Adaptive BFT protocols

Frederico Sabino
frederico.sabino@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Luis Rodrigues)

Abstract. Byzantine fault-tolerant (BFT) protocols have been proposed
mostly as a means to support the execution of highly-resilient services,
i.e., of services that keep their availability, integrity, and confidential-
ity even if there are accidental or malicious faults (attacks, intrusions).
Several distinct BFT protocols have been proposed in the literature and
each of these protocols excels for different operational conditions. Fur-
thermore, even for the same protocol, the configuration and deployment
options (number of replicas, characteristics of servers, etc) have a huge
impact on the performance of the system. Since the conditions that af-
fect the performance of a BF'T protocol, such as the workloads and the
threats, may change in runtime, it is relevant to devise techniques to
adapt BFT implementations and /or deployments dynamically. This work
proposes a number of viable adaptations of BFT protocols, for a number
of scenarios that are meaningful in practice, and studies the implementa-
tion of BFT protocols that can support these adaptation in runtime. In
this context we also study what are the relevant parameters that need to
be monitored to trigger the adaptations and what are the policies that
can be used to drive the adaptations in a secure manner.

1 Introduction

One of the most relevant techniques to implement distributed dependable
systems is the State Machine Replication (SMR) [1]. This is a general approach
that can be applied to all services that can be implemented by a deterministic
state machine: it consists in running multiple instances of the service in different
machines, with independent failure modes. Even if one or more machines fail,
the remaining machines can continue to provide the service (given some ratio
among faulty and correct machines that depends on the type of faults that need
to be tolerated). In order to keep the correct replicas consistent, SMR requires
commands to the state machine to be disseminated using an Atomic Broadcast
Protocol [?] that ensures that all replicas receive the same set of commands
exactly in the same order.

Atomic Broadcast is an instance of Consensus, a fundamental problem in
distributed systems that has been extensively studied in the literature [?]. Many
different consensus protocols have been derived for different system models (for
instance, for synchronous and asynchronous systems) and for different fault mod-
els (for instance crash faults, arbitrary faults, etc). In our work we are particu-
larly concerned with protocols that can tolerate arbitrary faults because these

protocols are resilient not only to faults caused by natural phenomena (bit flips,
electric sparks, etc) but also to faults caused by malicious adversaries, such as
an intruder that takes control over a given machine. Protocols that tolerate this
type of faults are also known as Byzantine fault-tolerant (BFT) protocols, after
a famous paper by Lamport et al. [2].

The increasing risk of facing arbitrary faults caused by malicious attacks on
systems, boosted the research on Byzantine fault-tolerant protocols, specially
after the work by Castro et al. [3], that demonstrated that it is possible to
build BFT services with acceptable overhead. Several distinct BFT protocols
have been proposed in the literature and each one of these protocols excels for
different operational conditions [4-7]. Furthermore, even for the same protocol,
the configuration and deployment options (number of replicas, characteristics of
servers, etc), have a huge impact on the performance of the system. Since the
conditions that affect the performance of a BFT protocol (such as workloads
and threats) may change in runtime, it is relevant to devise techniques to adapt
BFT implementations and/or deployments dynamically.

In this work we study the design and implementation of adaptive Byzantine
fault-tolerant systems, i.e., systems that execute BFT protocols and are able
to adapt the protocol, its configuration, or the deployment choices in response
to changes in the operational envelope. An aspect of critical importance for this
work is to derive implementations of BF'T protocols that are adaptable, i.e., that
can change their configuration, parameters, and even algorithms in runtime in
a secure manner. This involves using modular designs in the implementation of
the protocols, such that it is possible to change only a subset of the protocol
behaviors if needed. Also, it requires the use of a robust adaptation manager that
is capable of selecting when and how to adapt based on information collected
from the environment and on a set of policies that capture the high level goals
that the system must satisfy.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. In Sections 3, 4 and 5 we present all the
background related with our work. Section 6 describes the proposed architecture
to be implemented and Section 7 describes how we plan to evaluate our results.
Finally, Section 8 presents the schedule of future work and Section 9 concludes
the report.

2 Goals

This work addresses the problem of implementing and evaluating adaptive
Byzantine fault-tolerant systems. In particular we aim at:

Goals: Assessing the benefits and limitations of using dynamic adap-
tation to increase the throughput of systems that rely on Byzantine
fault-tolerance without decreasing their resilience.

To achieve this goal we will identify a set of viable adaptations of BFT proto-
cols, for a number of scenarios that are meaningful in practice. We also identify

what are the relevant parameters that need to be monitored to trigger the adap-
tations and what are the policies that can be used to drive the adaptations in
a secure manner. Finally, to implement the adaptations we plan to implement
an adaptable version of the BFT-SMaR¢t [8] implementation, by augmenting it
with additional algorithms and the mechanisms required to commute in runtime
among these algorithms.

The project will produce the following expected results.

Ezpected results: The work will produce i) a specification of the ar-
chitecture needed in order to change between BFT protocols; ii) an im-
plementation of an extension to the BFT-SMaRt supporting protocol
interchangeability iii) an extensive experimental evaluation on the sys-
tem adaption using different stress scenarios.

3 Byzantine Fault Tolerance

In this section we make an overview of the work on Byzantine Fault Tolerance.
In Section 3.1, we start by discussing how Byzantine faults relate to other types
of faults typically considered in fault-tolerant systems. Then, in Section 3.2, we
describe the model that characterizes the system we are targeting. We proceed
to enumerate the properties a BF'T protocol must preserve in Section 3.3. In
Section 3.4 we describe some of the most relevant BFT protocols that have been
proposed in the literature and in Section 4 we survey techniques that have been
proposed to reconfigure BET protocols. Finally, in Section 5, we describe the
BFT implementation that we plan to use as the basis for our development work.

3.1 Fault Model

We consider a distributed system composed of n nodes, out of which f may
be faulty. The relationship between n and f is usually called resilience [9] and
depends on the type of faults that one aims at tolerating (and also on the system
model, described in the next section). Not surprisingly, some faults are easier
to tolerate than others. A possible classification of faults, in increasing order of
severity, is captured by the following list of fault types:

— Crash-stop: a crash fault occurs when a process stops executing requests/steps.
A process that crashes executes the algorithm correctly until some point in
time ¢, when it stops operating a never recovers. Note that this model does
not prevent a crashed machine from recovering, however it is assumed that
after recovery, processes need to join the system as new processes.

— Omission: an omission fault occurs when a process does not send or receive a
message that was supposed to be sent or received according to the algorithm.
Omission faults are more general than crash faults as the faulty process may
continue its execution after an omission occurs (unlike crash faults, where it
is assumed that the process stops after the fault).

— Crash with Recovery: in this mode, a process is considered faulty if it either
crashes and never recovers or is constantly crashing and recovering. A process
that crashes and recovers a finite number of times during an execution is still
considered to be correct. When a process recovers, after a crash, it may need
to update its internal state before interaction with other processes. Thus,
techniques that make usage of a stable storage and logging mechanisms are
deployed to help the recovery procedure. To ease the need of stable storage
we might consider that a set of processes never crash, so the requirement of
having a stable storage is no longer required.

— FEavesdropping: this kind of faults may occur when an active adversary is
present on the system. Leaks of private information exchanged by processes
fall in this fault category. A faulty process may leak information about its in-
ternal state and possibly give the attacker enough information to coordinate
an attack. These faults can be prevented by applying secure cryptographic
techniques to the private data.

— Arbitrary: faults that cause arbitrary deviations from the correct algorithmic
behavior fall under this class. By making no restriction on what can happen
when a fault occurs, the arbitrary fault model is the most general. Arbitrary
faults may have natural causes (for instance, electromagnetic interference),
result from unintentional errors (a bug in a program), or be intentionally
generated by a malicious attacker that was able to exploit a vulnerability of
the application or of the operating system. Arbitrary faults are also often
named Byzantine faults [2,9].

From the faults hereby described, the focus of this work is on systems that
are able to tolerate arbitrary faults.

3.2 System Model

The types of faults are not the only factor that affect the resilience of the
system. Other characteristics of the system, namely its behavior in the time do-
main, are also relevant. In fact, even relatively benign faults such as crash-stop
may be hard to detect (and to tolerate) in a distributed system unless assump-
tions can be made regarding communication and processing delays in the system.
In this context, it is important to distinguish the following relevant models of
distributed systems: synchronous, asynchronous, and partially-synchronous sys-
tems.

— Synchronous System: a system is considered synchronous if there is a known
upper bound on the processing delay (synchronous computation) and a
known upper bound on the message transmission (synchronous communi-
cation). Since there is a known upper bound established on the delays of the
system, it becomes much easier to detect failures: if a given process does not
respond timely, it is considered to be faulty. However building such a system
requires an overall analysis of the complete infrastructure that composes the
system such as hardware and software limitations; only then it is possible to
conclude what might be a feasible upper bound given the current limitations.

— Asynchronous System: a system is considered asynchronous if there is no
timing assumptions on the processes and network links. Thus, in an asyn-
chronous system we have no upper time bounds for communication and
processing delays.

— Partially-Synchronous System: in practice, systems are designed and de-
ployed such that they can respect pre-defined time bounds in normal oper-
ational conditions, i.e., they behave like synchronous systems most of the
time. However, they are also not over-provisioned for the worst case and,
therefore, may experience long delays under stress, for instance when the
network or the CPU is overloaded due to a peak in the workload, i.e, they
may behave transiently as an asynchronous system. These system can be
modeled by the property of eventual synchrony: a property that states that
the system will eventually behave as a synchronous system although there
is no certainty of when this is going to happen. However it is not assumed
that, when reaching synchrony, the system will stay synchronous or that its
initial state is in an asynchronous period [9]. Many practical solutions for
addressing Byzantine fault tolerance assume this model [4, 7,9, 10].

3.3 BFT Concepts and Primitives

In this report we are interested in studying protocols that can help to im-
plement replicated services that can tolerate Byzantine faults. As most of the
literature on the subject, we will consider services that can be implemented us-
ing state machine replication (SMR). The SMR approach, originally proposed
by Lamport[1,2,11] and adopted by most BFT approaches[3—7] assumes that
the service can be modelled as a state machine. The server starts with some
initial state Sy and then evolves by executing a sequence of commands ¢y, cs,
...., making a deterministic state transition in each step (i.e., the next state de-
pends exclusively of the previous state and of the command being executed).
As a result, if two correct replicas start with the same initial state, and exe-
cute the exact same sequence of commands, they end up in the same final state.
Clients send commands to all replicas and receive back replies, and then apply
some function to the set of replies received to mask server failures. If only crash
failures can occur, f + 1 replicas are needed and the client can simply pick the
first reply. If Byzantine failures can occur, at least 2f + 1 replicas are needed,
such that the client can always get a majority of correct replies (and discard the
faulty replies, if any).

As described above, to ensure that correct replicas keep a consistent state,
one needs to ensure that all correct replicas receive the same set of commands
in the same order. Therefore, a protocol is needed to ensure that all commands
are reliably broadcast to all replicas and totally ordered among each other. A
protocol that achieves such goal is called an atomic broadcast protocol[9] (the
designation “atomic” derives from the fact that it remains indivisible despite
failures, the message is either delivered to all correct replicas or to no correct
replica and delivery appears to be “instantaneous” in time, resulting in a total

order of all deliveries). Atomic broadcast can be implemented as a serial ex-
ecution of several consensus instances where, in each consensus instance, one
command is decided, i.e., replicas run consensus instance number one to decide
the first command to execute, then they run consensus instance number two to
decide the second command to execute, and so forth.

3.3.1 Byzantine Consensus We now provide a more precise description of
the properties that Byzantine Consensus satisfies. Distributed protocols can be
characterized by safety and liveness properties, as described below:

— Safety: a safety property states that bad things do not happen[9]. In the
consensus problem, a set of processes propose values and they have to decide
on the on the same value. A safety property for consensus should state that
the decided value is the same for all the processes and that the decided value
was proposed by some correct process p.

— Liveness: a liveness property states that good events will eventually happen
[9]. A liveness property for the consensus problem should state that the all
processes will eventually decide on a value.

More precisely, Byzantine Consensus can be characterized by the following
properties[9)]:

— Termination: Every correct process eventually decides some value.

— Strong wvalidity: If all correct processes propose the same value v, then no
correct process decides a value different from v; otherwise, a correct process
may only decide a value that was proposed by some correct process or a
special value L (which means that no command is executed).

— Integrity: No correct process decides twice.

— Agreement: No two correct processes decide differently.

When used to implement atomic brodcast, the value v is a command issued
by a client.

3.3.2 Views As it will become clearer in the subsequent description, most
protocols that implement Byzantine Consensus use a leader-based approach.
Generally speaking, one of the replicas is elected as a leader and acts as a co-
ordinator to facilitate the agreement process. If the leader is non-faulty, and is
not suspected to be failed by the other non-faulty processes, it selects a client
command and coordinates with other processes to ensure that such command
is decided. If the leader stops, becomes extremely slow, or is Byzantine and
does not comply with the specified protocol in a way that can prevent consen-
sus from being reached, the remaining correct processess initiate a procedure to
replace the leader, a process that is called a view change. A view is, therefore,
a list of processes that are participating in the consensus instances and their
roles (which one is the leader). Since to implement atomic broadcast multiple
instances of consensus need to be executed (one for each command), the same
view is used in consecutive instances, until a reconfiguration is needed.

3.3.3 Recovery and Membership Changes In a system that implements
state machine replication, it is usually helpful to be able to add new replicas
or to allow replicas that have stopped (either due to a crash or due to schedule
maintenance) to later re-join the system. We have already discussed that most
Byzantine SMR systems suppor a view change operation. This operation can be
used not only to change the roles of the participating processes (i.e, to select a
new leader) but also to add or remove replicas from the system. However, adding
replicas to a running system introduces the additional problem of bring the state
of the replica up-to-date. This can be achieved by letting the new replica execute
all the commands that have been executed by the active replicas, by copying
the state form a correct replica, or by a combination of these approaches. For
this purpose, important extensions like logging and checkpoint creation, state
transfer and reconfiguration, greatly influence the protocol’s execution.

— State Transfer: adding or removing replicas to a system can contribute to
the extension of its lifetime while continuing to process clients’ requests.
The ideas of state transfer and reconfiguration are further explored in Sec-
tion 4.3.1.

— Logging and Checkpoint Creation: logging is a technique used to store the
current actions performed by a given replica. When a reconfiguration to the
system is being performed some replicas may be in transient state trying
to recover the current state. Logging the actions performed help the replica
to reach that state. However, the log can grow to sizes that become com-
putationally exhaustive to store or to perform a recovery on. Thus we can
save a “snapshot” of the current process state to a reliable storage so that
it can recover based on that information stored — this is called a checkpoint
and it discards the log entries made until the taking of the “snapshot” thus
reducing greatly the space requirements by the system. A recovering replica
now only needs to ask for the last checkpoint in the system and build up the
log from there.

The work [12] demonstrated that consensus can indeed be solved under a
system that is partially-synchronous which represents the class of systems that
this report focuses on.

3.4 BFT Protocols

One of the main barriers while deploying a BFT protocol is the high require-
ments needed to tolerate f faults — usually the number of servers n, must be
greater or equal than 3f + 1.

With different protocols being more adequate for different workloads and en-
vironment conditions a system designer would need to choose the right technique
under the assumption that while the system is running, the conditions will not
deviate from the expected.

In this section we describe the Byzantine Generals Problem [2] which for-
malizes the problem of arbitrary faults. Then we describe three works that offer

a solution to the problem described: PBFT [3], Zyzzyva [4] and Aardvark [7].
PBFT was the first practical system that tolerated byzantine faults under an
asynchronous environment while Zyzzyva and Aardvark further explored vari-
ations of that system. Other variations such as HQ [6] and Q/U [5] are not
discussed. We chose Aardvark and Zyzzyva because they represent two proto-
cols in completely opposites sides of the spectrum: Aardvark is more robust so it
does not deviate much from its usual communication pattern when in presence of
faults while, on the other end of the spectrum we have Zyzzyva, a solution that
offers high client throughput but is more fragile, i.e., in the presence of faults, it
executes a fallback mechanism with an additional “recovery” step. These proto-
cols should give insight of what the current state of the art is regarding solutions
to the Byzantine problem under SMR.

3.4.1 The Byzantine Generals Problem Before beginning with the de-
scription of the protocols used to tolerate arbitrary faults, it is important to
understand the underlying problem that those protocols try to solve. The de-
scription of the problem was formalized by Lamport in [2].

In 1978, Lamport L. depicted an algorithm that introduced the concept of
SMR under a distributed environment [1]. From the concept of partial ordering,
the algorithm described an extension that provided total ordering — the algorithm
however produced arbitrary results if it was not coherent with the decision of the
system’s users. A solution for this arbitrary problem is by using synchronized
clocks.

Additionally, the algorithm assumed that processors never failed and that
all the messages were correctly delivered — it operated on a non-faulty system.
Lamport then created a real-time algorithm [11] that assumed upper bounds on
message delays and that correct processes had their clocks synchronized. It is
one of the first algorithms that described the idea of arbitrary faults described
in The Byzantine Generals Problem [2].

The scenario used for explaining the Byzantine Generals Problem is an at-
tack performed to an enemy city by the Byzantine army which has divisions
commanded by their own general. Communication between generals are only
possible via messenger. The objective of the Byzantine army is to reach a plan.
However some generals are traitors and may disrupt consensus from happening.

From this point onwards, and in order to directly compare to other solutions,
we use the term primary to describe a general and a the term backup to describe
a lieutenant and a traitorous behavior means that the instance (primary or
backup) is faulty.

The algorithm used by the instances must have the following guarantees:

— All correct instances decide upon the same plan of action
— A small number of faulty instances cannot cause the correct instances to
adopt a bad plan

Every primary communicates its information to other instances — v(#) is the
information communicated by the ith primary and by combining v(1),...,v(n)

a primary can reach a plan of action. However, this solution does not work — a
faulty primary may send different values to different instances which means that
correct instances will have conflicting values. Therefore, two new requirements
must be formalized:

— Any two correct instances use the same value of v(7)
— If the ith instance is loyal, then the value that he sends must be used by
every correct instance as the value of v(7)

Since the new requirements focus on the the value sent by one instance (the
primary), the problem can be reduced: given an army of n instances, there is a
single primary instance which sends orders to his n — 1 backup instances. The
problem is now reduced to two interactive consistency conditions:

— IC1: All correct backup instances obey the same order.
— IC2: If the primary is correct, then every correct backup obeys the order he
sends.

We can also conclude that if the primary is correct then IC2 = IC1. The
original problem can be viewed as an application of these conditions: each in-
stance can be seen as a primary which sends his order v(7) and all other instances
act as backup instances.

Now let’s suppose we have a primary and two backup instances (Backup 1
and Backup 2) and two possible decisions: attack or retreat. Additionally one of
the three instances is faulty.

If Backup 2 is faulty, and the primary issues an attack order to Backup 1
and 2 then Backup 2 may also report to Backup 1 that the order given was to
retreat. To satisfy IC2, Backup 1 should proceed with the attack order.

If the primary is faulty he may issue two different orders to Backup 1 and
2 respectively — by sending an attack order to Backup 1 and a retreat order to
Backup 2, Backup 1 must obey the attack order since he does not know which
instance is the faulty one. Similarly, Backup 2 will follow the retreat order and
violated IC1.

Concluding, no solution exists for three instances in the presence of one fault.
From the result of [13] we need at least 3f + 1 instances to tolerate f faults.

Oral Messages Solution: A first solution with 3f + 1 instances (where we
have f faults) used what is called oral messages with the following assumptions:

1. Every message that is send is delivered correctly.
2. The receiver of a message knows who sent it.
3. The absence of a message can be detected.

Additionally the primary sends messages to all other backup instances. If the
primary is faulty and decides not to send any message then the default action
of the backups that did not receive the message is to retreat.

The Oral Messages algorithm OM (f), copes with f faulty instances and
assumes a magority function. The steps are described in [2] but a quick summary
of the algorithm is as follows:

1. The primary sends a command to every backup.

2. Each backup acts as a primary and sends out a command to all other back-
ups.

3. Use the majority function to compute the value based on the commands
received in step 2.

A recursion of the algorithm occurs in step 2 — each backup acting as a
primary will start the algorithm with OM (f—1). So for OM (f —k) the algorithm
will be called OM (n — 1)...0M (n — k) times.

PRIMARY

BACKUP 1 BACKUP 2 BACKUP 3

Fig. 1. Backup 3 is faulty

In Figure 1 we have the case where f = 1 and a backup is faulty. We can see
that both Backup 1 and 2 receive the values {v, v, z} therefore IC1 is respected
because the majority of the set of responses is v. IC2 is also respected because
all loyal backup instances (1 and 2) respect the correct primary’s order.

In Figure 2 we have the case where f = 1 and the primary is faulty. Despite
the primary sending different orders to its backup instances, all backups arrive
to the same set of orders {z,y, 2} so IC1 is respected (IC2 is not relevant since
the primary is faulty).

As a remark, this is a simple example where we have only one fault. Remem-
ber that the algorithm is recursive so the communication is quite expensive in
each step.

Signed Messages Solution: In the Oral Messages solution, a backup could
lie about the primary’s order. If that ability is restricted the problem becomes
easier — by signing messaged, we can add two additional assumptions to the
messages interchanged between instances:

1. A correct primary’s signature cannot be forged, and any alteration of the

contents of his signed messages can be detected.
2. Anyone can verify the authenticity of a primary’s signature.

10

PRIMARY

Fig. 2. Primary is faulty

The Signed Messages algorithm, SM(f), proposed in [2] tolerates f faults
but the requirement of at least 3 instances no longer holds — the problem can be
solved with 3 instances given 2f + 1 for the number of total instances. In this
algorithm, each backup maintains a set V' that stores received orders that were
properly signed. A new function, choice(V') is also assumed by the algorithm
and it needs to have the following requirements:

1. choice(V) = v if V contains only one element
2. if V is an empty set then choice(V) = RETREAT

The algorithm starts by the primary sending a signed order to his backup
instances. A backup when receives an order (either by a primary or other back-
ups) verifies its signature and, if valid, puts it in V. If the backup has received
k signed messages and k < f then he sends v to all other backups that might
have not seen v. When Backup ¢ does not receive any more messages, he obeys
the order given by choice(V;).

All loyal backups will eventually compute the same set V and by using a
deterministic function choice(V), IC1 is respected. Also if the primary is loyal
IC2 is also respected (all correct backup instances will have the same V).

In Figure 3 is a demonstration of an execution of SM (1) where the primary
is faulty. The message “attack”:0 means that the order attack was signed by
the instance 0 (primary). Additionally “attack”:0:1 means that the previous
message was additionally signed by Backup 1. In this situation, the primary
issued an “attack” order to Backup 1 and a “retreat” order to Backup 2. After
the communication step, each Backup arrived to the same set where V; = V5 =
{7 attack”,” retreat” }. Each Backup arrives to the conclusion that the primary
is faulty since he signed two different orders and the signature cannot be forged.

11

PRIMARY

“attack™0 “retreat”:0

“attack™0:1

BACKUP 1 BACKUP 2
> “retreat”:0:1 <

Fig. 3. Primary is faulty

An important remark must be made about the assumptions of the messages
— a faulty instance can delay or not transmit at all a given message but it can
be detected. To detect this failure there are two timing assumptions being made
(which are dominant in synchronous systems):

1. There is a fixed maximum time needed for the generation and transmission
of a message.

2. The sender and receiver have clocks that are synchronized to within some
fixed maximum error.

Despite the formalization of two solutions in this section (one requiring 3 f+1
replicas and the other requiring 2 f +1 replicas), these solutions were designed for
synchronous systems so we cannot assume that they work on an asynchronous
environment like the Internet.

PBFT and variants explained in this report (Sections 3.4.2, 3.4.3, 3.4.4) are
based on SMR and require 3f + 1 replicas. To expand on the requirement for
the number of replicas needed in an asynchronous system, there are two relevant
properties that need to be stated:

— Intersection: any two quorums have at least one correct replica in common.
— Availability: there is always a quorum available with no faulty replicas.

In order to provide liveness we need to assume that we will only receive n— f
responses (f replicas may not respond) — this is the quorum size (= 2f +1). To
provide correctness, two quorums must intersect at least in one correct replica:
(n—f)+(n—f)—n>f+1 thus the result n > 3f + 1.

The systems also assume that a strong adversary can coordinate faulty nodes
in order to compromise the replicated service. However, the adversary cannot
break cryptographic techniques (like collision-resistant hashes, encryption, signa-
tures and authenticators). These systems use signed messages and/or MACs for
authentication purposes (usages between these two methods are described when
relevant for each protocol). They are Partially-Synchronous systems where we
can assure both liveness and safety properties when we have synchrony but only

12

liveness is guaranteed in periods of asynchrony [14]. It is also assumed that there
is a finite number of clients where any number of which can be faulty. The pro-
tocols also follow a primary-backup mechanism: within a given view, one replica
is the primary (leader) and the others are backups.

3.4.2 PBFT Castro and Liskov, introduced the first BFT protocol that is
safe under asynchronous systems — PBFT [3].

PRE-PREPARE | PREPARE | COMMIT | REPLY

i
/

client

NN L]
AN K N
v N AN AN

replica 3

Fig. 4. PBFT Communication Pattern

PBFT uses a three-phase commit communication pattern: PRE-PREPARE,
PREPARE, and COMMIT. The messages are authenticated using a MACs.
PRE-PREPARE and PREPARE are phases that totally order the requests for
a given view (even when the primary, which is responsible for the ordering, is
faulty). Each replica keeps a message log to register the messages that it has
received or sent.

1. Client sends request to a replica — a client sends a request to what it believes
to be the primary. If it doesn’t receive a response within a time bound then
it retransmits the request to all other replicas. The replica then verifies the
message by checking if the client’s request is within the load limits of the
server. If a replica, other than the primary, receives the client request, it
authenticates the message and sends it to the primary.

2. Primary sends a PRE-PREPARE message to all Replicas — When the pri-
mary server receives a client request, it assigns a sequence number n and
registers the message in its log. Then it multicasts a PRE-PREPARE mes-
sage to all other backup replicas containing the message and the current
view number v. A replica only accepts a message if it is in the same view
and its successful in the verification of its authenticity.

13

3. Replica receives PRE-PREPARE from the primary and sends PREPARE to
all other replicas — upon receiving the PRE-PREPARE message, the replica
authenticates the message. If the replica has already accepted the message
then it is discarded. If the replica has already processed the message (same
sequence number) in the current view, then it is discarded. The replica also
checks for the integrity of the MAC authenticator used in the message: if
it is invalid, the message is discarded. If the authenticator is valid then
the replica registers the PRE-PREPARE message and sends a PREPARE
message to all other replicas along with a digest of the requests present in
the PRE-PREPARE message.

4. Replicas then collect a quorum of 2 f matching PREPARE responses proving
that a quorum has agreed to assign the sequence number n to the message in
view v. However, this is not sufficient to guarantee that each correct replica
has the same sequence of messages in the same view as another correct
replica — a replica might have received the prepare message in a different
view but the request has the same sequence number. That is why there is
a commit phase — each replica multicasts a COMMIT message stating that
it has indeed received a quorum of prepared messages (the commit message
is added to the log). When a replica receives 2f commit messages it already
has the needed quorum since the replica itself is prepared to commit the
request. The replica only executes the request after executing any pending
requests with lower sequence numbers.

5. Replica receives 2 f4+1 COMMIT messages and sends a REPLY to the client —
after receiving 2 f + 1 matching responses (from distinct replicas), the replica
executes the request, and sends a REPLY to the client containing the result
of the execution.

6. The client then waits to receive f + 1 messages with valid MACs and with
the same result and time in which the request has been made and concludes
the execution.

3.4.3 Zyzzyva Zyzzyva is a BFT-protocol that uses speculation in order to
reduce the cost of the BFT replication. In this protocol, replicas reply to a
client’s request without running an expensive consensus protocol. Instead, repli-
cas rely only on the order proposed by the primary server, then process the
ordered requests and immediately respond to the client. The client however has
an additional task: if the client detects any inconsistencies with the responses
received, it helps in the convergence of the responses by the correct replicas. By
using speculative execution, Zyzzyva can achieve high request throughputs.

The protocol relaxes the condition: a correct server only emits replies that are
stable. Instead, realizing that this condition is stronger than needed, Zyzzyva’s
core idea is based on the role of the client in the system: a correct client only
acts on replies that are stable. This weaker condition avoids the all-to-all com-
munication between replicas to reach consensus.

Ultimately, the challenge is ensuring that responses to correct clients become
stable. While this task is given to the replicas, a correct client can greatly speed

14

the process by supplying information that would make the request become stable
or even lead to the election a new primary server.

Zyzzyva’s SMR protocol is executed by 3 f+1 replicas and it is based on three
subprotocols: agreement, view change and checkpoint. The agreement protocol
executes within a sequence of views where a replica(primary) leads the agreement
subprotocol. The view change subprotocol is responsible for the election of a new
primary (due to the current faulty one). The checkpoint subprotocol reduces
the state that is stored within each replica thus optimizing the wview change
subprotocol.

A request completes at a client when the client has a sufficient number of
matching responses ensuring that all correct replicas will execute the request.
The client can determine the when the request completes since the client receives
responses from replicas that include the reply to the application and the history.
The history contains all requests executed by the replica prior to (but including)
the current request.

There are three cases that are considered for Zyzzyva’s agreement protocol:
the fast case, the two-phase case and the view change case.

rima 3 3
pmey P —

replica 1 \j/

replica 2 \/

replica 3

Speculative execution

Fig. 5. Zyzzyva’s fast case Communication Pattern

In Zyzzyva’s fast case:

1. The client sends a request to the primary. The request sent by the client
to the primary has a timestamp that guarantees only one execution of the
request (exactly-once semantics).

2. Upon receiving the request, the primary assigns a sequence number and adds
a cryptographic one-way hash for the request sent by the client. The primary
then forwards the ordered request to all other replicas.

3. The replica receives the ordered request from the primary and optimistically
assumes that the primary is correct, adds the request to its history, specu-
latively executes it and responds to the client. Additionally, the replica only
executes the request if the message from the client is well-formed, the digest
matches the cryptographic hash of the message and the primary forwarded
the message in the same view where the replicas receive it.

15

4. The client receives 3f + 1 matching responses and completes the request.
Without any faults or timeouts the 3f + 1 responses will match and the
client can safely rely on the request result.

26+1 . 2

client \

primary \/

replica 1 v v

replica 2 x \ \

replica 3

Speculative Execution Commit

Fig. 6. Zyzzyva’s two-phase Communication Pattern

The Zyzzyva’s two-phase communication pattern happens if some of the repli-
cas are faulty or slow. It applies when the client receives between 2f + 1 and 3 f
responses. All the communication is exactly as it was described in the fast case
except for the client’s reception of the responses.

1. The client now receives between 2 f+1 and 3 f responses, assembles a commit
certificate and relays it to all the replicas. When the client sends the request,
it sets a timer. After the timer expires, if the client gathered between 2f + 1
and 3 f matching responses then it has proof that the majority of the replicas
agree on the ordering in which the request should be processed. The replicas
however, do not know that such agreement quorum exists — they only know
about their local execution.

A problem that may arise at this point is when a view change occurs. Since
the view v + 1 must be consistent with the state in view v the view change
subprotocol must know which requests were executed in view v. Since up to
f replicas may be faulty the view change subprotocol must use information
from a quorum of 2f + 1 replicas.

To solve this problem the client sends a message containing a commit cer-
tificate that contains a list of 2f + 1 replica signed-portions of the response
given to the client and the corresponding 2f + 1 replica signatures.
Replicas then receive the message from the client containing the commit
certificate and acknowledges its reception to the client. The replica upon
receiving the commit certificate can validate if the request should be executed
in the current view (since the request has its own sequence number and
history). Note that the request was already executed by a correct replica so
it shouldn’t be executed again to respect exactly-once semantics.

16

2. The client then only needs to receive the confirmation by 2f 4 1 replicas to
consider the execution to be completed. Since the view change subprotocol
needs 2f + 1 replicas for execution we know that at least f + 1 replicas are
definitely correct and stored the commit certificate.

The wiew change case occurs when the client receives fewer than 2f + 1
responses or the client suspects a faulty primary.

When the client receives fewer than 2f + 1 matching responses it resends
the request message to the replicas (so they can track the progress and possibly
initiate a view change). Upon receiving the request from the client, a replica
checks if the request has a higher timestamp than the chached response for that
client and then sends a message to the primary server while initiating a timer.
If the replica receives a response from the primary then it proceeds with the
protocol as described earlier. If the time runs out then the replica starts a view
change. To maintain exactly-one semantics, all replicas have a cache of the last
reply for each client.

If the client receives valid response messages from the same request but with
different sequence numbers or history, then it is declared as a Proof of Misbehav-
ior [15] on the primary. Noticing this, the client sends a message to all replicas
with the Proof of Misbehavior and a view change will initiate.

3.4.4 Aardvark Since PBFT, many systems have appeared that promised
high throughputs under Byzantine conditions (Q/U, HQ and Zyzzyva). However
the high throughputs were often reached by relaxing some conditions — Zyzzyva
moved many responsibilities to the client for the recovery of a system whenever
a fault was detected. Relaxing such conditions can render a system unavailable
for long periods of time — the system is fragile to faults.

The basic idea of Aardvark is to build a protocol that offers high throughput
while maintaining robustness so that the system offers predictable performance
(even under faults). Aardvark however deviates from some of already established
“conventional wisdom” — it uses signatures instead of MACs, despite being con-
sidered an important performance bottleneck [3], performs regular view changes
even when they may disrupt the service temporarily and the use of point to
point communication instead of IP-multicast.

The authors define two important concepts that describe the execution con-
ditions:

— Gracious Execution: an execution is considered gracious if it is synchronous
(known short timeout on a message delay) and all clients and servers are
correct.

— Uncivil Execution: an execution is considered uncivil if it is synchronous
(known short timeout on a message delay) and up to f clients and servers
are byzantine.

Aardvark rejects any optimizations while the system is under a Gracious
Ezecution that may degrade the performance of the system while in Uncivil Ex-

17

ecution. The system also operates under an asynchronous network where Syn-
chronous Intervals occur. Synchronous Interval is a time interval where any
message sent by any correct process (client or server) is delivered within a de-
fined time bound.

The main contributions of Aardvark are also the three main core differences
between previous BFT systems: signed client requests, resource isolation and
regular view changes.

— The usage of signed client requests comes from the property of non-repudiation
and ensures that all correct replicas validate the client request identically
thus “eliminating a number of expansive and tricky corner cases found in
existing protocols that make use of a weaker (though faster) message au-
thentication code (MAC) authenticators” [7] — “one node validating a MAC
authenticator does not guarantee that any other nodes will validate that
same authenticator”. While signed requests are expensive, they are only
used to sign client requests and this is done on the client side leaving the
servers with this expense. Since cryptographic signing requests is a an ex-
pensive operation an attacker could send a large number of requests that
need to be verified on the server side. To limit this, Aardvark puts a hard
limit on the number of incorrect/faulty signatures that a client can send to
the system (by using a hybrid MAC-signature) and it also forces the client
to complete one request before sending another one.

— For resource isolation, Aardvark deploys unique Network Interface Con-
trollers (NICs) — each replica has a one-to-one channel that is used for mes-
sage exchange. This allows each replica to defend itself against attacks (by
disabling the attack source NIC). It also prevents a faulty replica to interfere
on the message delivery by correct replicas. However, by having unique in-
terfaces for communicating between pairs of replicas, the system suffers from
a performance hit — it does not use multicast to optimize all-to-all commu-
nication. To optimize the usage of each interface, Aardvark differentiates
client requests with the communication between individual replicas by using
different work queues. By doing this, Aardvark prevents client requests to
interfere on replica-to-replica communications.

— Aardvark also changes views regularly. Replicas monitor the performance of
the current primary server and continuously raise the acceptable throughput
level. When the primary fails to correspond to the current level, replicas
start a view change. View changing was treated as an expensive protocol
and only used when the throughput was dropping fast or other extreme
situations. However the view change protocol “is similar to the regular cost
of agreement”. While doing a view change, the system cannot process new
requests but performing a view change only when we have a faulty primary
is more costly than regularly changing the view [7].

The steps performed by the protocol follow a standard three phase commit

protocol [3] that was already explained in Section 3.4.2. However, the steps are
performed using the three main core differences already explained.

18

As described, replicas frequently monitor the performance of the primary
server: by slowing increasing the throughput rate which the primary must sat-
isfy. Moreover, Aardvark expects from the primary a frequent supply of PRE-
PREPARE messages and high, sustainable throughput. A timer is set and when-
ever a PRE-PREARE message is issued the timer resets. If the timer expires, a
view change is initiated. There are also periodic checkpoint where replicas assess
the throughput of the system. If the performance drops below a certain threshold
then a view change is initiated.

Another issue is that a faulty primary, to avoid being replaced, may issue
many PRE-PREPARE messages. However it will be caught on the periodic
checkpoint where replicas will check the current throughput of the system (com-
pleted requests) and, therefore, the primary will face a demotion.

4 BFT Reconfiguration

As we have described in the previous section, BFT protocols are relatively
expensive and require the exchange a significant amount of messages during
their execution. Also, their performance depends on operational context: some
protocols are more efficient in stable runs and others offer better performance
under attack. Furthermore, the number of messages exchanged depends on the
number of processes that exist in the system which is often a function of the
number of faults that need to be tolerated. Finally, as in any fault-tolerant
protocol, nodes may fail and need to be replaced. Since many of the factors that
affect the performance of a BFT protocol may be hard to estimate a priori, and
may change dynamically, it is relevant to consider the design and implementation
of BFT protocols that can adapt in run-time.

When considering the design of adaptive BFT protocols, there are three
different aspects that need to be considered:

— What to adapt, i.e., what are the possible system configurations that may
selected. In this work we mainly consider four different adaptations: inte-
gration of new replicas (or re-integration of replicas that have recovered) to
replace failed replicas, dynamic changes to the number of replicas, migra-
tion of replicas to containers to avoid recently uncovered vulnerabilities, and
dynamic changes to the BFT protocol itself.

— When and why to adapt, i.e., what are the policies that drive the selection
of the target configuration of the system given a system state. In this aspect
there are two facets to consider. One is where the adaptation code is exe-
cuted: it can be embedded in the BFT protocol (what we call a monolithic
approach) or can be implemented in a separate module that is in charge for
the reconfiguration (what we call a modular approach). To achieve modu-
larity, a BFT implementation may provide an interface exposing methods
to allow its reconfiguration, thus separating the reconfiguration mechanisms
from the rules that trigger that same reconfiguration [16]. The other aspect
is to distinguish implementations where the system is only able to execute a

19

fixed set of policies, that are hard coded in the implementation from imple-
mentations that are flexible enough to implement a variety of policies. Typ-
ically, modular implementations are more amenable to implement a richer
set of policies.

— How to adapt, i.e., what algorithms are used to perform the system recon-
figuration. While, in principle, it is possible to reconfigure a system by first
halting its operation, and restarting it under a new configuration, such ap-
proach is not very appealing given that it may create long periods of service
unavailability. Therefore, reconfiguration algorithms attempt to support the
dynamic reconfiguration with minimal impact on the performance of the
system.

In the following paragraphs, we address each of these aspects with more
detail.

4.1 What to Adapt

In this work, we focus on the following set of adaptations that can be applied
to a BFT implementation:

1. Replica reintegration: As any other fault-tolerant protocol, a BFT deploy-
ment can only tolerate a fixed number of faults at a given time. To ensure
that the system will keep operating after failures occur, it is therefore fun-
damental to replace replicas that have failed, by correct replicas. The new
replicas may be completely fresh or may already contain some some state
that has been collected by that replica or by some other replica before the
crash. In any case, the new replica will never be completely up-to-date (with
regard to the state of active replicas) and some re-integration protocol must
be executed to put its state on par with the current active correct repli-
cas. Also, we have seen that many BFT implementations keep a wiew of
what replicas are correct; therefore, replica reintegration typically involves
the execution of the view change sub-protocol.

2. Changing the number and/or location of replicas: The replica re-integration
process described above can be seen as a particular case or a more general
adaptation that consists in the process of adding, removing or migrating
replicas in a BFT deployment. Changing the number of replicas in runtime
allows to scale the resilience of the system according to the estimated level of
threat. In particular, the number of replicas may be increased if the risks of
having machines compromised is higher and lowered when the risks decrease.
Adjusting the number of replicas is important because, as we have seen, in
BFT protocols there is an inherent trade-off between the resilience and the
performance of the deployment. Replica migration can be helpful if a machine
(where a replica is running) lacks resources or has some vulnerability that
has been exposed.

3. Changing the BFT protocol: As we have seen, different BFT protocols ex-
ist and none of them offers the best performance in all scenarios. On the

20

contrary, some perform better in stable scenarios and others before better
when the system is unstable. Since in a real deployment the environmental
conditions may change in runtime, it is interesting to support the dynamic
adaptation of the BFT protocol in use, in order to execute the protocol that
is more suitable for the observed conditions. The biggest challenge in chang-
ing the BFT protocol is to coordinate the replicas such that the properties
of the service are guaranteed during the change. The most straightforward
manner of achieving this is to stop one protocol at all replicas before acti-
vating the execution of the new protocol. This may not be trivial, because
one needs to assure that different protocols do not make inconsistent de-
cisions about the same message. For that, existing BFT protocols need to
be adapted/extended in order to support the concept of abortability and
correctly maintain correctness when transitioning from State A to State B.

4.2 When and Why to Adapt

In this work we are interested in building modular solutions to drive the
adaptation. Therefore, instead of supporting a fixed set of policies and protocols
that are hardcoded in a monolithic BFT implementation, we aim at a solu-
tion where there is a separate adaptation manager that can use a number of
actuators to drive the reconfiguration of the BFT implementation. The adapta-
tion manager can be seen as logically centralized component that monitors the
system operation, extracting metrics regarding the observed performance (band-
width, memory usage, number of clients, etc...) but also information about sys-
tem vulnerabilities and level of threat (for instance, resorting to intrusion detec-
tion systems). Using this information, the adaptation manager uses adaptation
policies to select if and when the system must be reconfigured. The choice of
the correct adaptation can be driven by user-specified rules (for instance event-
condition-action rules[10]) or can be performed using some automated manner
(for instance, resorting to machine-learning[17].

We now make a brief overview of some of the policies that have been proposed
in the literature, for the adaptations listed in the previous section:

— Castro and Liskov [18] suggest that replica re-integration should be per-
formed not only to replace replicas that have failed but also as a proactive
measure of defense against replicas that may have been compromised, even
when they remain asymptomatic. The idea is that, in most cases, it takes
a reasonable amount of time for an adversary to compromise a machine.
Therefore, if the machine is reboot and a fresh copy is re-installed, this may
foil the efforts of an attacker and effectively prevent the adversary from tak-
ing more that 1/3 of the replicas. This policy became known as proactive
Tecovery.

— The BFT-SMaRt system (described in Section 5) has a module for recon-
figuration which allows replicas to be added or removed from the system.
The paper also describes the tradeoffs involved in this reconfiguration. With
more replicas, the system can tolerate more arbitrary faults (at the cost

21

of more messages going through the network). Since adding replicas has a
cost associated with it (state transfer and view change), we should only add
replicas when strictly needed.

Abstract [10] is a system that provides interchangeability between different
BFT protocols. The paper focuses on the mechanisms required to replace
the BFT implementation but also suggests some simple policies to trigger a
switch. These policies are static and hard-coded in the BFT implementations.
The paper proposes to switch from a protocol that has good performance
with favorable scenarios to a more expensive but also more robust protocol
when the primary is unstable. Switching happens when the primary is sus-
pected of being malicious/faulty and, consequentially, the system remains in
the more expensive configuration for a quarantine period before it reverts
back to the optimistic protocol.

Adapt [17] further explores this idea by introducing an evaluation step for
electing the next active BFT protocol. Adapt is an adaptive abortable BF'T
system that reacts to changing conditions of the environment while introduc-
ing Machine Learning techniques for the protocol selection process. Adapt
uses an adaptation manager that has three operating modes: static, dynamic,
and heuristic. The static mode only analyses the default characteristics of
each protocol (we can say that they are the static features that represent
the protocol such as the number of replicas needed to tolerate f faults). The
evaluation process in static mode is performed before the system starts: the
protocol chosen in this this step will be the starting protocol. In dynamic
and heuristic modes, the evaluation process is done in run-time while eval-
uating the performance of the active protocol under the conditions in which
the system is present. Moreover, the heuristic mode uses heuristic rules for
the evaluation step. Adapt also uses two performance metrics for the evalu-
ation process. The Key Characteristic Indicators (KCI) represent the static
features of a given protocol (toleration of client faults, number of replicas,
etc...). The Key Performance Indicators (KPI) are metrics that are dynami-
cally computed (using prediction methods) and represent the performance of
the protocol in run-time (such as progress and throughput). The KPI met-
rics are computed experimentally and obtained using techniques like Support
Vector Machines or Regression [17] — each protocol runs a period of time,
while the impact factors change in order to get the KPI values under each
state. After collecting a set of KPI values, we have a training set that is
used to train a prediction function. The prediction function takes as input
the impact factors and outputs the corresponding KPI value. In order to
improve the prediction function, the training set is also updated while the
Event System (ES) sends new events allowing the function to tune itself.

One important factor that needs to be taken into account is the cost of

protocol switching since it has an associated overhead. After the selection of a
new configuration by the adaptation manager, we know that it will be the best
protocol present in the library given the new conditions. But if the benefits of
switching are not significant to the performance, then the system would suffer

22

the cost of protocol transition without gaining too much from that same cost.
Therefore, the Adapt[17] system uses a switching threshold, defined as follows:

et > S

pcurr

Where pyuq. is the score for the best protocol chosen by the evaluation process,
Peurr 18 the score for the currently active protocol and Sy, is the threshold value
that can be defined by administrators.

Note that the adaptation manager itself can be a target of malicious at-
tacks so some solutions require that the reconfiguration module is also replicated
among the existent replicas. Thus, the replication adaptation manager will also
need to execute an agreement protocol to decide on the reconfiguration result.
Given that the adaptation manager only needs to agree on reconfigurations spo-
radically, the performance of the BF'T protocol used to replicate the adaptation
manager is not as critical as the performance of the BF'T protocol supporting
the application. Therefore, any robust BFT protocol may be used to coordinate
the replicas of the adaptation manager.

4.3 How to Adapt

We now discuss some of the challenges involved in performing the adaptations
listed in Section 4.1.

4.3.1 Replica integration. One of the most heavy-weight tasks associated
with adding or re-integrating a replica is the process of bringing the replica up-to-
date, typically by transferring state from other active replicas. Several strategies
have been proposed to increase the efficient of this process, including:

— Incremental Transfer: hierarchical state transfer and incremental cryptogra-
phy [18].

— Parallel Logging: this is achieved by logging groups of operations instead
of single operations and by executing the operations in parallel with their
storage [19].

— Sequential Checkpointing: the premise for this idea is that, by doing a syn-
chronized checkpoint (all replicas checkpoint at the same time) the system
cannot make any progress. Thus since just a quorum of replicas is needed to
make progress, replicas perform a checkpoint in a sequential fashion [19].

— Collaborative State Transfer: the state transfer is performed in a collabora-
tive way with each replica contributing to the replica recovery [19].

4.3.2 Changing the underlying protocol. Abstract [10] is an adaptive
BFT system that proposes a protocol to implement a safe transition between two
distinct BFT implementations. Abstract is based on the concept of instances. In-
stances are like a replicated state machine service and operate like so (they have
a set of replicas that receive the clients’ requests, execute them and return the

23

result to the client). Each reply to the client contains a commit history which has
a sequence totally ordered of client requests. An important concept introduced
in Abstract is the concept of abortability — if some progress conditions are not
met while executing a request, the request is aborted. These progress conditions
are determined by the system administrator and the task of setting what is con-
sidered progress is facilitated: the administrator only needs to establish in which
conditions the system makes progress instead of designing a system that tries
to make progress under all conditions. Abstract allows instance reconfiguration
like traditional state machine reconfiguration [16] but the difference is that the
reconfiguration is performed on top of abortable state machines. Each instance
has a unique identifier (instance number), a number of replicas that implement
the service and the protocol being used (along with other internals such as the
current view number, primary, etc...).

The reconfiguration protocol of Abstract can be described in three different
steps:

1. Stopping the current Abstract instance: an abstract instance is immediately
stopped as soon as it aborts a single request. Along with the abort signal,
the instance also returns an abort history that contains a mapping between
the replica’s identification number ¢ and its commit history.

2. Choosing the next Abstract instance: along with the abort signal, the abort-
ing Abstract instance i also returns the identifier of the next instance next(4).
As with consensus, the result for next(i) should be the same across all abort
indications of instance i. Other property is that next(i) > i.

3. Combining the commit histories: the client uses the abort history of instance
i in the invocation of next(i). This will be referenced as the init history of the
instance next(i). The init histories are used to initialize an instance before
it starts its own execution (accepting and executing clients’ requests).

O

Replica 1

O

Replica 1

O O

Replica 2 next(i) Replica 2
Replica 3 Replica 3
Instance 1 Instance 2
Protocol A Protocol B

Fig. 7. Abstract with two configured instances

24

Abstract also provides three important properties:

1. Instance switching is idempotent: the composition of two Abstract instances
yields another Abstract instance.

2. A correct implementation of a Abstract instance always preserves the safety
conditions of a state machine (such as the total order of committed requests)

3. A replicated state machine is nothing but a special Abstract instance — one
that never aborts

One important rule is required while running Abstract — there is only one
active instance in the system and that instance is the only one that can commit
requests. As with many other system models, Abstract assumes that that links
between are asynchronous and unreliable and up to f processes can fail arbitrar-
ily (byzantine processes) and the total number of replicas present in the system
n is 3f + 1. A strong adversary may coordinate faulty nodes but cannot break
the cryptographic assumptions of hashing, authentication codes and signatures.
Abstract also assumes that synchronous periods occur allowing the processes
to communicate in a timely fashion (there is a known upper bound ¢ for mes-
sage transmission by correct processes). With this model, an administrator can
pick different Abstract instances (each one representing a different protocol) and
decide in which conditions each instance runs.

In the Abstract paper, these mechanisms are illustrated by performing dy-
namic adaptation between two BFT protocols, one derived from Zyzzyval4],
namely ZLight that captures Zyzzyva’s fast case and another called Backup that
is based on PBFT. The Backup instance only works on top of a valid init history
(one produced by a valid ZLight instance) — upon receiving a valid commit his-
tory, the instance state is reconstructed by executing every request provided by
the history. After the state restoration, Backup commits exactly k requests and,
after the execution of the kth request, it aborts and sends its commit history
(digitally signed) back to the client. The choice for the value of k is up to the
system administrators but it is important to know that it must be a value that
contributes to the progress of the system — it should allow the Backup instance
to be active for a long period of time (since we are in a state to handle failures)
but also short enough so that it does not confine clients to the Backup instance
for too long (since ZLight is capable of doing more progress under the “common
case” conditions).

Adapt [17] further explores the ideas above by introducing an evaluation step
for electing the next active BFT protocol. Adapt is an adaptive abortable BFT
system that reacts to changing conditions of the environment while introducing
Machine Learning techniques for the protocol election process. Adapt offers three
main benefits over an Abstract implementation:

1. No protocol order has to be defined a priori: the way that Abstract changes
between instances needs to be already known before deploying the system. In
AZyzzyva, the system was designed to change between the ZLight instance
and the Backup instance — the two instances were known beforehand as the
conditions that would trigger the switch. In Adapt we are not constrained
by the number of protocols or by which order the instances change.

25

2. Switching can occur when we can gain performance or increase progress:
Adapt is not constrained by a set of conditions in which the protocol change
only occurs when there is a failure — if a performance boost can be achieved
by switching the active protocol, then that change will be applied.

3. Fallback mechanisms are no longer needed — AZyzzyva has Backup instance
as a fallback mechanism to guarantee that progress is being made while the
“common case” conditions are not met. In Adapt the change occurs when
there is a more appropriate protocol for the new conditions and no fallback
mechanism is needed if those conditions maintain.

5 BFT Smart

In this Section we will discuss BFT-SMaR# [8], a modular system that imple-
ments a BFT protocol similar with PBFT [3]. BET-SMaR¢t will be the starting
point for this project and its our goal to provide an extension to its underlying
architecture allowing the possibility of reconfiguring the system in run-time auto-
matically (i.e. without the user’s intervention) (see Section 2). The BFT-SMaR#t
will be extended as is described in Section 6.

5.1 The Modular Approach

BFT-SMaRt [8], is a system that implements Byzantine Fault Tolerance in
SMR on top of Java Virtual Machine (JVM). The main contribution of BFT-
SMaR#t is its modular approach to a practical implementation of a BFT system
while documenting and providing modules that enable state transfer and replica
reconfigurability. By suggesting a modular approach, BFT-SMaR¢t steps away
from the monolithic approaches (like PBFT [3]) and, additionally, provides a
simple and extensible programming interface.

BFT-Smart implements different modules each one for a specific task within
the system such as consensus, reliable point-to-point communication, client re-
quests ordering, state transfer and reconfiguration. It does so while also providing
specific interfaces that enable the communication between those modules.

It follows the classic SMR approach where clients send requests (through
the invoke(command) method) and replicas execute the requests (through the
execute(command) method). Due to its modular and extensible nature, it is
possible to implement different behaviors with different calls/callbacks or via
plug-ins both at client and server side.

The core protocols used are by BFT-SMaR#t are:

— Total order multicast: this protocol is achieved by the module Mod-SMaRt.
Mod-SMaRt uses consensus to achieve total order. Mod-SMaRt has two
phases: normal and synchronization. In the normal phase there are no faults
and the system is in a period of synchrony. When these conditions are not
achieved, Mod-SMaRt switches to the synchronization phase where the elec-
tion of a new leader takes place and replicas make the transition to the new

26

Extensible State Machine Replication

Mod-SMaRt

State

Reconfig Transfer

Reliable and Authenticated Channels

Fig. 8. The architecture of BFT-SMaRt

consensus instance (which may use the state transfer protocol). Mod-SMaR#t
is described in depth in [20].

State Transfer Protocol: this protocol allows replicas to be reintegrated in
the system without restarting it. It is based on the ideas presented in [19]
mentioned in Section 4.3.1.

Reconfiguration Protocol: this protocol allows replicas to be added or re-
moved on run-time and is only accessible by system administrators. These
actions can only be initiated by instances of the View Manager which then
notifies the Mod-SMaR#t of the replica to be added /removed. The operation
of adding and removing replicas is totally ordered so all correct replicas will
have the same view (the view of the system). These special operations of
adding and removing replicas must have been signed cryptographically by
the system administrator. When a replica receives these special operations,
it validates the signature — if it is valid, the current view is updated and a
confirmation is sent to the View Manager. Once the View Manager receives
the operation result confirmation it notifies the added/removed replica to
start /stop its execution. This protocol also triggers the State Transfer Pro-
tocol because a newly added replica must be on par with the history of all
the other correct replicas. Finally, all clients must store the current view of
the system — any request that is performed in an old view is rejected but,
upon rejection, the client receives the latest view so it can retransmit its
operation while acknowledging the system’s current view.

27

BFT-SMaRt is our starting point for the development of a dynamic byzan-
tine fault tolerant system — its API and modular approach eases the extension
and creation of new modules for additional functionality. The following section
describes how the system will be extended — which modules will be added and
why.

6 Architecture

The architecture of the system will be based on the architecture present in
BFT-SMaRt. The BFT-SMaRt project (available in [21]) offers a modular SMR
approach that eases the implementation of new features (which can be prob-
lematic in monolithic approaches). Moreover, to support the dynamic selection
of the running protocol, the Mod-SMaRt will need to be extended or modified.
Remember that Mod-SMaR#t is the module responsible for the implementation
of the properties of state machine replication and for the communication pattern
between replicas.

The concept of abortability (that was also introduced in Abstract [10] and
further explored in Adapt [17]) will be introduced in BFT-SMaRt to ease the
transition of one state to another.

........................ A
C

Reliable and Authenticated Channels

1 L

<) Reconfiguration Manager

i [

Transfer
Reconfig

Evaluation Module

I

Event Security
Manager Module

Fig. 9. Reconfiguration Manager, Event Manager, Evaluation and Security Modules
will be the new sub-systems added to BFT-SMaR#t

The following modules will be added to BFT-SMaRt:

— Event Manager and Security Module: these two components will handle the
events that occur within the environment. Those events represent changes to

28

the system such as bandwidth, memory usage, system progress, among oth-
ers. The event manager will watch the changes for a set of metrics (described
in Section 7). The Event Manager then notifies the Evaluation System. A
Security Module will also be added in order to detect potential malicious
patterns on the watched metrics.

— Evaluation Module: this module will trigger an evaluation process to assess
the possibility of a needed reconfiguration (protocol change, add/remove
replicas). If a change is required then the system is notified about that given
change. The evaluation module will also take into consideration the cost of
performing the reconfiguration needed. The situation where an attacker con-
stantly triggers the conditions necessary to trigger a reconfiguration will be
also considered in this module — if the system is always performing reconfig-
urations, it greatly impacts its progress.

— Reconfiguration Manager: this module is responsible for performing the re-
configurations on the replica. It receives the commands from the Evaluation
Module and executes them — there is no evaluation done in this module (all
the evaluation steps are executed in the Evaluation Module and a command
is given as a final decision). It communicates with the Reconfiguration Sys-
tem already present in BFT-SMaRt for adding or removing replicas. For the
protocol change, it aborts the current active protocol and notifies the current
active replicas to switch to the new one.

In order to understand the roles of the new modules we present three use
cases that trigger a reconfiguration:

— Change the underlying BF'T protocol: the objective of changing the active
BFT protocol is to give the best possible progress (execution of client re-
quests) while maintaining the correctness of the system. If the system is
running a protocol that offers high throughput of client requests but under
specific optimal conditions (like Zyzzyva’s Fast Case) and a malicious attack
is performed on the system where the bandwidth is highly affected, then
we need to guarantee that progress continues to be made. By switching to
a more robust solution (like PBFT or Aardvark) we allow the system to
make progress even when we do not have the optimal conditions needed for
Zyzzyva’s Fast Case. A question remains however: Why perform a switch
when a system like Zyzzyva offers a fallback mechanism when the Fast Case
conditions are not met? Remember that Zyzzyva always tries to perform the
Fast Case scenario (and additional steps are always performed if the system
is under faults). A malicious attack can affect a system for long periods of
time and a more robust solution is more adequate to those scenarios — one
that does not always tries to perform its best case scenario even when the
necessary conditions are not met. So when a malicious attack occurs, the
Security Module will warn the Evaluation Module of the metrics affected
and their current condition. The evaluation module then analyses the recon-
figuration that offers the best performance under the new conditions and
sends a command, for example, to change the running BFT protocol. The

29

Reconfiguration Manager receives the command, aborts the current protocol
and loads the one issued by the Evaluation Module.

— Change the number of replicas: Changing the number of replicas is already
supported by BFT-SMaR¢t in the Reconfiguration module. BFT protocols
usually assume a a number of replicas n > 3f 4+ 1. Although the Security
Module captures malicious patterns, in a possible attack scenario, a system
administrator can increase the number of replicas at will in order to sup-
port more faults even when those patterns are not detected. However, by
increasing the number of replicas, the number of messages in the network
also increases so, when the system is considered stable under the current con-
ditions, replicas can be removed in order to decrease the bandwidth usage,
while maintaining stability. The manual reconfiguration is already offered by
an interface of BFT-SMaRt. Additionally, with the integration of a security
module, we hope to dynamically reconfigure the number of replicas without
the need of any manual intervention.

— Change the replica’s Operating System: BFT-SMaRt runs on top of the Java
Virtual Machine which means that is possible to run replicas under a different
Operating Systems (which support the JVM). This allows to restart a replica
to a different OS if a vulnerability is found in the OS. Along with the metrics
registered, we can check which OS the replica is running and, add or remove
replicas with the OS that improves the performance of the system while
maintaining a “pool” of different Operating Systems running in order to
provide heterogeneity (the greater the variety of running operating systems,
the more robust the system becomes against malicious attacks).

7 Evaluation

In order to evaluate if the project goals have been achieved, an additional
BFT protocol will be implemented under the BFT-SMaR¢t architecture. The
following metrics will be analyzed: bandwidth, memory usage, number of clients,
number of replicas and throughput (number of client requests processed).

These metrics will be analyzed under different three different system reconfig-
urations (that are described in Section 6), more specifically under the following
combinations:

1. Maintain the number of replicas and operating system but change the active
protocol.

2. Maintain the number of replicas and active protocol but change the operating
system.

3. Maintain the active protocol and operating system but change the number
of replicas.

Moreover, these configurations will be evaluated under a stable execution
and when a malicious attack is performed on the system. The system should
always maximize the progress being made despite the present conditions, while
maintaining correctness.

30

8 Scheduling of Future Work

Future work is scheduled as follows:

— January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

— March 30 - May 3: Perform the complete experimental evaluation of the
results.

— May 4 - May 23: Write a paper describing the project.

— May 24 - June 15: Finish the writing of the dissertation.

— June 15 Deliver the MSc dissertation.

9 Conclusions

Throughout the years we have seen many protocols that tackle the Byzantine
faults problem. PBFT [3] initiated an “arms race” of byzantine protocols that
were looking to offer high throughput in a practical system. Solutions have ap-
peared, from more fragile solutions that offer high throughput [4] to more robust
ones that guarantee progress at the cost of throughput and communication steps
[7].

In more recent years, and with a collection of BFT protocols in hand, works
like [10] and [17] offered a dynamic solution — the system designers were no
longer restricted to one specific protocol that offered a given throughput under
specific conditions — instead, these ideas were adapted to work with the concept
of abortability where a given active instance may abort the current execution
and pass control to another new instance that is more appropriate to deal with
the new scenario.

Furthermore, as a mean to step away from monolithic design, BFT-SMaRt
provides a modular approach that offered an extensive interface that allows inter-
module communication. The system also runs on the Java Virtual Machine giving
the possibility for it to run on a variety of different operating systems. Exploring
this modular approach, we will adopt some of the ideas introduced in Abstract
[10] and Adapt [17] in order to provide the system the ability to adapt to new
conditions.

Acknowledgments We are grateful to R. Rodrigues and M. Correia for the
fruitful discussions and comments during the preparation of this report.

References

1. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (1978) 558-565

2. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS) 4(3) (1982)
382-401

31

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI.
Volume 99. (1999) 173-186

Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. In: ACM SIGOPS Operating Systems Review. Vol-
ume 41., ACM (2007) 45-58

Abd-El-Malek, M., Ganger, G.R., Goodson, G.R., Reiter, M.K., Wylie, J.J.: Fault-
scalable byzantine fault-tolerant services. ACM SIGOPS Operating Systems Re-
view 39(5) (2005) 59-74

Cowling, J., Myers, D., Liskov, B., Rodrigues, R., Shrira, L.: Hq replication: A
hybrid quorum protocol for byzantine fault tolerance. In: Proceedings of the 7th
symposium on Operating systems design and implementation, USENIX Associa-
tion (2006) 177-190

Clement, A., Wong, E.L., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine
fault tolerant systems tolerate byzantine faults. In: NSDI. Volume 9. (2009) 153-
168

Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses
with bft-smart. In: Dependable Systems and Networks (DSN), 2014 44th Annual
IEEE/IFIP International Conference on, IEEE (2014) 355-362

Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media (2011)

Guerraoui, R., Knezevi¢, N., Quéma, V., Vukoli¢, M.: The next 700 bft protocols.
In: Proceedings of the 5th European conference on Computer systems, ACM (2010)
363-376

Lamport, L.: The implementation of reliable distributed multiprocess systems.
Computer Networks (1976) 2(2) (1978) 95-114

Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2) (1988) 288-323

Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2) (1980) 228-234

Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2) (1985) 374—382
Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault
tolerance for cooperative services. In: ACM SIGOPS Operating Systems Review.
Volume 39., ACM (2005) 45-58

Lamport, L., Malkhi, D., Zhou, L.: Reconfiguring a state machine. ACM SIGACT
News 41(1) (2010) 63-73

Bahsoun, J.P., Guerraoui, R., Shoker, A.: Making bft protocols really adaptive.
In: Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional, IEEE (2015) 904-913

Castro, M., Liskov, B.: Proactive recovery in a byzantine-fault-tolerant system.
In: Proceedings of the 4th conference on Symposium on Operating System Design
& Implementation-Volume 4, USENIX Association (2000) 19-19

Bessani, A.N., Santos, M., Felix, J., Neves, N.F., Correia, M.: On the efficiency
of durable state machine replication. In: USENIX Annual Technical Conference.
(2013) 169-180

Sousa, J., Bessani, A.: From byzantine consensus to bft state machine replication: A
latency-optimal transformation. In: Dependable Computing Conference (EDCC),
2012 Ninth European, IEEE (2012) 37-48

Bft-smart code project. https://github.com/bft-smart/library Accessed: 2015-
12-06.

32

