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Abstract. Among the approaches that have been proposed to support
dynamic adaptation, one can find two distinct techniques that appear to
be antagonistic: the use of static models or policies specified by human
operators and the use of fully automated techniques based on machine
learning. Static policies are able to capture the valuable knowledge of
experts into an intelligible model, which may be hard to extract when
using completely automated approaches. Furthermore, static policies also
provide a higher representation flexibility. However, expert-defined mod-
els and policies are unable to deal with unforeseen scenarios and are
hard to keep up-to-date as the system evolves. This work aims at com-
bining the advantages of static policies and machine learning tools as
complementary techniques to drive the dynamic adaptation of systems.
The approach consists in using the expert’s knowledge to bootstrap the
adaptation process and use machine learning to revise, refine, and update
the adaptation policies at run-time.

1 Introduction

As computer systems become more complex, they also become harder to man-
age by humans. Current systems are composed by many components, each of
these with multiple deployment and configuration options: to find the right sys-
tem configuration that maximizes some high level business goal may be extremely
hard. Furthermore, these systems operate in dynamic environments where the
workloads are subject to change, faults occur, and components need to be fre-
quently updated. This makes the task of managing a complex system error-prone
and time consuming.

In this context, the idea of automating, even if partially, the adaptation pro-
cess becomes extremely appealing. If successfully implemented, the approach has
the potential to offer a faster and better response to events that may negatively
affect the behavior of the system. Furthermore, automated adaptation can also
contribute to reduce significantly the operational costs associated with system
maintenance, by allowing the system to be managed by smaller teams that are
assisted by automatic tools.

Autonomic computing was proposed as a solution to this problem [1]. It refers
to systems that are able to manage themselves, under varying conditions, in order



to achieve some high-level goals. The MAPE-K control loop was presented as
a solution to the self-adaptation problem. It is an external control mechanism
responsible for Monitoring the system and its context, Analyzing the data, Plan
and Execute changes to the managed system, leveraging Knowledge about it and
its context [2].

A common way of representing a system is through the use of architectural
models [3] that represent the system as a set of components, connectors (inter-
connections between components) and their properties. These models provide a
global perspective of the system, information about the components and con-
nectors, and they also support the definition of integrity constraints [4]. The ar-
chitectural model can be used in the Knowledge that the MAPE-K control loop
has about the system, given that it provides information about the managed
system, its components and constraints that when violated, trigger adaptations.

Self-adaptive systems are subject to uncertainty [5]. Here we will consider
the uncertainty associated with the adaptations actions’ effects, e.g., activating
a server may not have the expected result, as it may suffer from an unexpected
problem (disk failure). The information related with this kind of uncertainty
may be useful in some cases, e.g., when it is necessary to know the worst possible
scenario.

Human involvement is essential in order to build trust in the system and its
ability to adapt, and may prove to be useful in certain situations, e.g., repara-
tions. This involvement is greatly facilitated if an intelligible model is available
and, in our case, if the uncertainty under consideration is explicitly represented
in this model.

Among the approaches that have been proposed to support self-adaptation,
one can find two distinct techniques that appear to be antagonistic: the use
of static models or policies specified by human operators and the use of fully
automated techniques based on machine learning. We will focus mainly on the
use of human defined static policies to adapt the system, when considering the
first technique. Static policies (rules that select the adaptation action based on
the system’s current state, and we make the assumption that they provide the
action’s expected effect) are able to capture the valuable knowledge of experts
about the system into an intelligible model of the adaptation logic, these kind of
models may be hard to extract when using completely automated approaches.
Furthermore, static policies provide a higher representation flexibility than the
automated approaches, given that models extracted from automated approaches
have a fixed representation, e.g., decision trees, or artificial neural networks. This
flexibility can be leveraged to represent, explicitly, the uncertainty mentioned
before.

Unfortunately, expert-defined policies are unable to deal with unforeseen sce-
narios and are hard to keep up-to-date as the system evolves. Fully automated
approaches that use on-line learning, however can keep the system updated,
based on the system’s history, and are robust when dealing with new situations.
This means that fully automated techniques can achieve a more accurate pre-
diction of the real behavior of the system. On the other hand, fully automated



approaches that use machine learning to find the correct adaptation strategies,
require a large training set of observations, usually collected from long and com-
prehensive training phases to provide meaningful results.

To the full extent of our knowledge there is no solution that leverages the
knowledge an expert has about a system, provides an intelligible model and
explicitly represents uncertainty to facilitate the human involvement, deals with
unforeseen scenarios and uses the history of the system to update the model,
achieving higher accuracy on the prediction of the system’s behavior.

This work aims at combining the advantages of static policies and machine
learning as complementary techniques to drive the dynamic adaptation of sys-
tems. The approach consists in using the expert’s knowledge to specify adapta-
tion policies at design-time and use machine learning to refine and update such
policies at run-time.

In detail, we plan to leverage languages such as Stitch [6] and the one pre-
sented by Cdmara et al. (2014) [7], that allow experts to capture their knowledge
into a set of possible strategies to drive adaptation. Strategies are composed by a
set of adaptation actions, in the form of condition-action-effect rules. The idea is
to bootstrap dynamic adaptation by following the knowledge provided by the ex-
perts to build strategies and then use data from the running system as feedback
to improve them in an automated manner.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. Section 3 describes a simple system
that will be used throughout the rest of the report as an example, and some
terminology. Section 4 presents a description of the problem, a general method
of how to solve it and the challenges of such solutions. Section 5 presents all the
background related with our work. Section 6 describes the proposed architecture
to be implemented and Section 7 describes how we plan to evaluate our results.
Finally, Section 8 presents the schedule of future work and Section 9 concludes
the report.

2 Goals

We address the problem of supporting automated self-adaptation of a system
operating on a dynamic environment. We assume that dynamic adaptation can
be performed by applying a set of adaptations. Examples of adaptations are the
activation or decommission of components, changing the values of configuration
parameters of some components, or changing the way components interact. Each
individual adaptation has a set of possible impacts on the system’s behavior, that
are functions of the system’s state. Given a system’s state, one should select the
set of adaptations that should be applied to the system to achieve its goals.

In order to make the right choices, it is fundamental that the impact func-
tions accurately capture the adaptations’ effects. We could aim at designing a
system where all this information could be specified by an expert, based on an
architectural model, taking advantage of the knowledge he has about the system.
This approach provides an intelligible model of the system and allows the ex-



plicit representation of the uncertainty associated with the adaptation’s effects.
However, it is not easy for an expert to describe the impact of actions on a sys-
tem accurately and the adaptation model would be static. The other approach
would be to learn a model of the system automatically, based on data monitored
from it. Usually, it is harder to extract an intelligible model using this approach
and uncertainty is not represented explicitly (different effects are combined into
a single one). Furthermore, they need to go through a training phase, during
which the system can be far from its goals (because the learner would have to
try sub-optimal configurations in order to learn about the system). Therefore,
with this project we aim to:

Goals: Design and implement a set of mechanisms that, starting from
a set of expert-defined adaptation policies, can automatically use data
collected on-line to refine the impact functions associated to such adap-
tations, keeping the same structure of the policies to maintain its repre-
sentation and ease of interpretation, while achieving a better accuracy.

We believe that this goal can be achieved by the following approach. A num-
ber of condition-action-effect rules (adaptation policies) is collected from experts.
From these rules a dataset of synthetic samples that represent the conditions and
effect of the adaptation rules is created. Machine learning tools are used to infer
the rules back from the synthetic dataset (at this point the set of rules should
be equivalent to those provided by the expert). Monitor the system and collect
samples from observed adaptations. These samples are added to the dataset and
machine learning tools are again used on the augmented dataset to update the
rules inferred previously. If new adaptation effects are learned, these are used to
improve the original set of rules produced by the expert.

The project will produce the following expected results:

Expected results: The work will produce i) a specification of the al-
gorithms used to refine the knowledge provided by the expert; ii) an
implementation of a self-adaptive system that uses these algorithms, iii)
an extensive experimental evaluation using a concrete case study.

3 Case Study

In this section we describe the case study that will be used to assist the
description of the systems presented in the related work, and also introduce
some terminology we will be using throughout the report.

To illustrate the concepts and approaches covered in this report we will often
use a simplification of the ZNN case study extracted from the work of Cheng et
al. (2012) [6]. This case study considers a web-based application that is supported
by a pool of servers. Clients make their requests to a load balancer that forwards
them to a given active server. The aggregate load on servers, i.e., the number of
request per unit of time, may change dynamically.



Goals capture the high level objectives that the system should try to achieve
during its execution. In our case we assume that the goal of the provider is to keep
the service with low latency while minimizing the costs, which are proportional
to the number of servers instantiated at a given point in time. Therefore, our
goal metrics are the average time interval the user waits until a response to
its request arrives and the number of active servers. By goal metrics we mean
measurable performance indicators of the system operation that are related with
the system goals. These metrics should be monitored by the system.

Utility is a quantitative evaluation of a certain system state, based on the
system goals. It is derived by combining the goal metrics. A possible represen-
tation of the utility is a linear function of the goal metrics, where the weights
associated with each variable correspond to the preferences among the goals
(higher weight correspond to a more important goal).

The system must perform elastic scaling, by adapting the number of servers
to the experienced load. To further simplify the problem we will consider that
there is no limit to the number of servers in the available server pool.

In this example, there are two adaptations that can be performed on the
system: to activate or deactivate a single server. The effect of an adaptation is
the result the adaptation has on the system. Activating one server will increase
the number of active servers by one. The impact of adaptation is the observed
change in the goal metrics caused by an adaptation action. In this case, the
impact of activating a new server would be a decrease of the average response
time (presumably).

Naturally, each of these adaptations may be performed multiple times in se-
quence. In order to drive the adaptation, the system has to maintain information
about the number of servers that are active (from which the current cost may
be directly derived), about the service latency, measured as the average time
interval between the client request and the reception of the corresponding reply,
and about the load on the system (number of request per unit of time). This
information represents the current state of the system.

4 Background

4.1 Basic Definitions

A system is said to be Self-Adaptive if it has the ability to monitor its context
and to automatically change its behavior such that a predefined set of goals,
that capture human needs and preferences, are respected [8]. The ability to
adapt without requiring human intervention has the potential to provide faster
response to changes, to reduced downtime, and to reduce administration costs [9].

The work of Salehie & Tahvildari (2009) [9] differentiates the process of
engineering self-adaptivity into the system at the development phase (Making
Adaptation), which is usually used with static policies based systems, and using
artificial intelligence to learn a model of the system and use it to adapt the system
(Achieving Adaptation). We will analyze both methods during the related work
section.



4.2 Approach

Self-Adaptiveness is one of the properties of an autonomic computing sys-

tem [9]. The main building block of a self-adaptive system is an autonomic
feedback control loop [10]. The autonomic feedback control loop usually used in
autonomic computing consists of the MAPE-K loop illustrated in Figure 1. The
loop executes four different steps, that share (K)nowledge about the system [2,
9,11]:

Autonomic manager

Managed element

Fig. 1. MAPE-K loop (picture taken from [2])

(M)onitor: Collects information about the system, and aggregates the col-
lected data into symptoms if they need to be analyzed. In our case study,
this task consists in monitoring the response time to user’s requests.
(A)nalyze: Receives the data collected in the previous step, and analyzes it,
to check if changes are required. In case change is required, it passes a request
to the next step of the loop. In our example this step consists in assessing if
the response time is higher than the target threshold (in which case a new
server needs to be activated) or if it is much lower than the threshold (in
which case a server may be removed to reduce the cost).

(P)lan: This phase is where the sequence of actions (or single action) is
chosen to adapt the system to the desired state. The constructed plan is
then passed to the next phase. A possible plan, in our case study, is to
activate the number of servers required to lower the latency.

(E)xecute: Receives as input the plan of adaptation and applies it to the
managed system. Following the example, this step would connect the new
server.

The (K)nowledge component of the MAPE-K loop is responsible for storing

important information about the system — actions it may perform on the system,
their effects/impact, when it should adapt the system, what are the goals that
should be achieved, policies (possibly), among others.



Architectural models provide a high-level view of the system, based on com-
ponents, interconnections (connectors) and their properties. Components corre-
spond to the computational elements of the system and connectors to interac-
tions between components. The model can be extended with information about
its elements (e.g., properties, constraints). This approach is appropriate to use
in the Knowledge component given that it provides an abstracted view of the
system, a general model (one model describes a class of systems, thus may be
used in systems of the same class) and the constraints associated with its ele-
ments help to identify allowed changes and when the system needs to be adapted,
during the adaptation process [4].

The steps of the loop are also called collect, analyze, decide and act in some
works [10, 12], but their meaning remains the same.

This work will focus on the Knowledge component and how it can be learned
and updated. In the related work, we will also consider the analysis and planning
components, by stating how other components implement it, in order to support
our claim.

4.3 Challenges

Below, we identify the main challenges that must be addressed when building
a self-adaptive system:

— Achieve and maintain goals: The system should adapt in order to achieve
its goals, even when dealing with a highly dynamic environment.

— Adapt effectively and timely: If the system is adapted every time there is a
small change in the environment, it may become useless for its main pur-
pose because it is always busy adapting, so a trade-off must be considered.
Furthermore, it is necessary to choose between reactive and proactive adap-
tation, because some systems cannot afford to have their goals violated, even
if transiently [9, 12].

— Consider delayed effects: The impact of an adaptation action may not be
immediately observed.

— Consider uncertainty: Sometimes a given action may have different out-
comes, and which of the effects takes place cannot be predicted based on the
observable variables. In this case we say that the outcome is uncertain [8].

— Strive for generic solutions: Ideally, the solution proposed should be able
to be used in different self-adaptive systems without a lengthy process of
modifications [9].

To this set of challenges we add some that we want to solve, in order to attain
our defined goals:

— Modeling the adaptations: Plans may be defined by experts or be built at
run-time using planners. Plans must be built based on the knowledge of the
system and the state it is in. To be able to build a plan, the impact and cost
of each action must be known, in order to know which actions will lead the
system to the state the planner wants to achieve [9]. So impact and effects
of actions must be known and modeled.



— Support human involvement: We consider that the adaptation model of the
system should be easily interpretable (policies, impact) by a human operator,
as this will facilitate human involvement in the adaptation system, which is
fundamental to build trust on the system and to improve its manageabil-
ity [9,10, 12]. By easily interpretable, we mean that (1) it should be easy to
extract information by reading the policies or model, and (2) it should pro-
vide enough information to understand the system, e.g., when considering
uncertainty, all the different expected outcomes should be presented, instead
of a combination of every possibility.

— Keep the model up-to-date: The model of the system should be kept up-
to-date because we are considering highly dynamic environments, which can
influence the behavior of the system, and new situations can arise frequently.
A possible solution to this challenge is to use learning techniques to improve
the accuracy of the model — effects of actions on the system and their impact
on goal metrics.

5 Related Work

5.1 Static High-level Policy-based Adaptation

It is often the case that these systems, where self-adaptation is appropriate,
are currently handled by human operators that adapt the system by executing
a sequence of adaptation actions. This means these operators already have a
mental model of the system and how it could be adapted to some situations.

The human operator must be able to interpret the model of the managed
system, because it may be useful when he must intervene, e.g., when a hardware
fault occurs. Also, if the model is easily interpretable by the operator, it is easier
for him to trust it, as he will be able to know how it captures the system’s
behavior [3,10]. The following approaches are the ones that offer the models
that are easier to interpret by the operator, as they are intelligible and represent
uncertainty explicitly.

In this section we present work that leverages the knowledge collected from
human operators to define adaptations based on static high-level policies. This
kind of policies consists of a set of rules of the form “if the system is in a given
state, that could be improved or does not respect the requirements, then it
should make this change in order to adapt”. Then in the analysis phase, if the
system is in a state that corresponds to the precondition of any of these rules,
the consequent of the rule is used as the plan of adaptation.

This is the most simple method, despite the possible conflicts that may arise
among rules (more than one precondition can be true). To solve these conflicts
a human operator must be kept in the loop [3].

5.1.1 Stitch
Cheng et al. (2012) [6] propose a language that can be used to represent the



operator’s knowledge about adapting a given system. Stitch is used to define
adaptation strategies, based on the architectural model of the system.

The purpose of this work is to capture the expert’s knowledge about the
system and how it should adapt to different conditions. Here adaptations are
based on expert defined strategies — sequence of steps the expert would take to
adapt the system to the current conditions.

The intuition behind the Stitch language is that the system can choose how
to adapt itself as an expert would adapt it. So when adaptation should be con-
sidered, the system will see which of the defined strategies results in the state
with the highest utility. Then the strategy’s steps are executed.

Adaptation serves the purpose of keeping a certain quality of service level
even when confronted with dynamic environments. When choosing the best strat-
egy the system has to know which strategies are available, which can be used
at that point, the objectives of the organization (such as always provide high
fidelity, or save as many resources as possible) and its priorities (e.g., what objec-
tives are more valuable to the organization). To represent this knowledge Stitch
supports the specification of business QoS concerns, represented as quality di-
mensions; the priorities among the dimensions, which are specified through an
utility function based on the quality dimensions; and how actions affect goal
metrics (quality dimensions). The latter is achieved by defining the impact an
action has on each goal metric (impact vectors — each cell corresponds to the
change on one goal metric).

One characteristic that Stitch tries to mimic from the way an expert executes
the actions is the variability of the path taken. An expert can go through different
paths for the same strategy considering the result of previous steps. If a step fails
- effect is not observed within a time-window — the expert may try something
else. To support different paths within the same strategy, every step has an
applicability condition saying if the step should be executed based on the state of
the system (determined by the success or not of previous steps) and an expected
result so it is able to check if it had the desired effect. The result of a given
action may not be instantaneous, and for this reason, Stitch also supports the
definition of a delay window in which the result of an action may be observed.
If the strategy did not solve the problem, the next cycle of adaptation will try
to solve it.

Stitch defines strategies as decision trees, where each node is a tactic and
each tactic has operators. An operator is a configuration command. A tactic
has a collection of operators, its expected effects and impact on the goal met-
rics, guarded with an applicability condition. It is a step of adaptation used by
strategies. In a strategy each step is a conditional execution of some tactic, thus
the path is dependent on the tactics’ effect, as it was already stated. The effect
of a tactic may not be immediate, and therefore each tactic has a delay time-
window — defined by the expert — in which its effect must be observed or it is
considered that the tactic has failed. A possible tactic, in our case, is to activate
a server. Strategies also have applicability conditions that state when a given
strategy may be applied, in order to reduce the search space when searching for



the most appropriate strategy, e.g., the server must be off-line before activating
it.

This language also supports the explicit representation of the uncertainty
associated with the outcome of an action. This is represented with probabilities
attached to each possible path after the execution of an action. The path taken
depends on the outcome of the previous action, and is not influenced by the prob-
abilities. The probability can be defined by experts and represents the number
of times each of the paths is taken. The probabilities are used to compute the
utility of a strategy, by stating the probability of reaching each of the possible
states. The utility of a strategy is then a function of the utility of each possible
final state and the probability associated with each one of them. Reducing the
response time, in our case, is possible only by activating a new server, so the
probability of this condition is 1.

Listing 1.1. Example of Strategy represented in Stitch

// latencyViolation is a boolean variable, true if the
//latency 1is above a certain threshold
strategy ReduceResponseTime [latencyViolation] {
// hiLatency is a boolean variable, true if the latency
//is considererd to be high
// hiLoad is a boolean variable, true if the load is
//considererd to be high
t1: ([Pr] hiLatency & hiLoad) —> enlistServer (1) @[2000/%msx/] {
tla: (!hiLoad) —> done;
t1b: (!success) —> do t1;
}
tn: (default) —> fail;

The example in listing 1.1 represents the characteristics presented in this
section. The [Pr] represents the probability of that condition being chosen, in this
case it would be 1. However, if we considered more conditions the probabilities
would be distributed among them. The strategy is considered if a constraint
is violated (response time above a threshold), and a server is activated if the
latency and the load of the system are high. The default clause is for the case
where all the previous conditions are false.

Strategy selection is the process of choosing the best strategy to follow when
the system is in an adaptation condition — state for which adaptation should be
considered. It starts by computing the impact, per goal metric, of each strategy,
and the overall utility is computed using the goal metrics weighted by the utility
preferences. In our case, this corresponds to having a linear function based on
the number of active servers and the average response time, where the weights
would have to represent the preferences, for example it is more important to
provide a service with a low latency.

5.1.2 Expert Defined Impact Models
The work done by Camara et al. (2014) [7] describes a solution intended to
improve Stitch [6], regarding the description of the impact of actions.

In Stitch, each action has an impact vector, where each value corresponds to
the change in a goal metric, e.g., cost. The vector’s values are the combination
of the different possible impacts an action can have on each goal metric. This
is a simplistic approach that does not consider that the outcome of a tactic

10



may differ. The outcome of executing an action is uncertain, e.g., activating a
server can be successful or not. It also depends on the context at that time, e.g.,
activating a server has a lower impact when there are already a lot of active
servers than when just one additional server is active.

In order to chose a strategy it is important to have a good estimate of the
impact each applicable strategy will have, if applied, to be able to chose, at
runtime, the best for the current context. If we have high latency we do not
want to disconnect a server.

To improve the description of the impact models, the proposed approach is
to create a declarative impact specification language that is able to represent
the uncertainty in the outcome of actions and the dependency of the current
context.

Stitch represents the uncertainty with the different possible paths the system
may take at a given state during the execution of a Strategy, not with the
different effects an action may have on the goal metrics. So the different effects
are represented implicitly and are harder for the operator to analyze. This work
tries to mitigate this problem. To represent the uncertainty of the outcome, the
models are based on Discrete-time Markov Chains (DTMCs), which allows the
representation of different outcomes, of an action, with some given probability.
The impact model is defined in terms of probabilistic expressions ({[pi]aq +
[p2]2}, which means that o will happen with probability p;, or as will happen
with probability p2).

The outcome of an action, depends on the context the action takes place in.
This dependency is represented by expressing the outcome as a function of the
state, instead of a fixed value.

So the language described supports the specification of the impact of an ac-
tion on the goal metrics. Each action is then described with the possible outcomes
that may be observed by executing it, the likelihood of observing that outcome,
the expected impact on the goal metrics and the effects that are observed on the
system.

Listing 1.2. Example of definition of Action

impactmodel enlistServer

// m is the number of active servers
m > 0 —> {[0.95] {foreach s:S | s.isActive’'=true &
{[0.7] forall c:ClientT | c.expRspTime’'=f(c.expRspTime)
+ [0.3] forall c:ClientT | c.expRspTime’'=g(c.expRspTime)}}
+ [0.05] {forall c:ClientT | c.expRspTime’ = c.expRspTime &

forall s:ServerT | s.isActive’' = s.isActive }}

The example in listing 1.2 shows the representation of the uncertainty ([prob-
ability]), and the dependency of context (functions f and g).

In order to compute the utility of Strategies, we can think of the possible
paths and outcomes of such strategy as a tree with normal and chance nodes —
chance nodes are the ones where the choice of edge to follow is external to the
system — that alternate in consecutive depth levels. Each normal node represents
a state, usually followed by edges that represent possible actions to perform in
said state, e.g., connect a server. Chance nodes are followed by edges that corre-
spond to each of the possible different outcomes of the action chosen. Each edge
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has a probability associated with it. When it comes to normal nodes the prob-
ability is equally split between the possible actions (edges). Edges that connect
chance nodes to normal nodes have a probability associated that corresponds to
the likelihood of the outcome, represented by that edge.

Given the tree and based on DTMCs, computing the strategy’s utility is a
matter of summing the utilities of the states associated with each leaf node, each
one weighted by the probability of reaching said state. The probability is given
by the product of the probabilities in the path to that node.

Experimental results showed that probabilistic impact models predictions
were more accurate than the approach seen in Cheng et al. (2012) [6].

5.1.3 Automated Planning for Self-Adaptive Systems

A problem from the previous approaches is that strategies — sequence of actions
to adapt the system — are static. This problem burdens the expert, in the sense
that he has to think of every possible context the system may be in and every
sequence of steps that may solve a given problem, which is a difficult task [13].
This turns out to be a much more complex problem if we consider that contexts
that were not considered before may occur.

A generic solution is proposed by Gil (2015) [14], for this problem of static
strategies. This work proposes the creation of plans in runtime, based on the
available actions, their impacts on the goal metrics and the utility function.
This is a dynamic decision making approach [9].

The process consists of using each action, its precondition (applicability con-
dition) and impacts to create operators in a standard planning language, and
use a planning algorithm to create plans that are supposed to lead the system
from the current state, to a goal state — a state where every metric is within its
goal values — if applied.

In order to account for the inherent uncertainty associated with the impact
of each action, the author considers that each action can have more than one
outcome, each with a certain probability. This can be represented by the language
defined by Camara et al. (2014) [7] and described earlier in section 5.1.2. For this
reason, for each state that may result from the previous action/step, a planner
is used to generate new adaptation paths. The result is a tree, where each node
is a state, and edges represent outcomes from a given action, with probabilities
associated.

After the generation of this plan, the adaptation system should just use this
tree to choose the action corresponding to the state it is in.

This kind of approaches rely heavily on the accuracy of the model of adapta-
tion (impact model — probabilities and impact functions). If an inaccurate model
is used, the sequence of actions derived from the planning process will result in
a completely different outcome than the one expected, or the complete invali-
dation of the selected plan. This is due to the accumulation of the inaccuracy
and uncertainty over the action sequence. Therefore, having an accurate and
updated model is important for systems like the one just described.
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5.1.4 Discussion

Policy based adaptation provides a higher flexibility when it comes to choos-
ing the representation of the system. This can be seen by the explicit repre-
sentation of the uncertainty used in Stitch and the impact modeling language
presented. These approaches present more information than the one that is pro-
vided by using learning techniques (to be discussed next) where the uncertainty
is represented implicitly. Therefore, the approaches presented here provide more
knowledge about the system to an operator.

Representing the uncertainty explicitly also allows systems to use this extra
information in a different way than how it is usually treated (the impact of
an action is defined by the different outcomes and the number of times each
one occurs — information implicitly represented by a single impact function).
An example of such application would be a planner that considers the worst
possible outcome of each action, e.g, manages critical systems, so that the final
plan results in a state that is at least as good as a certain threshold. This
approach is not possible without access to the possible outcomes explicitly.

The work described in section 5.1.2, when compared to Stitch [6], presents
an approach that provides more and easily interpretable information, to the
operator. It also facilitates approaches, such as the one described of automated
planning [14], by providing a more explicit representation of the impact and
effect of actions.

Even though the expert defined models are better when it comes to represen-
tation of knowledge, it still has the problem of being static. The model is built
during the development phase and is not changed, even if it does not model the
behavior of the system correctly.

For these reasons we will consider the approach of expert defined impact
models [7] and how to improve the accuracy of the model defined by experts, by
learning from data collected from the running system.

5.2 Machine Learning based Adaptation

The next sections will describe techniques that learn the system’s behavior,
based on data collected from it, and use the learned model to manage the system.

Machine learning consists of a class of algorithms that learn patterns, and
make predictions or decisions based on data. Examples of such algorithms are
reinforcement learning, decision trees and artificial neural networks based algo-
rithms [15]. The results are models of the collected data that can be used to
make predictions, or a set of rules to guide the decision making process, if that
is the case. Usually, these predictive or decision making models can be used as
black boxes, in the sense that one can feed them with data and they will return
the expected output or decision.

In the following sections we will consider: (1) Prediction based approaches,
where decisions are made by predicting the system’s needs in the future based on
its current state and (2) decision making approaches, where an action is chosen
based on the current state
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The state of the system is usually represented as its current configuration and
representation of the environment. It is also possible to add information to the
state’s representation by adding past states (history of the system). However,
this leads to a huge growth on the number of states the adaptation system has
to consider.

Unlike the previous approaches (expert defined policies) techniques based
on learners derive their models from data collected, in our case from a running
system — training phase. This has the potential of leading to a more accurate
model, since it deals with the system directly instead of the idea an expert has
on the behavior of the system.

However, it is not easy to extract the learned models, as an easily human
interpretable model, mainly because it is not a main concern with these ap-
proaches, and for this reason they provide low flexibility to the way the model
is represented.

A learned model that is not refined after it is created presents the same
disadvantage than the expert defined models — loses accuracy and does not deal
well with unforeseen scenarios. The techniques presented in the next sections
continue to refine the learned models with collected data from the system, after
the model is created.

5.2.1 Fuzzy Control

Fuzzy sets are an approach to approximate the set theory to the way humans
think. For example, using the classical set theory, for someone to be classified
as tall, a precise threshold, that captures the height above which a person is
considered tall, must be defined. However, most humans do not reason in terms
of these precise thresholds but, instead, use subjective values. Therefore, classical
set theory does not represent the way people usually think. In the real world it
is common to have classes of objects that cannot be clearly separated, as is
the case of tall and short. To solve this problem fuzzy set theory uses classes
with grades of membership. An object, instead of belonging or not to a given
class (binary classification), has a degree of belonging, given by the membership
function corresponding to that set (captured by a value in [0, 1]) [16].

Input o Output
Fuzzification Rule Evaluation Defuzzification | ot

Fig. 2. Fuzzy Inference Process

This notion of fuzzy sets can be leveraged to create a rule base, i.e., a set
of rules, that maps from an input space to an output space. These rules can be
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built by human experts, or using existing data (input/output) to automatically
learn them [17]. Each rule is of the form:

if 11 is A1 A 29 is Ao A--- Az is Ag then Y

Where z; is a variable, A; corresponds to a membership function (fuzzy set)
and Y corresponds to the output. The mapping corresponds to the notion of a
Fuzzy Inference System (FIS). The mapping process is represented in Figure 2.

— The first step of the process is the fuzzification of the inputs. Using fuzzy
set theory, each input is used to compute the degree of membership to each
fuzzy set, using its membership function.

— The second step is the evaluation of the fuzzy rules. Here, the firing strength
of each rule is computed based on the degree of truth of the precondition of
that rule. The firing strength is then combined with the output of that rule.
The output of every rule is combined and sent to the last step.

— The last step, defuzzification, receives the output of the rules’ evaluation
and converts this result to a real value, a value that makes sense in the real
world (not fuzzy).

The use of Fuzzy Logic is very common in the field of self-adaptive systems,
for many reasons, including the lack of requirements for previous knowledge
about the system, its robustness when confronted with noisy data, its ability
to quickly adapt to changes and the fact it does not need a lengthy training
phase. It is also known to be robust when approximating non linear functions
and dealing with uncertainty.

We will now describe some approaches that use data collected on-line, to
build an inference system, in order to decide how to adapt the managed system.

Fuzzy-modeling: We use the work of Xu et al. (2008) [18] to illustrate the
fuzzy modeling approach, which consists in using data collected via monitoring,
to construct a fuzzy inference system. Such system can then be used to implement
reactive adaptation [9)].

The approach works as follows. Each sample from the data that was mon-
itored and respects the defined goals (the system should only be trained with
samples where its goals were achieved) is considered to be a point in an N di-
mensional space, where N is the number of observable and relevant variables in
the system. Therefore, each point is a tuple ( inputy, inputs, ..., outputy, out-
puta,...). The inputs correspond to the values of the variables that represent the
state of the system. The outputs are the values that were observed, and that
the system wants to predict in the future. In order to predict what the system
needs to reach a goal state, it filters the samples that are far from the defined
goal. When applied to our example, the inputs are the response time and the
load, and the output is the number of servers being used.

Based on these samples, the rules and membership functions are induced,
using a fuzzy clustering algorithm (in particular, Xu et al. (2008) [18] uses a
form of clustering called subtractive clustering [19]), which will aggregate similar
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points in the same cluster. Each cluster therefore represents the behavior of the
system in a given general situation. As a result, the fuzzification and computation
of the firing strength of a rule is done by computing the distance from a sample to
the cluster center of that rule (by considering only the dimensions corresponding
to the input variables). Clustering the samples also avoids getting a large number
of fuzzy rules. In order to increase the accuracy of this model, a first-order
Sugeno-type model can be used, where the output is considered to be a linear
function of the input variables [20]. During the normal execution of the system
the model is continually updated based on new monitored samples (Fuzzy set
parameters and output functions).

The result of the previous step is a set of rules that map from the input to the
output. These rules are then used to predict the behavior of the system which
will determine the adaptation that is going to be applied. A possible example
during the execution of the system is, based on an observed load, and on the
response time to user’s requests, the model states that n servers should be active.

Fuzzy Neural Networks: We now describe how ideas from neural networks
can be used to implement a fuzzy controller (in an approach that is called a
fuzzy neural network). Inducing a fuzzy inference system, using neural networks,
is usually done using an Adaptive Network based Fuzzy Inference System (AN-
FIS) [21]. This presentation, however, is based on the work of Lama & Zhou
(2010) [22]. Using a neural network to model the fuzzy controller allows the
learning techniques that build and update neural networks to be used, in this
case, to build and update a fuzzy controller as it learns from the running system.
An advantage over the system described earlier is the flexibility of the neural
network.

Using this approach, the controller is designed using a four layer neural net-
work. These layers roughly correspond to steps in the fuzzy controller: fuzzifi-
cation, rule evaluation and defuzzification. In layer one, each node corresponds
to one input variable, and its purpose is to pass its signal to the next layer. In
layer two, each node corresponds to a fuzzy set, and its membership function is
used to determine the degree to which an input value belongs to this set. This
layer corresponds to the fuzzification step. In layer three, each node represents
the precondition of one fuzzy logic rule. Each node outputs the firing strength
of that rule, i.e., the degree to which the rule is satisfied. The fourth and last
layer represents the defuzzifier. It receives the results from the third layer and
outputs its combination, already defuzzified.

Initially the network only has input and output nodes: the fuzzy neural net-
work requires no knowledge about the system before it starts. By processing sam-
ples, the network will determine the parameters necessary for a fuzzy controller
(membership functions and rule base) in the form of nodes and the connections
between them. These nodes are added dynamically using a learning process that
will be described next.

When an input is received and the current network does not model it correctly
— the firing strength of the existing rules is below a certain threshold — then it
needs to be updated. This update is done in what has been called the Structure
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Learning Phase. This process adds a new node to the network in layer two and the
associated rule node in layer three. The membership function is only generated if
there is not already a similar one. If a similar one does exist, the corresponding
node is used. The new link between nodes will have a constant, or random
weight assigned, and this weight will be updated by another procedure called the
Parameter Learning Phase. This last phase uses the well-known backpropagation
learning algorithm [15], to update the weights of the network according to the
gradient of the error associated with the samples.

We illustrate how this approach could be applied to our case-study. We could
use, as the input variables, the current response time and load, and, as the
output, the number of servers that should be active in order to achieve the
goal latency. The backpropagation algorithm would have to tune the network
parameters to minimize the error of the predicted output, based on the observed
one.

5.2.2 Optimizing the Exploration Phase

The presented Fuzzy control based approaches described a way of predicting
the needs of the system, based on the current state. However, they left little
knowledge about the impact that actions had on the goal metrics, and did not
necessarily maximize the utility, given that it was based on “heuristics”. By
heuristics we mean that these systems only train with samples that result in
a good enough utility and are not concerned with further exploring for other
alternatives, therefore, it does not achieve the global maximum.

Exploration in complex computer systems usually result in a state explosion
due to the presence of a potentially large number of input variables. This can be
problematic if one wants to build the system’s model on-line (using observations
from the running system). In this case, it is typically prohibitive to randomly
explore the entire search space, as the system would likely deliver unacceptable
performance.

Analytical models that describe systems, and the impact a certain configu-
ration has on the goal metrics, may be learned automatically or be written by
an expert.

In this section we present some work that aims at optimizing the exploration
phase, by minimizing the time spent in undesirable regions of the search space.
This is done by leveraging analytical models of the systems, previously defined
or learned on-line, and use them to accelerate the training phase.

tTuned: The work by Duan et al. (2009) [23] describes a process to search
for the best state a system could be in, given the current context in which it is
inserted. To help the search process it builds an analytical impact model of the
system. That is later used, as was already said, to find the optimal configuration.

The goal of its authors was to perform an educated search for the best con-
figuration. Using results from previous experiments they could extrapolate the
utility of new states without exploring them, thus avoiding searching the entire
search space and have a planner choosing which states to explore next. This ap-
proach leads to a smaller computational cost, and raises the chances of getting
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good results early in the search, given that only a sub-set of the search space is
explored.

The algorithm behind this tool consists of an initialization phase followed
by a cycle in which the state of the system for the next experiment is chosen
and tested. The cycle terminates when there are no prospects of finding a better
configuration or when the user terminates it manually.

In the first step of the algorithm, initialization phase, iTuned has no knowl-
edge regarding the impact model, so it has to do some experiments to collect
samples and add them to the database. The way the samples are chosen are out of
the scope of this report, and we consider that they use a process as simple as ran-
dom sampling. An experiment is represented by X =< 1 = vy, ..., T, = v, >.
The outcome of the experiment is a sample represented by < X,y >=< 1 =
V1, ..oy Ty = Up,y = p >, where x; represents a characteristic of the system, v; is
its value and y is the utility measured for that state.

To select the next experiment, iTuned uses Adaptive sampling, a novel feedback-
driven algorithm. It analyzes samples collected so far to approximate a surface
— each point of this surface is a sample < X,y > - and chooses what should
be the next experiment to be tested based on the likelihood of getting a better
result — the next experiment should be the point X with the highest value of y
on the mentioned surface. This surface is built using a model called Gaussian
process Representation of a response Surface (GRS). This model uses the avail-
able samples to update the mean and variance of the Gaussian random variable
that models the utility estimate.

With the next experiment selected, the configuration settings are tested and
the result — y(X) — is used to update the GRS model.

The number of parameters that is considered during the search is an impor-
tant factor, because the larger it is, the longer the search takes. With this in
mind the authors proposed that some parameters do not need to be considered,
as their effects on the utility of the system is negligible. The filtering can be
done with knowledge from an expert, or by computing the information gain of
each parameter (information gain — changing the value of a variable results in a
change in y).

This approach could be applied to our example if we consider that a pa-
rameter, load, is not under the control of the system, and therefore cannot be
modified in order to make certain experiments. This causes the search space to
be restricted to certain areas at each time. The input space could be the num-
ber of active servers, the load and the response time, and the output the utility
function that combines the response time and the cost associated with the active
servers.

This work requires no initial knowledge, and after some experiments finds
a better configuration than the initial one, if there is one. It is also able to
consider only a subset of the possible states by reducing the search space when
looking for more promising configurations. However, it still requires that each
of these considered states to be tested, in order to find their utility value. This
test may be a lengthy process if we consider that an adaptation does not take
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place immediately, and that this change may not alter the performance metric
instantaneously.

Although it is not the main concern of this work it is possible to extract a
graphical representation of the GRS, which provides information of how certain
configurations affect the metric goals.

FUSION: Elkhodary et al. (2010) [24] presents FUSION, a framework that
learns the impact of an adaptation on the system’s user defined goals, in order
to plan the sequence of actions to perform when adaptation is needed — a goal
is not being satisfied.

The work done here is different than the previous one, because it leverages
knowledge from experts and it uses machine learning as a way of learning the
analytical model.

This framework uses knowledge from experts to reduce the number of possible
configurations, thus reducing the search space, when looking for better states.
The knowledge collected is in the form of relationships between features. A
feature may depend, or have a mutual exclusion relation with another feature.
Experts are also responsible for defining the QoS objectives (goals) using a metric
(measure that can be obtained from a running system) and a utility function
(represents users’ preferences).

FUSION uses machine learning — model trees — to induce an analytical model,
based on the monitored data. When a goal is not being satisfied, it uses the
induced model to adapt the system to satisfy its goals. Each process is performed
in a separate loop. The process of learning the impact model is performed in the
learning cycle, and the adaptation in the adaptation cycle.

During the learning cycle, FUSION discovers the impact each feature has
on a given metric. This process can be divided into two parts, the Observe and
Induce.

Observe checks if the impact model is accurate, based on the last observa-
tions. This is done by computing the difference between the predicted value,
given by the model, and what was observed. If the accuracy is below a certain
threshold, it is assumed the system is not being correctly modeled. So Induce is
asked to tune the model based on the latest observations.

Induce uses the observed samples to build impact functions — function that
have features of the system as a domain, and output the impact on a given
metric. The learning algorithm used is the M5 model tree — a decision tree that
allows the use of linear regression models in the tree leaves. The first step is to
use a significance test to discard variables that do not influence a given metric
(already done by M5). Then use M5 to derive the functions that model each
goal, based on the features of the system. The context may influence the impact
of the system and for that reason it is also considered in these functions. This
results in different functions for the same goal, each one representing a different
context.

A possible function that could be induced for our case study, where s is the
number of servers, [ the response time measured and Mgl the impact on the
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goal metric that corresponds to the response time.

Mol — {205+21+ . 8<T
05s+2l+... s>7

The adaptation cycle initiates when a constraint is being violated, instead of
every time a better state is achievable, in order to decrease the interruptions of
the usual operation. This could also be done in the previous described systems, by
defining constraints and initiating the planning phase only if they were violated.
Then FUSION generates an optimization problem, where it wants to find the
configuration that increases the utility of the system, while no constraint can
be violated, and the restrictions, e.g., mutual exclusion, defined by the experts
must be respected.

The last step is to change the system to the new state, the one found in the
previous step. During this step the main concern is to respect the restrictions
between features, e.g., two mutual exclusive features cannot be enabled simulta-
neously. For this reason a plan of adaptation actions is built, in order to get the
system to the new state, where at any given time, every user defined restriction
is respected.

This can be adapted to our case study by considering two goals, the latency
and the cost (Mgl and M¢2). The inputs would have to be the response time,
the load and the number of active servers.

Bootstrapping: The work done by Didona & Romano (2015) [25] describes a
technique that combines machine learning and analytical modeling to create a
predictor, which requires a short training phase and achieves a high prediction
accuracy.

It uses a user defined analytical model, of the variable that it wants to predict
in the future, to create synthetic samples that are used to train the machine
learner. Using such samples eliminate the need to collect them from a running
system, which may reduce the training phase considerably.

Building an analytical model capturing the dynamics of complex systems
is well known to be a difficult task. It is, often, also necessary to make some
assumptions about the system, to be able to deal with its complexity, which
leads to models that are possibly inaccurate. Therefore, when new samples are
collected from the system to keep the model up to date, the synthetic samples
may be contradicted by the new ones, ultimately changing the predicted values.

To deal with the possible inaccuracy of the analytical model this work pro-
poses four approaches to update the dataset with the a new collected sample:
(1) merge: collected samples are added to the data set and weights are used to
give more relevance to real samples; (2) replace based on nearest neighbor: for
each new real sample it finds the nearest sample, synthetic or real, and replaces
it; (3) replace based on nearest region: replaces synthetic samples within a certain
range for the new real sample; (4) replace based on nearest region 2: replaces the
output of the nearest sample with the output of the new sample.
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5.2.3 Reinforcement Learning
The learning approaches seen until now make their decisions by predicting the

needs of the system, based on its state, e.g., how many servers are needed if
the response time is high and the load is also high. This section describes an
approach that maps states to actions, e.g., activate or deactivate a server.

Reinforcement learning is based on the notion of rewards received as the
consequence of executing an action in a given context. In order to collect infor-
mation about the actions that maximize the reward received, the learner has
to try these actions in different contexts. With the notion of reward per action
in each state it learns policies that adapt the system [26]. This introduces the
problem of knowing when to explore — select an action that may not be the
optimal one, in order to collect more information about the system — and when
to exploit - based on the current knowledge, select the action that is expected
to maximize the reward [27].

The result of this process will be a set of adaptation policies. Thus, it may
be considered to be in the class of policy-based adaptation.

Reinforcement Learning is used in this field, because it is able to learn about
a system without an initial model of it and with little knowledge about the
system itself. However, it can use an initial model to facilitate the training phase.
Another advantage is the fact that reinforcement learning approaches are capable
of handling delayed effects of actions [28].

A problem of this kind of learners, is that it needs a big training phase to
learn an accurate model [3].

Hybrid RL approach: Tesauro et al. (2006) [28] describe a reinforcement
learning approach to learn management policies, i.e, map from a state of the
system to a management decision (adaptation action).

In order to minimize the exploration phase, which can lead to poor results
in a running system during the training phase, a scenario usually not affordable,
the system uses a set of policies in the beginning (which encapsulates expert’s
knowledge), and trains the learner off-line.

The set of policies is used in the running system, while samples are collected.
Samples are of the form < s, a,r,t >, where s represents the state of the system,
a the action taken and r the immediate reward at time t. The collected samples
are then fed to a function approximator — here neural networks are used. In the
case of the simple ZNN, the state is the response time to users’ requests, the
load and the number of active servers, the actions are activating or deactivating
a server, and the reward may be the difference of the utility, or even the utility
itself, since the point is to maximize it.

As a result of this training period, a model of the system is created. A model
defines the utility /reward that the system should attain, by performing a given
action on a specific state. Leveraging this model, a set of policies may be induced
- if the system is in a given state, the action performed should be the one that
maximizes the expected reward.

After collecting a big set of representative samples — necessary to get an
accurate model — the learned model can be used instead of the initial policies.
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In each cycle of adaptation, the system checks the state it is in, then for each
possible action it may execute, checks the reward associated with it. Then it
executes the action that gives the best reward. New samples are still collected
to update the reward function approximator.

If we consider that a reward may not be immediate, an we want to consider
delayed rewards, then the samples can have a reward at ¢t 4+ 1, and so on.

This approach minimizes the exploration phase, common to reinforcement
learning approaches, that will increase the knowledge of the adaptation system
about the adapted one. But choosing sub-optimal actions, in a deployed system,
may result in costs that are not compensated by the model learned.

5.2.4 Discussion

Approaches that learn how to model a system by observing the way it be-
haves are now the most common techniques given that they require little, or no,
initial knowledge, which results in a more generic solution [13]. Further, these
approaches promise to reduce the costs of the teams that manage these systems
while keeping a model that is more accurate and up-to-date than the alternative,
static policies. A problem of these techniques is the fact that they were made to
remove the need for a human to be involved, and for this reason, the models they
learn are not usually easy for a human to interpret or have a flexible represen-
tation. When it comes to the trust a human has on a management system, the
policy based adaptation systems have an advantage since, the human operator
will trust more on something that he can easily analyze.

A usual problem with machine learning techniques is the time that is neces-
sary for the training phase. Reinforcement learning is an example of a technique
that needs lengthy training phases. Given that the system will be active during
the training phase, before a good and accurate model is learned, the system will
probably behave badly and will do bad adaptation choices. A way to mitigate
this problem is to use some knowledge about the system, in order to facilitate
the training phase, as was seen in Tesauro et al. (2006) [28] and section 5.2.2.

For the reasons presented, we want to use the automatic learning approaches
to refine and update an expert defined model of the system. All of the presented
learner based approaches deal with the uncertainty associated with the real world
(but do not represent it explicitly), keep an updated model of the system, adapt
quickly to changes, adapt if needed (or can be modified to do so) and can be
modified to consider delayed effects.

In section 5.1.4 we chose to use the work described by Camara et al. (2014) [7],
combined with an architectural model of the managed system to model the
adaptation actions’ impact. To update and refine this model we will try to use
the techniques seen in the approaches based on Fuzzy Logic first.

6 Architecture

We have previously stated that we will be leveraging the language defined
by Cadmara et al. (2014) [7] and described in section 5.1.2, combined with an
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architectural model of the system, and use a learner to improve the initial model.
In this section we present the set of challenges that we consider relevant to this
problem, and how to solve them based on our assumptions:

— Modeling the adaptations: We have seen that it is important for many appli-
cations to have a model of the adaptation actions, their impact and effects.
As it was done before, we plan on using the language defined by Camara et
al. (2014) [7], to describe this model, based on an architectural view of the
system.

— Support human involvement: A concern that has been growing in relevance,
is the trust the human operators have on the system. To solve this problem
we consider that keeping the human involved is essential. For this reason it is
important that the operator understands the model that the self-adaptation
system has, about the managed system. We think that using an architec-
tural model of the system (a common way of representing the system) and
using a language such as the one presented in Cdmara et al. (2014) [7] (that
provides human readable information about the system model and explicit
representation of the uncertainty associated with the adaptation’s impact)
attains that goal of understandability.

— Keep the model up-to-date: We consider to be dealing with highly dynamic
environments, which may result in a different behavior, from the one ex-
pected, and in conditions never considered (unforeseen). For this reason,
having an up-to-date model is essential if we want an accurate model. We
have seen the importance of having an accurate model in 5.1.3. To solve this
problem we plan on using techniques seen in the systems based on automatic
learning, presented in the previous section, particularly the ones presented
in 5.2.1.

Approaches based on Fuzzy Logic accomplish good results as a way of ap-
proximating non-linear functions and allow for hand written (appropriate given
that we want to use expert’s knowledge to bootstrap the system) or learned (we
also want to update the model of the system) rules. Additionally, a common
way of implementing Fuzzy Inference Systems is to define the output associated
with an input as a linear function of the input variables. This corresponds to the
notion of context dependency presented by Cdmara et al. (2014) [7]. Another
advantage of using this approach is that Fuzzy Logic allows more than one out-
put for a given input/state. This may be a relevant detail for our work, since
the work of Cédmara et al. (2014) [7] explicitly models uncertainty by having
multiple outputs (possible outcomes) to each input/state.

6.1 Proposed Approach:

An expert expresses the possible adaptation actions (and its guard conditions,
effects, impacts and probabilities), the strategies (applicability conditions and
body) as we have seen in section 5.1.2. We make an additional assumption that
is quite frequently made in this field: the impact functions provided for an action
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are restricted to linear functions. Hence, we can leverage existing techniques to
describe the model, e.g., first-order Sugeno-type fuzzy inference system.

Then we use the adaptation actions’ properties and express them as a set of
points in an N dimensional space, where N is the number of relevant variables
to define the state and the expected impact. For each outcome of a given action
we generate a set of samples (points), proportional to the probability associated
with that outcome.

We planned on using a clustering algorithm to correlate the input (variables
of each samples corresponding to the input parameters) to the output values,
and use them to induce a linear function that fits the samples — this could be
achieved using techniques presented earlier, e.g., subtractive clustering. However,
this process has the problem of not being able to guarantee multiple different
outputs for the same input. If we generated samples from a rule that stated that
for a given input X the outcome could be f(X) or g(X), the use of clustering
does not guarantee that two clusters will be created, or that the points would be
attributed to the proper cluster. This happens for two reasons: (1) clustering
is based on distance metrics, e.g., euclidean, which groups elements that are
nearby, based on the point (X, y), where y is the output value, instead of (X, f),
and (2) if we consider that each sample has multiple inputs and one output, the
output may have little influence on the distance between points, which would
result, possibly, in the grouping of every outcome on the same cluster.

For these reasons we will take a different approach. We will consider clusters
with crisp borders, instead of the fuzzy membership, in order to be able to
assign a point to a given cluster. Another change is that we will use a different
representation of the sample. Instead of having (X, y) we will use (X, f), where
f corresponds to the function that better models the sample (with the lowest
prediction error) — we can make the analogy with classification (the function
is the class it belongs to). The classes are created, initially using the functions
described by the experts. We have to make sure that different classes cannot
exist in a single cluster — this problem can be solved by attributing big weights
to the function parameter, or by using semi-supervised learning.

From the managed system we collect samples (after executing actions and
waiting for its effect) and add them to the set described earlier.

The addition of samples is done by computing the cluster that better repre-
sents them. Usually, this would be achieved by computing the distance between
the cluster center and the sample. However, we are dealing with functions in
one of the dimensions (the output dimension is a function and not a point in
space). Therefore, we will compute the “distance” to each cluster by checking
the rule that better represents the point. We start by comparing the input part
of the sample with the rules’ conditions — each condition is a combination of
input metric ranges. The result will be the set of rules to which the sample can
belong to. Each rule predicts a certain outcome. After that step, we compute
the difference between the observed value and the prediction made (prediction
error), and assign the sample to the cluster that corresponds to the rule that
had the lowest prediction error.
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From this process we consider that two cases may occur: (1) The sample
belongs to a single cluster, in which case it is assigned to that cluster. (2) The
sample does not belong to any cluster, in the sense that no rule’s precondition
encloses the sample (a state never seen), or the prediction error is too high (an
outcome never considered). Ideally, we would create a new rule to represent these
samples.

We consider that it is possible to detect the samples that fall in the second
case. However, creating a new rule presents a bigger challenge. A state never
seen or considered can be detected by checking the conditions of each rule and if
none applies we consider it is a new state. To detect a new outcome for a given
state, we could define a prediction error threshold, above which the sample does
not belong to that cluster. If a sample does not belong to any cluster because of
the prediction error, then we may considered that it represents a new outcome.

When enough points fall in this category (sample not represented by existing
rules) we can use them to compute a new rule and outcome function. However,
we think the new function does not provide as much information as the other
ones, or at least not as precise. If we consider that all the points belong to this
hypothetical cluster, then we can compute the output function — h(X) — but this
new function can actually model the samples inaccurately. For example if the
points are accurately modeled by two different functions — f(X) and g(X), then
defining a function ~A(X) that tries to model both may not be the best approach
(we lose information).

The collected samples that are added to the clusters are used to refine the
rules’ conditions, impact functions and the outcomes’ probabilities.

The condition of a rule can be refined by updating the ranges to better
represent the set of samples (increase or decrease ranges, based on the cluster’s
samples).

To update the impact functions we will use a similar process to the one used
in fuzzy inference systems, specifically, first-order Sugeno-type models (outputs
are linear functions of the input variables). This corresponds to solving the linear
least-squares estimation problem [19], using the samples from the cluster.

The probabilities are computed based on a counting process:

#(state, outcome)

#(state)

P(outcome|state) =

So computing these probabilities based on the collected and synthetic samples
will result in updated probabilities.

We depart from the notion, that expert’s knowledge may not be perfectly ac-
curate. However, synthetic samples created based on that knowledge are present
in each cluster, initially, which may skew the center of the cluster when new
samples are added. For this reason our data set will be updated with samples
collected from the running system, using one of the techniques described by
Didona & Romano (2015) [25].

25



7 Evaluation

Our work will try to define an adaptation model of the system that is both
easily understood by a human operator, and accurate on the previsions it makes.
We will try to accomplish this goal by combining two different methodologies,
which normally are considered as alternative approaches and are not used in
synergy.

We depart from the point that the language described in 5.1.2, based on
an architectural model is already easily understood. Therefore, what we want
to evaluate is if our approach is able to increase the accuracy of the model by
keeping it up-to-date, based on the monitoring of the system.

We expect to get a model that is less accurate than we would get if we used
automated approaches, due to the constraints we are placing on our representa-
tion. However we expect that our solution decreases, significantly, the number of
observations required to get an accurate model, when compared to automated
approaches (assuming that the initial model is reasonably accurate).

The metrics we will consider in our evaluation are the average error of the
predicted impact, when compared to the observed one, and the size of the train-
ing set needed to achieve an accurate model, which should tell us how fast the
systems converge to a model.

To evaluate our proposal we will:

— Implement the system described in section 3. Use it to understand how the
system behaves in different conditions.

— Based on the previous step, act as the expert, and describe the impact model
of the system (adaptation actions and strategies).

— Implement the solution proposed in section 6.

— Apply an automated approach (using machine learning techniques) to our
case study.

— Run the system in the same highly dynamic environment (simulate different
workloads by altering the number of requests per second), using the three
approaches. During the execution of the system, we will measure the error
of the predictions it makes concerning the impact of actions and save the
number of samples the system needed until it converged in an accurate model
— the latter is not necessary for the hand written impact model approach.

— Compare the prediction errors of the different approaches and verify if the
results are the ones expected.

— Compare to the samples needed for the model to converge between the au-
tomated approach and the one we proposed. We expect a faster convergence
to an accurate model using our approach given that the expert’s knowledge
serves as a good starting point to define it.

8 Scheduling of Future Work

Future work is scheduled as follows:
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— January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

— March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

— May 24 - June 15: Finish the writing of the dissertation.

— June 15 Deliver the MSc dissertation.

9 Conclusions

Self-adaptive systems are becoming a common way of dealing with the ever
increasing complexity of computer systems. However, this is still a field of study
with many open issues. We focused on the description of impact models — how
adaptation actions impact the goals of the system.

In this report we have presented some relevant work made on this field,
focusing on static policies based adaptation systems, and systems that learned
the adaptation model at runtime.

We have seen that static policies based systems have some disadvantages,
such as its inability to deal with unforeseen scenarios and to update its model
when confronted with a dynamic environment. Automated approaches are pre-
sented as a possible solution to these disadvantages, however they also have some
problems, particularly they tend to exclude the human operator from the adap-
tation process, which can lead to issues related with the trust the operator has
on the system, which is an increasingly important issue to be considered.

We propose a solution that aims at combining both approaches, in order to
get an adaptation system that is able to deal with a dynamic environment and
includes the human operator in the adaptation process.

We also presented the architecture of our proposed solution and how we
intend on evaluating it.
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