
The Road to a more Configurable
and Adaptive Communication and

Coordination Support

Lúıs Rodrigues

DI–FCUL TR–2003–2

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.





The Road to a more Configurable and
Adaptive Communication and

Coordination Support∗

Lúıs Rodrigues†

Universidade de Lisboa
FCUL, Campo Grande,

1749-016 Lisboa, Portugal

ler@di.fc.ul.pt

Abstract

The implementation of distributed applications is an increasingly com-
plex task. Not only the users require new and more complex functionalities
but these have to be provided considering a large set of non-functional
requirements such as high performance, fault-tolerance, timeliness, etc.
Therefore, communication and coordination services, offered at the oper-
ating system or middleware level, assume a fundamental role in the devel-
opment of efficient and robust software. This paper discusses the problem
of designing and implementing the communication and coordination sup-
port for distributed applications. One way to implement these services is
to rely on application-specific solutions, in an attempt to obtain the best
performance possible. In this paper, we champion a different approach
that consists in supporting adaptation, configuration and composition at
all levels of the system development, namely: i) abstractions; ii) algo-
rithms and; iii) implementations. Using different examples we show that
this approach allows to obtain solutions that are generic, re-usable and
efficient.

1 Introduction

The development of distributed applications is a complex task, mainly due to
the large set of functional and non-functional requirements that need to be ad-
dressed by the programmer. Among others, performance, fault-tolerance, time-
liness, and security, are some examples of relevant non-functional requirements.
Additionally, due to commercial reasons, the development cycle of many applica-
tions is becoming shorter, emphasizing the need for an adequate communication

∗Selected sections of this report will be published in the Proceedings of the 9th Workshop
on Future Trends of Distributed Computing Systems. San Juan, Puerto Rico, May 2003.

†This work has been partially supported by the FCT project SHIFT
(POSI/CHS/40088/2001).

1



and coordination support (this support can be provided at the operating system
or middleware level).

Therefore, it is of utmost importance to identify abstractions that are able
to encapsulate a significant amount of the complexity inherent to distributed
computing. Abstractions such as consensus [16], atomic commitment [2], causal
order [24], total order [18], and virtual synchrony [4], among others, capture re-
curring and fundamental problems in the design of distributed applications.

Unfortunately, when trying to apply in a naive way some of these abstrac-
tions to concrete applications, one may be faced with implementation difficulties
that may limit the performance of the resulting system and raise doubts about
the practicality of these abstractions [9, 38]. A superficial analysis of the causes
for these limitations may lead to the conclusion that the only way to achieve
good performance is to rely on tailor-made solutions. Typically, these solutions
solve application-specific problems but cannot be applied outside their original
design context.

In this paper we advocate an approach to the construction of the communi-
cation and coordination middleware that balances the advantages gained from
using clean and elegant abstractions with the need to satisfy the performance
requirements of distributed applications. The approach consists in support-
ing adaptation, configuration and composition at all levels of the system de-
velopment, namely: i) abstractions; ii) algorithms and; iii) implementations.
The conclusions drawn here are derived from the experience gained by the Dis-
tributed ALgorithms and Network Protocols (DIALNP) group at Faculty of
Sciences, University of Lisboa in the attempt to answer the following questions:

• Abstractions: How to encapsulate the inherent difficulties of distributed
computing without compromising the performance of the applications?

• Algorithms: Given an abstraction and a system model which is the best
algorithm to implement the abstraction? Is it possible to develop adaptive
algorithms that adjust themselves to different operational conditions?

• Systems: What is the most adequate software infra-structure to support
the implementation of the previous algorithms? Can we satisfy the needs
of different applications without being forced to implement a spectrum of
specialized monolithic implementations?

• Applications: Are the abstractions, algorithms, and implementations
proposed when addressing the previous questions, adequate to support
real applications? In this paper we will use data replication as a case
study to illustrate the advantages of offering adaptation, configuration
and composition in the communication and coordination support.

The rest of the paper is structured as follows. The need for some basic
abstractions to support data replication is motivated in Section 2. Section 3
shows how basic abstractions can be augmented to better match the application
requirements. The design of algorithms that implement these abstractions is
discussed in Section 4 and their implementation addressed in Section 5. Finally,
the application of these results to real cases is described in Section 6. Section 7
concludes the paper.

2



2 Data Replication

To motivate our approach we use a concrete application area, namely, data
replication. There are two well known main reasons to replicate data:

• Improve performance. A centralized datastore represents a bottleneck in
the system. Additionally, clients geographically distant from the store
suffer a significant delay in the data access. When data is replicated it
can be placed near the clients. Also, read operations can be performed in
parallel at different replicas.

• Fault-tolerance. A centralized datastore represents a single point of failure.
A failure in the node that stores the data may cause the data to be lost
or unavailable for a long period. Replication may ensure data availability
in the presence of faults.

Unfortunately, there are many costs associated with data replication. In
order to ensure consistency, data updates need to be coordinated. Coordination
may require several rounds of message exchange and seriously limit the system
performance. Due to these costs, typically data replication is more effective
in systems where the number of read operations is significantly larger than the
number of write operations. However, even in this case, it is important to ensure
that the costs of coordination are acceptable.

Data replication is an interesting example because it illustrates how the
choice of an inappropriate abstraction may invalidate a large set of applications.
Early approaches to data replication were based in quorums [12, 11] and did not
rely on other communication or distributed coordination primitives to simplify
the task of serializing concurrent transactions [3]. The resulting high number of
aborts due to deadlocks observed in some of these approaches raised the question
of the feasibility of applying data replication in practice [14].

However, later work has shown that data replication is not only possible
but can also outperform systems that do not use replication [22, 23, 1]. The
new family of solutions is based on a set of abstractions which is substantially
different from the abstraction used by early approaches. In particular, the new
generation of systems relies on the following abstractions:

• Uniform reliable multicast. Informally, this primitive ensures that if a
message is delivered to a given participant it is delivered to all correct
participants.

• Uniform total oder. Informally, this primitive ensures that messages are
delivered to all participants in the same order.

A primitive satisfying both reliability and order is usually called atomic
multicast. Using these two abstractions, among others, it is possible to replicate
data using one of the two following basic approaches [15]:

• Passive replication. This technique consists in electing a replica as a pri-
mary. All updates are performed at the primary which, in turn, propagates
them to the backup replicas. This technique is more effective in systems
where it is possible to implement an accurate failure detector to simplify
the process of electing the primary.

3



• Active replication. This technique execute all updates in parallel at all
replicas. To ensure that all updates are processed in the same order, an
atomic multicast primitive must be used [18]. This technique does not
require the explicit election of a primary but requires the execution of an
atomic broadcast for each update/transaction.

The advantages of these abstractions have been illustrated by several projects
on database replication over local-area networks [23, 19]. To achieve the same
advantages in large-scale networks these basic abstractions may need to be aug-
mented [1, 30, 39]. In the following section we will give two different examples
of this approach.

3 New Abstractions

In the previous section we have identified some useful abstractions to support
data replication. In this section we discuss the adaptation of two of these ab-
stractions, more specifically, of reliable multicast and total order. We motivate
these adaptations by discussing some of the limitations of the basic abstraction
when applied to the development of concrete systems.

3.1 Semantic Reliability

By definition, a reliable multicast algorithm ensures that each message is deliv-
ered to all correct participants. When implementing these algorithms in practi-
cal systems one needs to resort to some form of acknowledgment (and retrans-
mission) mechanism (to recover from omission faults). Usually, when a message
has been acknowledged by all participants, it is said to be stable. Stable mes-
sages can be discarded from retransmission buffers. A large body of work has
been performed on the optimization of stability tracking mechanisms [17].

A limitation of reliable multicast when applied to heterogeneous groups is
that the complete system becomes dependent of the timely behavior of all mem-
bers. It is enough that a single member is slow, and does not acknowledge the
reception of messages in a timely manner, in order for the sender to accumulate
messages in its buffer. If the slow member does not recover fast enough, the
sender exhausts its buffer and is forced to stop until the slow member recovers.
Unfortunately, this behavior can be observed even when the performance fault
of the slow member is transitory [5]. This happens because different partici-
pants may be perturbed at different times, leading to a permanent degradation
of performance in the system.

A possible solution to avoid the limitation described above consists in aban-
doning the provision of reliable multicast. However, when unreliable primitives
are used one is usually forced to design application-specific recovery procedures.
This approach is suggested, for instance, in [10] and [6]. However, in this paper
we are interested in solutions that minimize the amount of specialized code that
needs to be executed at the application level.

Using semantic information about the contents of the messages exchanged
in the system, it is possible to propose a generalization of reliable multicast
called semantic reliability [28]. This new abstraction exploits the fact that, in
a substantial amount of applications, the transmission of a new message may

4



cause preceding messages to become obsolete. For instance, two consecutive
transaction may update the same data items: in this case, the last transaction
makes the updates from the previous transaction obsolete.

Let the fact that a message m is made obsolete by another message m′ be
represented by the relation m @ m′. Semantic reliability is characterized by the
following agreement property1:

Agreement: If a correct process delivers a message m, and there is a time
after which no process multicast a message m′′ such that m @ m′′, then
all correct processes eventually deliver some message m′ such that m v m′.

It is interesting to note that the definition of semantic reliability is equivalent
to uniform reliability when no message is made obsolete by any other message.
The usage of semantic reliability assumes that the application is able to label
the messages to express the obsolescence relation. A description of different
techniques to capture and express obsolescence relations is given in [30].

3.2 Optimistic Total Order

We now give another example of an adaptation of a basic abstraction to create a
more powerful, and efficient, new abstraction. This new abstraction, called opti-
mistic total order [27] has been proposed to address the performance limitations
of totally ordered multicast protocols.

It can be shown that the problem of ordering multicast messages in a total or-
der is, in asynchronous systems, equivalent to the consensus problem [8]. On the
other hand, there are also known lower bounds on the number of communication
steps to solve consensus: more specifically, at least two communication steps are
required [21] (but most total order protocols for the asynchronous system model
require a larger number of steps [8, 33]). Therefore, total order introduces an
overhead in terms of communication steps that cannot be avoided. However, in
most algorithms, it is possible to have an estimate of the final total order before
the algorithm is terminated.

The idea of optimistic total order is based on the fact that several appli-
cations, namely applications with transactional semantics, can make progress
based on an early estimate of the final total order (and later confirm or abort
this progress according to the final result of the algorithm). The approach as-
sumes that it is possible to design total order algorithms where the estimate is
accurate with high probability. In the following section we will briefly introduce
a new algorithm with this characteristic.

As in the example of semantic reliability, we can also consider optimistic
total order as a generalization of a more traditional total order abstraction
(note that a protocol that delivers the estimate at the same time of the final
order corresponds to the classical total order definition [18]).

3.3 Discussion

The two previous examples show that the satisfaction of performance require-
ments can be addressed at the abstraction level without relying on application-

1In fact, it is possible to define a complete protocol family based on the notion of semantic
reliability [28, 29, 30]. A complete description of such family of protocols is outside the scope
of the current paper.

5



specific solutions. The given examples are quite generic (actually, they can be
seen as generalization of the traditional definitions) but include the necessary
extensions to address performance aspects also at the algorithmic and imple-
mentation levels.

4 New Algorithms

Naturally, to define new abstractions is not enough to support the development
of distributed application in an efficient manner. It is also necessary to design
the algorithms able to implement these abstractions. In the following para-
graphs we provide a brief summary of some new algorithms that implement the
abstractions described in the previous section.

4.1 Semantic Reliable Multicast

As noted previously, any algorithm based on the notion of semantic reliability
requires the user to label the message with information that captures the obso-
lescence relation. We will not address this problem here (the interested reader
can refer to [30]). On the other hand, we will show how this information can be
used by a concrete algorithm.

The basic principles of the algorithm are the following [29]: messages are sent
to all recipients, as in a fully reliable algorithm. Also, the reception of messages
is acknowledged, and these acknowledgments are disseminated to all participants
(either using dedicated control messages or by piggybacking this information
in data messages). When a message is acknowledged by a majority of group
members, this message is said to be safe. When a message is acknowledged by
all group members the message is said to be stable and can be eliminated from
the retransmission buffers.

The motivation to the introduction of semantic reliability is the presence
of slow group members, unable to acknowledge the reception of messages at
an acceptable pace. To accommodate these nodes, the algorithm deletes from
the buffers obsolete messages before they are stable without compromising the
correctness of the applications. To achieve this goal, each node searches its local
buffers for a message m, that has been made obsolete by some other message
m′ such that: i) a copy of m′ is also stored in the local buffer and ; ii) m′ is
safe. If such message m exists, m is deleted from the buffer, creating space
for new messages. A process that deletes a massage in this way, replaces the
message by a small marker (with the identity of the message). In all cases where
the message should have been sent, the marker is sent as a replacement. This
allows receivers to know that the message was made obsolete. The reception of
markets is acknowledge in the same way as normal messages. Similarly, stable
markers can also be discarded from buffers.

In a group where a majority of processes has no performance constraints,
obsolete messages can be purged to create space for more up-to-date informa-
tion. Depending on the buffer size and on the obsolescence pattern exhibited by
the application, this strategy can successfully delay, or even avoid altogether,
the blocking of the sender in the presence of transient performance faults in one
or more group members.

6



0

50

100

150

0 50 100 150 200
O

ut
pu

t (
%

 o
f b

ot
tle

ne
ck

)

�

Avail. input (% of bottleneck)

reliable/network
reliable/receiver

semantic/network
semantic/receiver

Figure 1: Advantages of a semantic reliable multicast algorithm.

Figure 1 illustrates the advantages of the algorithm by showing the through-
put of a sender in the presence of a slow recipient or link. In this case, half of the
messages never become obsolete and the other half obsoletes each other. The
figure depicts four lines, showing the behavior of an algorithm without obsoles-
cence and of the semantic reliable algorithm for the cases where the bottleneck
is the sender and a network link. In a fully reliable protocol the throughput of
the sender is limited by the bottleneck in the system. Using semantic reliability
it is possible to sustain a throughput 50% higher (corresponding to the amount
of messages that can be discarded from the buffers). Naturally, the traffic ob-
solescence pattern affects the shape of these lines. We will return to this issue
later in the paper.

4.2 An Indulgent Optimistic Total Order Algorithm

The abstraction of optimistic total order assumes that it is possible to derive
algorithms that are able to:

• Obtain an estimate of the final order of the messages before the termina-
tion of the algorithm;

• Ensure that in most runs the estimated order is accurate with regard to
the final order.

The first proposed algorithms supporting optimistic delivery were based on
characteristics specific to concrete classes of systems. For instance, the algo-
rithm described in [27] assumes the availability of a local area network, as the
estimated order is based on the network spontaneous order. On the other hand,
the algorithm proposed in [36] can operate over large-scale networks but the
estimate order is based on an evaluation of the network delay, and there is a
non-negligible probability for the estimate to be inaccurate.

In the following paragraphs we provide a brief overview of an optimistic total
order algorithm in which the estimate is always accurate as long as no processes
are suspected. The algorithm, described in detail in [39] is to our knowledge
the first algorithm to provide highly accurate optimistic delivery in a general
setting.

The algorithm is based on the idea of combining a total order protocol that
does not consider the occurrence of faults, that we simply designate by OPT,

7



with a consensus algorithm that only assumes the availability of an eventually
strong failure detector (3S) [8]. Basically, the OPT algorithm is used to gener-
ate the estimated total order, since it exhibits a smaller latency than any algo-
rithm designed for 3S. The consensus algorithm is used to terminate on-going
multicast when failures are suspected and to reconfigure OPT. The chosen OPT
algorithm is the hybrid total order algorithm described in [32] due to its good
performance in geographically large-scale systems. Specifically, the algorithm is
based on the following strategy:

1. Based on an estimate of network delays and on the output of the 3S failure
detector, a configuration for OPT is proposed. This step allows to adapt
the configuration of OPT to the properties of the execution environment.

2. Algorithm OPT is used to order messages. The order proposed by OPT
is delivered to the application as an estimate of the final order.

3. An additional communication step is executed to stabilize the estimated
order and make it definitive [13]. If processes are not suspected to have
failed, the estimate becomes stable without being required to execute ex-
plicitly a consensus algorithm.

4. If the failure of a process is suspected, the execution of OPT is suspended.
A consensus protocol is executed to order on-going messages transmissions.
The algorithm is re-started from step 1.

Table 1 illustrates the latency gains that can be achieved when this algo-
rithm is used. The values have been measured using two local-area networks
connected by a long-haul link exhibiting a latency in the order of 200ms (a
detailed description of the experimental setting can be found in [39]). The table
compares the latency of: i) a non-uniform total order protocol based on a per-
fect failure detector (TO); ii) the optimistic delivery of the protocol described
above (UTO-opt) and; iii) the final total order for the same protocol (UTO).
Results are shown for three different configuration of OPT, where the hybrid
configuration is the one chosen by our adaptive mechanisms. It is possible to
observe not only the smaller latency offered by the hybrid configuration but also
a difference between the latency of the estimate and the final delivery in the
order of one communication step.

TO UTO-opt UTO
A single sequencer 475.0 479.0 652.7
All sequencers 328.0 328.0 484.3
Hybrid 303.0 303.0 496.7

Table 1: delivery latency (ms)

An interesting aspect of this algorithm is that it proposes a technique that
allows to exploit the efficiency of algorithms designed for the perfect failure
detector model (P) in system where only an eventually strong failure detector
can be assumed.

8



4.3 Discussion

It is possible to design new algorithms that, through adaptation, improve sig-
nificantly the performance of non-adaptive versions. The semantic reliable mul-
ticast algorithm described above can be easily parameterized by the application
and the optimistic total order algorithm has the ability to reconfigure in order
to adapt to changes in the operational envelope.

5 An Implementation: using the Appia System

We have already addressed the issue of defining new abstractions and specifying
new algorithms to support those abstractions. In this section we address the
issue of implementing the algorithms in order to build systems.

One way to implement the communication support consists in using mono-
lithic solutions, in which all protocols are included in a single non-modular
software component. In some cases, one might obtain performance gains by
having a tightly coupled implementation of a protocols suite. However, mono-
lithic solutions cannot be easily adapted to match the application requirements.
Therefore, monolithic solutions are contrary to the approach defended in this
paper.

On the other hand, it is desirable to rely on the composition of modular
protocols to build an adaptive communication support infra-structure. The
DIALNP group is building a modular framework to support the composition and
execution of modular protocol components called Appia [25]. In the following
paragraphs we summarize the most relevant characteristics of the Appia system.

The Appia system is a protocol composition and execution framework de-
veloped in Java. Each Appia module is a layer, a micro-protocol that ensures a
given set of properties. Layers are independent and can be combined to create
powerful protocol stacks. Each vertical composition of layers defines a given
quality of service (QoS). It is possible to create one or more channels offering
the same quality of the service. To each channel is associated a stack of sessions :
there is a session for each protocol layer in the stack. The purpose of session
objects is to store the state required for the execution of its layer. For instance,
a layer that implements a FIFO ordering protocol needs to preserve a sequence
number in the session object. The Appia system allows the same session object
to be shared by different channels. Using the example of the FIFO layer, it
is possible to create channels that have independent sequence numbers or that
share the same sequence number2.

The interaction among layers is performed through the exchange of events.
Each event has a type and each layer declares the types of events that it creates
and that it is interested in processing. The system optimizes the flow of events
in the protocol stack by ensuring that the events are only delivered to the layers
interested in receiving them.

The use of the Appia system to implement the algorithms described in the
previous sections has the advantage of supporting the reuse of other existing
protocols, such as transport, consensus, FIFO, and failure detection protocols.

2An important feature of the Appia system that we do not discuss in the current paper
is the possibility to express inter-channel constraints using the session sharing mechanism.
For instance, it is simple to create a set of channels with different properties but that respect
causal order among them. This sort of protocol composition is discussed in detail in [37].

9



Application

Info

FIFO

Group communication

Optimistic UTO

UDP

Message piggybacking

Flow control

Virtual synchrony

UDP

Channel with memory manager

Buffers
with

semantic information

Application

Reliable multicast

a) Semantic reliability b) Optimistic total order

Figure 2: Appia protocol compositions.

It allows also an implementation of a protocol to be changed without requiring
any modification in the remaining protocols of the stack. Furthermore, it is
possible to add or remove properties (layers) to a given protocol stack in a
very flexible manner (for instance, by inserting or removing a logging layer).
Figure 2 illustrates the protocol compositions used to implement the algorithms
described in the previous section.

5.1 Discussion

The implementation of a communication infra-structure adapted to the appli-
cation does not require the use of custom made monolithic solutions. On the
contrary, the use of protocol composition techniques may give to the application
the tools needed to adapt the communication support to a specific operational
envelope.

6 Applications

In this paper we use database replication as a case study to illustrate the ap-
plication of the abstractions, algorithms and systems discussed in the previous
sections. In particular, we use two different types of databases with different
requirements:

• Small scale in-memory databases, such as the ones used to maintain the
state of multi-user game servers.

• Persistent transactional object-oriented databases.

The replication of each of these types of databases is addressed in the fol-
lowing paragraphs.

10



6.1 Replication of a Game Server database

Most implementations of multi-user games are based on a centralized server
that represents a single point of failure. A practical way of making this archi-
tecture fault-tolerant consists in using a primary-backup approach to replicate
the server. Typically, the information that needs to be copied from the pri-
mary to the backup(s) is a set of registers with the state of the several objects
managed by the game server (avatars, vehicles, items, missiles, etc).

This collection of registers can be described as a small in-memory database.
This sort of database is characterized by a high load of updates (corresponding
the the actions of the several players). Since there are frequent updates to
the database, there is a high throughput of updates from the primary to the
backups. Therefore, the backups can easily become a bottleneck in the system,
if their performance is not good enough to keep up with the speed of the primary
server.

An interesting feature of the access patterns to these sort of databases is
that there is a significant amount of locality in the access to each register. This
type of pattern corresponds to the movement of an avatar or vehicle by a player.
Therefore, we can expect a significant amount of obsolescence in the traffic from
the primary to the backups. This means that semantic reliability can be used
to improve the performance of such replicated architecture.

To validate this assumption we have used a concrete case-study to extract
experimentally real access patterns to a game server database. To this goal, we
have instrumented a public domain implementation of the Quake [20] multi-user
game.

Figures 3a and 3b illustrate the obsolescence pattern observed in this ap-
plication. It is possible to observe that some items are updated much more
frequently than others. It is also possible to observe that the distance between
related messages is relatively small (usually, below 15 messages): this is an
indication that performance gains can be achieved with buffers of moderate
dimension. Using simulations, we have estimated the advantages of applying
semantic reliability to this application. These are illustrated in Figure 3c: while
the throughput of a reliable multicast protocol drops if the backup replica ex-
perience delays, the usage of semantic reliability allows to sustain the input
throughput even if the backup exhibits delays in the order of 30ms. A pro-
totype of the semantic reliable multicast protocol using the Appia system is
currently being implemented [7]. There is also an on-going effort to apply this
approach to other multi-user games, such as the Microsoft’s Flight Simulator.

6.2 Replication of Transactional Object-Oriented Databases:
the GlobData System

The GlobData [34] system is a middleware solution to support the replication
of object-oriented databases. The system is being developed by an European
consortium in the context of an IST project. The complete architecture in-
cludes many components, such as OQL compilers, interfaces to an underlying
relational database store, stub compilers, etc [35]. The system also supports
several replication strategies [26, 34].

The complete description of the GlobData system is outside the scope of
this paper (the interested reader can refer to [34]). Here we briefly summa-

11



0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50

%
 o

f r
ou

nd
s

�

Item rank

(a) Frequency.

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

%
 o

f m
es

sa
ge

s

�

Distance to closest related message

(b) Distance.

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

�

Processing delay (ms)

semantic
reliable

(c) Throughput.

Figure 3: Obsolescence and performance using Quake.

rize one of the replication algorithms, which is an adaptation of the algorithm
described in [22] to the transactional model of the GlobData system. Concur-
rency control is performed combining the use of local clocks and the following
coordination procedure:

1. All operations of a given transaction are executed locally in the process
where the transaction was initiated (the delegate process). During its
execution, the transaction obtains read and write locks on accessed data
items (before being written, an object must be read).

2. When the transaction tries to commit, the write set is disseminated using
an atomic broadcast primitive.

3. When a transaction is delivered by the atomic broadcast primitive, all
processes try to acquire write locks for all objects in the transaction’s
write set. During this step, the transaction may be required to wait for
some locks. Other transactions that have read locks on the objects are
aborted (in this case, the delegate process informs all other processes by
sending an abort message using an uniform broadcast primitive). When
the delegate process obtains all the write locks, it disseminates an commit
message using a uniform broadcast primitive. This phase is called the
certification phase.

4. When a process receives the commit message, all the updates are applied
to the database and the locks are released. When a node receives an abort
message it releases the locks detained by the transaction without applying
the updates to the database.

12



In this system, the optimistic total order protocol described in Section 4.2
is used to parallelize the following actions: i) the transmission of the commit
message; ii) the termination of the total order protocol. When a node receives
the estimate of the final order it executes immediately the transaction certifi-
cation procedure described above. If the certification procedure indicates that
the transaction cannot be committed, the transaction is aborted without wait-
ing for the final total order. On the other hand, if the certification accepts
the transaction, the commit message is sent immediately (even if the final total
order has not been received yet). All processes confirm the transaction when:
i) receive the commit message and ii) the definitive total order is the same as
the estimate order. In this way, the system can save a communication step in
the most frequent case.

6.3 Discussion

These results validate the previous observations, demonstrating that is in fact
possible to improve the performance of distributed applications through the
resource to configurable and adaptive solutions.

7 Conclusions and Future Work

This paper has addressed the problem of providing effective communication
and coordination support for complex distributed applications. The goal is to
achieve solutions that are both efficient and can be re-used in different contexts.
It is also desirable that these subsystems offer simple and elegant abstractions.
We have shown that to achieve this goal, configuration and adaptiveness has
to be considered at all levels of system development, namely: abstractions,
algorithms and implementations.

At the abstractions level, we have shown that is possible to depart from
generic abstractions, with applicability to a large domain of systems, and aug-
ment these abstractions to improve expressiveness without limiting the appli-
cability domain. At the algorithmic level, we have shown that it is possible
to derive adaptive algorithms that can be used in diverse operational condi-
tions. At the implementation level, we have emphasized the importance of
using protocol composition and execution frameworks that are able to preserve
the adaptiveness achieved at the upper levels. These frameworks allow the ap-
plications to configure the communication and coordination support according
to the operational envelope (load, network topology, etc). Finally, these results
were validated by applying them to concrete applications. The paper reported
two concrete on-going experiments by the DIALNP research group.

The approach defended in this paper allows to combine the advantages of
using powerful abstractions, that encapsulate the complexities of distributed
computing, with the efficiency needs of modern applications. This advantage
derives from considering adaptiveness as a central quality, that must be ad-
dressed at all levels of the system development. The DIALNP group is currently
starting to apply this methodology to the development of communication and
coordination support in middleware for mobile and ad hoc networks [31].

13



Acknowledgments

The work reported here was performed in collaboration with the members of the
DIALNP group and with the partners of the national and international projects
in which the group is involved.

References
[1] Y. Amir and C. Tutu. From total order to database replication. In IEEE Interna-

tional Conference on Distributed Computing Systems (ICDCS), number CNDS-
2001-6, July 2002.

[2] Ö. Babaog̃lu and S. Toueg. Understanding non-blocking atomic commitement.
In S. Mullender, editor, Distributed Systems (2nd edition), chapter 6. Addison-
Wesley, 1993.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[4] K. Birman. The process group approach to reliable distributed computing. Com-
munications of the ACM, 36(12):37–53, December 1993.

[5] K. Birman. A review of experiences with reliable multicast. Software Practice
and Experience, 29(9):741–774, July 1999.

[6] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2):41–88, 1999.

[7] N. Carvalho, J. Pereira, and L. Rodrigues. Concretização de protocolos com
fiabilidade semântica. In Actas da 5a Conferência sobre Redes de Computadores,
Faro, Portugal, September 2002.

[8] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[9] D. Cheriton and D. Skeen. Understanding the limitations of causally and totally
ordered communication. In Proceedings of the 14th Symposium on Operating
Systems Principles, Asheville, NC, USA, December 1993.

[10] D. Clark and D. Tennenhouse. Architectural considerations for a new generation
of protocols. In SIGCOMM Symposium on Communications Architectures and
Protocols, pages 200–208, Philadelphia, PA, September 1990. ACM.

[11] H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.
Journal of the ACM, 32(4):841–860, October 1985.

[12] D. Gifford. Weighted voting for replicated data. In Proc. of the 7th ACM Sym-
posium on Operating System Principles, pages 150–162, USA, December 1979.

[13] A. Gopal and S. Toueg. Inconsistency and contamination. In Luigi Logrippo, edi-
tor, Proceedings of the 10th Annual ACM Symposium on Principles of Distributed
Computing, pages 257–272. ACM Press, August 1991.

[14] J. Gray, P. Helland, P. O’Neal, and D. Shasha. The dangers of replication and
a solution. In Proc. of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 173–182, Montreal, Quebec, Canada, June 1996.

[15] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE
Computer, 30(4):68–74, April 1997.

[16] R. Guerraoui and A. Schiper. The generic consensus service. IEEE Transactions
on Software Engineering, 27(1):29–41, January 2001.

14



[17] K. Guo. Scalable Message Stability Detection Protocols. PhD thesis, Cornell
University, Computer Science, May 1998.

[18] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and
related problems. Technical Report TR94-1425, Cornell University, Computer
Science Department, May 1994.

[19] J. Holliday, D. Agrawal, and A. El Abbadi. Using multicast communication to
reduce deadlock in replicated databases. In Proc. of the 19th IEEE Symposium
on Reliable Distributed Systems (SRDS2000), Nürnberg, Germany, October 2000.

[20] Id Software Inc. Quake homepage. http://www.quake.com.

[21] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are
no faults - a tutorial. Technical report, MIT Laboratory for Computer Science,
2001.

[22] B. Kemme and G. Alonso. A suite of database replication protocols based on
group communication primitives. In Proc. of the 18th International Conference
on Distributed Computing Systems (ICDCS), The Netherlands, May 1998.

[23] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, a new way
to implement database replication. In Proc. of the 26th International Conference
on Very Large Databases, Cairo, Egypt, September 2000.

[24] L. Lamport. Time, clocks and the ordering of events in a distributed system.
CACM, 21(7):558–565, July 1978.

[25] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel sup-
porting multiple coordinated channels. In Proceedings of the 21st International
Conference on Distributed Computing Systems, pages 707–710, Phoenix, Arizona,
April 2001. IEEE.

[26] F. D. Muñoz, L. Irún, P. Galdámez, J. M. Bernabéu, J. Bataller, and M. C.
Bañuls. Globdata: Consistency protocols for replicated databases. In Proc. of
the IEEE YUFORIC’2001, pages 97–104, Spain, November 2001. ISBN 84-9705-
097-5.

[27] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proceedings of the
12th International Symposium on Distributed Computing (DISC’98), 1998.

[28] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast proto-
cols. In Proceedings of the Nineteenth IEEE Symposium on Reliable Distributed
Systems, pages 60–69, October 2000.

[29] J. Pereira, L. Rodrigues, and R. Oliveira. Enforcing strong consistency with se-
mantic reliability: Sustaining high throughput in reliable distributed systems. In
P. Ezhilchelvan and A. Romanovsky, editors, Concurrency in Dependable Com-
puting. Klywer Academic Publishers, 2002.

[30] J. Pereira, L. Rodrigues, and R. Oliveira. Reducing the cost of group communica-
tion with semantic view synchrony. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN), pages 293–302, Washington (DC),
USA, June 2002.

[31] L. Rodrigues and R. Prakash (eds). Report on the ERCIM-NSF workshop on mid-
dleware for mobile systems. Technical report, ERCIM-NSF Strategic Workshops,
2002.

[32] L. Rodrigues, H. Fonseca, and P. Veŕıssimo. Totally ordered multicast in large-
scale systems. In Proceedings of the 16th International Conference on Distributed
Computing Systems, pages 503–510, Hong Kong, May 1996. IEEE.

15



[33] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Pro-
ceedings of the Seventh International Conference on Computer Communications
and Networks (IC3N’98), pages 840–847, Lafayette, Louisiana, USA, October
1998. IEEE.

[34] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, , and P. Vicente. The globdata
fault-tolerant replicated distributed object database. In Proceedings of the First
Eurasian Conference on Advances in Information and Communication Technol-
ogy, pages 426–433, Teheran, Iran, October 2002.

[35] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong repli-
cation in the globdata middleware. In Proceedings of the Workshop on Dependable
Middleware-Based Systems, pages G96–G104, Washington D.C., USA, June 2002.
IEEE. (Suplemental Volume of the 2002 Dependable Systems and Networks Con-
ference, DSN 2002).

[36] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide
area networks. In Proceedings of the 21th IEEE Symposium on Reliable Distributed
Systems (SRDS’02), page (to appear), Osaka, Japan, October 2002.

[37] S. Teixeira, P. Vicente, A. Pinto, H. Miranda, L. Rodrigues, and A. Martins,
J. Rito-Silva. Configuring the communication middleware to support multi-user
object-oriented environments. In Proceedings of the International Symposium on
Distributed Objects and Applications (DOA), page (to appear), Irvine (CA), USA,
October 2002.

[38] R. van Renesse. Causal controversy at Le Mont St.-Michel. ACM Operating
Systems Review, 27(2):44–53, April 1993.

[39] P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with
optimistic delivery. In Proceedings of the 21th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS’02), pages 92–101, Osaka, Japan, October 2002.

16


