
Adaptive Quorums for Cloud Storage Systems
(extended abstract of the MSc dissertation)

Pilana Withanage Gayana Ranganatha Chandrasekara
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Cloud storage systems rely on replication for
reliability. Typically, each data object is stored in multiple
nodes to ensure that data remains available in face of node
or network faults. Quorum systems are a practical way to
ensure that clients observe consistent data even if some of the
replicas are slower or unavailable. Previous work has shown
that the performance of a quorum based storage system can
vary greatly depending on the workload characterisation and
that significant gains can be achieved by carefully selecting the
size of write and read quorums. In this work we are interested
in multi-tenant storage systems, that are faced to heterogeneous
works. In these systems, for optimal performance, different
quorums may need to be applied to different data. Unfortu-
nately, keeping different quorum systems for different objects
significantly increases the amount of metadata that the storage
system needs to manage. The challenge is to find suitable trade-
offs among the size of the metadata and the performance of the
resulting system. The thesis explores a strategy that consists in
identifying which tenants and/or objects are the major sources
of bottlenecks in the storage system and then performing fine-
grain optimization for just those objects, while treating the rest
in bulk. We have implemented a prototype of our system and
assessed the merits of the approach experimentally.

I. INTRODUCTION

The number of cloud-based applications that require the
storage of large data sets keep increasing. Notable examples
include Google, Facebook, Twitter, among many others, but
this trend is common to many other applications. As a result,
distributed storage systems are a fundamental component
of any cloud-oriented infrastructure and have received a
growing interest, with the emergence of many private, com-
mercial, and open source implementations of this abstrac-
tion. Apache Cassandra [1], Amazon Dynamo [2], Openstack
Swift [3] are some relevant examples of cloud storage sys-
tems that aim at providing high availability and throughput
to the applications.

Most of the cloud storage systems, such as the ones listed
above, have several configurations parameters that need
to be carefully tuned for optimal performance. Naturally,
the optimal configuration depends not only on application
specific requirements (such as the intended reliability) but
also of the workload characterization, such as the size of
objects being read or written, distribution of the accesses
to different objects, read/write ratio, among others [4], [5],
[6], [7]. Furthermore, some of these factors may change
in time, making hard of even impossible to resort to static

or manual configuration. The dynamic adaptation of cloud
storage systems, in face of observer changes in the workload,
is therefore a challenging task that needs to be embraced [8].

It is possible to find in the literature several works that
address the dynamic adaptation of cloud storage systems.
Some examples include the dynamic adjustments of the
replication scheme of objects based on observed changes
to the read/write access patterns [4], automated adaptation
of the replication protocol based on current operational
conditions [5], dynamic data replica placement to improve
locality patterns of data access with the help of machine
learning techniques [6], and techniques to optimize system
wide quorum sizes for both read and write operations
according to the read/write ratio [7]. Still, most of these
approaches consider single-tenant systems, i.e., the case
where the system is optimized as a whole. However, many
cloud storage systems are multi-tenant, i.e., the same storage
infrastructure is shared by different applications, each with
its own specific requirements and workload characterization.
Ideally, one could attempt to optimize the system for each
and every tenant. Unfortunately, this may be too costly and
induce a significant metadata overhead. Furthermore, the
optimization of tenants that have a residual share of the total
system usage may have no perceived gain, not even for the
tenant at hand, given the the overall system performance
may be constrained by the configuration of the tenants that
consume most of the systems bandwidth.

We address the dynamic adaptation of multi-tenant system
by changing (object wise fine-grained adaptation) quorum
configurations of popular objects detected based on the
access patterns of objects in a distributed cloud storage
system in order to maximise the throughput. We take
Global Q-Opt which is a prototype developed for Openstack
Swift by Maria Couceiro as the starting point because it
is already capable of performing adaptive global quorum
optimizations based on aggregated values by applying the
same quorum configuration to all objects. Hence, our work
(Q-Opt) extends this system by embedding state of the art
hot spot detection algorithm and novel non-blocking quorum
reconfiguration algorithms.

The rest of the document is structured as follows. Sec-
tion II discusses the recent work performed related to our
work. Section III introduces Q-Opt along with the design
and implementation. Section IV shows the results of the

1

experimental evaluation of Q-Opt and finally Section VI
concludes this document by summarizing its key aspects and
future work.

II. RELATED WORK

Considerable work has been done in order to change
the consistency levels of cloud storage systems dynamically
and to gain a better throughput while satisfying the clients’
consistency requirements. In this section we review some of
the proposed solutions relevant to our work.

Application based adaptive replica consistency [9] deter-
mines the consistency of the data based on the requirements
demand by the application. The system uses the read and
write frequency and the variation of these two parameters
as the key input matrix to trigger automated consistency
adaptation. The hierarchical structure consists with one
master, three deputy and many child nodes. Master node
is elected in order to take care all the update operations
in the system. Hence, the strong or weak consistency is
defined as propagating updates to all nodes or only to deputy
nodes respectively. Monitoring the frequency (high/low) of
read/write operations they decide which consistency best
suits for the current workload.

Harmony [10] is a system which extends the intuition of
previous idea and adapts the consistency levels, by moni-
toring the system status in real time. To this end, Harmony
considers different factors, including the data access pattern,
the network latency, and the consistency requirements of the
application, in particular if the application can tolerate stale
reads or not. A stale read occurs when the read operation
takes place after a write operation but the old value is still
returned. It is developed as an external component to the
Apache Cassandra cluster to gather statistics and compute
the current stale read percentage of the cluster and then to
decide the consistency level automatically comparing with
the applications’ stale read tolerance parameter (i.e This
parameter needs to be specified by the user). The new
consistency level is instantly communicated to the Cassandra
driver component used by the application so that system
adapts to fulfil applications’ consistency requirements.

For the best of our knowledge, Global Q-Opt a prototype,
for Openstack Swift, developed by Maria Couceiro, Matti
Hiltunen, Paolo Romano, and Luı́s Rodrigues is the latest
work related to adaptive quorum systems. It guarantees
strong consistency and try to achieve higher throughput by
adjusting the quorum configurations dynamically. Moreover,
it uses Machine Learning (ML) techniques in predicting the
correct quorum configuration. Hence, it collects statistics
such as system wide read/write accesses, average read/write
durations, successful replied read/write count etc from the
proxy nodes of the cluster and pass them to ML module.
Then the predicted quorum configuration is applied to all the
proxy nodes using a non-blocking quorum reconfiguration
algorithm.

Our work Q-Opt is an evolution of Global Q-Opt which is
targeted to work with complex workload situations and still

adapts to get higher throughput considering the popularity
of the objects in the cloud storage.

III. Q-OPT

Q-OPT is designed to work with Software Defined Stor-
age (SDS) where the external interface is represented by
a set of proxy agents, and its data is distributed over
a set of storage nodes. We denote the set of proxies
by Π = {p1, . . . , pP }, and the set of storage nodes by
Σ = {s1, . . . , sS}. In fact proxies and storage nodes are
logical process which may be in practice mapped to a set
of physical nodes using different strategies (e.g., proxies
and storage nodes may reside in two disjoint sets of nodes,
or each storage node may host a proxy). We assume that
nodes may crash according to the fail-stop (non-byzantine)
model. Furthermore, we assume that the system is asyn-
chronous, but augmented with unreliable failure detectors
which encapsulate all the synchrony assumptions of the
system. Communication channels are assumed to be reliable,
therefore each message is eventually delivered unless either
the sender or the receiver crashes during the transmission.
We also assume that communication channels are FIFO
ordered, that is if a process p sends messages m1 and m2
to a process q then q cannot receive m2 before m1.

As illustrated in Figure 1, Q-OPT is composed of three
main components: the Autonomic Manager, the Reconfigu-
ration Manager, and the Oracle.

Storage 1

Storage n

(…)

Proxy1

Proxy n

(…)

Reconfiguration
Manager

Autonomic
Manager

SDS

Manual
Reconfiguration

 Oracle

Machine
Learning

Q-Opt

Figure 1. Architectural overview.

Autonomic Manager is responsible for orchestrating the
self-tuning process of the system. Hence, it relies on an Or-
acle that encapsulates a black-box machine-learning based
predictor that is responsible for determining the best quo-
rum, given the workload of the monitored SDS application.
Reconfiguration Manager is in charge of coordinating a non-
blocking reconfiguration protocol that aims at altering the
read/write quorum size used by the proxies for given data
items.

A. Quorum Optimization

The Autonomic Manager is responsible for determining
when to trigger a quorum reconfiguration. The pseudo code
executed at the Autonomic Manager side is depicted in
Algorithm 1. It executes the following tasks:

It first starts a new round by broadcasting the new round
identifier, r, to all the proxies (line 5). Each proxy pi then
replies with (line 7):

2

1 int r=0; // Round identifier

2 // Fine-grain round-based optimization.
3 do
4 r=r+1;
5 broadcast [NEWROUND, r] to Π;
6 ∀pi ∈ Π :

7 wait received [ROUNDSTATS, r, topKr
i , statsTopKr−1

i ,
statsTailr−1

i , thr−1
i] from pi ∨ suspect(pi);

8 statsTopKr−1=merge(statsTopKr−1
1 , .., statsTopKr−1

P);
9 topKr=merge(topKr

1,. . .,topKr
P);

10 send [NEWSTATS, r, statsTopKr−1] to ORACLE;
11 wait received [NEWQUORUMS, r, quorumsTopKr−1] from

ORACLE;
12 send [FINEREC, r, 〈topKr−1, quorumsTopKr−1〉] to RM;
13 wait received [ACKREC, r] from RM;
14 broadcast [NEWTOPK, r, topKr] to Π;
15 thr−1=aggregateThroughput(thr−1

1 ,. . ., thr−1
P) ;

16 ∆th(γ) = throughput increase over last γ rounds.;

17 while ∆th(γ) ≥ θ

18 // Tail optimization.
19 statsTailr−1=merge(statsTailr−1

1 , ..,statsTailr−1
P);

20 send [TAILSTATS, statsTailr−1] to ORACLE;
21 wait received [TAILQUORUM, quorumTailr−1] from ORACLE;
22 send [COARSEREC, quorumTailr−1] to RM;
23 wait received [ACKREC, r] from RM;

Algorithm 1: Autonomic Manager pseudo-code.

• topKr
i : A set of new “hotspots” objects that, according

to the proxy’s local accesses, should be optimized in
the next round to obtain larger benefits. In order to
be able to identify the “hotspots” on each proxy with
low overhead, Q-OPT adopts a state of the art stream
analysis algorithm [11] that permits to track the top-k
most frequent items of a stream in an approximate, but
very efficient manner.

• statsTopKr−1
i : The ratio of write accesses and the size

for each of the objects resulting in the top-k analysis
of the previous round.

• statsTailKr−1
i : Aggregate workload characteristics

for the objects whose quorum size has not been in-
dividually optimized, i.e., the objects in the tail of the
access distribution.

• thi: The throughput achieved by the proxy during the
last round.

Once the information sent by the proxies is gathered and
merged (line 8 and 9), the merged statistics of previous round
top-k is fed as input features to the Oracle (line 10), that
outputs a prediction (line 11) of the right quorum to use for
each object in the top-k set. In the current prototype, the
Oracle only outputs the size W of the write quorum and the
size R of the read quorum is derived automatically based
on the system’s replication degree, i.e., R = N −W + 1.
If the output of the Oracle is different from the current
quorum system for that object, a reconfiguration is triggered.
In this case, the Autonomic Manager interacts with the
Reconfiguration Manager (lines 12 and 13), which is in
charge of orchestrating the coordination among proxy and
storage nodes and adapt the current quorum configuration for
the top-k objects identified in the previous round. Otherwise,

if the current configuration is still valid, no reconfiguration
is triggered. As a final step of a fine-grain optimization
round, the Autonomic Manager broadcast the current top-
k set to the proxies. Thus, each proxy can start monitoring
the objects that belong to the current top-k set in the next
round.

At the end of each round, the Autonomic Manager, based
on the average throughput improvements achieved during
the last γ rounds, decides whether to keep optimizing indi-
vidual objects in a fine-grain manner or to stop. When the
gains obtained with the fine-grain optimization of individual
“hotspot” objects becomes negligible (i.e., lower than a
tunable threshold θ), a final optimization step to tune the
quorum configurations used to access the the remaining
objects, i.e., the objects that fall in the tail of the access
distribution. These objects are treated as bulk (lines 19 -
22): the same read/write quorum is assigned to all the objects
in the tail of the access distribution based on its aggregate
workload characterization.

B. Reconfiguration Manager

The Reconfiguration Manager (subsequently denoted RM)
executes the required coordination among proxy and server
nodes in order to allow them to alter the sizes of read
and write quorums without endangering neither, consistency,
nor availability during reconfigurations. This coordination
enforced by Q-OPT is designed to preserve the following
property, which is at the basis of all quorum systems that
provide strong consistency:

Dynamic Quorum Consistency. The quorum used by a read
operation intersects with the write quorum of any concurrent
write operation, and, if no concurrent write operation exists,
with the quorum used by the last completed write operation.

where two operations o1, o2 are concurrent if at the time
in which a proxy starts processing o2, the processing of
o1 by a (possibly different) proxy has not been finalized
yet (or vice-versa). The availability of a SDS system, on
the other hand, is preserved by ensuring that read/write
operations can be executed in a non-blocking fashion during
the reconfiguration phase, even despite the crash of (a subset
of) proxy and storage nodes.

C. Algorithm overview

There are three different type of components involved in
the execution of the reconfiguration algorithm: the storage
nodes, the proxy nodes, and the RM. The purpose of the
reconfiguration algorithm is to change the quorum configu-
ration, i.e., the size of the read write quorums, used by the
proxy servers.

The algorithm is coordinated by the RM. When the RM
runs the reconfiguration algorithm we say that the RM
installs a new quorum system. We denote the quorum system
being used when the reconfiguration is started as the old
quorum and the quorum system that is installed when the
reconfiguration is concluded the new quorum. Old and new
write and read quorums are denoted, respectively, as oldW,

3

oldR, newW, and newR. Each quorum is associated with an
epoch number, a sequential serial number that is incremented
by the RM when some proxy is suspected to have crashed
during a reconfiguration. We also assume that storage nodes
maintain a variable, called currentEpoch, which stores the
epoch number of the last quorum that has been installed by
the RM. As it will be explained below, during the execution
of the reconfiguration algorithm, proxy nodes use a special
transition quorum, that is sized to guarantee intersection
with both the old and new quorums.

We assume a fail stop-model (no recovery) for proxies
and storage nodes, and that at least one proxy is correct.
As for the storage nodes, in order to ensure the termination
of read and write operations in the new and old quorum
configuration, it is necessary to assume that the number of
correct replicas is at least max(oldR, oldW, newR, newW).
For ease of presentation, we assume that the sets Σ and
Π are static, i.e. nodes are not added to these sets, nor
are they removed even after a crash. In order to cope with
dynamic groups, one may use group membership techniques,
e.g. [12], which are orthogonal to this work.

RM is equipped with an eventually perfect failure detec-
tion service [13] that provides, possibly erroneous, indica-
tions on whether any of the proxy nodes has crashed. An
eventually perfect failure detector ensures strong complete-
ness, i.e., all faulty proxy processes are eventually suspected,
and eventual strong accuracy, i.e., there is a time after which
no correct proxy process is ever suspected by the RM. The
reconfiguration algorithm is indulgent [14], in the sense that
in presence of false failure suspicions only the liveness of
read/write operations can be endangered (as we will see
they may be forced to re-execute), but neither the safety of
the quorum system (i.e., the Dynamic Quorum Consistency
property), nor the termination of the reconfiguration phase
can be compromised by the occurrence of false failure
suspicions. The failure detection service is encapsulated
in the suspect primitive, which takes as input a process
identifier pi ∈ Π and returns true or false depending on
whether pi is suspected to have crashed or not. Note that
proxy servers are not required to detect the failure of storage
servers nor vice-versa.

In absence of faults, the RM executes a two-phase re-
configuration protocol with the proxy servers, which can be
roughly summarized as follows. In the first phase, the RM
informs all proxies that a reconfiguration must be executed
and instructs them to i) start using the transition quorum
instead of the old quorum, and ii) wait till all the pending
operations issued using the old quorum have completed.
When all proxies reply, the RM starts the second phase,
in which it informs all proxies that it is safe to start using
the new quorum configuration.

This mechanism guarantees that the quorums used by
read/write operations issued concurrently to the quorum
reconfiguration intersect. However, one needs to address
also the scenario in which a read operation is issued on an
object that was last written in one of the previous quorum

1 int epNo=0; // Epoch identifier
2 int cfNo=0; // Configuration round identifier
3 int curR=1, curW=N; // Sizes of the read and write quorums
4 // Any initialization value s.t. curR+curW>N is acceptable.

5 changeConfiguration(int newR, int newW)
6 wait canReconfig;
7 canReconfig = FALSE;
8 cfNo++;
9 broadcast [NEWQ, epNo, cfNo, newR, newW] to Π;

10 ∀pi ∈ Π :
11 wait received [ACKNEWQ, epNo] from pi ∨ suspect(pi);
12 if ∃pi : suspect(pi) then
13 tranR=max(curR,newR); tranW=max(curW,newW);
14 epochChange(max(curR,curW),tranR,tranW);
15 broadcast [CONFIRM, epNo, newR, newW] to Π;
16 ∀pi ∈ Π :
17 wait received [ACKCONFIRM, epNo] from pi ∨ suspect(pi);
18 if ∃pi : suspect(pi) then
19 epochChange(max(newR,newW),newR,newW);
20 curR=newR; curW=newW;
21 canReconfig = TRUE;
22 epochChange(int epochQ, int newR, int newW)
23 epNo++;
24 broadcast [NEWEP,epNo,cfNo,newR, newW] to Σ;
25 wait received [ACKNEWEP, epNo] from epochQ si ∈ Σ;

Algorithm 2: Reconfiguration Manager pseudo-code.

configurations, i.e., before the installation of the current
quorum. In fact, if an object were to be last written using
a write quorum, say oldW, smaller than the one used in
the current configuration, then the current read quorum may
not intersect with oldW. Hence, an obsolete version may be
returned, violating safety. We detect this scenario by storing
along with the object’s metadata also a logical timestamp,
cfNo, that identifies the quorum configuration used when
the object was last written. If the version returned using
the current read quorum was created in a previous quorum
configuration having identifier cfNo, the proxy repeats the
read using the largest read quorum used in any configuration
installed since cfNo (in case such read quorum is larger than
the current one).

Since failure detection is not perfect, in order to ensure
liveness the two-phase quorum reconfiguration protocol has
to advance even if it cannot be guaranteed that all proxies
have updated their quorum configuration. To this end, the
RM triggers an epoch change on the back-end storage
nodes, in order to guarantee that the operations issued by
any unresponsive proxy (which may be using an outdated
quorum configuration) are preventively discarded to preserve
safety.

D. Quorum Reconfiguration Algorithm

The pseudo code for the reconfiguration algorithm exe-
cuted at the Replication Manager side is depicted in Algo-
rithm 2. The reconfiguration can be triggered by either the
Autonomic Manager, or by a human system administrator,
by invoking the changeConfiguration method and passing
as arguments the new sizes for the read and write quorums,
newQ and WriteQ. Multiple reconfigurations are executed in
sequence: a new reconfiguration is only started by the RM
after the previous reconfiguration concludes.

4

1 int lEpNo=0; // Epoch identifier
2 int lCfNo=0; // Configuration round identifier
3 set Q={}; // list of cfNo along with respective read/write quorum

sizes
4 int curR=1, curW=N; // Sizes of the read and write quorums
5 // Any initialization value s.t. curR+curW>N is acceptable.
6 upon received [NEWQ, epNo, cfNo, newR, newW] from RM
7 if lEpNo≤epNo then
8 lEpNo=epNo;
9 lCfNo=cfNo;

10 Q=Q ∪ < cfNo, newR, newW > ;
11 int oldR=curR; int oldW=curW;
12 // new read/writes processed using transition quorum
13 tranR=max(oldR,newR); tranW=max(oldW,newW);
14 wait until all pending reads/writes issued using the old

quorum complete;
15 send [ACKNEWQ, epNo] to RM;
16 upon received [CONFIRM, epNo, newR, newW] from RM
17 if lEpNo≤epNo then
18 lEpNo=epNo;
19 curR=newR; curW=newW;
20 send [ACKCONFIRM, epNo] to RM;

Algorithm 3: Proxy pseudo-code (quorum reconfigura-
tion).

Failure-free scenario. To start a reconfiguration, the RM
broadcasts a NEWQ message to all proxy nodes. Next, the
RM waits till it has received an ACKNEWQ message from
every proxy that is not suspected to have crashed.

Upon receipt of a NEWQ message, see Algorithm 3,
a proxy changes the quorum configuration used for its
future read/write operations by using a transition quorum,
whose read, respectively write, quorum size is equal to the
maximum of the read, respectively write, quorum size in the
old and new configurations. This ensures that the transition
read (tranR), resp. write (tranW), quorum intersects with the
write, resp. read, quorums of both the old and new config-
urations. Before replying to the RM with an ACKNEWQ
message, the proxy waits until any “pending” operations it
had issued using the old quorum completed.

If no proxy is suspected to have crashed, a CONFIRM
message is broadcast to the proxy processes, in order to
instruct them to switch to the new quorum configuration.
Next, the RM waits for a ACKCONFIRM reply from all
the non-suspected proxy nodes. Finally, it flags that the
reconfiguration has finished, which allow for accepting new
reconfiguration requests.

The pseudo-code for the management of read and write
operations at the proxy nodes is shown in Alg. 4 and Alg. 5.
As already mentioned, in case a read operation is issued, the
proxies need to check whether the version returned using
the current read quorum was created by a write that used
a write quorum smaller than the one currently in use. To
this end, proxies maintain a set Q containing all quorum
configurations installed so far1 by the Autonomic Manager.
If the version returned using the current read quorum was
created in configuration cfNo, the proxy uses set Q to
determine the value of the largest read quorum used in any

1In practice, the set Q can be immediately pruned whenever the maxi-
mum read quorum is installed.

1 upon received [Read, oId] from client c
2 while true do
3 broadcast [Read, oId, curEpNo] to Σ;
4 wait received [ReadReply, oId, val, ts, W] from Σ′ ⊆ Σ

s.t. |Σ′|=curR ∨ ([NACK, epNo,newR, newW]
∧epNo > lEpNo);

5 if received [NACK, epNo, cfNo, newR, newW] then
6 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
7 Q=Q ∪ < cfNo, newR, newW > ;
8 continue; // re-transmit in the new epoch
9 v= select the value with the freshest timestamp;

10 // Set of read quorums since v.cfNo till lCfNo;
11 S = {Ri :< qi, Ri, · >∈Q ∧v.cfNo ≤ qi ≤ lCfNo};
12 if max(S)≤curR then
13 // safe to use cur. read quorum
14 send [ReadReply, oId, v] to client c;
15 else
16 // compute read quorum when v was created.
17 int oldR=max(S);
18 // obtain a total of oldR replies.
19 wait received [ReadReply, oId, val, ts] from Σ′ ⊆ Σ

s.t. |Σ′|=oldR ∨ ([NACK, epNo,newR, newW]
∧epNo > lEpNo);

20 if received [NACK, epNo, cfNo, newR, newW] then
21 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
22 Q=Q ∪ < cfNo, newR, newW > ;
23 continue; // re-transmit in the new epoch
24 v= select the value with the freshest timestamp;
25 send [ReadReply, oId, v] to client c;
26 // write v using the current quorum
27 write(v,oId,v.ts);
28 break;
29 end

Algorithm 4: Proxy pseudo-code (read logic).

1 upon received [Write, oId, value] from client c
2 write (val, oId, getTimestamp());
3 send [WriteReply, oId] to client c;
4 write(value v, objId oid, timestamp ts)
5 while true do
6 broadcast [Write, oId, val, ts, curEpNo] to Σ;
7 wait received [WriteReply, oId] from Σ′ ⊆ Σ s.t.

|Σ′|=curW ∨ ([NACK, epNo,newR, newW]
∧epNo > lEpNo);

8 if received [NACK, epNo, cfNo, newR, newW] then
9 lEpNo=epNo; lCfNo=cfNo;

curR=newR; curW=newW;
10 Q=Q ∪ < cfNo, newR, newW > ;
11 continue; // re-transmit in the new epoch
12 break;
13 end

Algorithm 5: Proxy pseudo-code (write logic).

configuration since cfNo till the current one. If this read
quorum, noted oldR (see line 17 of Alg. 4), is larger than
the current one, the read is repeated using oldR. Further,
the value is written back using the current (larger) write
quorum. Note that re-writing the object is not necessary for
correctness. This write can be performed asynchronously,
after returning the result to the client, and is meant to spare
the cost of using a larger read quorum when serving future
reads for the same object.

Coping with failure suspicions. In case the RM suspects
some proxy while waiting for an ACKNEWQ or an ACK-
CONFIRM message, the RM ensures that any operation

5

running with an obsolete configurations is prevented from
completing. To this end, the RM relies on the notion of
epochs. Epochs are uniquely identified and totally ordered
using a scalar timestamp, which is incremented by the RM
whenever it suspects the failure of a proxy at lines 11 and 16
of Alg. 2. In this case, after increasing the epoch number, the
RM broadcasts the NEWEP message to the storage nodes.
This message includes 1) the new epoch identifier, and 2) the
configuration of the transition quorum or of the new quorum,
depending on whether the epoch change was triggered at the
end of the first or of the second phase.

Next, the RM waits for acknowledgements from an epoch-
change quorum, whose size is determined in order to guaran-
tee that it intersects with the read and write quorums of any
of the configurations in which the proxies may be executing.
Specifically, if the epoch change is triggered at the end of
the first phase, the size of the epoch-change quorum is set
equal to the maximum between the size of the read and write
quorums in the old configuration. It is instead set equal to the
maximum between the size of the read and write quorums
of the new configuration, if the epoch change is triggered at
the end of the second phase.

When a storage node (see Alg. 6) receives an NEWEP
message tagged with an epoch identifier larger than its
local epoch timestamp, it updates its local timestamp and
rejects any future write/read operation tagged with a lower
epoch timestamp. It then replies back to the RM with an
ACKNEWEP message. Whenever an an operation issued by
a proxy in an old epoch is rejected, the storage node does not
process the operation and replies with a NACK message, in
which it specifies the current epoch number and the quorum
configuration of this epoch.

Upon receiving a NACK message (see Algs. 4 and 5),
the proxy node is informed of the existence of a newer
epoch, along with the associated quorum configuration.
Hence, it accordingly updates its local knowledge (i.e., its
epoch and read/write quorum sizes), and re-executes the
operation using the new epoch number and the updated
quorum configuration.

E. Per-object quorum reconfiguration
As discussed, the above presented protocol allows for

altering the quorum size used by the entire data store.
However, extending the above presented protocol to allow
for tuning independently the quorum sizes used to access
different objects in the data store is relatively straightfor-
ward.

In particular, during the initial, round based optimization
phase described in Section III-A, the RM is provided with
a set of object identifiers and with their corresponding new
quorum configurations. The RM forwards this information
to the proxies via the NewQ message. The proxy servers,
in their turn, shall store the mapping between the specified
object identifiers and the corresponding write quorums, and
use this information whenever they are serving a read or
a write operation. Note that, in our prototype, we store
this mapping in main memory, as only a reduced set of

1 int lEpNo=0; // Epoch identifier
2 int lCfNo=0; // Configuration round identifier
3 int curR=1, curW=N; //Sizes of the read and write quorums
4 // Any initialization value s.t. curR+curW>N is acceptable.
5 upon received [NEWEP,epNo, cfNo, newR, newW] from RM
6 if epNo ≥lEpNo then
7 lEpNo=epNo;
8 lCfNo=cfNo;
9 curR=newR; curW=newW;

10 send [ACKNEWEP, epNo] to Reconfiguration Manager;
11 upon received [Read, epNo, . . .] or [Write, epNo, . . .] from
πi ∈ Π

12 if epNo <lEpNo then
13 send [NACK, epNo, cfNo, newR, newW] to pi;
14 else
15 process read/write operation normally;
16 if operation is a write then
17 store lCfNo in the version metadata cfNo;
18 else
19 piggyback cfNo to the ReadReply message;
20 end
21 end

Algorithm 6: Storage node pseudo-code.

“hotspots” is individually optimized. This simple mechanism
allows the proxy servers to determine the new and old
quorum sizes to use on a per object basis. Also, when a fine-
grained quorum reconfiguration is requested that only affects
a set of data items D where the reconfiguration should wait
only, in the first phase of the reconfiguration algorithm,
for the completion of any pending operation (using the old
quorum) targeting some of the items in D.

Any (read/write) access to objects whose quorum size has
not been individually optimized can use a common, global
quorum configuration and be treated exactly as shown in
Section III-D.

IV. EVALUATION

In this section we present the results of an experimental
study aimed at quantifying the impact on performance of
using different read and write quorum sizes in OpenStack
Swift. Then we assess three main aspects: the accuracy
of the ML-based Oracle; the effectiveness of Q-Opt in
automatically tuning the quorum configuration in presence
of complex workloads; and the efficiency of the quorum
reconfiguration algorithm.

A. Test-Bed

The experimental test-bed used to gather the experimental
results presented in this document is a private cloud com-
prising a set of virtual machines (VMs) deployed over a
cluster of 20 physical machines. The physical machines are
connected via a Gigabit switch and each is equipped with 8
cores, 40 GB of RAM and 2x SATA 15K RPM hard drives
(HDs). We allocate 10 VMs for the storage nodes, 5 VMs to
serve as proxy nodes, and 5 VMs to emulate clients, i.e., to
inject workload. Each client VM is statically associated with
a different proxy node and runs 10 threads that generate a
closed workload (i.e., a thread injects a new operation only
after having received a reply for the previously submitted
operation) with zero think time. Each proxy and client VM

6

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

Workload A Workload B Workload C

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R=1 W=5

R=2 W=4

R=3 W=3

R=4 W=2

R=5 W=1

Figure 2. Normalized throughput of the studied workloads.

runs Ubuntu 12.04, and is equipped with 8 (virtual) cores,
10GB disk and 16GB of RAM memory. On the other hand,
each storage node VM is equipped with 2 (virtual) cores,
100GB disk and 9GB of RAM memory.

Furthermore, the top-k module which would filter out the
popular objects based on the access distribution is collocated
in every proxy node, hence each proxy can individually
query the top-k module with statistics of object accesses
via that proxy. One of the proxy nodes would work as the
master so that the ML module is collocated there. Hence
in this set up proxy nodes independently query the top-
k module to find the popular objects and then will send
those objects’ statistics to the master proxy where the ML
module is queried (only by the master) in order to find the
corresponding quorum configuration.

When we initiate the storage system we set the replication
degree to 5 and use the default distribution policy that
scatters object replicas randomly across the storage nodes
(while enforcing that replicas of the same object are placed
on different nodes)

In the first motivating experiment explained in section
IV-B we have used a single tenant and a workload where all
objects are accessed with the same profile. In the evaluation
of the full system we consider more complex scenarios with
skewed non-uniform workloads.

B. Impact of the read/write quorum sizes

We start by considering 3 different workloads that are
representative of different application scenarios. Specifically,
we consider two of the workloads specified by the well
known YCSB [15] benchmark (noted Workload A and B),
which are representative of scenarios in which the SDS is
used, respectively, to store the state of users’ sessions in a
web application, and to add/retrieve tags to a collection of
photos. The former has a balanced ratio between read and
write operations, the latter has a read-dominated workload
in which 95% of the generated operations are read accesses.
We also consider a third workload, which is representative of
scenario in which the SDS is used as a backup service (noted
Workload C). In this case, 99% of the accesses are write
operations. Note that such write-intensive workloads are
frequent in the context of personal file storage applications,
as in these systems a significant fraction of users exhibits
an upload-only access pattern [16].

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

O
pt

im
al

 W
ri

te
 Q

uo
ru

m
 S

iz
e

Write Percentage

Figure 3. Optimal write quorum configuration vs write percentage.

0%

5%

10%

15%

20%

25%

30%

35%

10% 40% 70% 90%

Percentage of Training Set

Misclassification Rate

Throughput loss

Figure 4. Oracle’s misclassification rate and % throughput loss.

Figure 2 shows the throughput of the system (successful
operations per second) normalized with respect to the best
read/write quorum configuration for each workload. These
results were obtained using one proxy node and 10 clients.
The results clearly show that when increasing the size of
the predominant operation quorum, the number of served
operations decreases: configurations favouring smaller read
quorums will achieve a higher throughput in read-dominated
workloads, such as Workload B, and vice-versa, configu-
rations favouring smaller write quorums achieve a higher
throughput in write-dominated workloads, such as Workload
C. Mixed workloads such as Workload A, with 50% read and
50% write operations, perform better with more balanced
quorums, favouring slightly reading from less replicas be-
cause read operations are faster than write operations (as
these need to write to disk).

In order to assess to what extent the relation between the
percentage of writes in the workload and the optimal write
quorum size may be captured by some linear dependency,
we tested approx. 170 workloads, obtained by varying the
percentage of read/write operations, the average object size,
and the number of clients connected to the proxy in the
domain. In Figure 3 we show a scatter plot contrasting,
for each tested workload, the optimal write quorum size
and the corresponding write percentage. The experimental
data clearly highlights the lack of a clear linear correlation
between these two variables, and has motivated our choice
of employing black-box modelling techniques (i.e., decision
trees) capable of inferring more complex, non-linear depen-
dencies between the characteristics of a workload and its
optimal quorum configuration.

7

Figure 5. Cumulative distribution of the Oracle’s accuracy.

V. ACCURACY OF THE ORACLE.

In order to assess the accuracy of the Oracle, we consider
the same set of 170 workloads used in Figure 3. Figure 4 re-
ports the misclassification rate and throughput loss (w.r.t. the
optimal solution) when we vary the size of the training
set, using the rest of available data as test set. The results
are obtained as the average of 200 runs, in which we fed
the C5.0 which builds a decision-tree classification model
in an initial, off-line training phase, with different (and
disjoint) randomly selected test and training sets. The results
show that the ML-based oracle achieves very high accuracy,
i.e. misclassification rate is lower than 10% and throughput
loss is about 5%, if we use as little as the 40% of the
collected data set as training set. Interestingly, we observe
that the throughput loss is normally less than half of the
misclassification rate: this depends on the fact that, in most
of the misclassified workloads, the quorum configuration
selected by the oracle yields performance levels that are
quite close to the optimal ones.

Figure 5 provides an alternative perspective on our data
set. It reports the cumulative distribution functions of the
accuracy achieved by our predictor with different training
set sizes, and contrasting them with the normalized perfor-
mances using all possible configurations for each considered
workload. The plot highlights that the choice of the quorum
configuration has a striking effect on Q-OPT’s performance:
for instance, in about 20% of the workloads, the selection of
the third best quorum configuration is 40% slower than the
optimal one; in the worst case, the plot also shows that the
worst (i.e., the 5-th best) choice of the quorum configuration
can be even more that 5x slower than the optimal for some
workloads.

Figure 6 allows us to asses to what extent the selection of
the features used to generate the ML-based models impacts
the model’s accuracy. We used five different configurations
for this experiment, from A to E. Each configuration progres-
sively adds extra features, including previous configuration
features. As the plot shows, the configuration A, which only
includes the percentage of write transactions as a feature,
achieves poor accuracy, generating a misclassification rate
of around 20%. This result confirms the relevance of using
a multi-variate model, capable of keeping into account addi-

0

5

10

15

20

25

30

35

0 20 40 60 80 100

M
is

cl
as

si
fic

at
io

n
R

at
e

Size of the training set (%)

Config. A

Config. B

Config. C

Config. D

Config. E

Figure 6. Oracle’s misclassification rate when varying the set of features
used.

tional factors besides the write percentage (as suggested also
by the plot in Figure 3). Indeed, the plot clearly shows that,
as we include among the provided features also the object
size (Conf. B) and throughput (Conf. C) the misclassification
rate gets considerably reduced. Our experimental data show
also that adding additional features (e.g., conf. D and E,
which include statistics on the latencies perceived by get
and put operations) does not benefit accuracy, but, on the
contrary, can lead to overfitting [17] phenomena that can
ultimately have a detrimental effect on the learner’s accuracy.

Finally, in Table I, we report the accuracy achieved by
the considered learner when using the, so called, boosting
technique. The boosting approach consists in training a chain
of N learners, where the learner in position i is trained to
learn how to correct the errors produced by the chain of
learners in position 1,2,. . .,i. This technique has been fre-
quently reported to yield significant accuracy improvements
when used with weak learners. Our experiments do confirm
the benefits of this technique, although the relative gains
in accuracy are, at least for the considered data set, not so
relevant to justify its additional computational overheads.

A. Reconfiguration Overhead
Since, Q-OPT uses a two-phase quorum reconfiguration

protocol whose latency is affected by the number of pending
operations each proxy has to finish before completing the
first phase of the protocol. Thus, we expect to observe
an increase in latency as the number of clients issuing
concurrent operations increases. Figure 7 shows the quorum
reconfiguration latency in absence of faults varying the
number of clients from 15 to 150 (i.e., close to system’s satu-
ration that we estimate at around 165 clients). As expected,
the results show a correlation between the latency of the
reconfiguration and the request’s arrival rate; however, the
reconfiguration latency remains, in all the tested scenarios,
lower than 15 milliseconds, which confirms the efficiency
of the proposed reconfiguration strategy.

Figure 8 focuses on evaluating the performance of the
lazy write-back procedure encompassed by the quorum
reconfiguration protocol. Recall that this happens when a
read operation gathers a quorum of replies which reveals
that the last write applied to that object has been performed
using a smaller write quorum than the one currently used. In

8

10% Training 50% Training 90% Training
unboosted boosted unboosted boosted unboosted boosted

Avg. Misclassification (%) 15 14 9 7 6 5
Avg. Distance from optimal (%) 4.6 4 2.2 1.6 1.6 0.9
Avg. Distance when misclassified (%) 14.1 12.9 10.9 9.5 9.5 7.6

Table I
IMPACT OF BOOSTING IN THE ORACLE’S PERFORMANCE WHEN VARYING THE TRAINING SET SIZE.

this case, the read operation is forced to wait for additional
replies before returning to the client, and it has to write
back the data item using the new (larger) write quorum. The
experiment whose results are shown in Figure 8 is focused
precisely on evaluating the overhead associated with these
additional writes.

To this end we considered a worst-case scenario in which:
i) the system is heavily loaded, ii) data items are accessed
with a uniform distribution, and iii) the write quorum
increases from 1 to 5 while the application is running a
read-dominated (95%) workload. At the beginning of the
experiment, we allow the system to run for 3 minutes until
it stabilizes and then we trigger the bulk reconfiguration
(i.e., for the entire set of 20K data items in the SDS) of
the quorum and report throughput over time. Moreover,
we implemented batching and asynchronous updates to the
rewrite operations so that the system would not experience
a significant performance degradation due to the bulk re-
configuration. Instead, the plot shows that, even in such a
worst case scenario, there is a significant throughput gain
and it increases further to align with the baseline throughput
once the rewrite operations are completed for the bulk
reconfiguration.

B. System Performance

Finally, Figure 9 evaluates the effectiveness of Q-OPT
when faced with time in the presence of complex workloads.
We compare few configuration against Q-OPT. R1W5, R3W3
and R1W5 are static configurations that force the system to
use the same quorum for all the objects. AllBest uses the
optimal quorum for each of the objects. Finally, Top10%
uses the optimal quorum for each of the 10% most accessed
objects. Notice that AllBest and Top10% are unachievable
configurations in practice since it would require precise
pre-knowledge about the workloads of each object. Those

0

0.005

0.01

0.015

0.02

15 30 60 150

R
ec

on
fig

ur
at

io
n

L
at

en
cy

(s

ec
on

ds
)

Clients

Figure 7. Reconfiguration latency while varying the number of clients.

Figure 8. Evaluating the overheads associated with the bulk reconfiguration
with batching and asynchronous updates. Write quorum is increased from
1 to 5 in presence of a read-dominated workload.

configurations will serve us as baselines.

0

100

200

300

400

500

600

700

800

900

1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

T
hr

ou
gh

pu
t (

op
er

at
io

n/
se

co
nd

)

Time (minutes)

R1W5

R3W3

R5W1

AllBest

Q-OPT

Top10%

Figure 9. Q-OPT performance in comparison to other configurations.

In the experiment we combine two workloads, one read
intensive and one write intensive, each of them representing
a different tenant. This means that each workload accesses
a non-overlapping set of objects. After 40 minutes, we swap
the type of workload. Therefore, the read intensive workload
becomes write intensive and viceversa. The idea is to observe
how Q-OPT reacts to changes in the workloads. For this
experiment, Q-OPT runs a fine-grain optimization round
every minute. After 20 minutes, the fine-grain optimization
phase ends and Q-OPT optimizes the tail. After the swapping
(minute 40), Q-OPT starts again the fine-grain optimization
phase and continues behaving as described for the first 40
minutes.

Q-OPT behaves as expected. During the first 20 minutes
the throughput grows as the fine-grain optimization rounds
advance, getting close to the Top10% baseline right before
optimizing the tail. Once the tail is optimized (after minute
20), the throughput keeps growing even beyond the Top10%
line and getting closer to the AllBest configuration. The
Top10% configuration does not optimize the tail; therefore,

9

it is expected that Q-OPT outperforms it, at least slightly.
As expected, the plot shows that the performance of Q-OPT
matches closely that of the optimal configurations. These re-
sults confirm the accuracy of Q-OPT’s Oracle and highlight
that the overheads introduced by the supports for adaptivity
are very reduced. After swapping the workloads, Q-OPT
experiences a noticeable decrement in the performance since
it has to start the optimization phase from zero.

Furthermore, the figure shows that none of the static
configurations is capable of achieving high throughput in
comparison to the baselines and Q-OPT. In the worst case,
the R1W5 configuration is more than 2x slower than Q-OPT
during stable periods. Even for the best static configuration
(R5W1), Q-OPT still achieves around 45% higher through-
put.

VI. CONCLUSIONS

Our work tackled the problem of automating the tuning
of read/ write quorum configuration in distributed storage
systems, a problem that is particularly relevant given the
emergence of the software defined storage paradigm. The
proposed solution, which we called Q-OPT, leverages on
ML techniques to automate the identification of the opti-
mal quorum configurations given the current application’s
workload, and on a reconfiguration mechanism that allows
non-blocking processing of requests even during quorum
reconfigurations. Q-OPT’s optimization phase first focuses
on optimizing the most accessed objects in a fine-grain
manner. Then, it ends by assigning the same quorum for
all the objects in the tail of the access distribution based on
their aggregated profile. We integrated Q-OPT in a popular,
open-source software defined storage and conducted an
extensive experimental evaluation, which highlighted both
the accuracy of its ML-based predictive model and the
efficiency of its quorum reconfiguration algorithm.

Apart from the improvements done so we would like
enhance this system to optimize based on tenants usage. For
instance, selecting hot-objects system wide would be not fair
for all the tenants using the system because all hot objects
may belong to a certain tenant or few of the tenants. This
will make poor user experience for the rest of the users and
because a cloud storage is shared by vast amount of tenants
finding out a proper way to improve fairness in usage would
be worthy to research.

ACKNOWLEDGMENTS
This work is part of the curricula of the European Master

in Distributed Computing (EMDC), a joint program among
Royal Institute of Technology, Sweden (KTH), Universi-
tat Politècnica de Catalunya, Spain (UPC), and Instituto
Superior Técnico, Portugal (IST) funded by the European
Union via the Erasmus Mundus program. Parts of this work
have been performed in collaboration with other members of
the Distributed Systems Group at INESC-ID, namely, Prof.
Paolo Romano, Manuel Bravo and Maria Couceiro.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: A decentralized
structured storage system,” SIGOPS Oper. Syst. Rev., vol. 44,
no. 2, pp. 35–40, Apr. 2010.

[2] G. DeCandia et al., “Dynamo: Amazon’s highly available
key-value store,” in Proc. SOSP 2007. ACM, 2007, pp.
205–220.

[3] Openstack-Swift, “Highly available, distributed, eventually
consistent object/blob store. Accessed on 2015-01-03,”
http://docs.openstack.org/developer/swift, 2009.

[4] O. Wolfson, S. Jajodia, and Y. Huang, “An adaptive
data replication algorithm,” ACM Trans. Database Syst.,
vol. 22, no. 2, pp. 255–314, Jun. 1997. [Online]. Available:
http://doi.acm.org/10.1145/249978.249982

[5] M. Couceiro, P. Ruivo, P. Romano, and L. Rodrigues, “Chas-
ing the optimum in replicated in-memory transactional plat-
forms via protocol adaptation,” in Dependable Systems and
Networks (DSN), 2013 43rd Annual IEEE/IFIP International
Conference on, June 2013, pp. 1–12.

[6] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues, “Autoplacer:
Scalable self-tuning data placement in distributed key-
value stores,” in Proceedings of the 10th International
Conference on Autonomic Computing (ICAC 13). San
Jose, CA: USENIX, 2013, pp. 119–131. [Online]. Avail-
able: https://www.usenix.org/conference/icac13/technical-
sessions/presentation/paiva

[7] R. Jiménez-Peris, M. Patiño Martı́nez, G. Alonso, and
B. Kemme, “Are quorums an alternative for data
replication?” ACM Trans. Database Syst., vol. 28,
no. 3, pp. 257–294, Sep. 2003. [Online]. Available:
http://doi.acm.org/10.1145/937598.937601

[8] IMEX-Research, “The promise and challenges of cloud stor-
age. Accessed on 2015-01-02,” http://tiny.cc/sdpftx, 2015.

[9] X. Wang, S. Yang, S. Wang, X. Niu, and J. Xu, “An
application-based adaptive replica consistency for cloud stor-
age,” in Grid and Cooperative Computing (GCC), 2010 9th
International Conference on, Nov 2010, pp. 13–17.

[10] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. Perez,
“Harmony: Towards automated self-adaptive consistency in
cloud storage,” in Cluster Computing (CLUSTER), 2012 IEEE
International Conference on, Sept 2012, pp. 293–301.

[11] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient
computation of frequent and top-k elements in data streams,”
in Proc. of the 10th ICDT, Edinburgh,Scotland, 2005.

[12] K. Birman and R. V. Renesse, Reliable Distributed Computing
with the ISIS Toolkit, R. V. Renesse, Ed., 1994.

[13] T. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–
267, Mar. 1996.

[14] R. Guerraoui, “Indulgent algorithms (preliminary version),”
in Proc. PODC 2000. ACM, 2000, pp. 289–297.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,”
in Proc. SOCC 2010. ACM, 2010, pp. 143–154.

[16] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre,
and A. Pras, “Inside dropbox: Understanding personal cloud
storage services,” in Proc. IMC 2012. ACM, 2012, pp. 481–
494.

[17] T. Mitchell, Machine learning, ser. McGraw Hill series in
computer science. McGraw-Hill, 1997.

10

