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Abstract
Permissioned blockchains are a class of
blockchains where the processes that run con-
sensus are limited and known by all participants.
These blockchains can execute variants of Byzan-
tine consensus that offer finality. An approach
to support a large number of participants in this
context is to use dissemination and aggregation
trees to support the communication required to
execute protocol rounds. Previous work using this
topology is either topology-agnostic or assumes
homogeneous environments. Many Byzantine
consensus protocols are leader-based, and in the
blockchain scenario, there are compelling reasons
to rotate the leader between consecutive con-
sensus instances, such as the distribution of the
load of the leader and censorship resistance. This
work addresses the challenges of implementing
a rotating leader policy in BFT consensus that
uses dissemination and aggregation trees, and
we propose topology-aware heuristics to create
dissemination and aggregation trees in hetero-
geneous environments. Through simulations,
we evaluate the performance of our heuristics in
realistic scenarios, showing that they can reduce
the average time needed to collect a quorum by
70%.
Keywords: Byzantine Fault Tolerant Consensus,
Dissemination and Aggregation Trees, Hetero-
geneity

1. Introduction
In this work, we address the problem of implement-
ing permissioned blockchains that can scale to
large numbers of participants. Most permissioned
blockchains are based on variants of Byzantine
fault-tolerance BFT consensus protocols that can
offer finality, i.e., when a block is decided, it can no
longer be reverted. In contrast, most permission-
less blockchains prioritize consensus among many
participants using computational complexity, sacri-

ficing finality. However, a problem of BFT protocols
is that they are difficult to scale because all par-
ticipants must engage in multiple rounds of data
exchange. With large numbers of participants, this
can quickly saturate the network or the CPU re-
sources of one or more participants.

It was recently shown that dissemina-
tion/aggregation trees could support the data
exchange required by blockchain consensus while
distributing the load and avoiding bottlenecks [12].
Previous tree-based work, however, is either
agnostic to network topology [3, 16] or assumes
homogeneous environments [12]. In particular, the
Kauri [12] system creates random dissemination
trees that are oblivious to the topology and het-
erogeneity of the network. The tree configuration
can poorly impact the system’s performance if
deployed in a global setting.

However, using trees in either context increases
consensus rounds’ latency. Therefore, pipelin-
ing techniques have been suggested to mitigate
the impact of the increased latency in the system
throughput. Kauri [12], like many other BFT pro-
tocols, is a leader-based protocol that combines
these two techniques. Nevertheless, to maximize
the benefits of pipelining, it uses a stable leader
policy, i.e., the same leader is used for consecu-
tive instances of consensus until this leader is sus-
pected to be faulty. Furthermore, the same tree is
used while a given leader is active.

Pipelining is also used in protocols such as
Hotstuff[16], which relies on a star topology and
starts the next consensus instance optimistically
while the previous instance is still running and pig-
gybacking messages from multiple instances on
the same network packets.

Several arguments support changing the leader
(and, consequently, the tree) between consecutive
consensus instances. For instance, in a blockchain
setting, the leader can select which transactions
are included in a block and, therefore, has the
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power to censor some specific transactions; the ro-
tation of the leader task among all participants pro-
vides censorship resistance. Changing the leader
also allows for a better distribution of the load
on the leader during the protocol. Nevertheless,
changing the leader frequently raises concerns
about maintaining the pipeline started by the previ-
ous leader.

2. Related work
In this section, we will review our analysis of the
state of the art, focusing on six key factors de-
picted in Table 1. The first two factors capture
the communication pattern used to execute rounds
and the strategy used to change leaders. Next,
for the Non-deterministic sequence factor, we fo-
cus on whether systems use a deterministic se-
quence of leaders; systems that use a determinis-
tic sequence of leaders may be more vulnerable to
attacks, given that attackers can exploit this knowl-
edge to their benefit. The Leverages pipelining
factor captures if the systems use pipelining tech-
niques to improve throughput. The following factor
is regarding load balancing. We consider two def-
initions of load balancing in this discussion: intra-
round load balancing (the load is distributed within
a round) and cross-round load balancing (the load
is distributed in the overall execution across multi-
ple rounds). Regarding load balancing on nodes,
Kauri [12] offers intra-round load balancing by dis-
tributing the load in a tree topology. On the other
hand, various systems like PBFT [3] and Spin [15]
provide cross-round load balancing. Here, the
leader’s load is distributed per all processes within
several rounds. Therefore, in the Load balanc-
ing on nodes factor, we focus on the cross-round
definition, whether the system can distribute the
computational and bandwidth usage among differ-
ent nodes across rounds. The last factor indicates
whether knowledge regarding the network condi-
tions is used to achieve better performance.

We described two systems with a clique topol-
ogy: PBFT [3] and Spin [15]. PBFT still has some
issues that can be improved, like the number of re-
sources needed, the vulnerability to performance
attacks [2], and the significant message complex-
ity of the protocol. Spin tries to solve the vulner-
ability to performance attacks. It uses a rotating
strategy with a blacklisting technique for the pro-
cesses suspected to be faulty. This technique al-
lows for a rotating approach but without a faulty
process periodically becoming the leader. Other
solutions like Aardvark [4] also solves problems re-
lated to attacks on performance. However, its so-
lution to prevent faulty leaders from delaying the
service is less efficient than Spinning. Aardvark
also changes the leader when it suspects faulty be-
havior by running a view change operation. How-

ever, Spinning does not incur the cost of running
a distributed algorithm with several communication
steps. As a result, Spin becomes more efficient
than Aardvark. In addition, it allows for load bal-
ancing among the processes across rounds.

For star topology, we described three more
systems: Hotstuff [16], Prosecutor [17], and
Carousel [5]. Hotstuff primary advantage is sim-
plicity, enabling pipelining techniques and build-
ing large-scale replication services. Some dis-
advantages are the bottleneck on the leader and
the leader election being performed by follow-
ing a round-robin sequence. A faulty process
will periodically be the leader. Also, this round-
robin sequence is deterministic and predictable,
making the system vulnerable to attacks on the
leader. Prosecutor focuses on the impact of hav-
ing a faulty leader periodically and uses a dynamic-
penalization election technique to mitigate this
problem, reducing the time the system is unavail-
able. However, it imposes computational costs on
faulty servers, which is a different approach from
others since the previous approaches on penaliza-
tion allow faulty servers to be freely released af-
ter pretending to be correct servers. On the other
hand, PoW-like penalization may become less ef-
ficient if faulty servers have a strong computation
capability. Carousel also presents a new tech-
nique to deal with the impact of the round-robin
approach. It focuses on minimizing the effect of
crash-only executions by a participation tracking
technique. This new leader-rotation mechanism
demonstrated drastic performance improvements
in throughput and latency compared with Hotstuff-
based systems with a round-robin mechanism.

In the category of Random topology, we men-
tioned two systems: Gosig [9] and Algorand [6].
These two systems provide solutions to the vulner-
ability of attacks on the leader. Gosig focuses on
minimizing attacks on the leader using VRF so at-
tackers do not know the sequence. This method
means the leader is only known when the consen-
sus round starts, so the system tolerates attacks
on the leader. Algorand selects consensus groups,
using a VRF to prevent attacks targeting the lead-
ers. However, this system has the drawback of
using a committee approach for consensus, which
limits the system’s resilience.

Categorized as a tree topology, we analyzed
two existing systems: Byzcoin [8] and Kauri [12].
Both systems use a tree communication pattern
to distribute the computational and bandwidth load
among processes intra-round. Byzcoin builds
trees, using a VRF, to collect signatures when a
miner creates a block. However, the throughput de-
pends on the round latency and does not provide a
quick recovery. The main advantages of Kauri are
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Topology Leader election
approach

Non-deterministic
sequence

Leverages
pipelining

Load balancing
on nodes

Aware of
network conditions

PBFT [3] Clique stable ✗ ✗ ✗ ✗
Spin [15] Clique rotating ✗ ✓ ✓ ✗
Prosecutor [17] Star stable ✗ ✗ ✗ ✗
Hotstuff [16] Star rotating ✗ ✓ ✓ ✗
Carousel [5] Star rotating ✗ ✗ ✗ ✗
Gosig [9] Random rotating ✓ ✓ ✗ ✗
Algorand [6] Random rotating ✓ ✗ ✓ ✗
Kauri [12] Tree stable ✗ ✓ ✗ ✗
Byzcoin [8] Tree rotating ✓ ✗ ✓ ✗
GeoBFT [7] Hierarchical stable ✗ ✗ ✗ ✓

Kauri Adaptive Tree rotating ✓ ✓ ✓ ✓

Table 1: Comparison of existing algorithms.

load balancing for scalability and a quick recovery
strategy. In addition, using a novel pipelining tech-
nique, Kauri achieves high throughput as the sys-
tem grows. However, Kauri uses a stable-leader
approach, creating fairness concerns.

Lastly, with a hierarchical topology, we ana-
lyzed GeoBFT [7] that provides a topological-
aware grouping of replicas in local clusters, in-
troducing parallelization of consensus at the local
level and minimising communication between clus-
ters to achieve better performance when the sys-
tem is distributed globally.

3. Kauri Adaptive
We propose Kauri Adaptive, a system with Kauri
as the baseline, achieving intra-round load bal-
ancing on the nodes and scalability while avoid-
ing throughput limitations due to additional round
latency of the tree topology. In addition, we intro-
duce a rotating-leader approach in Kauri to guar-
antee fairness, a new non-deterministic sequence
approach for the tree configurations to limit attacks
on the leader, and a new technique to achieve load
balancing on the nodes across rounds. Table 1
shows that for every topology, there is at least a
system that follows a rotating-leader approach and
leverages a pipelining technique. There is no ver-
sion of a system with a tree topology, following a
rotating-leader approach, that leverages pipeline
and is aware of the network conditions. Thus, we
propose a new rotating-leader approach that will
leverage network conditions to achieve better per-
formance in global settings.

3.1. Model and Assumptions.
As a model, we assume the same assumptions as
Kauri, which are the standard for this type of sys-
tem [12, 3, 16]. In particular, we assume a sys-
tem consisting of N processes, f of which may
be Byzantine subject to the constraint f < N/3.
Byzantine processes can behave arbitrarily but do
not have sufficient computational power to subvert

the cryptographic primitives. Additionally, we as-
sume the existence of a system capable of provid-
ing the distances, in terms of latency, between the
different processes in the system. In practice, this
can be achieved with coordinate systems such as
Newton [14].

3.2. Architecture
We divided our approach into two distinct prob-
lems: i) generate all trees (described as the Gen-
eration phase); ii) given the set of generated trees,
define their sequence (described as the Sequence
phase).

Next, we will describe each one in more detail.

3.2.1 Generation Phase

In the Generation phase, our goal is to gener-
ate trees that meet the following requirements:
(i) each tree generated is aware of its topology; and
(ii) each generation considers the heterogeneity of
the environment.

Our approach to generating a topology-aware
tree starts from two observations: i) the Inter-
net presents characteristics of a small-world net-
work [1] and ii) nodes participating in permissioned
blockchain systems are typically clustered in ge-
ographically dispersed data centers [7] that have
internally very low latencies and between them
substantially higher latencies as illustrated in Ta-
ble 2. Thus, the intuition of our approach is that
at the beginning of the dissemination, we spread
the information over geographically distant areas
and, therefore, potentially using links with higher
latency, and from then on, take advantage of the
locality and do the rest of the dissemination us-
ing local links that typically have lower latencies.
The detailed implementation of these algorithms is
specified in Section 3.3. The decision process on
which heuristic to use is as follows: Can I manipu-
late the environment in terms of the distribution of
nodes through the data centres?
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Latência (ms)
O I M B T S

Oregon (O) ⩽ 1 38 65 136 118 161
Iowa (I) ⩽ 1 33 98 153 172
Montreal (M) ⩽ 1 82 186 202
Belgium (B) ⩽ 1 252 272
Taiwan (T) ⩽ 1 137
Sydney (S) ⩽ 1

Table 2: Communication latency between different Google
data centers as measured by ResilientDB [7].

1. If not, we use a Diversity-Aware group distri-
bution to generate the groups and, for each
group, create trees with a Generic tree config-
uration;

2. If we can, we use a Bandwidth-aware group
distribution to generate the groups and create
trees with a tree configuration that focuses on
local dissemination for each group.

This will result in N trees generated.

3.2.2 Sequence Phase

In the Sequence phase, we focus on creating the
sequence of the generated trees. Our goal is to
create a strategy that meets the following require-
ments: (i) the trees have different roots, mean-
ing that after all the generations, the extra load
imposed on the root is balanced by all nodes;
(ii) leverages the pipeline by guaranteeing that the
leader in configuration i was an internal node in the
configuration i - 1; and (iii) the sequence is not pre-
dictable for an attacker to exploit the system.

From the N-generated trees, our approach lever-
ages solutions that use Verifiable Random Func-
tions like Algorand [6] and uses them to choose ar-
bitrarily between the direct children of the previous
root, as exemplified in Algorithm .1.

This way, we (i) have a non-deterministic se-
quence; (ii) assuming the function is uniform in the
long term, we guarantee fairness; and (iii) maintain
the pipeline by choosing from direct children of the
previous root.

3.3. Topology-Aware Trees
In this section, we present in detail the heuris-
tics developed to generate Topology-Aware Trees.
We start with two heuristics for allocating nodes
to groups: (a) the Diversity-Aware distribution and
(b) the Bandwidth-Aware distribution. Finally, we
show the implementation of the algorithm for build-
ing trees from a group in two scenarios: (a) a
generic one, where we don’t have control of the en-
vironment and want to generate the best possible
tree for that environment; and (b) a heuristic us-
ing local-dissemination, where we have control of

Algorithm .1: VRF logic to add in Kauri
Input: T - set of trees generated for each

node. r - round.
Output: Next tree T [k].

1 if In round r − 1 then
2 for k ∈ currentTree.children do
3 vrfOutputk,

proofk ← V RF (SK, seed);

4 if goToNextRound then
5 max←MINHASH;
6 nextTreeLeader ← ∅;
7 for k ∈ currentTree.children do
8 hash← HASH(vrfOutputk);
9 if max ≤ hash then

10 max← hash;
11 nextTreeLeader ← k;

12 return T [nextTreeLeader]

the environment and can manipulate it to a specific
high-performing setup.

3.3.1 Allocating Nodes to Groups

Since Kauri takes a fixed set of groups as its start-
ing point, the first challenge is determining how to
allocate nodes to groups. To do this, we start by
introducing the concept of δ-Aglomeration:

δ-Aglomeration A δ-Aglomeration is a set of
nodes that are at most δ latency units apart.

Starting from the information provided by the
geographic coordinate system and the δ speci-
fied by the administrator, we use a clustering [13]
algorithm to divide the nodes into several δ-
agglomerates. In practice, this roughly corre-
sponds to dividing the nodes by the data centres
or geographic proximity in which they are located.

Next, we present two heuristics to distribute the
nodes within the groups.

Diversity-aware Distribution In this heuristic,
we create t groups initially empty, which corre-
spond to the groups used by Kauri to define the
internal nodes of the tree (lines 1– 2 of the Algo-
rithm .2). Starting from the δ-agglomerates previ-
ously constructed, we distribute the nodes of each
δ-agglomerate across the Bi-groups in a rotating
manner and defined in the lines 3– 5 of the Algo-
rithm .2. Thus, by spreading the nodes of each δ-
agglomerate across the different groups, we max-
imize the diversity of each Bi-group. This fact will
be exploited in the next steps of building a tree from
a group, like in the heuristics .4.
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Algorithm .2: Alocation of nodes to groups
1 for i = 1, 2, . . . (N/I) do
2 Bi ← ∅;
3 for i = 1, 2, . . . , I do
4 n← node from δ-aglomerate not

allocated yet ;
5 Bi ← Bi ∪ {n} ; /* Group i with I

nodes created */

Bandwidth-aware Distribution This heuristic
depends on having the bandwidth measures pro-
vided by the geographic coordinate system for
each δ-aglomerate and the block size in the sys-
tem. With this, we calculate the number of internal
nodes per δ-aglomerate i as follows:

Ii =
bandwidthi

blocksize
+ 1

Resulting in the number of internal nodes in a
group, I, to be the sum of the calculated factors
for each δ-aglomerate i. We create t groups ini-
tially empty, which correspond, again, to the groups
used by Kauri to define the internal nodes of the
tree (lines 2– 2 of the Algorithm .3). From the num-
ber of internals per δ-aglomerate calculated previ-
ously, we add that amount of internal nodes from
each cluster to each group (lines 3– 6 of the Algo-
rithm .3).

Algorithm .3: Alocation of nodes to groups
1 for i = 1, 2, . . . (N/I) do
2 Bi ← ∅;
3 for i = 1, 2, . . . , I do
4 for i = 1, 2 ∈ C do
5 internals← Ii nodes from cluster i;
6 Bi ← Bi ∪ internals; /* Group i

with I nodes created */

Thus, we can minimize the latency within each
local cluster by creating groups aware of the band-
width bottlenecks. This fact will be exploited in the
next steps of building a tree from a group, like in
heuristics .5.

3.3.2 Building a Tree from a Group

Given a group derived from any of the previous
strategies, we present how to build a tree from it.
We implemented two approaches, and both are di-
vided into two sub-problems: (a) configuring the
internal nodes and (b) allocating the leaves.

Algorithm .4: Build an informed tree
Input: A list Bi with the group of I internal

nodes. M - arity of the tree. A list
remaining with the leaves of the tree.

Output: Tree T represented as list.
/* Add root to tree */

1 root← rootHeuristic();
2 T ← T ∪ {raiz}
/* Global dissemination on the first

level of the tree */

3 for internal = 1, 2, . . .M do
4 T ← T ∪ {node from a δ-aglomerate not

yet chosen from group Bi}
/* Number of levels */

5 L← round(logM (N + 1))− 1
/* In case there is more than one

level of internals */

6 parents← deeper nodes in T while L! = 1
do

7 for parent ∈ parents do
8 Order remaining internal nodes of Bi

per latency to parent;
9 T ←M nodes with less latency;

10 L← L− 1;

/* Allocate leafs to the deeper nodes

*/

11 parents← deeper nodes in T
12 for parent ∈ parents do
13 Order nodes of remaining per latency to

the parent;
14 T ←M nodes with less latency;

15 return T

Generic Heuristic For this heuristic, we assume
that the system administrator defines the number
of processes N , the fanout of the tree, and the δ
factor detailed above.

This logic is more formally defined in Algo-
rithm .4.

Having selected the root using a convenient
heuristic, the next step is to define the configura-
tion of the remaining nodes in the Bi group that
will be the internal nodes of the tree. It should be
noted that the choice of the root is essential, as
described above, and the order in which the inter-
nal nodes appear in the tree is also essential to
achieve good performance. Specifically, dissemi-
nation in Kauri happens, by convention, from left
to right. Therefore, the leftmost nodes should be
those that have a lower latency connection to the
root (lines 3–4 in the Algorithm .4). This is relevant
because the consensus algorithm does not need
to wait for all nodes to make progress. A quorum
is sufficient. Thus, by placing the nodes with the
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least latency for the leftmost root, we maximize the
probability of not waiting for a response from the
slower nodes further to the right. If the tree has
more than two levels of internal nodes (i.e. the root
and direct children), we switch the approach to pri-
oritizing local communication. In this case, internal
nodes are assigned to parents that belong to the
same δ-agglomerate or, if this is not possible, to
the parent with the lowest latency (lines 6– 10 in
the Algorithm .4).

Once the configuration of the internal nodes is
defined, it remains to allocate the nodes of the re-
maining groups as leaves of the tree. At this point,
we want to maximize local communication, so we
allocate the leaf nodes of each group to a parent
node that belongs to the same δ-agglomerate or,
when this is not possible to the parent that mini-
mizes latency (lines 12– 14 in the Algorithm .4).

Heuristic Using Local-Dissemination The goal
is to input restrictions on the environment to
achieve the most high-performing tree for this con-
dition. The idea comes from creating subtrees of
local dissemination only. Global communication
only happens when the roots of each subtree com-
municate. Having minimized the latency needed
by prioritizing the local dissemination, the shape of
these subtrees becomes dependent on the band-
width available. Here, we need the number of in-
ternal nodes and how many are from each cluster.
The logic from the heuristic Bandwidth-aware dis-
tribution can calculate this.

This logic is more formally defined in Algo-
rithm .5

From a group previously defined by the accord-
ing heuristic previously defined and fixed message
size bk, we calculate the maximum fanout wanted
for each δ-aglomerate i as so:

Mi =
bandwidthi

blocksize

This way, for a root of δ-aglomerate i, we configure
the internal nodes as follows:

• get one internal node from all other δ-
aglomerates and add it as a child (lines 3– 4
in the Algorithm .5).

• get the internal nodes from the δ-aglomerate
i (the root one) and create a subtree of maxi-
mum fanout Mi from these nodes (lines 6– 10
in the Algorithm .5).

• for each child of the root that is not from the
same δ-aglomerate do the same logic and cre-
ate a subtree for each with the corresponding
maximum fanout Mi(lines 10– 16 in the Algo-
rithm .5).

Algorithm .5: Build an informed tree
Input: A list Bi with the group of I internal

nodes. C - number of δ-aglomerates.
bk - block size.

Output: Tree T .
/* Add root to tree */

1 root← rootHeuristic();
2 T ← {root} ;
/* Global dissemination on the first

level */

3 for internal = 1, 2, . . . C do
4 root.children← root.children ∪ {a

node from δ-aglomerate Ci not chosen
from group Bi}

/* Calculate wanted fanout per

δ-aglomerate */

5 for i ∈ range(C) do
6 M [i]← bandwidth(i)

bk ;

/* Local dissemination on the first

level */

7 available← nodes from group Bi from the
same location of root;

8 while available! = ∅ do
9 for . . .M [root.location] do

10 root.children← root.children ∪ {
node from available not chosen };

/* Create the remaining subtrees */

11 for internal = 1, 2, . . . root.children do
12 if internal.location! = root.location then
13 available← nodes from group Bi

from the same location of
internal.location;

14 while available! = ∅ do
15 for . . .M [internal.location] do
16 internal.children←

internal.children ∪ { node
from available not chosen };

/* Add leafs */

17 for deepestInternal ∈ T do
18 for . . .M [deepestInternal.location] do
19 deepestInternal.children←

deepestInternal.children ∪ { node
from remaining nodes not chosen };

20 return T
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This approach mitigates the bandwidth bottleneck
when disseminating within a δ-aglomerate.

For the leaves, we keep the same goal and go
to the deepest internals of each subtree and add
those, always considering the maximum fanout for
the δ-aglomerate the node is in (lines 16– 19 in the
Algorithm .5).

4. Results & discussion
In our evaluation, we wish to answer several ques-
tions, specifically about the gains and disadvan-
tages of our implemented heuristics when com-
pared with the state of the art. More precisely, we
address the following questions:

• What is the impact of our heuristics in hetero-
geneous deployments?

• Is the sequence of leaders known to an at-
tacker?

• Is the system fair?

To answer the last two, we look at the sequence
phase described in Section 3.2.2 and guarantee
that by using the VRF the sequence will not be de-
terministic and an attacker will not be able to ex-
ploit. Also, if the function used in VRF we can say
that we achieve fairness in the long term.

Next, we will analyze the impact of the heuris-
tics used in the generation phase. The experi-
mental evaluation was conducted using a discrete
event simulator in Python already used in other
works [10, 11]. The simulated network model fol-
lows the latency and bandwidth matrix from Re-
silientDB [7] and described in Table 2, with the pro-
cesses distributed evenly across the six data cen-
tres. To add the bandwidth model to the existing
simulator, we implemented an algorithm that mod-
els the flow of messages in a simulation, account-
ing for bandwidth and latency, to simulate the order
and timing of message delivery between nodes.
Each node in the simulation maintains sender and
receiver channels. When a message is sent from
a source node to a destination node, the algorithm
calculates transmission times based on message
size and bandwidth between them. It schedules
message transmission and reception events, con-
sidering current time and channel availability to en-
sure proper sequencing. Messages are processed
upon delivery.

4.1. Generic Deployment
We coded the algorithms described in Section 3.3
regarding the generic approach in the simulator
and considered three typical scenarios: a scenario
in which the fanout defined by the administrator co-
incides with the number of δ-agglomerates (Sce-
nario 1), a scenario in which the fanout is higher
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Figure 1: Time to retrieve quorum in Scenario 1.

(Scenario 2) and another in which it is lower (Sce-
nario 3). As the main metric, we used the time
needed for the root to collect the quorum, which
is the instant from which the consensus algorithm
can make progress.

To independently assess the impact of the
heuristic for allocating nodes to groups and build-
ing trees from a group, we evaluated the following
combinations for each scenario: i) informed groups
with informed trees; ii) informed groups with ran-
dom trees; iii) random groups with informed trees;
iv) random groups with random trees.

Scenario 1: M = number of δ-agglomerates
With 6 δ-agglomerates for this scenario, we set the
fanout M = 6 and create a regular two-level tree.
For this purpose, we have N = 43 nodes. We gen-
erated ten different groups for the random groups,
and for the random trees, we generated 100 differ-
ent trees for each group. The results for this sce-
nario in the four combinations are shown in Fig-
ure 1.

Starting with the construction of random trees
(green and blue lines), you can see that they per-
form worse than informed solutions. The differ-
ences between building random trees from a ran-
dom or informed group distribution are not signif-
icant and, in the case of this figure, the differ-
ence between the results is due to the fact that we
weren’t able to take a large enough sample. In fact,
as you’ll see below, these lines appear increasingly
overlapping in the other scenarios. On the other
hand, the informed algorithm for building trees al-
ready shows significant gains, even when the con-
stitution of the groups is still random; in this case,
we see an increase in performance by 30% in half
of the trees. The informed distribution of the nodes
among the groups improves the results even more
(in the order of 70%), as it increases the probability
of there being a well-situated root in all the groups.

Figure 2 shows the impact of combining the dif-
ferent heuristics. In particular, we selected a dis-
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Figure 2: Informed heuristic (yellow) vs random strategy (blue)
in Scenario 1.

tribution of nodes by groups and compared the in-
formed tree that is built by our heuristic from each
group (yellow dot), with several random trees that
can be built from the same group (blue line). As
you can see, for most groups, the informed tree
performs better than any of the 100 randomly con-
structed trees, which shows that the probability of
obtaining a good tree in an uninformed way is gen-
erally low. However, the figure also shows that our
heuristic does not always succeed in obtaining the
best tree. In Figure 2e, for example, group B5 in-
cludes 2 nodes in Taiwan and 1 node in each of the
other δ-agglomerates. Although the δ-agglomerate
with the lowest average latency for the other δ-
agglomerates in this scenario is in Iowa, finding a
more efficient tree with the root in Taiwan is possi-
ble.

4.2. High-performing Deployment
We coded the algorithms described in Sec-
tion 3.3 regarding the heuristic using the local-
dissemination approach. The same simulator, met-
rics and informed group distribution were used
with the nodes uniformly distributed between the
6 data centres. For 430 nodes, messages of size
2000 Mbit/s and the Bandwidth-aware Distribution
of nodes in groups described in Section .3. The
proposed solution, where we fully leverage the lo-
cal dissemination and create subtrees with fanout
based on the bandwidth bottleneck of each cluster
from a root from the cluster with the most band-
width, was compared with a random distribution
approach where we create 1000 random trees as
follows: we connect the root to the internal nodes
in the group and for the leaves, we randomly dis-
tribute them by a fixed fanout.

We gathered the results for a group in Figure 3.
As expected from the previous heuristic results,
the informed heuristic outperforms the random ap-
proach. For half the random trees, the informed
heuristic can outperform the other by 80%. Even
though the testbed of 1000 random trees could be
further improved, it seems that in this heuristic, it
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Figure 3: Informed heuristic (yellow) vs random strategy (blue).

will be much harder to find cases like in Figure 2e)
where we have random trees with better perfor-
mance than those found by our heuristic.

4.3. Discussion
For the generic deployment, the evaluation consid-
ers a relatively small set of scenarios. Still, it cov-
ers different relationships between the number of
δ-agglomerates and the fanout of the tree, i.e. sce-
narios in which the fanout is equal (Scenario 1),
higher (Scenario 2) or lower (Scenario 3) than the
number of δ-agglomerates. In all scenarios, our
generic tree-building heuristic achieves, on aver-
age, much shorter collection times than the ran-
dom trees currently used by Kauri. Furthermore,
in all cases, the informed division of nodes into
groups improves the results of the heuristic used
to build a tree in an informed way. This effect is
less pronounced in Scenario 3. Still, more experi-
ments would be needed to understand whether it is
the value of the fanout or the depth of the tree that
most affects the impact of the informed distribution
of nodes by groups. The evaluation also shows
clusters for which it is easy to find, even at random,
trees with better performance than those found by
our heuristic (for example, the case presented in
Figure 2e). We are investigating whether it is pos-
sible to improve the generic heuristic to avoid these
cases without making it unnecessarily complicated
(an advantage of the current version is that it is very
efficient to run from a computational point of view).

For the last deployment, we still registered a sig-
nificant improvement in collection times than ran-
dom trees. Even though we have to expand the
experiments to understand the impact with differ-
ent bandwidth models and message sizes, the sce-
nario indicates we can find a tree better than the
random best case in a determinist and computa-
tionally efficient manner.

5. Conclusions and Future Work
Most permissioned blockchains are based on vari-
ants of BFT consensus protocols that have scala-
bility problems since all participants engage in mul-
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tiple rounds of data exchange. Kauri [12] com-
bines dissemination/aggregation trees and pipelin-
ing to distribute the load and compensate for the in-
creased latency of using trees. However, it uses a
stable-leader approach to leverage the benefits of
pipelining. Several arguments favor changing the
leader between consecutive consensus rounds to
provide censorship resistance. These arguments
motivate the need for a strategy to rotate the leader
with a minimal negative impact on pipelining and
promoting a good load balance among all partici-
pants.

We surveyed the state-of-the-art BFT algo-
rithms. We analyzed their communication patterns
and discussed leader rotation strategies, the im-
pact of the pipelining techniques and how they be-
have in heterogeneous deployments.

In this work, we present a solution that aims
to enrich Kauri with heuristics for generating dis-
semination and aggregation trees based on the
network topology. In this context, we propose
a heuristic for building trees that uses informa-
tion about the latency between nodes to create
groups and another for generating trees from these
groups. We evaluate both heuristics using sim-
ulations based on realistic network latencies and
present results that suggest it is possible to re-
duce the time needed to collect a Byzantine quo-
rum by 70%. We elaborated a solution to support
a rotating-leader approach in a tree topology that
leverages these heuristics while maintaining an ac-
ceptable throughput by the pipelining technique.

In future work, we intend to evaluate our ap-
proach in a real code scenario running in geo-
distributed data centres. Another relevant sce-
nario would leverage pipelining techniques to as-
sess how this rotating strategy behaves. In the
generic heuristic, we also consider that the system
administrator provides the M and δ parameters; it
would be interesting to extend the work to config-
ure these parameters automatically. As mentioned
in the evaluation chapter ??, the impact of increas-
ing the depth of the trees when leveraging these
heuristics needs to be further studied to under-
stand if it is the fanout of the tree or its depth that
has the most impact. Also, for the clusters where it
is easy to find a random tree that outperforms one
using our heuristic, we need to investigate whether
it is possible to improve our heuristic to avoid those
cases without incurring a much higher computa-
tional cost. Lastly, in our last heuristic, we must
expand the testbed to include different bandwidth
models and message sizes in real-world scenar-
ios.
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