overlay in an acyclic undirected graph. The underlying

acyclic graph is augmented with additional links to create an (extended) fault-tolerant

topology. Although the fault-tolerant network can contain cycles, LoCaMu’s message

propagation algorithm ensures this graph operates as if brokers used the underlying acyclic

graph.

• LoCaMu o↵ers reliable delivery and ensures brokers eventually deliver all messages in

causal order, even if one is temporarily disconnected.

While LoCaMu only considers static subscriptions the system installs at deployment time,

we assume dynamic subscriptions. Using LoCaMu as a causal multicast layer, we can build a

publish-subscribe system that o↵ers a GCD subscription semantic. Brokers order the subscrip-

tions they send with metadata concerning other subscriptions and events. This system uses

a multi-prefix approach, with several redundant paths between a publisher and a subscriber.

As we have seen, solely adding metadata for the brokers to causally order subscriptions does

not enforce a GCD semantic. The subscription history can have gaps, since a starting cut was

not clearly defined. As such, we will describe how LoCaPS applies the optimized algorithm in

conjunction with LoCaMu.

5.2.2 LoCaPS Algorithm

Looking at LoCaMu’s topology, it is possible to make the following key observations:

• In the extended graph, for fault-tolerant reasons, there are multiple paths from a publisher

to a subscriber. As such, LoCaPS cannot apply the optimization described in Section 4.4.1

for overlays with a single-path prefix.

• In the extended graph, the partial pivot set always has f+1 members. This fact simplifies

the use of the optimizations described in Section 4.4.2.

LoCaPS implements the optimized subscription algorithm, detailed in Section 4.5, on top of

LoCaMu using the rules above to define the PPSet. We describe, in Algorithm 3, how brokers

discover if they are part of this set, and therefore can send a partial marker. We use Figure 5.1 to

illustrate how the discovery is processed. Consider two subscribers, s1 and s2, and a publisher,

54

Algorithm 3 LoCaPS Algorithm to find PPSet

1: procedure PPSet(px, Sx, Si) at bk
2: if bk = pivot(px, Sx, Si) _ bk 2 pivot(px, Sx, Si) + f then

3: PPSet(px, Sx, Si) bk . If bk is the pivot broker or belongs to the f next brokers
4: end if

5: end procedure

p1. Blue links and red links are link-stable for subscription S1 and S2 respectively. Green links

are link-stable for both, and black links for none. In LoCaPS, PPSet(p1, S1, S2) consists of the

following brokers:

• Broker bk = pivot(p1, S1, S2), which is the pivot broker in the underlying acyclic graph. In

the case of Figure 5.1(a), this broker is b4.

• The next f brokers on the underlying acyclic graph on the path to the publisher. In the

case of Figure 5.1(b), only b5 belongs to the f set.

Brokers know if they are either the pivot broker or part of the next f brokers due to their

neighborhood knowledge. For example, in Figure 5.1, b4’s neighbours are b2, b3, and b5, and

this broker knows that it has a link stable connection to b2 and b3 with subscription S1 and

S2 respectively. Two di↵erent scenarios can define the first event, from publisher p1, to belong

to the starting cut of either S1 or S2. Either a full marker is sent by p1 directly, or a partial

marker is sent by every broker in PPSet(p1, S1, S2). After subscribers receive the markers, as

described in Algorithm 2, the system can start delivering events to them without violating the

GCD semantic.

With LoCaPS, we can optimize the subscription latency, making it depend on a localized

portion and not on the distance to the publisher. In terms of subscription latency values, if

a subscription is not covered, then it will be proportional to the distance to the publisher.

As we have seen, using LoCaMu as a substrate for causal delivery ensures the necessary and

su�cient condition to enforce GCD semantic. However, the latency di↵ers when we have covered

subscriptions. In this case, the latency will be proportional to the portion of the path that is

not covered. This dependency results from brokers forwarding the subscription until the pivot

and the f next brokers.

5.3 Implementation

In this section, we describe the implementation of LoCaPS used in the evaluation. The same

framework described here is used by all the implemented algorithms used for evaluation purposes.

Additionally, we implemented and executed a specific code for each.

55

5.3.1 Development Environment

We implemented the prototype using the Java programming language (OpenJDK 11). As Java

is a Virtual Machine based language, the choice of an operating system is not relevant for the

development. We also used the Peersim [MJ09] simulator as a base program for the LoCaPS

implementation, as well as the LoCaMu system. Lastly, we used Maven for compiling and

executing the software.

5.3.2 Framework

We created a single framework to include all the classes used by all algorithms. This framework

enabled us to make comparisons among related algorithms as fair as possible. This frame-

work o↵ers by default three components that are used by every algorithm: Message Publisher,

Causality Handler, and Fault Detector.

The framework requires each algorithm to implement the Message Storage, Front-End, Back-

End, and Subscription Handler components. The last one is responsible for managing both the

subscription and event routing tables and performing matching operations on subscriptions and

events.

5.3.3 LoCaPS

LoCaPS uses the LoCaMu system, which has been implemented in the same framework and

works as a base causal multicast layer. Thus, our implementation required the creation of the

Subscription Handler component and the message’s structure. The message types include events,

advertisements, and subscriptions. Each message contains the parameters required by LoCaMu.

Plus, the constraints associated, in case of subscriptions and announcements, or the contents,

in case of events.

Brokers store in the subscription routing table the advertisement’s publisher identifier, the

template for produced events, and which of the broker’s neighbors forwarded it (this information

is accessible through LoCaMu’s localized information in the message). Brokers use the event

routing table to store subscriptions. The entry for this structure contains the subscriber’s

identifier, the constraints used for matching, and the traveled path of the subscription.

When a broker receives an event or subscription, it uses its Subscription Handler component

to perform matching and find the set of neighbors to forward the messages. For subscriptions, it

goes through every entry in the subscription routing table and selects the ones with publishers

that produce events matching the subscription. After that, it collects all neighbors in the

matching entries to forward the subscriptions. For events, it goes through every entry in the

56

event routing table and selects the ones to which the event’s content matches the constraints.

Afterward, the broker sends the event to all neighbors in the set of selected entries.

5.4 Summary

This chapter addressed LoCaPS, the first localized causal publish-subscribe system that provides

Gapless Causal Delivery with low subscription latency. This system leverages the necessary

and su�cient condition to enforce GCD with subscription coverage. It uses LoCaMu as a

causal multicast layer to have a causal delivery guarantee and ensure subscriptions achieve the

requirement. By using the LoCaMu system, which has a particular topology, the brokers of

LoCaPS can discover the relevant PPSets. Thus, LoCaPS provides an implementation of the

optimized subscription algorithm. Finally, we described how the prototype was implemented

first by stating what was the development environment and presenting the used framework.

Lastly, we disclosed specific details regarding our implementation.

57

58

Chapter 6

Evaluation

This chapter presents the evaluation of LoCaPS, based on a prototype built for a simulator.

The main goal of this evaluation is to analyze how the characteristics of the LoCaPS system

impact the observed latency when compared to two of the mentioned works in the Related

Work chapter. Section 6.1 describes the goals and what we will test from the systems in the

evaluation. Section 6.2 describes the system settings, o↵ering information about the system

overlay, client positioning, and coverage conditions. Section 6.3 analyzes how both considered

conditions impact latency. Section 6.4 compares LoCaPS with the studied systems and analyzes

how coverage impacts the latency. Section 6.5 studies how localized information can impact

latency when used with subscription coverage. Finally, Section 6.6 discusses the main di↵erences

between each algorithm and their respective observed latency tendencies.

6.1 Goals

We evaluate LoCaPS to answer the following questions:

• What is the impact on the latency of using the necessary and su�cient condition to enforce

Gapless Causal Delivery?

• What is the impact of subscription coverage on the observed latency?

• How do the f and network diameter values a↵ect the subscription latency in localized

systems?

6.2 Experimental Settings

In this section, we evaluate the performance of LoCaPS in terms of subscription latency. We

compare the latency, observed by subscribers, with two of the presented systems that most re-

59

semble ours, namely the �-fault-tolerant [KJ11] (Delta) and Gryphon systems [ZSB04, BSB+02].

The Delta system ensures Gapless FIFO Delivery to subscribers and also uses the concept of

neighborhood and localized information. The Gryphon system provides GFD to subscribers as

well and uses logical clocks to define the subscription starting cut. We evaluate how these sys-

tems behave when we vary di↵erent system characteristics. The parameters to modify include

network diameter, distance to the publishers, and size of the neighborhood. Another parame-

ter that we also consider in the evaluation process is the likelihood that a previously deployed

subscription covers a new one joining the system.

To perform the evaluation, we use the PeerSim [MJ09] simulator with an extension that

simulates network latency. We consider an average latency of 50ms between brokers, which

approximates the average latency between Google data centers in North America. Additionally,

the time required to process the messages on the brokers is negligible. We have chosen a binary

tree as our network topology. In the Delta system, the latency always depends on the network

diameter. As such, subscribers are always placed on the leaves to provide a fair evaluation. The

Gryphon system positions its subscribers on the tree leaves and the publishers on the root. The

network diameter is set at 18 in a network with 512 brokers, unless stated otherwise.

6.3 Analyzing the Su�cient and Necessary and Su�cient Con-

ditions

In this section, we analyze two systems, LoCaPS and Delta, which use respectively the necessary

and su�cient condition and full-stability to enforce their semantics. Figure 6.1(a) illustrates

the average latency observed by subscribers from both the LoCaPS and Delta systems as the

network diameter increases. In this scenario, the publishers are always at a five hop distance

from subscribers. In Figure 6.1(b), the distance to publishers varies. As we would expect, on

LoCaPS, the latency increases with the distance to the publisher, not increasing with network

diameter. LoCaPS considers only Condition 4.3.1 to enforce GCD. Thus, we can expect that

the subscription latency will depend on the distance to the publisher.

In the Delta system, the latency will be proportional only to the network diameter and does

not depend on the publisher’s location, increasing the latency with a bigger diameter. This

system uses full-stability to enforce GFD, which requires brokers to flood a subscription to the

entire network. As expected, the observed latency is also higher when compared to the one

observed by subscribers from LoCaPS. By using full markers from publishers, it is possible to

start delivering events sooner, which reduces subscription latency.

60

(a) Comparison with di↵erent network diameters

(b) Comparison with di↵erent publisher distances

Figure 6.1: LoCaPS vs Delta under di↵erent settings

61

(a) Comparison with di↵erent probabilities

(b) Comparison with di↵erent probabilities and network diameters

for LoCaPS

Figure 6.2: LoCaPS vs the Delta and Gryphon algorithms

6.4 Analyzing Subscription Coverage

Figure 6.2(a) illustrates the average subscription latency for the three systems when there is a

publisher on the graph root and stable subscriptions in the systems, whereas f = 1 is set. We

vary the probability that a new subscription on the tree leaves is already covered. In this case,

the latency of the Delta and Gryphon systems is constant, since these do not use subscription

coverage to decrease latency. Thus, in these systems, a subscription will have to be propagated

the same number of steps every time a new subscriber joins, causing a constant observed value.

Subscription latency in LoCaPS decreases as the coverage probability increases. When a new

subscriber joins the system, its subscription will not have to be propagated to a publisher if

it is covered by a deployed one. Thus, we observe a steady decrease in latency, as brokers

only propagate the subscription to partial pivot nodes. In this case, these are in the local

62

(a) Comparison with di↵erent values for f

(b) Comparison with di↵erent values of f and network diameter for

LoCaPS

Figure 6.3: LoCaPS vs Delta under di↵erent neighborhood scenarios

neighborhood of the subscriber’s server.

Figure 6.2(b) illustrates the average latency reached by LoCaPS with the parameters men-

tioned in the scenario for Figure 6.2(a). Once again, we vary the coverage probability as well as

the network diameter. In this case, we also note that the latency will tend to the same value,

regardless of the network diameter. This tendency is due to the latency being proportional

to f , in case another subscription covers the new one. The latency depends on f due to the

partial pivot broker set being in the local neighborhood of the subscriber’s server. This value is

independent of the network diameter, as such we observe the same latency values when we have

full coverage probability.

63

6.5 Analyzing Localized Algorithms

Figure 6.3(a) presents the average subscription latency when we vary the neighborhood size of

a node, defined by the fault tolerance value f . In this case, there is a publisher on the root, and

every new subscription is already covered. For the Delta system, the latency is constant for the

di↵erent neighborhood sizes, since this only depends on the network diameter. Although this

system uses localized information, it does not leverage it with subscription coverage to reduce

latency. In the case of LoCaPS, we observe that the latency increases with the neighborhood

size. As we have observed, the latency will depend on the f value, which dictates neighborhood

size, and therefore the position of the partial pivot brokers.

In Figure 6.3(b), we use the same parameters as in Figure 6.3(a) and focus on the LoCaPS

system. In this scenario, we also vary the network diameter. We can observe that the latency

only depends on the broker’s neighborhood size, in case the subscription is already covered. As

expected, as the size of the neighborhood increases, so does the latency. It will remain constant

independently of the network diameter since a new subscription is always covered.

6.6 Discussion

There are two main points relevant when discussing the evaluation. The first one is regarding

the application of the su�cient and necessary and su�cient conditions to enforce GCD and

GFD on the algorithms. The Delta system relies on full-stability to provide guarantees, which

has the highest impact on latency, by making it depend on the network diameter. Both LoCaPS

and Gryphon verify the necessary and su�cient condition to enforce semantics, making latency

proportional only on the distance to the publisher. However, Gryphon only provides GFD and

does so at the expense of using event flooding.

The second essential topic to analyze is how the subscription coverage optimization can

impact the latency. The Delta system does not consider this optimization. As such, the sub-

scription latency is always proportional to the network diameter. Although Gryphon uses this

technique, it does not use it to reduce latency, but to reduce the routing table size. Thus, the

observed latency is dependent on the distance to the publisher for every subscription. LoCaPS

leverages this method to o↵er low latency when already deployed subscriptions cover new ones.

Although both Delta and LoCaPS use localized information for their algorithms, only LoCaPS

uses this to its advantage when it comes to reducing latency. In our system, the latency will

depend solely on the f value, due to the algorithm used to find the partial pivot sets.

64

6.7 Summary

This chapter presented the evaluation of LoCaPS. By using a simulator, we made three sets

of comparisons. The first compares the performance of full-stability versus using the necessary

and su�cient condition. The conclusion is that systems that rely on full-stability will have a

higher subscription latency. The second set compares di↵erent algorithms regarding subscription

coverage. The general outcome is that the subscription coverage optimization considerably

reduces observed latency if applied in conjunction with the weaker Gapless Causal Delivery

requirement. Finally, we compare localized publish-subscribe systems and their subscribers’

observed latency. We observe that, when used with subscription coverage, this information

facilitates the implementation of the optimized algorithm and reduces the latency.

65

66

Chapter 7

Conclusions

In this thesis, we have addressed the problem of implementing the publish-subscribe paradigm

in large scale-systems using a distributed broker network. We gave particular emphasis to the

semantics of the subscribe operation and how these semantics a↵ect the subscription latency,

i.e., the time a subscriber needs to wait before it starts receiving events associated with a

given subscription. We have studied the necessary and su�cient conditions that systems need

to achieve to o↵er di↵erent reliability semantics to subscribers, namely Gapless FIFO delivery

and Gapless Causal delivery. Our requirements are weaker than those typically used in previous

systems. These have allowed us to implement LoCaPS, a reliable causal publish-subscribe system

that o↵ers low subscription latency, namely, when an already deployed subscription covers a

new one. An experimental evaluation of LoCaPS shows that it can achieve significantly better

performance than previous state-of-the-art solutions.

7.1 Future Work

Several aspects are worth exploring in the future. Currently, LoCaPS only considers static

overlays. Support for dynamic overlays, meaning the network graph and broker position could

change by having new nodes joining and old ones leaving the system, is something that defi-

nitely should be added to the system. By positioning relevant publishers closer to interested

subscribers, we could observe further improvements in latency.

Due to a combination of time constraints and lack of a suitable test-bed, able to support

the deployment of very large overlays, we have resorted to simulations to evaluate LoCaPS. The

deployment and evaluation of LoCaPS in a real deployment is an interesting avenue for future

work.

67

Bibliography

[ASS+99] Marcos K Aguilera, Robert E Strom, Daniel C Sturman, Mark Astley, and

Tushar D Chandra. Matching events in a content-based subscription system. In

ACM 18th Symposium on Principles of Distributed Computing, pages 53–61, At-

lanta (GA), USA, 1999.

[BBPQ12] Roberto Baldoni, Silvia Bonomi, Marco Platania, and Leonardo Querzoni. Dy-

namic message ordering for topic-based publish/subscribe systems. In IEEE

26th International Parallel and Distributed Processing Symposium, pages 909–920,

Shanghai, China, 2012.

[BRVR17] Manuel Bravo, Lúıs Rodrigues, and Peter Van Roy. Saturn: A distributed meta-

data service for causal consistency. In 12th European Conference on Computer

Systems, pages 111–126, Belgrade, Serbia, 2017.

[BSB+02] Sumeer Bhola, Robert Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua Auer-

bach. Exactly-once delivery in a content-based publish-subscribe system. In

IEEE International Conference on Dependable Systems and Networks, pages 7–16,

Bethesda (MD), USA, 2002.

[BZA03] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably supporting

durable subscriptions in a publish/subscribe system. In IEEE International Con-

ference on Dependable Systems and Networks, pages 57–66, San Francisco (CA),

USA, 2003.

[CAR05] Nuno Carvalho, Filipe Araujo, and Luis Rodrigues. Scalable qos-based event

routing in publish-subscribe systems. In IEEE 4th International Symposium on

Network Computing and Applications, pages 101–108, Cambridge (MA), USA,

2005.

[CDNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The jedi event-

68

based infrastructure and its application to the development of the opss wfms.

IEEE Transactions on Software Engineering, 27(9):827–850, 2001.

[CF03] Raphaël Chand and Pascal Felber. A scalable protocol for content-based routing in

overlay networks. In IEEE 2nd International Symposium on Network Computing

and Applications, pages 123–130, Cambridge (MA), USA, 2003.

[CF04] Raphael Chand and Pascal Felber. Xnet: a reliable content-based pub-

lish/subscribe system. In IEEE 23rd International Symposium on Reliable Dis-

tributed Systems, pages 264–273, Florianpolis, Brazil, 2004.

[CL85] K Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global

states of distributed systems. ACM Transactions on Computer Systems, 3(1):63–

75, 1985.

[CMPC03] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola. Intro-

ducing reliability in content-based publish-subscribe through epidemic algorithms.

In 2nd International Workshop on Distributed Event-based Systems, pages 1–8, San

Diego (CA), USA, 2003.

[CMPC04] Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, and Gianpaolo Cugola. Epi-

demic algorithms for reliable content-based publish-subscribe: An evaluation. In

IEEE 24th International Conference on Distributed Computing Systems, pages

552–561, Tokyo, Japan, 2004.

[CP05] Paolo Costa and Gian Pietro Picco. Semi-probabilistic content-based publish-

subscribe. In IEEE 25th International Conference on Distributed Computing Sys-

tems, pages 575–585, Columbus (OH), USA, 2005.

[CRW01] Antonio Carzaniga, David S Rosenblum, and Alexander L Wolf. Design and eval-

uation of a wide-area event notification service. ACM Transactions on Computer

Systems, 19(3):332–383, 2001.

[dAAD+17] Joao Paulo de Araujo, Luciana Arantes, Elias P Duarte, Luiz A Rodrigues, and

Pierre Sens. A publish/subscribe system using causal broadcast over dynamically

built spanning trees. In IEEE 29th International Symposium on Computer Ar-

chitecture and High Performance Computing, pages 161–168, São Paulo, Brazil,

2017.

69

[dAADJ+19] João Paulo de Araujo, Luciana Arantes, Elias P Duarte Jr, Luiz A Rodrigues, and

Pierre Sens. Vcube-ps: A causal broadcast topic-based publish/subscribe system.

Elsevier Journal of Parallel and Distributed Computing, 125:18–30, 2019.

[EFGK03] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermar-

rec. The many faces of publish/subscribe. ACM Computing Surveys, 35(2):114–

131, 2003.

[EG02] Patrick Th Eugster and Rachid Guerraoui. Probabilistic multicast. In Interna-

tional Conference on Dependable Systems and Networks, pages 313–322, Bethesda

(MD), USA, 2002.

[EPB13] Christian Esposito, Marco Platania, and Roberto Beraldi. Reliable and timely

event notification for publish/subscribe services over the internet. IEEE/ACM

Transactions on Networking, 22(1):230–243, 2013.

[KJ09] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Reliable and highly available

distributed publish/subscribe service. In IEEE 28th International Symposium on

Reliable Distributed Systems, pages 41–50, Niagara Falls (NY), USA, 2009.

[KJ11] Reza Sherafat Kazemzadeh and Hans-Arno Jacobsen. Partition-tolerant dis-

tributed publish/subscribe systems. In IEEE 30th International Symposium on

Reliable Distributed Systems, pages 101–110, Madrid, Spain, 2011.

[Lam19] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

pages 179–196, 2019.

[LSB06] Cristian Lumezanu, Neil Spring, and Bobby Bhattacharjee. Decentralized message

ordering for publish/subscribe systems. In ACM/IFIP/USENIX International

Conference on Distributed Systems Platforms and Open Distributed Processing,

pages 162–179, Melbourne, Australia, 2006.

[MJ09] Alberto Montresor and Márk Jelasity. PeerSim: A scalable P2P simulator. In

9th International Conference on Peer-to-Peer, pages 99–100, Seattle (WA), USA,

2009.

[NDA+14] Hiroki Nakayama, Dilawaer Duolikun, Ailixier Aikebaiery, Tomoya Enokidoz, and

Makoto Takizaw. Causal order of application events is p2p publish/subscribe

systems. In IEEE 17th International Conference on Network-Based Information

Systems, pages 444–449, Vienna, Austria, 2014.

70

[PLTP08] Cássio Pereira, Daniel Lobato, César Teixeira, and Maria Pimentel. Achieving

causal and total ordering in publish/subscribe middleware with DSM. In 3rd

Workshop on Middleware for Service Oriented Computing, pages 61–66, Leuven,

Belgium, 2008.

[PRS96] Ravi Prakash, Michel Raynal, and Mukesh Singhal. An e�cient causal ordering

algorithm for mobile computing environments. In IEEE 6th International Confer-

ence on Distributed Computing Systems, pages 744–751, Hong Kong, 1996.

[SDJ16] Pooya Salehi, Christoph Doblander, and Hans-Arno Jacobsen. Highly-available

content-based publish/subscribe via gossiping. In ACM 10th International Con-

ference on Distributed and Event-based Systems, pages 93–104, Irvine (CA), USA,

2016.

[SR19] Válter Santos and Lúıs Rodrigues. Localized reliable causal multicast. In IEEE

18th International Symposium on Network Computing and Applications, pages

1–10, Cambridge (MA), USA, 2019.

[ZSB04] Yuanyuan Zhao, Daniel Sturman, and Sumeer Bhola. Subscription propagation

in highly-available publish/subscribe middleware. In ACM/IFIP/USENIX In-

ternational Conference on Distributed Systems Platforms and Open Distributed

Processing, pages 274–293, Toronto, Canada, 2004.

71

