
Partial Replication of Conflict-Free Replicated
Data Types

Hugo Guerreiro
hugo.guerreiro@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisors: Professor Lúıs Rodrigues and Professor Nuno Preguiça)

Abstract. Conflict-free replicated data types (CRDT) are a class of
data structures designed to simplify the operation of distributed sys-
tems that require data to be replicated in di↵erent nodes. CRDTs are
designed in such a way that di↵erent replicas can execute concurrent
operations in di↵erent orders and still converge to the same consistent
state when the system becomes quiescent. In this way, CRDTs avoid the
coordination costs required for preventing conflicts from occurring (such
as executing operations in total order) or complex conflict resolution pro-
cedures. CRDTs are now well understood in the case of full replication,
i.e., when all replicas maintain the entire state of the CRDT. However,
with CRDTs that store large quantities of data, full replication may be
infeasible; one may be forced to shard the CRDT state and let di↵er-
ent replicas replicate di↵erent shards, i.e., to support partially replicated
CRDTs. While classical CRDT algorithms will ensure the consistency of
each shard, it may be di�cult to ensure that clients observe a consistent
state of the CRDT when they access multiple shards. Also, the data ac-
cess patterns may require the system to change which nodes replica each
shard dynamically.
Additionally, in some cases, static partitioning of the CRDT may not
be feasible, and it may be useful to dynamically re-allocate objects to
shards. In this work, we study ways to express di↵erent types of partially-
replicated CRDTs, including CRDTS where the number of shards, the
assignment of objects to shards, or the number of replicas of each shard
may change in runtime. We also propose algorithms to ensure that the
use of partial-replication does not a↵ect the consistency of the CRDT.

Key words: CRDT · Partial replication · Causal consistency

1

Table of Contents

1 Introduction . 3
2 Goals . 4
3 Causality and Causal Consistency . 4

3.1 Logical Clocks . 5
3.2 Vector Clocks . 5
3.3 Causal Consistency . 6

4 Conflict-free Replicated Data Types . 6
4.1 System Model . 7
4.2 Synchronization Model . 7

4.2.1 Operation-Based Replication . 7
4.2.2 State-Based Replication . 8
4.2.3 Delta-CRDT Replication . 10

4.3 Basic CRDTs . 10
4.3.1 Counters . 11
4.3.2 Registers . 13
4.3.3 Sets . 14
4.3.4 Other CRDTs . 15

5 Related Work . 15
5.1 Partial Replication of CRDTs . 16

5.1.1 Conflict-free Partially Replicated Data Types 16
5.1.2 Composing Partial CRDT Replicas . 18
5.1.3 Non-Uniform Replication . 19

5.2 Causally Consistent Partially Replicated Systems 21
5.2.1 Causal Consistency vs Partial Replication 21
5.2.2 An Overview of Current Solutions . 22

6 Architecture . 25
6.1 System Model . 26

7 Evaluation . 28
8 Scheduling of Future Work . 28
9 Conclusions . 29

1 Introduction

The use of data replication is almost unavoidable in modern distributed
systems. First, data replication is a fundamental technique to provide fault-
tolerance, a key requirement in most systems. Second, when the applications
have clients that reach the system from di↵erent geographic locations, only repli-
cation can ensure that these clients access data with low latency. Unfortunately,
with data replication, comes the risk that clients may observe an inconsistent
view of said data. The problem of data consistency in systems that maintain
replicated data has been widely studied [1]. In this context, several consistency
models have been proposed that make di↵erent tradeo↵s between the guarantees
provided to the applications and the costs involved in ensuring those guarantees.
Some consistency models hide from the application the fact that data is repli-
cated, such that application designers can reason about the system as if the data
is stored centrally in a single node. These models are often said to o↵er strong

consistency ; relevant examples are linearizability [2] and serializability [3].
Unfortunately, it has been shown that strong consistency cannot be enforced

without tight coordination among replicas, in particular without running con-
sensus [4,5]. In turn, consensus cannot be solved in a pure asynchronous system
and, in systems that can be augmented with a failure detector, can block in
the face of unfavorable network conditions. This leads to the observation that
it is impossible to o↵er consistency, availability, and partitioning tolerance [6]
simultaneously. Weaker consistency models, such as causal consistency and even-
tual consistency [7], have also been proposed. These models can be implemented
without executing consensus and can o↵er better availability. Typically, such
models work by allowing any replica to accept updates and subsequently prop-
agate them to other peers in the background. However, these models allow for
concurrent operations to be accepted at di↵erent replicas, sometimes generat-
ing conflicts that need to be solved by complex conflict resolution procedures.
Developing these mechanisms is typically an ad hoc and error-prone process.

Conflict-free replicated data types (CRDT) are a class of data structures
designed to simplify the operation of distributed systems that require data to be
replicated in di↵erent nodes. CRDTs are designed in such a way that di↵erent
replicas can execute concurrent operations in di↵erent orders and still converge
to the same consistent state when the system becomes quiescent. This type
of quiescent consistency [8, 9] named strong eventual consistency [10](SEC) is
more strict than weak consistency and gives to applications additional safety
guarantees.

CRDTs are now well understood in the case of full replication, i.e., when all
replicas maintain the entire state of the CRDT. However, with CRDTs that store
large quantities of data, full replication may be infeasible; one may be forced to
shard the CRDT state and let di↵erent replicas replicate di↵erent shards, i.e.,
to support partially replicated CRDTs. While classical CRDT algorithms will
ensure the consistency in each shard, it may be challenging to ensure that the
client observes a consistent state of the CRDT when they access multiple shards.
Also, the data access patterns may require the system to change which nodes

3

replica each shard dynamically. Additionally, in some cases, static partitioning
of the CRDT may not be feasible, and it may be useful to dynamically re-
allocate objects to shards. In this work, we study ways to express di↵erent types
of partially-replicated CRDTs, including CRDTS where the number of shards,
the assignment of objects to shards, or the number of replicas of each shard
may change in runtime. We also propose algorithms to ensure that the use of
partial-replication does not a↵ect the consistency of the CRDT.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 5, we present all the
background related to our work. Section 6 describes the proposed architecture
to be implemented and Section 7 describes how we plan to evaluate our results.
Finally, Section 8 presents the schedule of future work and Section 9 concludes
the report.

2 Goals

This work addresses the problem of partial replication in the context of
CRDTs. More precisely:

Goals: We aim at designing a common framework to express di↵er-
ent types of partially-replicated CRDTs, including CRDTs where the
number of shards, the assignment of objects to shards, or the number of
replicas of each shard may change in runtime. We also aim at designing,
implementing, and evaluating algorithms to enforce the consistency of
partially-replicated CRDT.

To achieve this goal, we plan to depart from a novel system model that allows
any type of CRDT to be partially replicated. We will augment this system to
encompass dynamic assignments of data to shards and also of shards to replicas.
We will try to make our system powerful enough to support other forms of
partially-replicated CRDTs such as non-uniform replication [11] and conflict-
free partially replicated data types [12]. At the implementation level, we expect
to develop algorithms that will allow for more general synchronization patterns
than the centralized model described in [13].

The project will produce the following expected results.

Expected results: The work will produce i) a specification of partially
replicated CRDTs; ii) a prototype that shows the feasibility of imple-
menting the proposed specification, iii) an extensive experimental eval-
uation that compares the performance and flexibility of the proposed
system with previous systems that provide di↵erent forms of partially-
replicated CRDTs.

3 Causality and Causal Consistency

Time is an essential concept when reasoning about how events are ordered
in a system. Intuitively, every event happens at a certain point in time, and

4

using this physical time to order such events would be the ideal way to do so.
Unfortunately, since perfectly synchronizing clocks in a distributed system is
unfeasible [14], other methods had to be sought out.

One way to order the events in a system is through their causal relationships.
Lamport [14] generalized this concept through the happened-before relation ()
of two events. An event e1 is said to have happened-before an event e2 (e1 e2)
i↵:

(i) If e1 and e2 are events that happened in the same process and e1 occurred
before e2 then e1 e2

(ii) In the case of a message being sent; if e1 is the event responsible for sending
said message, and e2 the event reading it, then e1 e2

(iii) If e1 e2 and e2 e3 then e1 e3

3.1 Logical Clocks

Logical clocks were introduced alongside the definition of happens-before to
capture these relationships between events. Logical clocks are, in their essence,
counters that increase monotonically and do not need to share any dependency
with real physical clocks. A logical clock Li associated with an arbitrary process
pi is defined as follows:

(i) Before any event happens at pi, Li is incremented: Li := Li + 1
(ii) Everytime process pi sends a message, Li is incremented and its value is Li

is piggybacked in the message.
(iii) On the receiving site, process pj computes Lj := max(Lj + 1, Li)

The use of logical clocks is su�cient to enforce causality. In fact, given two
events e1 and e2 we have e1 e2) L(e1) < L(e2), the contrary, however, is
not true (L(e1) < L(e2) ; e1 e2).

3.2 Vector Clocks

To overcome the aforementioned limitation, vector clocks were introduced
[15, 16]. A vector clock joins multiple logical clocks, one for each process in the
system - e.g., if the system hasN processes, the vector clock will containN logical
clocks. Similarly to logical clocks, each process pi keeps a vector clock Vi which
is updated every time an event happens, and the vector clock is piggybacked in
every message sent by a process. The rules for updating a vector clock are:

(i) Each entry in the vector Vi is initialized to 0
(ii) Each time an event occurs at process pi , its vector clock is incremented

Vi[i] = Vi[i] + 1
(iii) When process pi receives a message from another process pj , the value of

the vector clock is set to the pairwise maximum of each entry in both clocks:
Vi[k] := max(Vi[k], Vj [k]) , for k = 1, 2, ..., N .

5

Unlike logical clocks, this mechanism ensures that for two events e1 and e2
the following is true: e1 e2) L(e1) < L(e2); L(e1) < L(e2)) e1 e2. This
property makes it possible to compare two vectors in such a way that we can
not only identify whether one event happened before other but also if two events
are concurrent.

Although vector clocks are a better approximation of causality than logical
clocks, they have the disadvantage of growing linearly in size with the number
N of processes in the system. As N grows large, so does the penalty incurred
in terms of bandwidth and storage. Several other causality tracking mechanisms
and optimizations have been proposed in the literature [17–24].

3.3 Causal Consistency

The happens-before relation was initially conceived in the context of message-
passing systems but it is also relevant for systems based on shared memory.
Causal consistency [7] is a consistency model for shared memory systems that
ensures that reads always return values that are consistent with the happens-
before relation among read and write operations, i.e., each process observes a
state that results from an execution of write operations that complies with causal
ordering (concurrent updates, may be applied in any order). This means that
once the e↵ect of a certain write operation becomes visible at a given process,
so do the e↵ects of all write operation in its causal past.

This consistency model is really important in distributed systems. Reasoning
about causality bonds naturally with our notions of how time behaves; it provides
better guarantees than eventual consistency while still tolerating partitions and
has been proven to be the strongest consistency model that is also available
under partition [4, 5].

Notice that by allowing concurrent updates to execute at di↵erent orders
in di↵erent processes, the states may diverge. A slightly stronger model named
Causal+ [25] has been proposed, where the additional condition of eventual and
independent conflict resolution of concurrent updates needs to be ensured. This
condition is such that the states of every process will eventually reach the same
value. Conflict-free replicated data types (CRDTs), which will be presented in
the next section, are a known way to implement causal+ consistency.

4 Conflict-free Replicated Data Types

Commutative or convergent replicated data types (CRDT) are a class of
distributed data structures that can be replicated throughout di↵erent nodes
and have two important properties:

(i) Updates to a certain replica can be done without any coordination and
conflicts are automatically resolved

(ii) Replicas are guaranteed to eventually and deterministically reach the same
state given that they saw the same set of updates

6

The asynchronous nature of CRDTs makes them useful for applications that
require low update latencies, but that can trade-o↵ for less data consistency. In
the following chapter, we take a look at the CRDT’s system and synchronization
model and conditions for convergence as well as some known basic CRDTs.

4.1 System Model

The distributed system considered for CRDTs is composed of nodes that
communicate over an asynchronous network that can partition and recover. In
the case of partitioning, nodes can continue to work without communicating
with other nodes.

Processes may crash due to a non-byzantine fault. They may recover along
with the memory that is also recovered to the state previous to the crash.

Processes hold CRDT objects. An object is a collection of simple (base)
data types (e.g. Integers, Strings, sets, among others) and other objects that are
stored under its payload (or content). CRDT objects expose certain operations
in order to manipulate said payload.

4.2 Synchronization Model

Replicas of commutative replicated data types (CmRDT), and convergent
replicated data types (CvRDT) are guaranteed to deterministically converge to
the same state given that all updates eventually reach all replicas. Guarantee-
ing that all changes propagate to every replica is part of what is called the
synchronization model, and two types are considered for CRDTs, namely state
and operation based, which are inherently tied with CmRDTs and CvRDTs
respectively. In the following section, we take a look at how these data types
achieve convergence, the necessary conditions for it to happen as well as their
synchronization models.

4.2.1 Operation-Based Replication

In the operation-based synchronization model, replicas execute operations
locally at the replica chose by the client (called the source replica) and afterward
propagate them to all other replicas. As described, operations are executed in
two stages:

(i) Prepare phase (or atSource phase) - The update operation is prepared
for execution at the source replica. No side-e↵ects happen;

(ii) Downstream phase (or e↵ect phase) - The operation is executed locally
and asynchronously transmitted to all the other replicas.

Queries can be executed entirely at a single replica without the need to
propagate to other replicas; however, since updates change the state, the same
cannot be done. To this end, this synchronization model assumes that updates
are delivered according to a causally consistent order with the caveat that all

7

concurrent operations must commute, i.e., the order in which operations are ap-
plied does not matter and always result in the same final value. This requirement
is achieved by using CmRDTs (described in Section 4.2.1.1) as the conciliation
medium for operations that are applied at a specific replica.

Apart from the causally consistent delivery order, replicas must also only see
each update exactly once; therefore, an underlying system that provides reliable
broadcast is assumed to exist.

4.2.1.1 Commutative Replicated Data Types (CmRDT) Commutative
replicated data types have one crucial characteristic: concurrent update opera-
tions commute.

As previously described, this property is mandatory for the correctness of the
synchronization model in the sense that the result of two concurrent operations is
the same independently of the order in which they were executed. Furthermore,
this reduces the need for additional consensus related communications.

With respect to convergence, if a delivery order exists for the updates that
were made and given that all concurrent operations commute, then all replicas
converge to the same state. A delivery order cannot be stricter than causal
delivery, which is su�cient for all CmRDTs. Nevertheless, weaker orderings can
be employed for some data types.

The synergy between operation based synchronization and the convergence
of CmRDTs erupts from the fact that any two replicas of a CmRDT eventually
converge under reliable broadcast channels that deliver operations in the speci-
fied delivery order. The proof for this result can be consulted in detail in [10,26].

Correctly designing a CmRDT can be narrowed down to proving two points:

• Showing that a delivery order exists for all updates;
• Proving that concurrent updates commute.

4.2.2 State-Based Replication

In the state-based replication model, updates are executed locally at the
replica upon which the operation was invoked (source replica). Afterward, the
entire modified state is propagated to other replicas that will apply a merge
function between their local state and the received payload. This merge function
results in a new state that includes all the updates that were executed at the
source replica. CvRDTs are a theoretically sound approach to design such merge
functions. CvRDTs are further discussed in Section 4.2.2.1.

It might be useful not to execute a certain operation if a condition is not met.
For that end, one can specify pre-conditions that are evaluated before executing
a particular operation. If an operation meets all the pre-conditions, then it can
be enabled for execution.

As long as replicas are constantly transmitting their state to their peers and
the replica communication network forms a connected graph, all updates are
eventually seen by every replica.

8

4.2.2.1 Convergent replicated data types (CvRDT) Just like its coun-
terpart CmRDT, Convergent replicated data types also have a payload, and
their replicas are able to converge to the same state deterministically. CvRTs
are equipped with a merge(x, y) function that takes two states x,y, and joins
them in a conflict-free manner.

More formally, CvRDTs lay its foundations in order theory and the notion
of semilattice. CvRDTs have three main properties:

(i) The values from its payload are taken in a semilattice;
(ii) The merge(x, y) = x t y function converges towards the least upper bound

(LUB) of the two states;
(iii) When merging, the state of the object increases in a monotonic fashion, i.e.,

it never decreases in size.

The combination of a monotonic increasing state that takes its values in a
semilattice is called a monotonic semilattice. These properties combined with
state-based synchronization are su�cient conditions of convergence for state-
based CRDTs [10,26]

Fig. 1: State evolution of three replicas of a state-based CRDT

Intuitively, the evolution of the state of a CvRDT can be explained with a
simple Hasse diagram, such as the one in Figure 1. Additionally, in Figure 1
we have a possible serialization of the events in the system that will lead to a
coherent final state between all replicas according to the state evolution in the
respective Hasse diagram. In these two diagrams, we consider the payload of the
object to be a set where x, y and z are atoms of said set. For the example’s
sake, we can consider that for two sets S and T we have S T , S ✓ T ;
this defines a partial order. Furthermore, if we specify the merge function as
merge(S, T) = S [T we are computing the least upper bound of the two sets.
By joining these two definitions, we have created a join-semilattice. Assuming
objects are not removed from these sets, we have a set that only increases in size,
therefore it is monotonic. Altogether, we have a monotonic semilattice, and this

9

object can be called a convergent replicated data type. The exposed example is,
in reality, an actual state-based CRDT called Grow only set or G-Set.

4.2.3 Delta-CRDT Replication

Both state and operation based CRDTs have their disadvantages. On the one
side, state-based CRDTs require the underlying system to propagate the entire
state when updates are made; This inevitably impacts the performance of the
system as the size of the CRDT object increases. On the flip side, when multiple
updates are made to the same object, propagating all the operations might
be ine�cient as opposed to sending the state once. As an example, consider a
replicated counter object that can be incremented or decremented; propagating
all the updates made to this object is heavier to the system than propagating
once, what has changed since the two replicas last communicated.

This trade-o↵ between state-based and operation-based CRDTs is studied
by delta-state CRDTs [27], which combine features from the two other types of
CRDTs. Updates to Delta-state CRDTs generate deltas which can be thought of
as the di↵erence of the state before and after the update was executed. The e↵ect
of one or more updates is encoded as delta-mutators, which are then propagated
between replicas. Delta-mutators act like updates as in operation-based CRDTs
but have the mergeable characteristic of state-based CRDTs, essentially making
this type of CRDTs a more practical version of state-based CRDTs.

Surprisingly, using �-CRDTs does not necessarily improve the amount of
redundant state propagated between replicas [28]. Additionally, the initial com-
munication for �-CRDT replicas is heavy and requires the entire state to be
propagated between the two replicas [29]. Addressing both these problems can
be done using similar approaches that, in their essence, consist in the computa-
tion of the optimal delta-mutators to be propagated [28,29].

4.3 Basic CRDTs

In this section, we take a look into some existing CRDTs that are fairly
simple in complexity. An issue that comes packaged with designing CRDTs is
the fact that di↵erent objects might have multiple possible conflict resolution
semantics. As an example, consider trying to concurrently add and remove the
same element from a shared set. Noticeably, there is not a single possible out-
come from these operations: the result can be either the object being added to
the set or not. From an application point of view, di↵erent conflict resolution
semantics may make sense depending on the type of application. To this end,
CRDT specifications decide the semantics of the object, and the application de-
veloper decides if that semantic makes sense for the desired use case. A large
number of CRDT specifications have been proposed [10,26,27,30,31]. Next, we
present only a few examples.

10

4.3.1 Counters

A counter is a data type that has an integer as its payload and supports
operations to either increment or decrement said value. Since these updates are
naturally commutative, it is expected for the CRDT to converge to the sum
of the increments minus the sum of decrements. Albeit only having a single
concurrency semantics, some di↵erent constructs are still considered.

4.3.1.1 Operation-based counter The operation-based counter is one of the
most intuitive CRDTs. Since addition and subtraction commute, concurrent
operations may be applied in any order; in fact, given that this CRDT is always
incremented or decremented by the same amount, all operations may be applied
in any order.

Algorithm 1 Specification of an Operation-based counter. Specification taken
from [26]

1: payload integer i
2: initial 0
3: query value() : integer j
4: let j = i

5: update increment()
6: atSource() . Empty: no prepare phase is needed
7: downstream() . No precondition: delivery order is empty
8: i := i+ 1
9: update decrement()
10: atSource() . Empty: no prepare phase is needed
11: downstream() . No precondition: delivery order is empty
12: i := i� 1

The specification for this CRDT is presented in Algorithm 1. To be as il-
lustrative as possible of how operation-based CRDTs are designed, we will go
in detail through this specification. In line 1, we can see the specification of
the payload of the object (an integer with an initial value of 0 in this case).
This payload is instantiated at all replicas. Operation-based CRDTs typically
support two types of operations: queries and updates. Queries execute locally
at each replica. In line 3 is defined a query operation that simply returns the
current value of the counter. While this operation is rather simple, some complex
operations require certain conditions to be met before being allowed to execute.
These conditions are named preconditions and are placed at the beginning of
the operation definition.

As previously explained in Section 4.2.1, update operations are executed in
two steps: atSource and downstream. In lines 5 and 9, we can see the defini-
tions of the increment and decrement update operation, respectively. In this
CRDT, only the downstream phase needs to be specified, and no precondition
is needed since updates may be executed in any order. The downstream phase

11

increments/decrements the counter locally and then asynchronously propagates
the operation to the other replicas.

4.3.1.2 State-based increment only counter (G-counter): This CRDT
works by maintaining a vector where each entry is the value for the counter at
that replica. The value of the object is the sum of all entries in the vector. When
merging, we take the max between each position in the payload vector and the
receiving vector.

Similarly, as we did for the operation-based counter in Section 4.3.1.1, let
us take a glance over the specification for this CRDT. Specifications for state-
based CRDTs di↵er from the ones for operation-based in some aspects: (i) update
operations do not require to be executed in two steps and can be immediately
applied to the local state; (ii) two additional methods need to be specified,
namely compare and merge.

Algorithm 2 Specification of a state-based increment only counter. Specifica-
tion taken from [26]

1: payload integer[n] P . One entry per replica
2: initial [0, 0, ..., 0]

3: update increment()
4: let g = myID() . g: source replica
5: P [g] := P [g] + 1

6: query value() : integer v
7: let v =

P
i P [i]

8: compare(X,Y) : boolean b
9: let b = (8i 2 [0, n� 1] : X.P [i] Y.P [i])

10: merge(X,Y) : payload Z
11: let 8i 2 [0, n� 1] : Z.P [i] = max(X.P [i], Y.P [i])

Similarly to Specification 1, in line 1, we define the payload for this object. In
line 3, we define the increment operation that will increment the position in the
vector corresponding to the local replica. In line 6, we define the query operation,
which returns the sum of all the counters in the vector. Operations compare and
merge are both defined in lines 8 and 10, respectively. The compare(X,Y) receives
two states and is responsible for evaluating if there exists a partial order1 between
these two states. In this particular CRDT, this relation is defined by applying a
 comparison over each entry in one vector with the corresponding entry in the
other vector. This operation is essential for ensuring that the state increases in
a monotonic way.

1 In more simple terms, one can think of this as a comparison to check if one abstract
state is greater than the other. Although not mathematically correct, this intuition
holds for most practical scenarios.

12

The other operation is the merge(X,Y) that, given two states, computes the
LUB between them. For the increment-only counter, this is done by merely
taking the max between each corresponding entry in the two vectors. By doing
so, we guarantee that the newly generated vector will respect the compare(X,Y)
function when applied together with the two input vectors of the merge function.

4.3.1.3 State-based PN Counter: The PN-counter follows the same logic
as the G-Counter but supports decrement operations. To allow this additional
behavior, a second dedicated vector is stored in each replica to represent the
decrements. The value of the CRDT is the sum of the increment vector minus
the sum of the decrement vector.

4.3.1.4 Non negative Counter: Allowing for non-negative counters while
not breaking the semantics of the data structure (the value of the object con-
verges towards the global number of increments minus the number of decrements)
proves to be quite challenging. One possible solution is not to decrement more
times than there have been increments.

4.3.2 Registers

Registers can be seen as a variable to which we can assign a certain opaque
value. Since updates to registers behave as separate events and have no rela-
tion between them, sequential semantics must be preserved. To this end, two
concurrency semantics have been proposed:

4.3.2.1 Last Writer Wins Register: The last writer wins register maintains
an arbitrary object as its payload. An order of the update operations is formed
by associating a unique, totally ordered, and causally consistent timestamp to
every event. In general, when faced with two concurrent writes, the LWW register
chooses the one which was written last.

In the state-based version of this CRDT, the merge-operation accepts the
value from the replica whose timestamp is the most recent.

On the operation-based version, the update operation is executed immedi-
ately locally. In the Downstream phase, the operation is only accepted if the
timestamp is greater than the one stored at the receiving replica. Concurrent
updates are guaranteed to commute given the fact that each timestamp is unique
and totally ordered.

4.3.2.2 Multi Value Register (MV-register): In the LWW register, some
of the values that were written concurrently might be discarded. For some ap-
plications, this semantic might not make sense, and the application developer
may need to have access to all values that reached the system at a given time.
In the state-based Multi-value register CRDT, all the values that were written
in a concurrent fashion are kept. To detect concurrently written values, the data
structure maintains pairs of < V alue, V ersionvector >. When a merge is re-
quired, the replica only accepts the pairs that do not dominate one over the

13

other. In the case of concurrent writes, since no update is the dominant one,
both values are kept.

4.3.3 Sets

A Set is a well-known mathematical data structure that has many useful ap-
plications in various fields of research. It is one of the core basic data structures
that lay the foundations for more complex data types like Containers, maps,
and graphs. In the case of CRDTs, two operations are considered in sets: add(e)
that allows an element to be added (equivalent to a set union) and rmv(e) that
removes a certain element (equivalent to a set minus). Although simple, these
operations do not commute, and as a result of that, a CRDT can only approxi-
mate the sequential specifications of a set [26]. Multiple concurrency semantics
have been proposed for elements that are added and removed concurrently.

4.3.3.1 Grow-only set (G-set): The grow-only set is a simple yet useful
CRDT. It maintains a set as its payload and only allows update and lookup op-
erations to be executed. In Section 4.2.2, an intuition was already brought about
the state-based version of a G-Set. Regarding the operation-based version, since
the union operator of a set is commutative, concurrent adds can be executed in
any order. Given that all considered operations commute, this data structure is
a CmRDT and under operation-based synchronization, it is a CRDT.

4.3.3.2 Two phase set (2P- set) and U-set: The two-phase set allows both
adding and removing operations with the caveat that once an element has been
added and removed, it cannot be added again. The state-based version of this
CRDT works by combining two G-set CRDTs, one for adding new elements and
another for tracking elements that were removed. This second CRDT is known
as the tombstone.

Intuitively, this data-structure is a CvRDT since it is the combination of two
already proven to be CRDTs. Regarding the operation-based version, it is given
that concurrent operations of the same type (add(e)kadd(e), rmv(e)krmv(e))
commute and since a pre-condition ensures that a remove of an element can only
be executed if the corresponding add has been executed, concurrent updates
of the type add(e)krmv(e) cannot happen therefore this data structure is a
CmRDT.

Additionally, the 2P-set can be simplified under the assumption that all ele-
ments are unique, and as a consequence of that, a removed element will never be
added again. If additionally, a downstream pre-condition ensures that the oper-
ation add(e) is delivered before remove(e), there is no need to keep a tombstone
set. This construct is named U-set.

4.3.3.3 LWW-element-Set: Another concurrency semantic is the one consid-
ered by the last writer wins set. In this CRDT, a total order is defined among all
updates, and in the presence of concurrency issues, the update that was written
last according to the specified order is the one that prevails. Intuitively, when

14

faced with a concurrent add and remove of some element e, if the add update
was executed after the remove operation, the element will be in the set after the
merge.

4.3.3.4 Observed remove set (OR-set): The concurrency semantics of the
Observed remove set (also known as add-wins set) is quite intuitive. In this
CRDT, both add(e) and rmv(e) operations are supported. In the case of con-
current add and rmv updates, priority is given to the add operation, which makes
the element be considered in the final state. A variation of this semantics is the
remove-wins set, which contrary to its counterpart OR-set, gives priority to
remove operations.

4.3.4 Other CRDTs

In the literature, more complex constructs have been formulated. Among
others, more advanced CRDTs include: Lists [32], Maps [33], Graphs [34] and
JSON objects [31].

5 Related Work

Thus far, CRDTs work under the assumption that the state of an object is
kept in its entirety on each replica. In practical scenarios where the devices that
hold the objects are limited in memory, transferring large amounts of data is
suboptimal, especially for clients that may not be interested in all the received
content. This characteristic also incurs a penalty on servers that may need to
load and store huge amounts of data from disk to memory.

As we can see, this limitation leads to performance issues, essentially reduc-
ing the number of use cases of CRDTs to either devices with virtually infinite
memory or the use of small-sized objects. Nevertheless, none of the cases is ideal.

Partial replication is a good approach to mitigate this problem. In partially
replicated scenarios, each replica holds a subset of the information of the en-
tire system. Applying this concept to CRDTs would open a window to a more
significant range of possible applications and systems that are not possible or
supported with classical CRDT replication mechanisms. As an example, con-
sider an application that needs to store a map in the clients’ portable device
(e.g., a smartwatch). In this scenario, keeping the entire map inside the device
is not feasible due to the inherent memory limitations imposed by its small size.
Furthermore, the user is usually only interested in a certain part of the map at
a given time. This scenario can be modeled using CRDTs, and it is clear how it
would benefit from partial replication.

In this section, we survey the work done in the literature related to partial
replications of CRDTs. We start by analyzing some existing approaches to the
problem with their specific intricacies and limitations and finish up by taking a
look at some causally consistent partially replicated systems.

15

5.1 Partial Replication of CRDTs

To date, not much work has been done that tries to address the problem of
partial replication of CRDTs. Current approaches to the problem try to take
advantage of the way the CRDT is constructed or even in the semantics of
said object. First, in Section 5.1.1, we explore a principled approach to partial
replication of CRDTs tailored for objects that hold lots of information and can be
separated in smaller parts. In Section 5.1.2, we analyze the issues that arise when
composing CRDTs and how to partially replicate them in these scenarios. Lastly,
In Section 5.1.3, we take a look at a CRDT synchronization model called non-
uniform replication that takes advantage of specific data types query semantics
to achieve partial replication.

5.1.1 Conflict-free Partially Replicated Data Types

CRDT objects may become large due to being composed of many elements;
the problem only gets worse as the size of each individual element increases. For
example, the synchronization of a CRDT set with millions of entries can easily
become cumbersome for the system.

Separating the object into smaller sub-objects and replicate them throughout
a di↵erent set of replicas is a possible solution to this problem. Riak engineers
followed a similar approach [35]; however, the proposed solution does not support
distributed partial replication and is instead focused on optimizing the local
storage at each replica.

I. Briquemont et. al. [12] propose a principled solution to partial replication
of CRDTs based on the aforementioned approach. In this work, the authors
formulate a novel type of CRDT called Conflict-free partially replicated data

type (CPRDT) that supports partitioning. Supporting partitioning in CRDTs
comes packaged with a set of challenges. First, since some operations might
require or a↵ect di↵erent parts of data that possibly are not available, one cannot
have said operations enabled without adding some pre-conditions 2 to ensure
safety and correctness. Second, introducing pre-conditions might interfere with
the convergence of the data object; therefore, special care must be taken in this
case. Finally, since the parts that are replicated can vary, additional mechanisms
need to be added to ensure convergence still happens and no data is lost.

In the CPRDT approach, objects are composed of particles. Each CPRDT
object can be decomposed into sub-sets called shard sets. When originating a
partial replica from a CPRDT object, one can specify which parts it is interested
in - e.g., in a set CPRDT composed of integers, a partial replica can say it is
only interested in the odd numbers stored in the set.

In this system model, given any pair of two replicas, convergence is guaran-
teed between their common parts, i.e., if an operation a↵ects a particle that is
not available at a given replica’s shard set, then it cannot be executed. This type
of pre-conditions can be achieved using the functions required and a↵ected :

2 See Section 4.2.2

16

Algorithm 3 Operation-based OR-set with partial replication. Specification
taken from [12]

1: particle definition A possible element of the set
2: payload set S
3: initial ?
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = 9u : (e, u) 2 S

7: update add(element e)
8: prepare(e) : ↵
9: let ↵ = unique()
10: e↵ect (e,↵)
11: a↵ected particles {e}
12: S := S [{e,↵}
13: update remove(element e)
14: prepare(e) : R
15: required particles {e}
16: pre lookup(e)
17: let R = {(e, u)|9u : (e, u) 2 S}
18: e↵ect(R)
19: a↵ected particles {e}
20: pre 8(e, u) 2 R : add(e, u) has been delivered
21: S := S\R
22: fraction(particlesZ) : payload D
23: let D.S = {(e, u) 2 S|e 2 Z}

• required(op) - This function receives a certain operation op and returns the
set of particles that are needed by op to be properly executed.

• a↵ected(op) - This function also receives an operation op but instead re-
turns the particle that may have its state a↵ected after executing operation
op.

Once a shard-set has been created, the holding replica cannot become inter-
ested in new particles. Additionally, operations are assumed to a↵ect only one
particle at a time. To dynamically increase the size of a partial replica, additional
protocols need to ensure that any missing data is fetched before the shard-set is
ready for usage. While in some cases it is possible to start considering di↵erent
parts of the object [11], in the general case, it is not feasible without compro-
mising consistency. A simple example is a scenario where operations over the
same object a↵ect more than one particle and share causal dependencies be-
tween them. In this case, starting accepting updates to new particles can result
in a causal gap and consequentially, an incoherent state.

To support generality, the system model introduces some assumptions that
become more of a hindrance than a help. On the one hand, the shard-set of a
replica is assumed not to change over time. On the other hand, all updates are
still delivered to all replicas. A more relaxed approach can be achieved through

17

the use of a centralized model where a root entity maintains all the state of the
CRDT object and distributes operations to partial replicas which hold a sub-set
of the global state.

As an example to illustrate the previously described model, let us run through
the specification for an operation-based OR-set with partial replication (Algo-
rithm 3). As one may recall from Section 4.3.3.4, the OR-set supports both add

and rmv operations and when faced with concurrent add and rmv operations,
precedence is given to the add operation. In this specification, apart from the
already familiar functions, we can notice the a↵ected and required functions are
being used as preconditions (lines 5, 11, 15, and 19). These preconditions ensure
that, in this case, the elements are present in the set before executing the re-
spective operations. Another function that is necessary for the CPRDT model
is the fraction(Z) function. This function is used to specify how a new partial
replica is created; it receives a set of particles that corresponds to the interest
set of the new replica. In this CRDT, since the state is a set, the shard set of the
partial replica is the particles that are both in the main replica and the given
interest set.

5.1.2 Composing Partial CRDT Replicas

Another reason why CRDTs may become large is that they embed other
large CRDT objects inside them. Solving this problem may be done by storing
each embedded object separately and hold a reference to them instead. Several
issues may appear when considering this type of partial replication model. One
may argue that it is possible to represent this type of model in the CPRDT
framework; however, for the sake of simplicity, we analyze the concrete case of
the riak dt map to understand what issues may arise.

Riak [36] is a distributed NoSQL key-value store and time-series database
that is also highly available. This high availability and partition tolerance comes
naturally [6], at the cost of reduced consistency guarantees. Riak provides a
library of CRDTs [33], such as Counters, Flags, Sets, among others, that can
be used within the data store. One of the included CRDTs is the Riak DT
map, a data type that supports composability through the embedding of other
composable CRDTs, which includes dt maps themselves.

Even though composition by embedding works well when the composed ob-
jects are small in size, performance issues arise as objects get bigger. Meik-
lejohn [33] addresses this problem of embedding by proposing an alternative
composition mechanism through referencing.

While the concept is simple, some issues might occur when we try to update
the object or even read from it. One crucial aspect to look after in this type
of replication is the way updates are executed to objects that reference other
objects. As an example, in Riak’s dt map, when referencing a new object, the
system needs to guarantee that said object was created in all replicas before
assigning a new key to it. Essentially, the underlying system may need to enforce
some ordering or atomicity on the execution of the operations [30].

18

Another issue is related to reads made to references of objects that are not
stored in the queried replica. In this case, the system is responsible for recursively
retrieving the referenced objects. As described in [33], sometimes it is possible
for the referenced object to not be immediately available for fetching. To sidestep
this scenario, a pragmatic approach is proposed; the idea is to use the information
stored about the type of the object to obtain the bottom value of the said object
(i.e., the ”default” value with which the specific CRDT is created).

5.1.3 Non-Uniform Replication

The synchronization models we have seen thus far imply that eventually, all
updates will reach every CRDT replica. This type of full replication is not neces-
sary for scenarios where the set of queries available for the object does not need
the entire state to produce a valid response. Taking advantage of the semantics3

of the available queries in the interface of an object, one can replicate only the
necessary information between replicas and still ensure that the system behaves
correctly. This type of replication model is named non-uniform replication and
is described in detail in [11].

As an example, the top-k CRDT stores elements which can be ordered and
exposes a read operation that returns the top-k elements in the replica. A more
concrete example is the top-10 CRDT that could be useful to model a leader-
board for a game. Players write their points to a specific replica, and the top
10 players with the highest point count are returned when the object is queried.
In this scenario, replicating all updates might not be necessary, and the system
can behave correctly as long as every update that lies in the top 10 (or more
generically top k) gets replicated between all replicas. Other designs exist, such
as the Top-k CRDT with removes and the Top-K sum CRDT.

In this replication model, two states are said to be equivalent if the results
obtained in the execution of any sequence of operations in both states is equal.
Additionally, two states are said observable equivalent if the result of executing
every read-only operation in both states yields the same result. Considering a
replicated system in a quiescent state, if for any pair of two replicas, we have
that their states are observable equivalent, then the system can be considered
non-uniform.

At the core of non-uniform replication lies the notion of non-uniform even-
tual consistency (NuEC). A replication system is said to provide non-uniform
eventual consistency if:

(i) Every replica executes all the operations relevant for the final state, called
core operations. The remaining operations are named masked operations.

(ii) All operations must commute.

To close this section, we take a look at an example of a NuCRDT named top-k
without removals. The idea behind a top-K object has been presented through-
out this chapter, and the top-K without removals has the same characteristics;

3 The semantics, in this case, refer to the exact meaning of the query, not to be
confused with the concurrency semantics mentioned in Section 4.3

19

Algorithm 4 Specification of the Top-k non-uniform CRDT without removals.
Specification adapted from [11]

1: payload elems : set of < id, score > : initial {}
2: query get() : set e
3: let e = elems
4: update add(id, score)
5: prepare()
6: e↵ect()
7: elems = topK(elems [{< id, score >})
8: HasImpact(op, S) : boolean b
9: R = S • op
10: let b = (S 6= R)

11: MaskedForever(loglocal, S, logrecv) : set of operations out
12: adds = {add(id[1, score1) 2 loglocal :
13: (9add(id2, score2) 2 logrecv : id1 = id2 ^ score2 > score1)}
14: let out = adds
15: MayHaveObservableImpact(loglocal, S, logrecv) : set of operations out
16: let out = {} . Operations are always either core or forever masked

17: HasObservableImpact(loglocal, S, logrecv) : set of operations out
18: let out = {} . Operations are always either core or forever masked

19: Compact(ops) : set of operations out
20: let out = ops

however, once an element is added, it cannot be removed. The specification can
be seen in Algorithm 4.

This CRDT holds a set of K tuples where each tuple holds the information
< id, score > (line 1). The update operation (line 4) allows clients to insert the el-
ement id in the set with the value score. If the element id does not make it to the
top-K, it is discarded; therefore, in this scenario, all updates that reach the top-k
are considered core operations (line 8). Notice, the additional functions Maked-
Forever, MayHaveObservableImpact and HasObservableImpact. These functions
are responsible for correctly handling core and masked operations. The Masked-
Forever function computes the set of add operations that have become masked by
newer updates - e.g., a new element enters the top-k, therefore, an older element
may need to leave the set. The MayHaveObservableImpact (line 21) function
computes the masked operations in the replica that have the possibility of influ-
encing other replicas; Since all updates are core or forever masked, this function
always returns an empty set. Lastly, function hasObservableImpact computes
the set of add operations that have not been propagated yet but are currently
classified as core. In this CRDT, this operation also returns the empty set due
to the same reasons as the function MayHaveObservableImpact.

Using this type of replication can bring some storage and bandwidth bene-
fits to the system. On the flip side, this model is limited to very specific data
types where the entire state is not needed to give coherent responses to queries.
Nonetheless, its applicability in partial replication scenarios is clear, and explor-

20

ing novel exploitations of data types semantics might be key to solve the problem
of partial replication of CRDTs.

5.2 Causally Consistent Partially Replicated Systems

As we have previously seen in Section 4, the causal consistency model is
fundamental in the design of CRDTs. While not necessarily obligatory for de-
signing specific CRDTs - e.g., in some cases using weaker models is possible at
the expense of having to prove the commutativity of more pairs of concurrent
updates; causal consistency makes it easier to reason about the ordering of the
events in the system.

On one side, the designs of operation-based CRDTs benefit directly from the
guarantees given by causal consistency. On the flip side, since causality is en-
capsulated inside each state-based CRDT and the entire causal history is prop-
agated between all replicas, communication channels can work under weaker
types of ordering guarantees. Under full replication, there exists this trade-o↵
between operation-based and state-based CRDTs; however, when we consider
partial replication scenarios, the same trade-o↵ between channel guarantees can-
not be considered.

Guaranteeing causal consistency under partial replication is a problem that
is deeply tied with the partial replication of CRDTs; having a good foundation
on how to achieve it is key to reach a solution that encompasses CRDTs in it. In
this section, we take a glance at the reason why e�ciently guaranteeing causal
consistency under partial replication is hard and how some systems were able to
achieve it.

5.2.1 Causal Consistency vs Partial Replication

Achieving causal consistency under full replication has been widely stud-
ied [25, 37–45]. These systems implement protocols that are usually e�cient
when compared with protocols that implement strong consistency models. When
transposing to partial replication, using the same techniques may not work; those
that do, either require extra metadata to be maintained or further coordination
between replicas to obtain said metadata. One way or the other, both cases have
scalability problems.

In an ideal scenario, each partial replica would only maintain information
regarding values that are currently being replicated by it. Attaining genuine

partial replication [46] without breaking causality is di�cult and might even be
impossible without further coordination between replicas or defining a replica
communication topology (e.g., Saturn [47]). To give a sense of why causally
consistent genuine partial replication is hard to accomplish, consider the scenario
displayed in Figure 2. In this example, we consider a distributed system with
three replicas (R1, R2 and R3); R1 stores information regarding objects x, z,
R2 objects x, y and R3 objects y, z. Each replica maintains causal information
(e.g., a vector clock per object) about the objects it is interested in and only
propagates updates to replicas that are interested in said object. R1 updates

21

Fig. 2: Events leading to a break in causality in a genuine partial replication
scenario

object x (update up1) and z (update up2) and then propagates the updates to
replicas R2 and R3 respectively. Update up2 is causally dependent on update
up1. If replica R3 updated object y (update up3) there is a possibility that
the information about this update reaches replica R2 before update up1. Since
replica R2 does not store any information about object z it would not be able
to see the causal dependency that exists between update up3 and the in-flight
update up1 and would mistakenly apply it when it should wait for the arrival of
update up1.

As we can see, causal consistency under partial replication can raise a di↵er-
ent set of challenges that do not happen with full replication.

5.2.2 An Overview of Current Solutions

As seen in Section 3, several mechanisms have been developed to track causal-
ity. While e�cient in representing the causality dependencies, these mechanisms
typically either su↵er from a lack of scalability due to the size of the metadata or
lose information about causal dependencies, which can lead to false dependencies
between concurrent updates. In partially replicated scenarios, keeping the size
of the metadata lean is key for the performance of the system. When designing
a causally consistent system, these issues need to be taken into account. We
now take a look at some approaches that achieve partial replication with causal
consistency.

PRACTI [48]: PRACTI is a replicated system that is able to simultaneously
achieve partial replication (PR), arbitrary consistency (AC), and topology inde-
pendence (TI). In this system, replicas can choose each individual object that
they will replicate. These objects are then added to the interest set of the replica,
which is free to change its contents at any given time. Apart from the interest
set, each replica maintains a version vector. Updates and reads are executed lo-
cally at each replica and propagated afterward. Each update is tagged with the

22

current value of the node’s Lamport clock and the node’s ID. PRACTI propa-
gates updates in a similar way to Bayou’s [49] log exchange protocol; however,
it introduces a novel mechanism; the idea is to separate the propagation of the
updates’ metadata from the actual values set up by the update. This separation
of responsibilities gives PRACTI some freedom regarding the way metadata and
data flow through the system. While update messages (named Body messages)
can be delivered in any order to the replicas, the metadata propagation channels
(named Invalidation streams) must respect a causal ordering of delivery. Invali-
dation streams deliver two types of messages: precise invalidations and imprecise

invalidations. Precise invalidations correspond to the metadata regarding single
updates. Imprecise invalidations represent multiple ordered precise invalidations
and act as a summary of this group of messages. To guarantee correctness, all
replicas must maintain all invalidation messages. By doing so, they can control
the arrival order of the Body messages and apply them according to the current
consistency policy of the system - e.g if the system is guaranteeing causal consis-
tency then replicas need to wait for the arrival of the dependent Body messages
before applying one.

Saturn [47]: Saturn is another system that decouples the metadata from
the actual data propagation. It is a metadata service for geo-replicated systems;
therefore, it focuses only on metadata management and assumes that data is
propagated using an existing bulk-data mechanism that fits the application busi-
ness requirements. Saturn works with small-size metadata that takes the form
of labels. Labels work as tags for updates and are generated by each server.
They can be ordered through their timestamps that are generated from a phys-
ical clock at each server. Inside each datacenter exists a centralized component
called the label sink. This component is responsible for gathering all labels, order-
ing, and then propagating them to the inter-dc module of Saturn. Clients attach
to a certain data center in order to communicate with the system. If a client
desires to change datacenters, it must request a migration to Saturn. While Sat-
urn introduces protocols to ensure clients respect causality, the most interesting
mechanism lies in how Saturn propagates labels between datacenters that lets
it achieve genuine partial replication: Labels are distributed according to a fixed

dissemination tree between datacenters. In this tree topology, data centers act as
leaves, and the nodes leading up to those leaves are servers named Serializers.
Serializers Inter-communication and communication with the datacenters are
done through FIFO channels. This allied to the tree dissemination is su�cient
to guarantee causal consistency. Another advantage with the use of a tree is that
serializers do not need to propagate labels through branches that will lead to
data centers that do not replicate the item associated with the label. This mech-
anism is fundamental in the sense that it enables genuine partial replication.
The use of a tree can raise some challenges. In the case of a failure in a node of
the tree, it needs to be recomputed, which is a time-consuming process.Another
problem is the fact that every label must be propagated through the tree, which
can become a bottleneck in the system. One system that tries to mitigate these
issues is C3 [50]. Like Saturn, C3 also separates the metadata from the data

23

propagation; however, the information is propagated directly between every pair
of nodes. Not considering a tree raises the need for a larger amount of metadata
to be tracked, and genuine partial replication cannot be achieved.

Swiftcloud [51]: A tradeo↵ that appears to be predominant in causally con-
sistent systems is the throughput at which writes can be applied versus data
visibility latency [52]. Swiftcloud provides fast writes and reads at the expense
of clients having to access more stale data. In this system, clients maintain a lo-
cal cache to which they apply updates and later send them to possibly di↵erent
datacenters. The e↵ect of each update only becomes visible once the operation is
replicated in K datacenters (K ¿= 1); in the case of a fault, this allows clients to
migrate to other datacenters without being rejected (a rejection would happen in
the case where clients read a more up-to-date version of the data and the new dat-
acenter cannot communicate with the faulty datacenter). While clients partially
replicate information, data centers are fully replicated. Each client maintains a
set of objects in its interest set to which they can write immediately. Datacen-
ters will constantly be pushing notification updates to the clients regarding those
objects. Clients, on the other hand, will constantly be sending messages regard-
ing unacknowledged updates to the datacenters. The communication channel
is FIFO, and clients must maintain a session opened with the first node they
contact. To guarantee convergence and solve conflicts, Swiftcloud’s clients use
a library of CRDT objects. When clients need to read an object, they do so in
a causally coherent state that is exposed by the datacenter. This state may be
stale on some occasions, but by exposing a coherent state, the system avoids the
possibility of clients generating causal gaps due to the clients’ access patterns.

PaRiS [53]: In PaRiS, a transactional causally consistent system that also
supports partial replication, clients also maintain a local cache and read from
a coherent snapshot computed through the use of a novel causality tracking
mechanism named Universal stable time (UST). The snapshots are such that
they have been installed in every datacenter; therefore, and unlike Swiftcloud,
reads do not block. CRDTs may be employed in PaRiS to handle concurrent
updates (the default conflict resolution is last-writer wins). Other approaches
also rely on clients reading from a stable snapshot [54, 55].

Legion [56]: Legion is a framework that allows client web applications to
easily replicate data from the servers and between them in low latency and secure
manner. Communication between clients can be done directly without the need
to use a server as a middle-man. Since clients’ devices are limited in storage,
Legion adopts a client-side partial replication approach. In Legion, objects are
stored in containers. Each container has an associated multicast group to which
clients can join if interested in the objects in the container. Locally, at each
client, objects are modified using a library of CRDT objects, and updates are
transmitted between nodes through a FIFO channel, which allied to the multicast
primitive guarantees causal delivery of updates.

Karma [57]: Karma partially replicates data at the datacenter level. Groups
of geographically close datacenters form a consistent hashing ring and in which
data is replicated. Karma ensures that causality is guaranteed inside each ring;

24

however, between ring updates are propagated asynchronously. To avoid clients
breaking causality, the system keeps track of in-flight messages and blocks the
client from reading from a di↵erent ring until the system deems it to be safe.

Discussion: Comparing the di↵erent systems, one can notice some charac-
teristics of partially replicated causally consistent systems. Regarding where the
partial replication happens, we can divide the systems into two types: client-
level and server-level. Client-level systems replicate data on the client’s devices;
systems such as Swiftcloud, PaRiS and Legion maintain a cache on each client.
Server-level systems partially replicate data between the di↵erent nodes of the
system; The level of replication can go from simple replica servers (PRACTI) to
datacenters (Saturn).

A predominant approach in these systems is to let clients read from data
that that is potentially stale. Some systems, such as PaRiS and Saturn, expose
a consistent snapshot to clients from which they can read. Another approach is
the one proposed by SwiftCloud where a client observes a certain update only if
it is stored in K di↵erent replicas (k-staleness).

Another characteristic of these systems is the topology of the communication
of replicas. PRACTI and Legion set no restriction on this topology; however, by
limiting the topology of the system, one can introduce some mechanisms (the
tree topology in Saturn and the consistent hash rings in Karma) that are not
possible in a more generalized scenario.

The separation of the propagation of metadata from the actual data is an-
other interesting mechanism. This approach gives the system more flexibility on
how metadata is handled as opposed to other systems that require metadata
to be piggybacked inside each message. Systems that take advantage of this
technique are PRACTI, Saturn, and C3.

6 Architecture

In this section, we take a look at our approach to tackling the problem of
partial replication with CRDTs. First, let us recap what our goal is and how
current methods fail to provide a suitable solution.

As a starting point for our discussion, consider the framework discussed in
Section 5.1.1. CPRDTs give us a generic approach to design CRDTs that can
be partially replicated; however, this generalization incurs some limitations:

(i) First, shard sets cannot dynamically increase in size, and trying to do so
requires an entirely new replica to be created.

(ii) Second, to achieve causal consistency, the system assumes the existence of
a causal multicast primitive. Doing so requires additional metadata to be
stored at each replica and propagated in each message.

(iii) Lastly, operations are assumed only to a↵ect a particle at a time. For more
complex updates, one could divide it into multiple other operations; this,
however, may require additional synchronization mechanisms if the a↵ected
particles are not replicated locally, and more messages need to flow through
the system.

25

Composition by reference has not been deeply studied. Other approaches,
such as non-uniform replication, introduce an interesting replication mechanism;
however, current formulations are limited to a particular and somewhat uncom-
mon type of data structures.

Our goal is to design a framework that is able to combine these techniques
and provide a way to design CRDTs that can be e�ciently partially replicated.
The framework aims at reducing the limitations imposed by CPRDTs, ideally
allowing replicas to dynamically change the number of shards, the assignment of
objects to the shards, or the number of replicas of each shard. An approach based
on non-uniform replication could be used to e�ciently distribute the objects
between replicas without having to propagate redundant data.

Our endeavors will also target designing algorithms that can be used along-
side our framework to enforce the consistency of partially-replicated CRDTs.
The causal consistency model seems to be the ideal candidate to be considered
in these algorithms, as seen throughout Section 5.2.

6.1 System Model

We now discuss the model of the system, which will work as the initial build-
ing block for our generalized framework. Current causally consistent systems
usually provide either per-object causality or causality for the objects in the
system as a whole. In these types of systems, causality tracking and metadata
management take up a good portion of the possible system performance - e.g.,
propagating entire vector clocks in messages become costly as the amount of par-
ticipating servers increases. Our system tries to find a middle ground between
these two types of systems; the idea is to provide causal consistency inside groups
of objects but not between groups. The overall system model is depicted in Fig-
ure 3.

Fig. 3: Example of the organization of atoms, objects and containers

26

6.1.0.1 Atoms and Objects: The most basic unit considered in our system
are atoms. Atoms are opaque and immutable4 CRDT objects that can be repli-
cated through di↵erent replicas in the system. Objects are also CRDTs but can
be composed of atoms and other objects. Atoms and objects cannot belong to
multiple di↵erent objects simultaneously; The state held by atoms and objects is
guaranteed to be causally consistent at all times. We refer to objects and atoms
as elements. All elements of the system are globally and uniquely identified. This
layout of the system is depicted in Figure 3.

6.1.0.2 Operations: Operations can be either queries or updates. Queries can
be used to obtain a value from the target element and do not modify the state.
Queries may also be used to search for an existing element inside an object. Up-
dates, on the other hand, are used to modify the state of an element. Operations
may be applied directly or indirectly to an element. In the case of an indirect
operation, it starts at the specified initial object and is then recursively applied
through the lower-level objects until it reaches the target element. In the case
of atoms, operations can reflect the interface exposed by the underlying CRDT.
Regarding objects, operations can also reflect the interface exposed by the un-
derlying CRDT, but they must support two additional operations: add element

and remove element. These two operations allow the system to add or remove
an arbitrary element to and from an object.

6.1.0.3 Nodes: The nodes in the system communicate over an asynchronous
network. The communication network forms a connected graph that can par-
tition and later recover. Nodes can be either clients or servers. Clients can be
thought of as unstable servers that are prone to connect and disconnect more
often. Elements may be stored in any node.

6.1.0.4 Replication: The system distributes atoms in a subset of all repli-
cas (replicascurrent). Atoms can be replicated through a set of potential repli-
cas: replicaspotential = {r1, r2, ..., rn}, ri 2 replicasall with replicascurrent ✓
replicaspotential ✓ replicasall. Given an object obj, the potential replicas for the
object are given by the union of all the potential replicas of the held elements:
obj.replicaspotential = [el.replicaspotential8el 2 obj.elements

The way atoms are distributed through the di↵erent potential replicas can
be specified through policies. Although the role of non-uniform replication is
not yet clear, we believe that a great way to take advantage of this mechanism
should be in the implementation of these policies.

6.1.0.5 Metadata Management To implement causality in this system, one
could maintain a vector clock for every atom, with the size of the vector being

4 Immutable in this context means that given a CRDT, one may apply the operations
provided by the interface of the abstract CRDT; however, it is not possible to split
the atom CRDT into smaller chunks - e.g., splitting the CRDT as in the notion of
shard-set presented in the CPRDT framework

27

the same as the size of the potential replicas set (replicaspotential) of the highest-
level object that contains said atom. With every operation, messages would need
to piggyback every vector clock of all elements belonging to the object where
the operation was applied. This solution has some serious scalability and perfor-
mance problems, which might be possible to avoid. Supporting the composition
of objects can introduce some levels of hierarchy between them. One can take
advantage of this hierarchy to optimize the metadata necessary to keep track
of causality. As an example, a particular object could expose a summary of all
the lower-level causality tracking devices, which could then be used as a more
e�cient timestamp. The Coda file system [58] introduced a similar approach
with their volume version vectors, where these special vectors are used to detect
changes in the files of a certain directory.

7 Evaluation

Generalization usually takes a toll on the performance of a system. We intend
to evaluate the trade-o↵s imposed by the mechanisms proposed in our system.
We will base our evaluation on several di↵erent metrics:

(i) Visibility - This metric states the time it takes for a given operation to
become visible for other clients. It is an important metric as the visibility
problem is a common trade-o↵ in causally consistent systems.

(ii) Bandwidth usage - When replicas span di↵erent datacenters, bandwidth be-
comes costly. With this metric, we want to see how our system behaves in
terms of the number of messages exchanged between replicas and the average
size of a message.

(iii) Metadata size and storage usage - Keeping the size of the metadata used in
the system minimal is critical for a system to be able to scale. This necessity
aggravates when the storage of the devices is limited in size. Measuring this
metric will be done either analytically or experimentally.

Apart from these metrics, we also aim at understanding how flexible our
system is. To analyze the feasibility of our approach, we will compare our system
against various settings of replication and object topologies. On one side, we
can populate our system only with atoms; this is equivalent to a system that
guarantees causal-consistency per-object. On the other side, we can test against
a variation of our system where causality is kept for the system as a whole.
Additionally, we can analyze how our system behaves when compared with the
systems described in Section 5.2.2.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

28

– March 30 - May 3: Perform the complete experimental evaluation of the
– May 4 - May 23, 2015: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15, 2015: Deliver the MSc dissertation results.

9 Conclusions

The potential applications of conflict-free replicated data types (CRDTs)
in large-scale systems are immense since they avoid explicit synchronization
between replicas to decide on the outcome of updates. This property is really
desirable in systems where low latency is important.

CRDTs are assumed to maintain their entire state in each replica; however,
with CRDTs that store large quantities of data, full replication may be infeasible;
one may be forced to shard the CRDT state and let di↵erent replicas replicate
di↵erent shards, i.e., to support partially replicated CRDTs.

In this work, we surveyed current approaches that directly face partial repli-
cation of CRDTs as well as systems that support causally consistent partial
replication. We laid the foundations for a framework around partially replicated
CRDTs. Finally, we presented our evaluation and the schedule of future work.

References

1. Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Computing Surveys (CSUR) 49(1) (2016) 19

2. Herlihy, M.P., Wing, J.M.: Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems (TOPLAS)
12(3) (1990) 463–492

3. Papadimitriou, C.H.: Serializability of concurrent database updates. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COM-
PUTER SCIENCE (1979)

4. Mahajan, P., Alvisi, L., Dahlin, M., et al.: Consistency, availability, and conver-
gence. University of Texas at Austin Tech Report 11 (2011) 158

5. Attiya, H., Ellen, F., Morrison, A.: Limitations of highly-available eventually-
consistent data stores. IEEE Transactions on Parallel and Distributed Systems
28(1) (2016) 141–155

6. Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

7. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory:
definitions, implementation, and programming. Distributed Computing 9(1) (Mar
1995) 37–49

8. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5) (September
1994) 1020–1048

9. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. 3 edn. Morgan
Kaufmann (March 2008)

10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free Replicated Data
Types. Research Report RR-7687, INRIA (July 2011)

11. Cabrita, G., PreguiPreguiça, N.: Non-uniform replication (2017)

29

12. Briquemont, I., Bravo, M., Li, Z., Van Roy, P.: Conflict-free partially replicated
data types. In: 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE (2015) 282–289

13. Briquemont, I.: Optimising client-side geo-replication with partially replicated data
structures. PhD thesis, ICTEAM Institute, Universit catholique de Louvain

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7) (1978) 558–565

15. Mattern, F., et al.: Virtual time and global states of distributed systems. Citeseer
(1988)

16. Fidge, C.: Logical time in distributed computing systems. Computer 24(8) (1991)
28–33

17. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E.,
Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency
in distributed systems. IEEE transactions on Software Engineering (3) (1983)
240–247

18. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed computing 7(3) (1994) 149–174

19. Kang, B.B., Wilensky, R., Kubiatowicz, J.: The hash history approach for rec-
onciling mutual inconsistency. In: 23rd International Conference on Distributed
Computing Systems, 2003. Proceedings., IEEE (2003) 670–677

20. Almeida, P.S., Baquero, C., Fonte, V.: Version stamps-decentralized version vec-
tors. In: Proceedings 22nd International Conference on Distributed Computing
Systems, IEEE (2002) 544–551

21. Almeida, P.S., Baquero, C., Fonte, V.: Interval tree clocks. In: International
Conference On Principles Of Distributed Systems, Springer (2008) 259–274

22. Almeida, J.B., Almeida, P.S., Baquero, C.: Bounded version vectors. In: Interna-
tional Symposium on Distributed Computing, Springer (2004) 102–116

23. Preguiça, N., Baquero, C., Almeida, P.S., Fonte, V., Gonçalves, R.: Dotted version
vectors: Logical clocks for optimistic replication. arXiv preprint arXiv:1011.5808
(2010)

24. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B., Leone, M.: Logical physical
clocks. In: International Conference on Principles of Distributed Systems, Springer
(2014) 17–32

25. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with cops. In: Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, ACM
(2011) 401–416

26. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506,
Inria – Centre Paris-Rocquencourt ; INRIA (January 2011)

27. Almeida, P.S., Shoker, A., Baquero, C.: Delta state replicated data types. Journal
of Parallel and Distributed Computing 111 (2018) 162–173

28. Enes, V., Almeida, P.S., Baquero, C., Leitão, J.: E�cient synchronization of state-
based crdts. In: 2019 IEEE 35th International Conference on Data Engineering
(ICDE), IEEE (2019) 148–159

29. van der Linde, A., Leitão, J.a., Preguiça, N.: �-crdts: Making �-crdts delta-based.
In: Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data. PaPoC ’16, New York, NY, USA, ACM (2016) 12:1–12:4

30. PreguiPreguiça, N.: Conflict-free replicated data types: An overview (2018)
31. : A Conflict-Free Replicated JSON Datatype. IEEE Transactions on Parallel and

Distributed Systems 28(10) (2017) 2733–2746

30

32. Preguiça, N., Marquès, J.M., Shapiro, M., LeÅ£ia, M.: A commutative replicated
data type for cooperative editing. Proceedings - International Conference on Dis-
tributed Computing Systems (2009) 395–403

33. Meiklejohn, C.: On the composability of the riak dt map: expanding from embed-
ded to multi-key structures. European Seventh Framework Programme ICT call
10 (2014) 31

34. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In Défago, X., Petit, F., Villain, V., eds.: Stabilization, Safety, and Security
of Distributed Systems, Berlin, Heidelberg, Springer Berlin Heidelberg (2011) 386–
400

35. Brown, R., Lakhani, Z., Place, P.: Big(ger) sets: Decomposed delta crdt sets in riak.
In: Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data. PaPoC ’16, New York, NY, USA, ACM (2016) 5:1–5:5

36. Technologies, B.: Enterprise nosql database — scalable database solutions — riak.
https://riak.com [Online; accessed 03-December-2019].

37. Gokkoca, E., Altinel, M., Cingil, R., Tatbul, E.N., Koksal, P., Dogac, A.: Design
and implementation of a distributed workflow enactment service. In: Proceedings
of CoopIS 97: 2nd IFCIS Conference on Cooperative Information Systems, IEEE
(1997) 89–98

38. Du, J., Elnikety, S., Roy, A., Zwaenepoel, W.: Orbe: Scalable causal consistency
using dependency matrices and physical clocks. In: Proceedings of the 4th annual
Symposium on Cloud Computing, ACM (2013) 11

39. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Transactions on Computer Systems (TOCS) 10(4) (1992)
360–391

40. Almeida, S., Leitão, J., Rodrigues, L.: Chainreaction: a causal+ consistent datas-
tore based on chain replication. In: Proceedings of the 8th ACM European Con-
ference on Computer Systems, ACM (2013) 85–98

41. Akkoorath, D.D., Tomsic, A.Z., Bravo, M., Li, Z., Crain, T., Bieniusa, A., Preguiça,
N., Shapiro, M.: Cure: Strong semantics meets high availability and low latency.
In: 2016 IEEE 36th International Conference on Distributed Computing Systems
(ICDCS), IEEE (2016) 405–414

42. Didona, D., Spirovska, K., Zwaenepoel, W.: Okapi: Causally consistent
geo-replication made faster, cheaper and more available. arXiv preprint
arXiv:1702.04263 (2017)

43. Gunawardhana, C., Bravo, M., Rodrigues, L.: Unobtrusive deferred update stabi-
lization for e�cient geo-replication. In: 2017 {USENIX} Annual Technical Confer-
ence ({USENIX}{ATC} 17). (2017) 83–95

44. Du, J., Iorgulescu, C., Roy, A., Zwaenepoel, W.: Gentlerain: Cheap and scalable
causal consistency with physical clocks. In: Proceedings of the ACM Symposium
on Cloud Computing, ACM (2014) 1–13

45. Spirovska, K., Didona, D., Zwaenepoel, W.: Optimistic causal consistency for
geo-replicated key-value stores. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), IEEE (2017) 2626–2629

46. Schiper, N., Sutra, P., Pedone, F.: P-store: Genuine partial replication in wide area
networks. In: 2010 29th IEEE Symposium on Reliable Distributed Systems, IEEE
(2010) 214–224

47. Bravo, M., Rodrigues, L., Van Roy, P.: Saturn: A distributed metadata service
for causal consistency. In: Proceedings of the Twelfth European Conference on
Computer Systems, ACM (2017) 111–126

31

48. Belaramani, N.M., Dahlin, M., Gao, L., Nayate, A., Venkataramani, A., Yalagan-
dula, P., Zheng, J.: Practi replication. In: NSDI. Volume 6. (2006) 5–5

49. Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Welch, B.: The
bayou architecture: Support for data sharing among mobile users. In: 1994 First
Workshop on Mobile Computing Systems and Applications, IEEE (1994) 2–7

50. Fouto, P., Leitão, J., Preguiça, N.: Practical and fast causal consistent partial geo-
replication. In: 2018 IEEE 17th International Symposium on Network Computing
and Applications (NCA), IEEE (2018) 1–10

51. Zawirski, M., Preguiça, N., Duarte, S., Bieniusa, A., Balegas, V., Shapiro, M.:
Write fast, read in the past: Causal consistency for client-side applications. In:
Proceedings of the 16th Annual Middleware Conference, ACM (2015) 75–87

52. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: The potential dangers
of causal consistency and an explicit solution. In: Proceedings of the Third ACM
Symposium on Cloud Computing, ACM (2012) 22

53. Spirovska, K., Didona, D., Zwaenepoel, W.: Paris: Causally consistent transactions
with non-blocking reads and partial replication. arXiv preprint arXiv:1902.09327
(2019)

54. Xiang, Z., Vaidya, N.H.: Global stabilization for causally consistent partial repli-
cation. arXiv preprint arXiv:1803.05575 (2018)

55. Crain, T., Shapiro, M.: Designing a causally consistent protocol for geo-distributed
partial replication. In: Proceedings of the First Workshop on Principles and Prac-
tice of Consistency for Distributed Data, ACM (2015) 6

56. van der Linde, A., Fouto, P., Leitão, J., Preguiça, N., Castiñeira, S., Bieniusa, A.:
Legion: Enriching internet services with peer-to-peer interactions. In: Proceedings
of the 26th International Conference on World Wide Web, International World
Wide Web Conferences Steering Committee (2017) 283–292

57. Mahmood, T., Narayanan, S.P., Rao, S., Vijaykumar, T., Thottethodi, M.: Karma:
Cost-e↵ective geo-replicated cloud storage with dynamic enforcement of causal
consistency. IEEE Transactions on Cloud Computing (2018)

58. Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., Steere,
D.C.: Coda: A highly available file system for a distributed workstation environ-
ment. IEEE Transactions on computers 39(4) (1990) 447–459

32

