
Using Machine Learning to Revise Adaptation Models Under Non-Determinism
(extended abstract of the MSc dissertation)

Francisco Duarte
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Among the approaches that have been proposed
to support dynamic adaptation, one can find two distinct
techniques that appear to be antagonistic. On the one hand,
different adaptation models have been proposed as a mean to
capture, in an intelligible way, the valuable knowledge that
experts have about the system behavior and how to manage it.
However, expert-defined models are typically incomplete, often
inaccurate and hard to keep up-to-date as the system evolves.
On the other hand, the use of machine learning (ML) has
been proposed to find, in a fully automatic manner, the correct
adaptation strategies. However, it is not trivial for ML to cope
with non-determinism, in particular with scenarios where a
given adaptation may have different outcomes due to factors
that have not been taken into account in the original model.
In this dissertation we present RAMUN, an approach that aims
at combining the advantages of static models and machine
learning tools as complementary techniques to drive the dy-
namic adaptation of systems. The approach consists in using
the expert’s knowledge to bootstrap the adaptation process and
use machine learning to update the adaptation models at run-
time. The revision process is built to take non-determinism into
account. The approach has been experimentally validated in a
system that performs elastic scaling of RUBiS, a prototype of
an auction web application.

I. INTRODUCTION

As computer systems become more complex, they also
become harder to manage by human operators. Current
systems are composed by many components, each of these
with multiple deployment and configuration options. Fur-
thermore, these systems operate in dynamic environments
where the workloads are subject to change, faults occur, and
components need to be frequently updated. Coping with such
a dynamism requires frequent system adaptations, which
makes the task of administering a complex system error-
prone and time consuming.

In this context, the idea of automating, even if partially,
the adaptation process becomes extremely appealing. If
successfully implemented, the approach has the potential
to offer prompter and more accurate reactions to events
that may negatively affect the behavior of the system.
Furthermore, automated adaptation can also contribute to
reduce significantly the operational costs associated with
system maintenance, by allowing the system to be managed
by smaller teams that are assisted by automatic tools. The
MAPE-K control loop [1] is a well known approach to
build self-adaptive systems, which consists in: Monitoring

the system and its context, Analyzing the data, Planning
and Executing changes to the managed system based on
available Knowledge about it and its context. We will focus
on the Knowledge component, in particular, in learning an
adaptation model to support the planning step.

The decision process embodied in self-adaptive systems
involves comparing alternative adaptations at runtime [2],
[3], [4], [5], [6]. Therefore, it requires an adaptation model,
which supports the process by either mapping states to
actions or by predicting actions’ impacts.

Furthermore, self-adaptive systems are subject to non-
determinism [7]. Here we will consider the non-determinism
associated with the adaptations actions’ effects, e.g., ac-
tivating a server may not have the expected result, as it
may be deployed in an already occupied physical machine.
The information related with this kind of non-determinism
may be useful in some cases, e.g., when it is necessary
to plan for the worst possible scenario. In order to reason
about the effects of non-determinism, the model should
explicitly embed information regarding the non-determinism
associated with adaptation actions. We argue that a highly
desirable property of such models is their intelligibility for
human operators. This facilitates human involvement, which
we deem essential in order to build trust in the system and
its ability to adapt correctly [8], [5].

Among the approaches that have been proposed to support
self-adaptation, one can find two distinct techniques that
appear to be antagonistic: the use of techniques that rely
on adaptation models specified by human operators [3], [4]
and the use of fully automated techniques based on machine
learning [9], [10], [11].

The first approach bypasses a training phase by capitaliz-
ing on expert’s knowledge and the model’s specifications
are flexible. However, the resulting models are often in-
complete and inaccurate [12]. On the other hand, automated
techniques can keep the model updated based on its history
at the cost of the model’s representation flexibility and a
training phase.

To the full extent of our knowledge there is no previous
approach that combines the following key characteristics:
i) leverages the knowledge an expert has about a system;
ii) uses the history of the system to update the model,
achieving higher accuracy on the prediction of the system’s
behavior; iii) provides an intelligible model and explicitly

1



represents non-determinism to facilitate the human involve-
ment;

In this thesis we focus specifically in modeling the impact
of adaptations on the system’s properties, which is a key
element used by many adaptive systems to determine their
behavior. The aim is to combine the advantages of adaptation
models and machine learning as complementary techniques
to drive the dynamic adaptation of systems.

This dissertation proposes a novel approach to revise
adaptation models under non-determinism, or RAMUN for
short, that works as follows. An impact model is collected
from experts. From these rules a dataset of synthetic samples
that represent the conditions and effects of the actions is
created. This set is then extended with samples collected
by monitoring the effects of adaptations on the system in
operation. The extended dataset – containing both samples
synthesized from the human provided impact model and
gathered from the actual system – is then analyzed via the
k-plane algorithm [13]. This information is then processed to
extract a piece-wise linear model, which is then translated
into an impact model written to a text file, using the language
proposed by Cámara et al. [4]. This text file can be read by
an operator or be used by an adaptation system to predict
action’s impacts.

RAMUN has been experimentally validated in a system
that performs elastic scaling of a web application im-
plemented using RUBiS. After collecting data from this
system, we proceeded to compare our solution to model
the impact of a concrete adaptation action (in this case,
activating a server) with a state of the art, regression tree
based learner [14], which does not explicitly consider non-
determinism.

II. EXAMPLE

In order to illustrate the key concepts and techniques
involved in the design of RAMUN, we will use as an example
a web application, where the service provider has the goal
of keeping a low response latency, while reducing costs
related to the number of active servers. An active server
is a Virtual Machine (VM) deployed in a data center that is
able to receive and respond to clients’ requests. We assume
a standard setup, where all requests are made to a proxy,
which then distributes them among a pool of active servers.

In this application, the adaptation actions that are available
are the following: i) connecting a server, which aims at
decreasing the response time experienced by users (by dis-
tributing the load among more servers), but also increasing
the system’s operational cost and; ii) disconnecting a server,
decreasing the operational costs, but, depending on the load,
potentially increasing the response time observed by end
users.

To simplify the presentation, at this stage we will only
consider the average response time experienced by users.
We denote the observed average response time before an
adaptation simply as rsp and the average response time after
an adaptation as rsp’.

We assume that when a new server is launched its
assigned VM may have 1 or 2 CPU cores, according to
the data center current capabilities.

When a new server is spawned or deactivated, the adapta-
tion system does not know how many cores it had assigned.
Which means, there is no way of knowing what impact each
action will have on the average response time given that a
server with two cores will be able to deal with more requests,
than the alternative.

III. RELATED WORK

It is often the case that these systems, where self-
adaptation is appropriate, are currently handled by human
operators that adapt the system by executing a sequence of
adaptation actions. This means these operators already have
a mental model of the system and how it could be adapted
to some situations, which can be used to build an adaptation
model. In such a situation (autonomous adaptation) the
human operator must be able to interpret the model of the
managed system, because it may be useful when he must
intervene, e.g., when a hardware fault occurs. Also, if the
model is easily interpretable by the operator, it is easier for
him to trust it, as he will be able to know how it captures
the system’s behavior [15], [16].

In the literature, we are able to find different approaches
to this problem. In particular, approaches that map states
to actions [3], [10], e.g., if the average response time is
between 300 and 400ms launch a new server, and others
that map state and action to an impact on the system [4],
[9], [11], e.g., if the average response time is between 300
and 400ms when a new server is launched, it is expected
that the average response time lowers to 200ms.

When using the former approach, the adaptation model is
tightly linked to the business’ goals, which can change at
any moment, e.g., a service provider may decide to reduce
its target average response time. Consequently, any change
leads to the invalidation of the current model and the creation
of a new one. For example, if the target response time
lowers, connecting a new server when the average response
time is between 300 and 400ms is probably not enough to
reach the new goal. The latter approach, mapping states to
impacts, is decoupled from the business’ goals. Therefore, it
is more robust to changes at that level. Thus, we will focus
on this approach that learns impact models.

Considering our example and that we use impact models
to support the planning process, whenever the adaptation
process is triggered, the adaptation action is chosen based
on the available actions at the time and their expected impact
on the system, in our example, on the average response time
and operational cost. However, an action may have more
than one expected impact, given that the number of cores
is unknown to the adaptation system. Considering we could
identify the impact of both cases and their probability we
will describe three different adaptation policies we could use
for our example’s case, which we will use in the rest of this
section as examples:

2



1) Combine predicted impacts and use their average
(weighted by their probabilities) as the expected result;

2) Use each different expected impact as input to an
utility function, which returns a value based on the system’s
operational cost and the average response time, and then
combine the results with a weighted average of every utility
value;

3) Consider the worst case scenario, i.e., impact with
lowest utility for each action, if the system does not achieve
its goals for a certain period of time. Thus, planning pes-
simistically. Otherwise, use one of the polices described
previously.

In order to support the policies described, namely the
last one, the impact model has to explicitly consider non-
determinism. Otherwise, it is not possible to consider differ-
ent possibilities, in particular the worst case.

The impact model should be: i) accurate, in order to
avoid performing an unfit adaptation action that increases the
system’s cost instead of decreasing; ii) readable and easily
understandable, to allow human operators to get involved,
thus increasing their trust in the model; iii) able to explicitly
consider and represent non-determinism, by capturing more
than one possible impact for a given action, which allow a
wider variety of policies to be used.

An impact model may be defined by an expert, or auto-
matically learnt by a tool. In the first case, it is possible
to leverage the expert’s knowledge to build an impact
model, thereby bypassing a learning phase. Additionally, the
model’s structure has no restrictions, other than, it needs
to be computationally parsable, which allows to explicitly
represent non-determinism in the impact model. The model
could be written in a language such as the one presented
by Cámara et al. [4], which is easily interpretable by a
human operator and allows the explicit representation of
non-determinism. With this approach any of the example’s
policies could be used. However, expert’s knowledge is not
enough to create an accurate impact model. The model is
static, which means it will be outdated if the system or
environment evolves, which is usual in real world scenarios.
However, even if both the environment and the system
were immutable, the expert’s knowledge may not suffice to
describe a complex system, its behavior and interactions with
the environment.

Learning a model with the assistance of learning tools,
on the other hand, will lead to more accurate models, as it
observes the real behavior of the system at runtime, and it
allows to update the model by observing new information.
However, this technique needs a period of training, in which
the impact model would not correctly represent the system’s
behavior and that could lead to costly decisions in the adap-
tation process. In the literature, it is possible to find a great
variety of learning tools capable of learning accurate models,
e.g., Artificial Neural Networks or Fuzzy Inference Systems.
However, these usually output their results in the form
of structures that are not easily translatable into a human
readable model, or do not provide enough information to an
operator. Other works, avoid this problem by using machine

learning tools that employ or are translatable to human
readable models, such as Model Trees (Regression Deci-
sion Trees). However, none of these techniques explicitly
considers or represents the non-determinism present in self-
adaptive systems, which means that their predictions are an
implicit combination of every possible outcome. Therefore,
these tools could provide a model that already combines the
expected impacts, which is compatible with the first policy.
If instead of using these tools to predict the impact (average
response time), they were used to predict the utility after
the action’s execution, according to a given function, then it
would also be compatible with the second policy. However,
if the utility function changes, then the model is no longer
valid. Lastly, the third policy cannot be used because non-
determinism is not explicitly considered.

Sykes et al. [6] presented an alternative approach that is
able to consider the actions’ impacts to be non-deterministic.
However, this work and others that learn probabilistic mod-
els [17], assume that the state space is discrete, which is not
applicable if the goal is to predict the value of a continuous
variable, such as the average response time.

In order to automatically infer an impact model able
to fulfill the requirements listed before we chose to use
subspace clustering, namely, k-plane [13]. This is a data
mining tool, which returns the K (hyper-)planes that best
represent a set of points in a multi-dimensional space. These
planes may overlap in the input space, which means that a
single input region may correspond to more than one plane.
We will map each plane to a linear impact function, which
may facilitate the comprehension of the model by operators.
However, applying k-plane to this problem is not enough.
The result would be a set of impact functions with endless
input spaces. However, we want to write a set of rules, in
which each impact function has a valid input space and a
probability of happening. Furthermore, to translate the result
to the language presented by Cámara et al. [4] we need to
assign impact functions to input regions – one input region
has one or more impact functions. Therefore, we have to
identify these regions where more than one impact function
is valid.

IV. RAMUN
RAMUN’s purpose is to learn an impact model based on

observations from the real system. This has the potential to
improve the model’s accuracy but also to update the model
in face of upgrades to the managed system (for instance,
when a machine is replaced by a new model, the impacts
of adaptations need to be updated). The update process is
continually repeated, in order to ensure that an accurate and
updated model is being used by the adaptation system.

A different, separate, model is created and learnt for
each different adaptation action. Therefore, while in the
exposition we address only the action of adding a new server,
a similar procedure can be executed for other adaptation
actions, like, deactivating a server.

Although this technique may be used without an initial
impact model, we will consider one was provided before-

3



hand, by an expert or derived from experiments on previous
deployments of the system. Based on this initial impact
model the first step is to create a dataset composed of
synthetic samples, which will be used to bootstrap the
learning process.

After that initialization process the system begins a loop,
which will result in an updated impact model at the end of
each iteration. At the beginning of each cycle new samples,
resulting from the monitoring of the managed system, are
added to the dataset. The extended dataset is then provided
to k-plane algorithm in order to update the impact functions.
However, note that the model can be updated in different as-
pects, namely: 1) the linear impact functions corresponding
to each possible outcome; 2) the input space in which each
linear function is considered to be valid; 3) the probability
associated with each outcome and 4) new outcomes, not
captured in the initial model, may be identified and added to
the impact model. Therefore, k-plane by itself is not enough
to update the entire impact model.

In the following sections each step of our technique will
be described in detail.

A. Initialization

Before RAMUN starts executing its model refinement
loop, it creates an initial dataset composed of synthetic sam-
ples that are generated based on impact functions provided
in the original model. The purpose of creating the synthetic
dataset is to ensure that the adaptation system is still able
to predict, with some accuracy, the impact of actions while
the new model is being learnt. This way, even if not enough
samples for a given outcome are observed in the operational
system during the first iterations of the refinement loop, the
knowledge captured in the original model is preserved and
taken into account. As it was mentioned before, this step
can be skipped, at the cost of taking longer to learn a valid
model and the possibility of performing “bad” adaptations
on the system meanwhile. Furthermore, we assume that
the initial model has the same information as the one
that is provided by the models presented by Cámara et
al. [4]. In particular, impact functions, with their respective
probabilities of happening and the input region where they
are valid.

This procedure should take into account the following
information, which is given in the original model, and should
not be lost in the process, namely: 1) the functions that
represent the impact of performing an action in a given state,
2) the probabilities associated to each impact function and
3) the ranges of values where each function is valid.

As noted before, in our example the input and output
we are considering is the average response time before and
after the adaptation action, respectively. Thus, the points in
the dataset are tuples that include both values. To generate
the synthetic samples it uses the impact functions present in
the original impact model. Since the function fi associated
with an impact i defines that a (possible) effect of the
adaptation action over a given system property is defined

by output = fi(input), a synthetic tuple will be formed as
〈input, fi(input)〉.

To preserve the information provided by the probabilities
associated with each impact function, the number of samples
generated for each function is proportional to its probability.
This is done by generating Pi ∗ C samples per impact
function fi, where Pi is the probability associated with
impact i and C is a constant, a positive number large enough
to ensure the creation of multiple samples for each possible
impact.

Our approach requires that the interval of valid input
ranges for each of the dimensions is defined for every impact
function. Using this valid input space i, when generating
samples for impact function i, RAMUN uniformly samples
the region, i.e., it ensures that the samples considered for
each impact function are all equally spaced.

B. Sample Collection
The first step of the proposed loop is to collect new

samples to extend the existing dataset. In order to do so,
it is necessary to create samples, based on the monitoring
of the managed system and add them to the dataset.

A sample is a tuple that represents the state of the
managed system before the execution of a given adaptation
action and the effect that action had on the target property.
In our example, the only property of the system’s state is
the average response time experienced by users, as is the
case for the target property. Which means that a tuple for
this system would be 〈rsp, rsp′〉.

Therefore, a set of system’s properties, deemed relevant
for the adaptation’s planning process, is continually moni-
tored. The values each property takes, at any given point,
represents the system’s current state. For instance, consider
that during the system operation a new server is activated and
the observed response time decreases from 70ms to 50ms,
then a new sample 〈70, 50〉 would be created and added
to the dataset associated with the “enlist server” adaptation
action.

This step should be repeated until a certain amount of new
samples is collected (e.g., 10% of the current dataset size
or 100 samples). Note that while we consider the number
of new samples to be what triggers another iteration of the
refinement loop, other conditions may be also be used. For
instance, one can keep collecting samples until the prediction
error of the model provided by the original samples becomes
too high (above some predefined threshold). The result of
adding new samples to the dataset, considering our running
example, is represented by the dots in in Figure 1.

C. Inferring Impact Functions
This step should find a set of impact functions that best

represents the dataset collected so far. For this task we will
use the k-plane algorithm [13] as a building block, which
returns a set of K planes for a given dataset. We consider
each plane to correspond to a linear impact function. Note
however, that there is no way to know a priori how many
impact functions the refinement procedure is expected to

4



0 20 40 60 80 100

0
20

40
60

80
10
0

response time (ms)

re
sp

on
se

 ti
m

e 
af

te
r a

da
pt

at
io

n 
(m

s)

Figure 1: Dataset and impact functions.

find. In fact, as we have pointed out before, one of the
purposes of the refinement algorithm is to unveil new
impacts that have not been considered in the original model.
Thus, we cannot derive K deterministically from the original
model.

Our goal is to find the smallest possible K that captures
all the the relevant impacts without cluttering the model with
redundant functions. For this purpose, we iteratively run the
k-plane algorithm for different values of K, starting with
K = 1, and increasing K by one at each iteration. In order
to assess when the loop should stop, we first split the dataset,
which results in a training subset (90% of original dataset)
and a test subset (10%). The k-plane algorithm is run against
the training subset and validated against the test subset. The
test subset is used to compute the model’s expected fit error,
by measuring the average error between each sample in the
subset and its closest plane. For each sample the error is
computed as:

Error =
abs(real− predicted)

predicted

And we consider the expected error for new samples to be
the average value of every computed error. This process is
repeated 10 times, each with a different 10% of the dataset
as test set and the error is an average of the 10 runs. The
iterative loop stops when the computed error is lower than
a given threshold (T), thereby finding an adequate value of
K.

After K is chosen, the k-plane algorithm is applied
again to the entire dataset, to obtain a result that is as
much accurate as possible, given the available samples. The
result is the set of planes, which represent different impact
functions. Following the previous example, the result of this
step is represented in Figure 1.

D. Compute the Validity Ranges
As a result of the previous step, we derive K planes, that

capture K different impact functions for a given adaptation.
However, we cannot assume that each plane is valid in

the entire input space. Therefore, we have to define what
constitutes as a valid input region, which we consider to
be the region that includes the samples used to infer the
impact function. For instance, when looking at the results
presented in Figure 1, two impact functions are depicted,
however, for one of these functions, samples only exist for
the interval ]50, 100] of the pre-adaptation response time.
Therefore, there is no evidence that this impact function
applies when the adaptation is performed in scenarios where
the response time is outside this interval. Following this
example, the goal of this step is to capture that the adaptation
may behave differently when the response time is in the
intervals [0, 50] and ]50, 100].

For each impact function, RAMUN will use the samples
used to infer the function, to compute the range for each
input dimension. Considering a single dimension at a time,
the range will be between the minimum and maximum
value taken by samples, which belong to that function. After
this step we will have a range for each dimension, which
defines the valid region for an impact function – a hypercube
surrounding the function.

However, we want to explicitly consider non-determinism,
which means the hypercubes, computed previously, may
overlap. Non-determinism is only present if the input space
overlaps, otherwise it would be possible to distinguish them
by, at least, an input variable. In order to represent the non-
determinism we have to split the input regions such that it
is possible to know what are the functions that are valid in
a given input region.

Splitting the ranges in a single dimension is done by
joining and ordering the region’s limits of every plane in a
list, removing duplicated values. In our example this would
result in [0, 50, 100]. Then, we pair every two samples, which
results in (0, 50) and (50, 100).

For higher dimensions, hypercubes only intersect if the
ranges of every dimension intersect. As an example for the
case of considering higher dimensions (2), we will consider
two impact functions that are valid in (0−100, 0−100) and
(50− 150, 50− 150), respectively.

In order to split higher dimension hypercubes we have
every hypercube definition, e.g., (0 − 100, 0 − 100), in a
list. Then, considering one dimension at a time, we select
the list’s first element and check if the hypercube intersects
with another one on the list and if it has different ranges for
that dimension. If the ranges are equal for that dimension
there is no point in splitting them. However, if two intersect
and are different both items are removed from the list.
Then, considering only the range for the dimension under
consideration, we split it as we did for the single dimension
example and combine the result with the remaining ranges of
each item. For our example, and considering that the current
dimension being considered is the first one, the result of
the split would be: (0− 50, 0− 100), (50− 100, 0− 100),
(50 − 100, 50 − 150) and (100 − 150, 50 − 150). Lastly,
we add every new “hypercube” to the list’s end, excluding
duplicates and repeat until no hypercube intersects or if

5



0 20 40 60 80 100

0
20

40
60

80
10
0

response time (ms)

re
sp

on
se

 ti
m

e 
af

te
r a

da
pt

at
io

n 
(m

s)

P(I1|R1) = 50
50

P(I2|R2) =
100
40

P(I1|R2) =
100
60

Figure 2: Probability and Valid Regions

it does intersect it has the same range for the current
dimension, e.g., (50−100, 0−100) and (50−100, 50−150).
Then, we repeat the process for the next dimension.

In the case of our running example the result would be
the vertical lines in Figure 2.

E. Compute Impact’s Probability

Now that the impact functions have been inferred and their
valid input regions have been identified, what remains is to
identify in which regions we can observe the presence of
non-determinism, i.e., different impact functions observed
in the same region, and to derive how likely it is to
observe each of the possible adaptation’s impacts, i.e., the
probabilities associated with each impact function.

For each region, derived from the previous step, we will
identify every sample that belongs to it. Then, using these
samples, we identify which impact functions are valid within
the region. The presence of more than one impact function in
the same region indicates that when the input values belong
to this region, then, there is no way of discerning which
impact function predicts the correct impact, i.e., the result is
non-deterministic. When such case arises we will compute
the likelihood of each impact function being the correct one.

These probabilities are computed using the following
formula:

P (impacti|region) =
#(region, impacti)

#(region)

This computes the probability of the impact of a given
action being the one predicted by impact function i (i.e.,
impacti) if the input value is within region.

The probability of each impact function in a given region
is computed by counting the number of samples that belong
to that region (denoted by #(region)) and the number of
samples in that region that are closer to the ith impact
function (denoted by #(region, impacti)). This is illustrated
in Figure 2, where the corresponding fraction is depicted
next to each plane.

F. Dataset Curation
Assuming the system is continually working for an indefi-

nite period of time, it is not reasonable to save every sample
collected or generated since the system started. Keeping all
samples would eventually result in a large memory occupa-
tion, and also, every sample would have the same relevance,
which only makes sense if the system and environment
do not change over time, which we assume to be rarely
true. Also, the synthetic samples are generated based on
previous knowledge of the behavior of the system that is
most likely incomplete or wrong. Therefore, the final step
of each iteration is to perform dataset curation. Alternatively,
this could be done outside the loop, periodically.

One possible strategy to manage the dataset consists in
just accumulating all points collected, resulting in the dis-
advantages mentioned earlier; eventually the old or synthetic
points used to bootstrap the system will become a minority
and have a negligible impact on the model. However, it
is also possible to eliminate synthetic points as new ones
are added to the dataset. This last strategy is used, for
instance, by Didona & Romano [12], although their work
does not address non-determinism explicitly. They assume
that synthetic points are less accurate than observed points.
Finally, we assume a possible strategy to be that of assigning
a decaying weight to each sample. However, this method
could have an impact on the discovery of uncommon events,
as well as the probability computation.

Our approach therefore considers the existence of a
dataset curation phase, at the end of each iteration. This
procedure consists of eliminating or downgrading samples
from the dataset that are no longer considered relevant. The
policy to select this points is orthogonal to the contributions
of this paper. In fact, how fast synthetic points are replaced
by new points depends on the estimated accuracy of the
original model which, in turn, depends on the techniques
that have been used to create such model, something that is
completely outside the control of RAMUN. Thus, RAMUN is
agnostic to the policy used to perform the dataset curation.
In all our experiments, reported in the evaluation section,
we simply accumulate all points.

V. EVALUATION

For the evaluation we have experimented with a concrete
instantiation of the abstract problem presented in Section II.
Namely, we have applied RAMUN to learn the impact model
used to support the elastic scaling of a RUBiS 1 deployment.
RUBiS is a well known auction website similar to eBay.

A. Experimental Testbed
We have used RUBiS version 1.4.3 deployed on a virtual

machine with 512MB of RAM, running Ubuntu 14.04 in
a cluster of workstations each with a 2.13GHz Quad-Core
Intel(R) Xeon(R) processor and 32GB of RAM, connected
by a private Gigabit Ethernet. We used Autobench 2 to

1Rice University Bidding System: http://rubis.ow2.org
2Autobench: http://www.xenoclast.org/autobench/

6



generate different workloads and drive httperf [18] to issue
the requests. To distribute the load among servers, we have
used HAProxy 1.6 3 running on a separate virtual machine.

As in our abstract example, the adaptation action that
needs to be modeled is the activation of a server. Naturally,
the real deployment is slightly more complex than the
simplified example used before. In the deployed system we
have monitored the following system metrics that are used
as inputs in the impact model: number of active servers,
request rate and response time. As in our example, the model
estimates the impact of the adaptations in the observed
average response time.

We will consider that our VMs are launched in a data cen-
ter. However, this data center is shared by different service
providers. According to Liu [19], GoGrid’s 4 smallest VM
has half a CPU core guaranteed when launched. However,
if no other VM is using the other half, the first one uses
the entire core. Following this scenario, in our evaluation
we consider that each VM has one CPU core guaranteed.
However, and following the GoGrid’s example, if there is
another available core (unused by other VMs) the VM uses
both cores. We assume that, when a server is activated, the
configuration is selected by the cloud provider and is outside
the control of the elastic RUBiS application. Therefore, even
if the probability of activation of each of the configurations
may be known by the cloud provider, it must be treated as
a non-deterministic event when modeling the system. For
the experiments we considered that the service provider had
a lot of available cores and the probability of activating a
server with only 1 CPU core was 40%. Furthermore, we
consider that the number of cores is chosen when launching
the VM and is not changed afterwards.

B. Data Collection

All the experiments and comparisons provided in the
evaluation have used the following methodology. We have
collected experimental data, using the deployment described
in the paragraphs above, under different configurations, by
changing both the number of servers, between 1 and 4,
and the workload to which the system is subject, a request
rate between 250 and 10000 requests/second, in steps of
50. For each configuration we used Autobench to generate
the different workloads, distributed among four client ma-
chines, and measure the system’s response time. For each
combination of configuration and workload we did 10000
requests, in five separate runs. The resulting response time
for each run is the average between the 10000 requests and
the value used for our dataset was the average between the
five runs. Unfortunately, the cluster that we have used to
run the experiments is a shared facility, and the collected
results are slightly affected by other experiments that run
concurrently on the cluster, introducing some amount of
variance that was hard to control or reproduce. To amortize

3Haproxy: the reliable, high performance tcp/http load balance:
http://www.haproxy.org/

4GoGrid: https://my.gogrid.com/

this unintended variance, we have executed five different
runs of each experiment and we have used the average
between the five runs as the final value to include in the
dataset.

The collected samples correspond to connecting a new
server, without knowing if this server has 1 or 2 CPU cores.
In our experiments the servers that were connected before
always had 2 CPU cores, in order to lower the number of
cases, thus facilitating the results’ presentation. Furthermore,
samples which had a response time higher than 600ms were
removed because we consider that a real system would not
collect those samples as it would have to be adapted before
reaching that point. Finally, our dataset had a total size of
688 samples.

Then, the collected data has been used to feed RAMUN.
Furthermore, when comparing the system with competing
approaches, exactly the same dataset has been provided to
the different tools such that the differences in outcomes are
entirely due to the artifacts of each approach (and not to
fluctuations in the data collected).

C. Noise
There are a number of parameters that are critical to the

performance of RAMUN. One of the key parameters of the
approach is the error threshold (T) used to decide when to
stop using additional planes in the model (i.e., to select the
value of K). Roughly speaking, this parameter establishes
with how many planes the learnt model is “accurate enough”.

Obviously, the accuracy of the model also depends on the
accuracy of the measurements used to create the dataset.
Unfortunately, when observing physical phenomena, it is
often impossible to obtain completely accurate measure-
ments [20]. There is always an error, many times known
beforehand. We now perform an experiment that allows us
to assess the consequence of the measurement’s error used
to populate the dataset in the accuracy of the model and, in
particular, in the selection of the stopping threshold (T). It
is important to note that if RAMUN aims at an accuracy that
cannot be reached with the given dataset and current value
of K, it can falsely detect non-determinism where there is
only noise.

All data used in this section has been obtained experimen-
tally, therefore, is already subject to some reading error. To
stress RAMUN, we have used our experimental data to create
“polluted” datasets, where an additional error was added. We
have created polluted datasets adding a random error to our
measured values. To add a synthetic error we used random
generation for the normal distribution, with mean equal to
the original value, and standard deviation equal to half the
original value multiplied by the intended error. Therefore,
guaranteeing that the added error, with probability of 95%
will be between the intended error and its symmetric. The
intended errors used were 5%, 10%, 15%, 20%, 30%, 35%,
40%, 45% and 50% All the polluted datasets have been
created from datasets where just 2 CPU cores servers have
been activated and the request rate was between 400 and
10000 requests per second. Therefore, for the “unpolluted”

7



Table I: Number of impact functions found
T\Error 0 5 10 15 20 25 30 35 40 45 50

0.2 2,3 3 3,4 3,4 3,4 3,4 4,5 3,4 4,5 5,6,7 6,7
0.25 2,3 2,3 3 3,4 3,4 3,4 3,4 2,3 3 3,4 3,4
0.3 1 1 1 1 1 1 1 2,3 2,3 3 3
0.4 1 1 1 1 1 1 1 1 1 1 1

Listing 1: Simplified representation
impact model(connect server):
1 < s < 3 & 250 < req < 800 & 3.655 < rsp < 595.775:
[1] rsp’ = -34.994*s + 0.025*req + 0.360*rsp + 74.506
1 < s < 3 & 800 < req < 9950 & 4.255 < rsp < 595.775:
[0.62] rsp’ = -34.994*s + 0.025*req + 0.360*rsp + 74.506
[0.38] rsp’ = -135.084*s + 0.014*req + 0.488*rsp + 502.873
1 < s < 3 & 9950 < req < 10000 & 3.655 < rsp < 595.775:
[1] rsp’ = -135.084*s + 0.014*req + 0.488*rsp + 502.873

dataset, there should not be detected non-determinism in the
phenomena being modeled as we restricted our dataset to
samples that should correspond to one impact. In Table I
we tested different error thresholds with datasets that had
different levels of “pollution”. To serve as a baseline we
also present these results with the original dataset. As our
approach has a random component we ran it 10 times for
each combination (dataset, threshold) and show the number
of planes found. A cell with more than one number means
that for that combination the number of planes was not
always the same and every result is shown.

As it can be observed in Table I, when the added
error starts increasing, the number of impact functions
found also increases. Furthermore, if the error threshold
is small (0.2, 0.25) then even the “unpolluted” dataset is
considered to have more than one impact. Which means
that non-determinism is being found where it should not
exist. However, if we try to avoid this scenario by using a
high error threshold, e.g., 0.4, we might not find different
impact functions when we should, because it learns a “good
enough” model with one impact function.

The absolute values presented here are specific to this
experiment and should not be applied to every context.
However, the results of the experiment show that the er-
ror threshold should be chosen according to the system’s
behavior and the monitoring process. The system’s behavior
should be taken into account because the variance in the
data collected affects the number of planes found, as we
can see by our “unpolluted” dataset. The monitoring process
and the error it possibly adds to the dataset should also be
considered, because this will also affect the number of planes
found, as can be seen by the “polluted” datasets experiments.

For the rest of the experiments, we will use an error
threshold of 0.3 because it is the smallest tested threshold
which finds only one impact function in the original dataset.

D. Learnt Impact Model

An advantage of RAMUN over competing approaches,
such as model trees, is that it explicitly represents non-
determinism in the learnt model. To demonstrate this feature,

we used our solution with data collected from connecting a
new server with 2 CPU cores and 1 CPU core.

We assume there was no impact model provided before-
hand, therefore, the model was built from scratch.

In order to simplify the model’s presentation, in List-
ing 1 we present a model equivalent to the one proposed
by Cámara et al. [4] in a simpler representation, which
only presents information relevant for this dissertation. In
particular, the simplified representation does not represent
effects on the system, such as the number of active servers
increasing by one. It does not represent entities such as
clients or servers because we are only considering the impact
on the client’s perceived response time. Lastly, the impact
functions are represented inline.

In this Listing, s corresponds to the number of active
servers connected before the action, req to the number
of requests per second on average, rsp and rsp’ to the
average response time before and after the action was
executed, respectively. This model shows that this approach
is able to learn an impact model based on real data while
explicitly accounting for non-determinism. Furthermore, the
probabilities follow very closely what we expected to find as,
approximately, 40% of the dataset corresponds to connecting
servers with only 1 CPU core.

E. Fitting with Non-Determinism

By explicitly considering non-determinism we expect that
the model learnt using RAMUN will fit better a dataset,
where non-determinism is present, than a tool which does
not consider it. As in the previous section, non-determinism
is present because the server that is activated may have 1 or 2
CPU cores and the systems does not know which one it will
get. To test this assumption we compare RAMUN with cubist.
We will test how each fits the dataset by dividing the dataset
in 10 subsets and using cross validation. Furthermore, we
will use different sizes of training subsets, sampled from the
entire training set (9/10 of entire set), in order to present
how fast they stabilize in a good model.

In Figure 3a we can observe that in this dataset, where
non-determinism is present, a solution like cubist, which
does not explicitly account for non-determinism, does not
fit the dataset as well as RAMUN. We can also observe that
when we increase the number of samples used to learn the
model, the fitting error actually increases when using cubist.
We assume this happens because the increasing dataset is
skewing the model to something in between both impacts,
therefore increasing its distance to more samples.

F. Initial Model’s Effect on Learning Phase

The initial model chosen to support the system during
the learning phase will impact the learning process. If the
initial impact model does not model the system’s behavior
correctly, this may hinder the early impact models, and delay
the model’s convergence.

In order to show the effect of the initial impact models’
correctness we will use our solution to learn a new impact

8



0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

Number of samples

Fi
t e

rr
or

Ramun
cubist

(a) Fit comparison

50 100 150 200 250

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Samples

Fi
tti

ng
 E

rr
or

scratch
linear regression
cubist

(b) Fitting with Initial Models

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of added Samples

P
ro
ba
bi
lit
y

synthetic
real

(c) Probability of synthetic and real im-
pact functions

Figure 3: Evaluation Results

model, starting with different initial models. As initial mod-
els we will use one that is inferred with a linear regression,
and the other will be inferred using cubist. To serve as a
baseline we will also learn the model from scratch, as we did
previously. To train these models we will use the same partial
dataset, which is 50% of our dataset, randomly sampled. The
remaining half will be used to learn and evaluate a model
as we did previously.

As we can see in Figure 3b, using a model to initialize
the dataset results in a faster convergence to a good model.
However, if we use a not so good initial model, as the one
given by the linear regression, the learnt model may achieve
better results in the beginning, but in the long run it may be
hindered because the dataset now contains samples that do
not represent the system’s behavior correctly.

The size of our initial dataset is of 50 samples. However,
the size of the initial synthetic dataset depends on the
managed system. If we use many samples as the initial
dataset, then, the model will be accurate in the beginning
of the managed system’s lifetime (considering it is a good
initial model). However, these samples will affect future
models when it has enough samples collected from the
system. On the other hand, if we use few samples to initialize
the dataset, the model’s initial accuracy may be bad but with
fewer new samples it achieves a better model. Therefore,
the size depends mainly of the sample collection speed. If
samples are collected frequently, then we can use a smaller
initial dataset because it will have enough samples soon. If
the collection rarely happens then the initial dataset should
be bigger.

G. Outdated Samples
We propose that an initial model be used to bootstrap the

initial dataset. However, we also state that we do not trust
this initial model’s correctness. In this section, we will show
why we think it is still valid to use an initial model, even
if it is not correct. This experiment is particularly relevant
to support the validity of skipping the data curation step

presented in the previous chapter. In order to do so, we
will consider the same dataset we considered for the Noise
experiment, i.e., a dataset that should only detect one impact.
Furthermore, we consider that our initial model populates the
dataset with 40 samples derived from an impact function that
is parallel to the real impact but with an added 250ms.

Our experiment will depart from the initial dataset and
gradually add samples from the real dataset and measure
the probability of the impact functions found. Because we
are only considering two impacts we will have at most two
different impact functions.

We expect that by collecting new samples that belong to
a real impact, this impact function will be enough to capture
the system’s behavior with a low error. Therefore, the initial
impact function will no longer be considered.

In Figure 3c we can see that our expectations were true
for this case. However, we must note that this happened
for this particular experiment, and there are some details
we have to consider. First, the distance between impact
functions will have a great impact on these values. In
particular, if the distance is bigger, i.e., the initial model
is less correct, the number of new samples needed to find a
new impact function is smaller, but the number of samples
needed so the initial impact function is no longer considered
is bigger. Furthermore, the number of synthetic samples
also influences these results. Assuming we use the same
distance between impact functions, if we use more synthetic
samples, finding a new impact function will take longer, as
will disregarding the initial function. Lastly, this idea can
also be applied to outdated samples instead of synthetic.
By outdated samples we mean, samples that are no longer
valid. For example, after an upgrade to a system, the existing
samples may not be valid anymore.

In this experiment we used an initial impact function
that was parallel to the real function. However, this does
not affect our conclusions which are equally valid if the
functions are not parallel.

9



VI. CONCLUSIONS

In this thesis we proposed RAMUN, a novel approach that
dynamically learns and refines an impact model, which is
used to predict the impact of adaptation actions. The initial
impact model may be provided by an expert to bootstrap the
process. Our solution’s key aspects are its ability to explicitly
capture and learn non-deterministic effects associated with
complex adaptation actions, and the fact that it infers impact
models that can be easily interpreted by human operators,
while keeping the model up to date. The first property
allows for enhancing the model robustness in presence of
exogenous factors that cannot be easily measured or captured
in the model. The model’s readability allows to keep human
administrators in the loop – a property that we argue is
essential to build trust in the self-adaptive system. Its ability
to update the model is essential to deal with an evolving
environment.

We evaluated RAMUN with a well known benchmark,
RUBiS, and using as baseline, a state of the art regression
tree learner that does not model non-determinism associated
with adaptation actions’ effects.

As future work we would like to explore more efficient
alternatives to the exhaustive search for the ideal value of
K during the impact function inference step. Furthermore,
we would explore the possibility of considering higher
order functions, as impact functions, without compromising
the model’s readability. Finally, we would like to use our
solution as support for an adaptive system’s planner, such
as the one presented by Gil [21].

ACKNOWLEDGMENTS

This work was partially supported by PIDDAC and
by Fundação para a Ciência e Tecnologia (FCT) through
projects with references PTDC/EEI-SCR/1741/2014 (Abyss)
and UID/CEC/50021/2013. Parts of this work have been
performed in collaboration with other members of the Dis-
tributed Systems Group at INESC-ID, namely, Richard Gil
and Professors Paolo Romano and Antónia Lopes.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, 2003.

[2] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” Computer, vol. 37, no. 10, 2004.

[3] S. W. Cheng and D. Garlan, “Stitch: A language for
architecture-based self-adaptation,” Journal of Systems and
Software, vol. 85, no. 12, 2012.

[4] J. Cámara, A. Lopes, D. Garlan, and B. Schmerl, “Adaptation
impact and environment models for architecture-based self-
adaptive systems,” Science of Computer Programming, vol.
127, no. C, 2015.

[5] M. Salehie and L. Tahvildari, “Self-adaptive software,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 4,
no. 2, 2009.

[6] D. Sykes, D. Corapi, J. Magee, J. Kramer, A. Russo, and
K. Inoue, “Learning revised models for planning in adaptive
systems,” in Proceedings - International Conference on Soft-
ware Engineering, San Francisco, CA, USA, 2013.

[7] N. Esfahani and S. Malek, “Uncertainty in self-adaptive
software systems,” in LNCS, vol. 7475, 2013.

[8] B. H. C. Cheng, R. De Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, G. Di Marzo Serugendo, S. Dustdar, A. Finkelstein,
C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle,
J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A. Muller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and
J. Whittle, “Software Engineering for Self-Adaptive Systems:
A Research Roadmap,” in Softw. Eng. Self-Adaptive Syst., vol.
5525, 2009.

[9] S. Duan, V. Thummala, and S. Babu, “Tuning Database Con-
figuration Parameters with iTuned,” ReCALL, vol. 2, 2009.

[10] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif,
“Autonomic resource management in virtualized data centers
using fuzzy logic-based approaches,” Cluster Computing,
vol. 11, 2008.

[11] P. Lama and X. Zhou, “Autonomic provisioning with self-
adaptive neural fuzzy control for end-to-end delay guaran-
tee,” in Proceedings - 18th Annual IEEE/ACM International
Symposium on MASCOTS, Miami, Florida, USA, 2010.

[12] D. Didona and P. Romano, “On Bootstrapping Machine
Learning Performance Predictors via Analytical Models,” in
ICPADS, 2015.

[13] P. S. Bradley and O. L. Mangasarian, “k-Plane Clustering,”
Journal of Global Optimization, vol. 16, 2000.

[14] M. Kuhn and N. Coulter, “Cubist Models For Regression,” R
package Vignette R package version 0.0, vol. 18, 2012.

[15] M. C. Huebscher and J. a. McCann, “A survey of autonomic
computing-degrees, models, and applications,” ACM Comput-
ing Surveys, vol. 40, 2008.

[16] Y. Brun, G. Di Marzo Serugendo, C. Gacek, H. Giese,
H. Kienle, M. Litoiu, H. Müller, M. Pezzè, and M. Shaw,
“Engineering self-adaptive systems through feedback loops,”
in LNCS, vol. 5525, 2009.

[17] A. Filieri, L. Grunske, and A. Leva, “Lightweight adaptive
filtering for efficient learning and updating of probabilistic
models,” in Proceedings - ICSE, vol. 1, 2015.

[18] D. Mosberger and T. Jin, “Httperf—a Tool for Measuring
Web Server Performance,” ACM SIGMETRICS Performance
Evaluation Review, vol. 26, 1998.

[19] H. Liu, “A measurement study of server utilization in public
clouds,” Proceedings - IEEE 9th International Conference on
DASC, 2011.

[20] A. J. Ramirez, A. C. Jensen, and B. H. C. Cheng, “A
taxonomy of uncertainty for dynamically adaptive systems,”
in ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, 2012.

[21] R. Gil, “Automated planning for self-adaptive systems,” in
2015 IEEE/ACM 37th IEEE ICSE, vol. 2. IEEE, 2015.

10


