
ByTAM: a Byzantine Fault Tolerant Adaptation Manager
(extended abstract of the MSc dissertation)

Frederico Miguel Reis Sabino
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luís Rodrigues

Abstract—Previous systems that support the dynamic adap-
tation of Byzantine Fault Tolerant (BFT) protocols have im-
portant limitations such as: lack of robustness (dependence
on central and trustworthy components); low flexibility (con-
straining the adaptation strategies); and lack of extensibility
(making it impossible to add new policies regarding the current
service in operations). To overcome these gaps, this dissertation
proposes a generic BFT adaptation manager which can be
used to execute different adaptation policies. This manager is
independent of the target service which needs to be adapted
dynamically and is, by itself, also tolerant to Byzantine Faults.
The manager has been implemented using BFT-SMaRt1, a well
known open-source library. The experimental evaluation of the
resulting prototype illustrates that it can be used to effectively
increase the performance of a target BFT service in different
operational conditions.

I. INTRODUCTION

State machine replication with Byzantine Fault Tolerant
(BFT) protocols is a technique that allows building robust
services, capable of working correctly, even in the presence
of a minority of arbitrary faults (accidental or malicious),
caused by external attacks or intrusions. Essentially, these
protocols implement a solution of consensus, a fundamental
problem in distributed systems that has been extensively
studied in literature[1], [2], [3].

BFT is required to operate correctly in face of faults
but it must also exhibit good performance. In fact, the
performance of the protocol also has a strong impact on
the final user experience. Most BFT protocols are optimized
to achieve the best performance on the most common
operational conditions (eg. local networks or WAN, sporadic
failure events, etc.). As a result, these protocols may be
penalized when operating outside the expected conditions.
For instance, Zyzzyva[4] when compared with PBFT [5],
performs better when the threat level (failures or presence
of Byzantine processes) is low. However, Zyzzyva’s complex
strategy to recover from failures ends up being less efficient
than PBFT in scenarios where failures are more frequent[6].

Furthermore, the factors that affect the performance of
the protocol such as the number of replicas, the size of the
clients’ requests or the threat level, have values that may
change overtime. Thus, it becomes relevant to use techniques
that allow the dynamic adaptation of the parameters and the

1https://github.com/bft-smart/library

algorithms used by the BFT services. Some protocols, such
as Aliph[7] and ADAPT[8] already provide some support
towards this goal, allowing a protocol change if a failure
occurs or if a certain condition is not met, combining strate-
gies of different BFT algorithms. Still, these solutions are not
flexible regarding the adaptation mechanisms they support,
the policies which trigger the adaptation, the adaptation
strategy (change of protocol, execution cancellation), and
the degree of robustness (centralized components or non-
BFT). Despite the merit of these pioneer works, it is still
necessary to make significant progress to derive practical
solutions, which are simultaneously robust and efficient.

In this dissertation, we present ByTAM, a generic adap-
tation manager which allows the dynamic adaptation of a
given target BFT protocol. ByTAM supports custom policies
which can be dynamically selected, allowing it to execute
any adaptation policy which can be expressed using rules
of the type “condition-event-action”. ByTAM is tolerant to
Byzantine faults, where the adaptation manager and the
associated monitor infrastructure operate independently of
the service being replicated and adapted. The resulting
architecture, which allows the fine tuning of the parameters
of the target BFT protocol, requires few modifications to the
protocols being adapted. This feature eases the incremental
transition of legacy systems (non adaptable) to new systems
with dynamic adaptation capabilities. Furthermore, ByTAM
is capable of dealing with issues such as failures and asyn-
chrony which, when unhanded, could prevent the different
replicas of the adaptation manager to make consistent deci-
sions. ByTAM is an open source project which is integrated
with BFT-SMaRt[9], a library used for the development of
BFT systems.

On the following sections of the extended abstract of the
dissertation we present ByTAM as follows: in Section II,
we address the related work. In Section III we present a
global overview of ByTAM, highlighting the architecture
components and their main functions. The experimental
evaluation is presented on Section IV. Finally, Section V
contains the conclusions for this work.

II. RELATED WORK

In 1978, Lamport L. depicted an algorithm that introduced
the concept of SMR under a distributed environment [10].
The algorithm described an extension that provided total

1



ordering. The algorithm however produced arbitrary results
if it was not coherent with the decision of the system’s
users. A solution for this arbitrary problem is by using
synchronized clocks.

Additionally, the algorithm assumed that processors never
failed and that all the messages were correctly delivered.
Lamport then created a real-time algorithm [11] that as-
sumed upper bounds on message delays and that correct
processes had their clocks synchronized. It is one of the
first algorithms that described the idea of arbitrary faults
described in The Byzantine Generals Problem [3]. However,
these solutions were designed for synchronous systems
where known time bounds are in place. Therefore, we cannot
assume that they work on an asynchronous environment like
the Internet.

Castro and Liskov, introduced the first BFT protocol that
is safe under partially-synchronous systems – PBFT [5]. This
protocol started the search for further optimizations where
we can have a cheap solution which is both reliable and
fast. Protocols such as Zyzzyva[4] and Aardvark[12] further
improved on initial solutions but always with a compromise.
There was no perfect protocol for a system where the
operational conditions change over time – once we had a
system running a particular protocol, it was impossible to
replace it without shutting down the system and perform a
manual reconfiguration.

In Guerraoui et al.[7] the authors presented a new ab-
straction to reduce the cost of developing BFT protocols
named Abstract, and introduced the property of Abortability,
which allows the composition of different BFT instances
and allows to alternate correctly between the execution of
these instances. In particular, the authors focused on the
necessary mechanisms to replace different BFT protocols.
Using previous algorithms as instances, the authors built a
system named Aliph which combines three protocols: Quo-
rum[7], Chain[7], and PBFT[5]. Since the emphasis of the
work was not on the adaptation policies, Aliph uses simple
criteria to start a reconfiguration, such as the occurrence of
a fault (these criteria are hard-coded in the system). Aliph
initially executes Quorum which offers a better performance
in fault-free scenarios and, when a fault occurs, it is replaced
by a Chain instance which is more robust but also more
complex. When any other fault occurs, another adaptation
is performed (this time to the PBFT instance). Therefore,
reconfigurations are always executed following a sequence
statically defined, namely Quorum → Chain → PBFT .
Finally, after a quarantine period, Aliph tries to switch back
to the Quorum instance.

ADAPT[8] is a protocol which also explores the con-
cept of Abortability, although in a more flexible manner,
introducing an evaluation stage to elect the next active BFT
protocol. ADAPT reacts to the changes in the environment
using machine learning techniques to guide the selection
process. In this way, adaptations are selected based on
metrics designated Impact Factors, in can occur even in the
absence of faults (different from Aliph). Essentially, ADAPT

is composed by three different subsystems: the BFT System
(BFTS), composed by various BFT protocols that need to
support the property of Abortability; the Event System (ES)
which is responsible for monitoring the system and retrieve
values for the different impact factors; the Quality Control
System (QCS) which is responsible for the analysis of the
values retrieved by the ES and start an adaption when
necessary.

Although the usage of machine learning is an interesting
contribution, the solution proposed in ADAPT leaves opens
three aspects which are addressed by ByTAM: a robust
implementation of the QCS; a robust infrastructure of the
ES; and an easy way to create adaptation policies. Firstly,
although the authors indicate the possibility of developing a
BFT QCS, in the system proposed, the decision of making
an adaptation is taken by only one replica (the primary one).
Thereafter, the BFTS must trust the decision of the primary
QCS; if the primary QCS is Byzantine this may compromise
the correction of the service. Furthermore, despite the fact
that ADAPT modules are installed at all the replicas, the
system centralizes the QCS operations at a single machine.
Also, the presented ES is quite simple and a more robust
solution is postponed by the authors for future work. Finally,
the system only supports policies which are based on impact
functions (which capture the effect of each adaptation) and
the o way to interpret these functions is hard-coded on the
system, which constrains the possibility of implementing
different policies.

In addition to the issues above, the choice followed
by the authors of collapsing all these components on the
same replicas (BFTS, ES, QCS) may affect negatively the
robustness of the system. For instance, when a failure occurs
on the ES of one replica and on BFTS of another replica
(considering f = 1). This does not happen in ByTAM,
where each system component operates independently and
may even have distinct replication levels, as it will be
described in Section III-F (the choice of running the different
services on the same replica is up to the administrator).

It is also important to emphasize that, despite the large
number of research projects on BFT protocols, many of
them are not open source. In this work, we chose BFT-
SMaRt[9], which is a BFT replicated state machine written
in Java. BFT-SMaRt is a modular system which executes a
BFT protocol similar to PBFT[5] and includes modules for
state transfer and replica reconfiguration. In BFT-SMaRt,
the process of reconfiguration is coordinated by an ex-
ternal component, central and trustworthy (which is one
of the limitations that ByTAM tries to overcome). BFT-
SMaRt provides a programming interface which is simple
and extensible and its implementation follows a modular
approach.ByTAM uses BFT-SMaRt in two ways: i) as an
automatic adaptation management system, and ii) as the
managed target system.

III. BYTAM
In this section we present the system model, the ar-

chitecture, and a general perspective on how the different

2



components of ByTAM operate to perform adaptations in a
coherent way.

A. System Model

We assume a Byzantine failure model on which processes
that fail can behave in an arbitrarily manner [3] and the
existence of a strong adversary, with the ability to coordinate
failed processes to compromise the replicated system. How-
ever, we assume that this adversary cannot violate known
cryptographic techniques such as MACs, encryption, and
digital signatures. Furthermore, we assume that at most
f replicas of each component may fail (from either the
adaptation manager, sensors or the managed system). Finally
we assume an asynchronous network where eventually syn-
chronous intervals occur; in those intervals, messages are
delivered in time and the protocol makes progress.

B. Architecture

ByTAM has two subsystems which operate independently:
the Monitoring System and the Adaptation Manager. Both
communicate with the Managed System, as it is shown in
Figure 1(a). The Managed System is the service that is
provided to the end user; it provides information on the
operational conditions and receives adaptations, working as
a client of ByTAM. An example of a possible managed
system is DepSpace[13], a fault tolerant tuple space. The
Managed System must satisfy two properties: it must have
some kind of reconfiguration mechanism (eg. view change
protocol or support Abortability) and be monitorable (ex-
porting performance and operational metrics). The Managed
System operates independently from the remaining system
components so, faults that prevent communication with By-
TAM (network partitioning, asynchrony) may cause delays
in the adaptation process. Additionally, the Managed System
can have a different failure model from ByTAM. However,
to achieve a globally robust solution, in this dissertation
the Managed System is also Byzantine fault tolerant. On
the following sections, we will describe the Monitoring
System and the Adaptation Manager, presenting their main
functionalities.

C. Monitoring System

The Monitoring System consists of an infrastructure of
sensors that continuously collect data from the environ-
ment (eg. network devices, resources, ...), from the service
currently operating (latency, load, message size, etc.), and
delivers this data to the Adaptation Manager for storage and
processing. Tolerance to faulty sensors is obtained by having
multiple replicas of each sensor and by performing a voting
on its outputs. Therefore, at least 3f +1 sensor replicas are
needed to tolerate f failures. In this way, each sensor is seen
as a machine state client and the received updates obtained
by the sensors are treated as commands which are totally
ordered by the BFT protocol.

As a result, the sensors produce a linear sequence of
captured values identified by tuples which, in addition to

the collected data, include a unique identifier of the repli-
ca/sensor and a sequence number. These tuples are stored
in the Adaptation Manager. However, individual values are
not used directly. Instead, ByTAM waits for a quorum of
d (n+f)

2 e different sensor readings. Since the sensor readings
are totally ordered, every correct replica will receive the
same ordered value sequence from the replicated sensors.
Therefore, a deterministic function can be applied to delete
f highest and lowest (extremes) values in order to extract
a middle value. A limitation of this approach is that a
consensus execution is needed for each value produced by
the sensor. A simple approach to attenuate this cost consists
in grouping different readings and execute the consensus on
that group.

D. Adaptation Manager
The Adaptation Manager is responsible for processing the

data obtained from the Monitoring System, register and eval-
uate the adaptation policies, and start the adaptation process.
The Adaptation Manager has three services, as illustrated
in Figure 1(b): storage, policy management, and adaptation
coordinator. Essentially, the Adaptation Manager processes
the data that comes from the sensors and computes quality
metrics. These metrics are then evaluated by policies that
were previously installed. These policies analyze the metrics
obtained and decide if a reconfiguration action is needed.
Like the Monitoring System, the Adaptation Manager is a
Byzantine fault tolerant replicated service. It is important to
remark that the messages exchanged between the Monitoring
System and the Adaptation Manager are digitally signed,
therefore non-authenticated sensor messages are discarded.

The storage service: stores the data collected by each
sensor. As explained in Section III-C, the Monitoring System
produces a linear sequence of values; therefore, each correct
replica of the Adaptation Manager eventually obtains the
same sequence of values in sufficient number to be processed
or a prefix of this sequence (which will inevitably receive
the remaining values following the correction properties
of consensus). Therefore it is possible to ensure consis-
tent decision making across all correct replicas, because
the policies will evaluate exactly the same system state.
By allowing the continuous collection of the information
retrieved by the sensors, we allow a policy to be written
with access to the history of retrieved values. This may be
useful because isolated readings may be subject to transient
fluctuations for which the cost of starting a reconfiguration
does not compensate. Additionally, it becomes possible to
detect operational patterns over time (and adapt in a pro-
active manner). Despite the ability to develop these kind of
policies with ByTAM, the development of specific policies
that consider the cost-benefit and tendencies has not been
done in the context of this dissertation and is delegated to
future work.

The policy manager: controls the life cycle of the
adaptation policies. More specifically, it allows listing,
installation/removal of policies, associate/disassociate and
activate/deactivate policies of a specific Managed System.

3



Adaptation 
Manager

Monitoring 
System

Managed 
System

ByTAM

(a) System Architecture

Adaptation Manager

PoliciesStorage
Service Adaptation

(b) Adaptation Manager Services

Figure 1. ByTAM: Services and architecture

The definition of the adaptation policies will be described in
detail in Section III-G. The currently active policy to perform
the adaptation is registered in a configuration file using a
unique identifier associated with each policy. When it is time
to execute an adaptation, the policy with the unique identifier
present in the configuration file is loaded and executed,
allowing the dynamic switching among different pre-loaded
policies. In the future we aim to extend the system in
order to allow the dynamic loading of new/updated policies.
This flow must be performed by an utility which changes
the configuration of the Adaptation Manager in a coherent
manner. Dynamic policy loading provides greater flexibility
when compared with other solutions since it allows loading
new policies even while the system is operating.

The Adaptation coordinator: is responsible for the
configuration of a given Managed System – it establishes
a group of initial operational parameters, adds/removes
replicas from a Managed System, defines active replicas
and backups, etc. Furthermore, the adaptation coordinator
executes the active policies while supporting different eval-
uation criteria (periodic, reactive, personalized) and, if a
reconfiguration is necessary, sends commands in order to
reconfigure the Managed System.

E. Performing an Adaptation

On the previous paragraphs, we showed how the Adapta-
tion Manager worked and how the replicas decided unani-
mously on coherent representations of the system. Still, it is
important to remark that replicas need to agree on when a
given policy must be executed while agreeing, respectively,
on the version of the policy that must be applied (guaran-
teeing timely and consistent adaptations). As mentioned, a
policy can be executed while reacting to an event, such as a
surpassing of a limit defined by the policy from the obtained
values sent by the sensors. In any case, we assume that that
all policy activations are executed consecutively. We also
assume that a serial number is associated to each policy
activation. Each policy activation increments this identifier
and disseminates the command ADAPT(i + 1, s) to every

other replica, where s is an identifier of the state on which
the policy activation i+1 must be performed. Furthermore,
a replica which receives f + 1 ADAPT commands from
different replicas, also adopts the decision of activating the
policy upon the state s, disseminating also the command
ADAPT(i + 1, s) to itself. An Adaptation Manager replica
executes the policy when it receives 2f + 1 equal ADAPT
commands. The messages exchanged between Adaptation
Manager replicas are also digitally signed. So, commands
from non-authenticated replicas are not considered for the
quorum validation. Ultimately, if the policy sends recon-
figuration commands to the Managed System, it will only
execute the reconfiguration if it receives this command from
a quorum of Adaptation Manager replicas.

F. Dealing with Byzantine Components

As it was previously explained, each ByTAM component
operates independently, communicating exclusively through
message exchange. This eases both the analysis of the
system behavior when faults occur and the mechanisms that
avoid the propagation of these failures, as it is illustrated
in Figure 2. In the following paragraphs we discuss the
effects of the occurrence of faults on different components
(namely the Managed System, the Monitoring System and
the Adaptation Manager).

When one of the replicas of the Managed System exhibits
Byzantine behavior, the Monitoring System readings can
obtain arbitrary values or fail silently. In the example pro-
vided in Figure 2(a), the Managed System replica can emit
intentionally different values for each sensor in order to force
the activation of a specific policy and consequently reduce
the system availability during the reconfiguration interval.
To avoid the propagation of arbitrary values produced by
a Byzantine replica of the Managed System, each Moni-
toring System replica must read the same indicator across
all Managed System replicas and perform a fault tolerant
voting on the values read, before propagating the reading
result to the Adaptation Manager. However, most replicas
of the Managed System will send coherent values to the

4



Adaptation 
Manager

Monitoring 
System

ServiceBytAM

(a) Managed System Failure

Adaptation 
Manager

Monitoring 
System

ServiceBytAM

(b) Monitoring System Failure

Adaptation 
Manager

Monitoring 
System

ServiceBytAM

(c) Adaptation Manager Failure

Figure 2. Messages from failed replicas on different components (f = 1)

Monitoring System replicas for which all the correct replicas
will end up sending a correct reading to the Adaptation
Manager.

When a Monitoring System component fails, as it is illus-
trated in Figure 2(b), it may either not provide the readings
to the Adaptation Manager or, change arbitrarily the values
read and send contradictory values to different Adaptation
Manager replicas. The propagation of contradictory values
is filtered by the consensus execution (when the Adaptation
Manager receives the values). A reading omission is treated
in the same way as an incorrect value. Finally, incorrect
values which are received by the Adaptation Manager are
eliminated in the voting process (which uses the values
received by other Monitoring System replicas): the value of
the reading is either greater/smaller than the values produced
by other replicas or it is within the interval defined by the
values received by two correct replicas. On the first scenario,
the deterministic function deletes the extreme values in the
voting process. On the second scenario, if the value is within
the interval defined by two correct replicas, then it is also
a correct value. This strategy is similar to what is used in
other contexts, such as in [14].

Finally, when an Adaptation Manager replica fails (Fig-
ure 2(c)), it can either opt to not execute the policy or trigger
an incorrect adaptation at an inappropriate time. However,
these behaviors will be masked by the remaining Adapta-
tion Manager replicas. It is important to recall that every
Adaptation Manager replica receives the same sequence
of values sent by the Monitoring System, as described
earlier. In this way, each correct Adaptation Manager replica
individually applies the policies and, if needed, trigger
an adaptation. Since the policies are deterministic, every
correct replica of the Adaptation Manager will trigger the
same adaptation. Hence, even if one of the Adaptation
Manager replicas cuts communication with the Managed
System, the remaining Adaptation Manager replicas will
end up sending the reconfiguration command, triggering the
adaptation process. Even if a Byzantine replica sends an
incorrect command to the Managed System, it will not start
the adaptation immediately. Instead, the Managed System

waits for a quorum of f+1 equal reconfiguration commands
from different replicas to perform the adaptation.

The analysis previously made assumes that different repli-
cas of a given component fail independently. This forces a
careful selection from the machines where the replicas are
executed. However, there is no inconvenience in co-locating
replicas from different components on the same machine (eg.
a Monitoring System replica with an Adaptation Manager
replica) as long as no more than f replicas fail for each
service. Finally, the managing components, such as the
Adaptation Manager or the Monitoring System, can be
shared to perform a dynamic adaptation of different Man-
aged Systems, since the adaptation frequency is typically
low.

G. Adaptation Policies

The policies accepted by the Adaptation Manager are
specified in the event-condition-action (ECA) form. To cre-
ate a policy, it is necessary to implement the Adaptation
Manager API and specify which events activate the policy,
which conditions must be verified upon its activation and,
finally, which action must be executed to apply an adapta-
tion.

The events that activate a policy may be notification
or temporal events. So, a policy can be registered to be
executed when a specific value from the Monitoring System
is received, usually for a quick response to a definitive
event, for instance, a crash of a Managed System replica
which executes the PBFT (allowing the reconfiguration of
the replication factor for a smaller number of replicas).

In a similar way, we can use heuristics to predict the
behavior of some dynamic variables while knowing the his-
tory of the metrics previously registered. It is then possible
to elaborate a periodically activated policy which selects
a range of readings obtained from the Managed System.
For instance, it is possible to use the storage to update the
training set of a system based in automatic learning such as
ADAPT.

The development of new policies goes through the im-
plementation of a Policy interface which is provided by the

5



Adaptation Manager. This interface provides two methods:
trigger() and execute().

On the trigger() method, we describe the events that
stimulate the execution of the policy, that is, this method
represents a previous phase of the policy’s execution where
we compute if the execution is necessary. If the policy’s
execution is necessary, then a signed ADAPT command is
sent to all the other Adaptation Manager replicas. After
receiving 2f + 1 valid ADAPT commands from different
replicas, the execute() policy method is called.

On the execute() method, a new configuration is created
which is then sent to the Managed System. This configura-
tion uses the reconfiguration API provided by the currently
active Managed System. When the Managed System receives
f + 1 valid signed messages from different Adaptation
Manager replicas, it executes the reconfiguration described
in that message.

IV. EVALUATION

ByTAM supports the dynamic adaptation of any reconfig-
urable parameter exported by the managed system. In this
section, we intend to illustrate the advantages of having an
independent and flexible system to control the adaptation,
instead of using solutions that only support a restrict number
of adaptations which are hardcoded. Particularly, we use a
scenario where we increase the performance not only by
changing the degree of fault tolerance (resilience), but also
one the parameters of the currently active BFT protocol.
None of the previous systems offers the flexibility to perform
this kind of adaptation.

A. Experimental Setup
The replicas and clients used in the evaluation

of ByTAM were hosted on the DigitalOcean service
(https://www.digitalocean.com/). Each replica/client has its
own virtualization environment (achieved through the
KVM). Each virtualized environment has access to 512Mb
of RAM, gigabit ethernet connections between switches and
10 Gigabit (ethernet) connections to internet providers, Intel
Xeon E5-2630L v2 processors clocked at 2.40Ghz (6 cores)
and 20Gb SSDs. Each replica also has a unique IP address
associated. The automatic adaptation system is based on
BFT-SMaRt therefore, its components are executed on a
Java Virtual Machine (JVM). The JVM version used was
1.8.0_91. Each replica started with an initial heap size of
256Mb and used the G1GC as the algorithm for garbage
collection.

To evaluate the performance of each configuration, we
used a variable payload on the BFT system, generated
by client machines with various threads. To achieve that
we used benchmarking tools offered by the BFT-SMaRt
library, more precisely the ThroughputLatencyServer and
the ThroughputLatencyClient. Each request to the replicated
service and each received response has a size of 512 bytes.
Each client thread sends 5000 sequential requests to the
replicated service without any delay between them. During
the calibration phase for the evaluation, we verified that a

single machine executing clients did not generate sufficient
requests to overload the service but, no more than two
machines are required to strangle the service. So, every
experiment was performed using two client machines, while
changing the number of client threads executed on each one,
between 1 to 15 execution threads in each one (to a total of
30 client threads).

B. The evaluated Adaptation
The adaptation used in the evaluation corresponds to

the reconfiguration scaleDown of the policy presented on
Listing 1. This policy describes two possible outcomes of the
system when a replica fails. If there are more freely available
machines in the system, a new machine is integrated with the
currently active replicas. If there are no machines available
to replace a failed replica then, it is preferable to reconfigure
the system to only tolerate one additional failure (changing
the configuration to “f = 1” and “n = 4”). However, while
we perform the reconfiguration to the group of replicas, it is
also possible to reconfigure the configuration parameters of
the protocol in order to optimize its performance on the new
configuration. Particularly, one of the parameters used by
BFT-SMaRt is the checkpoint frequency of the state history.
The experiences that we have performed show that, for the
used load, and for a configuration with “f = 2” and “n = 7”
the ideal value for the checkpoint is 1000 stored operations
while for a configuration with “f = 1” and “n = 4” the ideal
value is 100 stored operations (these values were obtained
experimentally by running the system with different values
for this parameter with intervals of 50 units). ByTAM does
not only allow the reconfiguration of the protocol but also
the number of active replicas.

C. Results
We assess the performance of the system when, on an

initial configuration with “f = 2”, “n = 7” and checkpoint
with 1000 stored operations, a replica fails (“f = 1”, “n =
6”). In this case, we evaluated three possible alternatives:
to leave the system working with that configuration until a
new replica becomes available to replace the failed one (note
however that the configuration still tolerates an additional
failure); reducing the number of servers of the service to
“f = 1” and “n = 4”, maintaining the checkpoint frequency
used by the protocol (this configuration still supports an
additional failure); reducing the number of servers and adjust
the checkpoint configuration, as it is captured in Listing 1.

To measure the performance on the various configurations,
we have monitored the throughput and the latency of the
system on the three configurations already described. The
throughput captures the number of executed operations per
second while the latency captures the time interval from
sending a client request and the reception of the respective
response (in µs).

The results are shown in Figures 3 and 4, with an increas-
ing number of clients performing requests on the replicated
service. As it is shown in Figure 3, the configuration which
has the lowest latency is the configuration where the policy

6



1 public class AdaptQuorumSize implements Policy {
2 private Server server = null;
3
4 @Override
5 public void trigger(Events evts) {
6 if (evts.has(Event.ReplicaDown)) {
7 Server newServer = getBackupServer();
8 if (newServer != null) {
9 this.server = newServer;
10 }
11 sendAdaptMsg(); //send notification to GA to run the policy
12 }
13 }
14
15 @Override
16 public void execute() {
17 if (server != null) {
18 integrate(server);
19 } else {
20 scaleDown();
21 }
22 }
23
24 private void scaleDown() {
25 Configuration newConfig = new Configuration();
26 newConfig.set("f","1");
27 newConfig.set("n","4");
28 newConfig.set("checkpoint","100");
29 sendConfigMsg(newConfig); //send reconfiguration commands to SG
30 }
31 ...
32 }

Listing 1. Example of an Adaptation Policy for ByTAM.

described in Listing 1 was applied. Additionally in Figure 4,
it is shown that the same configuration also exhibits the
best overall throughput. We conclude that between the three
configurations provided, the configuration with “f = 1”,
“n = 4” and checkpoint frequency of 100 operations, offers
the best service to its clients (high throughput and low
latency) therefore, performing the adaptation improves the
service provided. A big advantage of ByTAM is that the
decision of performing these adaptations together (changing
both the number of replicas and checkpoint frequency) or
separately, according to other criteria, can be easily changed
through a policy re-write, without changing any code from
the adaptation manager or from the managed system, which
did not happen on previous systems.

We have also registered how long it took for the system
to perform some reconfiguration tasks. We used the policy
described in Listing 1 so the values retrieved are from
reconfiguration tasks which are relevant for that policy. More
specifically, we measured how long it took to i) create
a new configuration for the target system. This includes
retrieving relevant sensor values registered by the Adaptation
Manager, create a new configuration using the Managed Sys-
tem reconfiguration API, and digitally signing the message;
ii) reconfigure the checkpoint frequency of the Managed
System (with 4 and 7 active replicas); iii) reconfigure the
resilience of the system – reducing the number of active
replicas from “n = 7” to “n = 4”; iv) reconfigure both
the resilience and the checkpoint frequency of the Managed
System.

As for the number of consensus instances performed
by the Adaptation Manager, since each value from the
the Monitoring System is totally ordered, we have one
consensus execution for each sensor value. So, the number

of consensus executions is between n − f and n (where n
is the number of replicas of the Monitoring System). The
Adaptation Manager also sends an ADAPT message to all
the other Adaptation Manager replicas when a given replica
wants to run the currently active policy (as it is described in
Section III-D). Since these messages are also totally ordered,
a consensus instance is executed for every correct Adaptation
Manager replica which is between n− f and n.

V. CONCLUSIONS

In this dissertation we present ByTAM, a robust architec-
ture to perform dynamic adaptations of systems that tolerate
Byzantine faults. To our knowledge, ByTAM is the first
reconfiguration system which is open source and tolerates
Byzantine faults across all system components, either from
replicas from the managed system, from the adaptation
manager, or from sensors that capture the state of the system.
Additionally and unlike previous proposals, ByTAM sup-
ports the execution of multiple adaptation policies without
requiring changes to the managed system or to the adaptation
manager. The current ByTAM version can be obtained on
https://github.com/fmrsabino/library/tree/bytam.

ACKNOWLEDGMENTS

This work was partially funded by Fundação para a Ciência e
Tecnologia (FCT) and by PIDDAC through projects with references
PTDC/EEI-SCR/1741/2014 (Abyss) and UID/CEC/50021/2013.

REFERENCES

[1] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to
reliable and secure distributed programming. Springer, 2011.

[2] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the
ACM (JACM), vol. 32, no. 2, pp. 374–382, 1985.

7



0

2000

4000

6000

8000

10000

12000

14000

16000

1 5 10 15 20 25 30

La
te

n
cy

 (
μ

s)

Client Threads

N=4, F=1, Checkpoint Frequency = 100 N=4, F=1, Checkpoint Frequency = 1000 N=6, F=1, Checkpoint Frequency = 1000

Figure 3. Latency of the various configurations

0

500

1000

1500

2000

2500

3000

1 5 10 15 20 25 30

Th
ro

u
gh

p
u

t 
(o

p
er

at
io

n
s 

p
er

 s
ec

o
n

d
)

Client Threads

N=4, F=1, Checkpoint Frequency = 100 N=4, F=1, Checkpoint Frequency = 1000 N=6, F=1, Checkpoint Frequency = 1000

Figure 4. Throughput of the various configurations

[3] L. Lamport, R. Shostak, and M. Pease, “The byzantine gener-
als problem,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[4] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: speculative byzantine fault tolerance,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 45–58,
2007.

[5] M. Castro, B. Liskov et al., “Practical byzantine fault toler-
ance,” in Proceedings of the Operating Systems Design and
Implementation (OSDI), 1999, pp. 173–186.

[6] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe,
“BFT protocols under fire,” in Proceedings of the 5th USENIX

Symposium on Networked Systems Design and Implementa-
tion (NSDI), San Francisco, California, 2008, pp. 189–204.

[7] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The
next 700 bft protocols,” in Proceedings of the 5th European
conference on Computer systems. ACM, 2010, pp. 363–376.

[8] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making BFT
protocols really adaptive,” in Proceedings of the IEEE Inter-
national Symposium on Parallel and Distributed Processing
(IPDPS), 2015, pp. 904–913.

[9] A. Bessani, J. Sousa, and E. Alchieri, “State machine replica-
tion for the masses with bft-smart,” in Proceedings of the 44th

8



Task Average Time (in ms)

Creation of the message containing the new configuration by the policy 13

Changing checkpoint frequency (with n = 4) 29

Changing checkpoint frequency (with n = 7) 54

Changing resilience (n = 7 to n = 4) 165

Changing checkpoint frequency and resilience (n = 7 to n = 4) 246

Table I
EXECUTION TIME FOR RECONFIGURATION TASKS DESCRIBED IN LISTING 1

Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2014, pp. 355–362.

[10] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

[11] ——, “The implementation of reliable distributed multipro-
cess systems,” Computer Networks (1976), vol. 2, no. 2, pp.
95–114, 1978.

[12] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti, “Making byzantine fault tolerant systems tol-
erate byzantine faults.” in NSDI, vol. 9, 2009, pp. 153–168.

[13] A. Bessani, E. Alchieri, M. Correia, and J. Fraga, “Depspace:
A byzantine fault-tolerant coordination service,” in Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference
on Computer Systems, 2008, pp. 163–176.

[14] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl,
“Reaching approximate agreement in the presence of faults,”
J. ACM, vol. 33, no. 3, pp. 499–516, May 1986. [Online].
Available: http://doi.acm.org/10.1145/5925.5931

9


