
Causality Tracking Trade-offs for Distributed Storage
(extended abstract of the MSc dissertation)

Hugo Rafael Silva Guerreiro
Departamento de Engenharia Informática
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Abstract—After the seminal paper by L. Lamport, which
introduced (scalar) logical clocks, several other data structures
for keeping track of causality in distributed systems have been
proposed, including vector and matrix clocks. These are able to
capture causal dependencies with more detail but, unfortunately,
also consume a substantially larger amount of network band-
width and storage space than Lamport clocks. This raises the
question of whether the benefits of these more complex structures
are worth their cost. We address this question in the context of
partially replicated systems. We show that for some workloads
the use of more expensive clocks does bring significant benefits
and that for other workloads no visible benefits can be observed.
The paper provides a characterization of the scenarios where
each type of clock is more beneficial, helping designers to develop
more efficient distributed storage systems.

I. INTRODUCTION

The notion of causality is a fundamental concept in the
context of distributed systems, and the ability to capture cause-
effect relations accurately is a requirement of many distributed
tasks, such as taking global snapshots [1], implementing dis-
tributed mutual exclusion [2], or maintaining the consistency
of data [3]. After the seminal paper by L. Lamport [4], that
introduced (scalar) logical clocks, several other data structures
for keeping track of causality in distributed systems have been
proposed, including vector [5], [6] and matrix clocks [7],
among others. Each of these mechanisms offers a different
trade-off between the space complexity and the ability to track
causal dependencies accurately. Note that Lamport clocks
consist of a single scalar (the space complexity isO(1)), vector
clocks typically require an entry per node in the system (the
space complexity is O(N)), and matrix clocks, as their name
suggests, have a space complexity of O(N2). Thus, despite
their potential advantages, vector and matrix clocks consume a
substantially larger amount of network bandwidth and storage
space. This raises the question of whether, in practice, the
benefits of these more complex structures are worth their cost.

From the abstract point of view, it is clear that larger clocks
can capture causality more accurately and reduce the remote
visibility latency. Assume that all updates are timestamped
with some form of logical clocks to keep track of causality. Let
t(u) be the timestamp assigned to update u. It is well known
that, with Lamport clocks ux → uy =⇒ t(uy) > t(ux)
but that t(uy) > t(ux) 6=⇒ ux → uy . This means that,
when using Lamport clocks, a node that has received uy and
not ux, cannot immediately assess if it is safe to deliver uy .

We call this artifact of Lamport clocks a false dependency.
False dependencies have a negative impact on the remote
visibility latency, by forcing updates to wait for other updates
that may not be in their causal past. Vector clocks suffer less
from this problem. However, to completely reduce the number
of false dependencies with vector clocks, updates need to be
timestamped with not only one vector clock, but with a set
of vector clocks, one vector clock for each data item. When
the number of items is larger than the number of nodes in
the system (arguably, the most common case) accurate clocks
degenerate in a matrix clock. For any reasonably sized system,
this has a significant overhead, both in terms of storage space
and in terms of bandwidth utilization. Thus, in practice, the
costs of maintaining accurate clocks can outweigh the potential
advantages they may bring in terms of reduced visibility
latency.

We study the trade-off between the space complexity of
the vector clocks and the remote visibility latency in par-
tially replicated storage systems under different workloads
and different replica deployments. We show that for some
workloads/deployments the use of more expensive clocks does
bring significant benefits and that for others no visible benefits
can be observed.

Unfortunately, there are many factors that affect the per-
formance of a certain type of clocks, including: how many
replicas of each object are kept and where these replicas are
located, the read/write ratio of the workload, the access fre-
quency to each object, the time between consecutive operations
executed by clients, among others. This makes the task of
identifying the best clock for a given scenario very hard.

To solve this puzzle, we introduce two novel features that
capture relevant patterns for the performance of causality
tracking mechanisms: the Update Generation Rate Asymmetry
(GRA), defined as the ratio between the fastest and slowest
average update frequency for all nodes in the system, and the
Object Ownership to Objects in Causal Past Ratio (OPR),
defined has the ratio between the number of objects replicated
at a node and the objects with updates in the causal frontier
of an update. With these new features, the paper provides a
characterization of the scenarios where each type of clock is
more beneficial, helping system designers to develop more
efficient distributed storage systems.

The rest of the paper is organized as follows. Section II
introduces the different logical clocks considered in the paper



and Section III details how they can be used to enforce
causal consistency. Section IV presents an analysis of the
algorithms from a theoretical point of view. Section V presents
an empirical study of said algorithms. In Section VI we
present a set of guidelines to help decide between the different
algorithms followed by some related work in Section VII.
Finally, Section VIII concludes the paper.

II. CAUSAL ORDER IN MESSAGE PASSING SYSTEMS

A. Causal Order

In a distributed system it is possible to define a partial order
of events using their (potential) cause-effect relation. Lamport
formalized this concept through the happened-before relation
( ) between events [4]. An event e1 is said to have happened-
before an event e2 (e1  e2) iff:

(i) If e1 and e2 are events that happened in the same process
and e1 occurred before e2 then e1  e2;

(ii) If e1 is the event that corresponds to a message being
sent by a process and e2 is an event that corresponds to
that message being received by some other process, then
e1  e2;

(iii) If e1  e2 and e2  e3 then e1  e3.
The design of distributed applications can be simplified

if there is a communication layer that delivers messages
to processes in an order that respects the happened-before
relation [8], [9]. Such communication primitive is said to
enforce causal order and mechanisms to enforce this order
have been widely studied in the literature [9]. In the following
section, we present some of the more relevant mechanisms that
have been used to keep track of causality and to enforce causal
order in distributed systems.

B. Causal Multicast

We start by presenting a generic algorithm to implement
causal multicast. The algorithm, depicted in Alg. 1 can be
adapted to use different types of clocks. The algorithm as-
sumes that multiple multicast groups can exist in the system
but that causality is maintained across groups, similarly to
what was provided by the Isis system [10]. Groups can be
mapped to application-level abstractions, such as distributed
objects. Later in the text, we show how groups can be used
in the context of distributed storage systems.

The algorithm assumes that, for each group in the system,
there is a set of reliable FIFO channels connecting every pair
of processes. These FIFO channels are used exclusively to
send messages for that group. FIFO channels can be trivially
achieved in practice, for instance, by using TCP/IP connections
to support the message exchange. Each process pi maintains a
logical clock denoted local clocki. The format of this clock is
implementation-dependent: it can be one Lamport clock, one
vector clock, one matrix clock, or even a set of clocks (one for
each group). The initialization of this clock is encapsulated by
the primitive INIT CLOCK.

For sending a message m, the process starts by updating
its local clock in function PREPARE. The message m carries
a logical clock, denoted clockm, with the value of the local

Algorithm 1 Generic Causal Order Implementation
1: Let N be a set of processes
2: Let G be a set of multicast groups
3: procedure INIT NODE(i)
4: INIT CLOCK (local clocki);
5: delivered uptoi[g][j]← 0; ∀g ∈ G, ∀j ∈ N
6: pendingi[g][j]← ∅;∀g ∈ G,∀j ∈ N
7: my groupsi ← groups to which process i belongs
8: procedure SEND(m, g, destination set)
9: PREPARE(g, destination set)

10: clockm ← local clocki;
11: for k ∈ destination set do
12: FIFO SEND (m, clockm, g, i, k);
13: DELIVER(m, clockm, g, i);
14: procedure FIFO RECEIVE(m, clockm, g, j)
15: ENQUEUE(pendingi[g][j], 〈m, clockm〉);
16: when ∃m : FIRST(m, pendingi[g][j]) do
17: MESSAGE READY (m, clockm, g, j);
18: done
19: when ∃m : FIRST(m, pendingi[g][j]) ∧

MESSAGE SAFE(m, clockm, g, i, j) do
20: UPDATE LOCAL CLOCK(m, clockm, g, j);
21: DELIVER(m, clockm, g, j);
22: done

clock. The message is sent, using the FIFO channels, to the
set of destination peers, typically the set of all processes in
the group. Additionally, the message is locally delivered.

When receiving a message m for group g from process j,
the process adds the message to the list of pending messages
for g and j, pendingi[g][j]. A message that reaches the top of
the pending list for some process pj and group g (i.e. for which
prior messages from pj to g have already been delivered) can
be delivered if its dependencies are satisfied, i.e., if all depen-
dent messages have already been delivered – this is checked
in function MESSAGE SAFE. For helping in this check, each
process pi keeps a record, delivered uptoi[g][j], with the
largest clock for which a message from pj to g has already
been delivered in pi or for which it is known that such message
does not exist. This information is updated both when a new
message is delivered (function UPDATE LOCAL CLOCK), and
when a new message reaches the top of the list of pending
messages (function MESSAGE READY). This latter case is used
to register that messages with smaller clocks from pj to g
do not exist – this follows from using FIFO channels: if an
undelivered message with a smaller clock existed, it would be
the message on the top of pending messages.

C. Causal Order with Lamport Clocks

In Alg. 2 we present the functions to instantiate the generic
algorithm for the case where Lamport clocks are used to
keep track of causality. In this case, for each group g, each
process keeps a Lamport clock that is initiated to 0 (function
INIT CLOCK).

When sending a message, the local Lamport clock asso-
ciated with the group is incremented (function PREPARE).
We note that the message is timestamped with the full local
clock, which includes the set of clocks for all groups to trace
dependencies across groups.



Algorithm 2 Causal Order with Lamport Clocks
1: procedure INIT CLOCK(clock)
2: clock[g]← 0, ∀g ∈ G;
3: procedure MERGE TS(ts1, ts2)
4: result ts[g]← MAX(ts1[g], ts2[g]), ∀g ∈ G
5: return result ts
6: procedure PREPARE(g, destination set)
7: local clocki[g]← local clocki[g] + 1;
8: procedure MESSAGE READY(m, clockm, g, j)
9: delivered uptoi[g][j]← clockm[g]− 1

10: function MESSAGE SAFE(m, clockm, g, i, j)
11: condition1 ← clockm[g] − 1 ≤ delivered uptoi[g][k], ∀k ∈ N :

k 6= j
12: condition2 ← clockm[g′] ≤ delivered uptoi[g

′][k], ∀g′ ∈
my groupsi : g

′ 6= g,∀k ∈ N
13: return condition1 ∧ condition2

14: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
15: delivered uptoi[g][j]← clockm[g]
16: local clocki ← MERGE TS(local clocki, clockm)

The MESSAGE READY function, called when a message m
reaches the top of the pending list from process pj for group
g, updates delivered upto record to register that all messages
with smaller Lamport clocks from pj to g either have been
delivered or do not exist (this follows from the use of FIFO
channels, as explained before).

The MESSAGE SAFE function verifies that a message for
group g is safe to be delivered by checking that all of
its dependencies have already been delivered. This can be
assessed by checking that: i) all messages for g with smaller
clocks from all other processes have already been delivered
(condition 1); ii) the dependencies for other groups the local
process belongs to have already been delivered (condition 2).

The UPDATE LOCAL CLOCK function, called when a mes-
sage is delivered, updates delivered uptoi[g] to reflect the
delivered message, and the local clock by taking the maximum
of the local clock and the message’s clock for each group. This
guarantees that, when sending a new message, the message
clock for the group will be larger than the clocks of all
dependencies, which makes the use of the conditions defined
in MESSAGE SAFE correct.

D. Causal Order with Vector Clocks

A well known extension of Lamport clocks are vector
clocks [6], [11]. A vector clock keeps multiple logical clocks,
one for each process in the system, precisely recording the
last message from each process - e.g., if the system has N
processes, the vector clock will contain N logical clocks.
Alg. 3 presents the functions to instantiate the generic causal
multicast algorithm for vector clocks.

The implementation of these functions is conceptually sim-
ilar to the corresponding implementation for Lamport clocks,
described in the previous section. There are two major differ-
ences. First, for each group, we keep a vector clock instead of
a Lamport clock, with each entry in the vector clock initiated
with 0; when a message is sent on a group g, only the ith
entry in g’s vector clock is incremented. Second, as a message
records precisely its causal past, the function that assesses if it

Algorithm 3 Causal Order with Vector Clocks
1: procedure INIT CLOCK(clock)
2: clock[g][k]← 0, ∀g ∈ G, ∀k ∈ N ;
3: procedure MERGE TS(ts1, ts2)
4: result ts[g][k]← MAX(ts1[g][k], ts2[g][k]), ∀g ∈ G,∀k ∈ N
5: return result ts
6: procedure PREPARE(g, destination set)
7: local clocki[g][i]← local clocki[g][i] + 1;
8: procedure MESSAGE READY(m, clockm, g, j)
9: delivered uptoi[g][j]← clockm[g][j]− 1.

10: procedure MESSAGE SAFE(m, clockm, g, i, j)
11: condition1 ← clockm[g][k] ≤ delivered uptoi[g][k], ∀k ∈ N :

k 6= j
12: condition2 ← clockm[g′][k] ≤ delivered uptoi[g

′][k], ∀g′ ∈
my groups : g′ 6= g,∀k ∈ N

13: return condition1 ∧ condition2

14: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
15: delivered uptoi[g][j]← clockm[g][j].
16: local clocki ← MERGE TS(local clocki, clockm);

is safe to deliver a message can verify that, for each process,
the dependencies have already been delivered.

E. Causal Order with Matrix Clocks

Matrix clocks [7] expand vector clocks in an extra dimen-
sion. Instead of maintaining one logical clock for each process
in the system, matrix clocks maintain one logical clock for
each link in the system, allowing a process to know not only
the messages received from each of the other processes, as
with vector clocks, but also what messages each of the other
process has received, allowing to track precise information
about indirect dependencies.

When processes are logically organized in a clique, and
every process has a unidirectional link to every process in the
system (including to itself), the number of links is quadratic.
In Alg. 4 we present the functions to support causal ordering
using matrix clocks. The structure of the code is, again,
very similar to the two implementations presented before, for
Lamport and vector clocks, with the exception that the clocks
carry much more detailed information, and sending a message
on group g, updates the ith vector clock by incrementing all
kth entries of said vector, where k are all processes that will
receive the message.

III. CAUSAL CONSISTENCY IN SHARED MEMORY

A. Causal Consistency

The happened-before relation was originally defined in the
context of message-passing systems, but it also applies to
shared memory systems where processes interact by reading
and writing on objects. In this case, we can define the cause-
effect relations as follows:

(i) Thread of Execution. If a and b are two operations
executed by the same thread of execution, then a  b
if a is executed before b.

(ii) Reads From. If a is an update operation and b is a read
operation that reads the value written by a, then a b.

(iii) Transitivity. If a b and b c, then a c.



Algorithm 4 Causal Order with Matrix Clocks
1: procedure INIT CLOCK(local clocki)
2: local clocki[g][j][k]← 0, ∀g ∈ G, ∀j, k ∈ N ;
3: procedure MERGE TS(ts1, ts2)
4: result ts[g][j][k] ← MAX(ts1[g][j][k], ts2[g][j][k]), ∀g ∈ G, ∀j, k ∈
N

5: return result ts
6: procedure PREPARE(g, destination set)
7: local clocki[g][i][j] ← local clocki[g][i][j] + 1, ∀j ∈

destination set;
8: procedure MESSAGE READY(m, clockm, g, j)
9: delivered uptoi[g][j]← l(m)[g][j][i]− 1.

10: procedure MESSAGE SAFE(m, clockm, g, i, j)
11: condition1 ← clockm[g][k][i] ≤ delivered uptoi[g][k],∀k ∈ N :

k 6= j
12: condition2 ← clockm[g′][k][i] ≤ delivered uptoi[g

′][k],∀g′ ∈
my groups : g′ 6= g,∀k ∈ N

13: return condition1 ∧ condition2

14: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
15: delivered uptoi[g][j]← clockm[g][j][i].
16: local clocki ← MERGE TS(local clocki, clockm);

Let w(oa) and w(ob) be two write operations on, oa and ob.
Let r(oa) and r(ob) be two read operations by the same client,
where r(oa) is executed before r(ob) and where r(oa) returns
the value written by w(oa) and r(ob) returns the value written
by w(ob). This execution satisfies Causal Consistency (CC)
[3] if there is no write w′(ob) such that w(ob)  w′(ob)  
w(oa).

Causal consistency is extremely relevant in the context of
highly-available distributed storage as it has been proven to be
the strongest consistency model that can provide availability in
face of transient network partitions [12], [13]. Stronger con-
sistency models, such as serializability [14] or linearizability
[15], require processes to reach consensus and to establish
a total order among concurrent operations, therefore, being
prone to blocking [16]. One of the most common strategies to
achieve causal consistency in distributed and replicated storage
systems is to ensure that updates performed at remote nodes
are applied to any replica in causal order.

B. Causal Storage

As we have done for causal multicast, it is possible to
derive a generic algorithm to ensure causal consistency in
a distributed storage system. The algorithm is presented in
Alg. 5 and it builds on the generic causal multicast algorithm
introduced in the previous section.

The extensions of Alg. 5 with regard to Alg. 1 are mostly
focused on tracking and handling each client’s read and write
dependencies (variable client clock). When the client performs
a write, a new timestamp is associated with the update.
This timestamp is computed by combining the value of the
client clock with the clock of the storage node to which the
client is attached. Updates are afterward multicasted to all
nodes that replicate that object. These updates are delivered
in causal order and are kept pending at remote nodes until is
safe to apply them. When an update is delivered, the value
written by the client is merged with the locally stored object
value and the corresponding timestamps are also merged. Note

Algorithm 5 Generic Causally Consistent Storage Implemen-
tation
1: Let N be a set of processes
2: Let G be a set of multicast groups
3: Let K be a set of object keys
4: procedure INIT NODE(i)
5: INIT CLOCK (local clocki);
6: delivered uptoi[g][j]← 0; ∀g ∈ G, ∀j ∈ N
7: pendingi[g][j]← ∅;∀g ∈ G,∀j ∈ N
8: my groupsi ← groups to which process i belongs
9: procedure INIT CLIENT(client clock)

10: INIT CLOCK(client clock)
11: procedure READ(client clock, k)
12: 〈value, ts〉 ← STORAGE READ(k)
13: client clock← MERGE TS(client clock, ts)
14: return(value)
15: procedure WRITE(client clock, k, value)
16: g ← MAP KEY TO GROUP(k)
17: PREPARE(g, REPLICAS(k))
18: update clock← MERGE TS(client clock, local clock)
19: for j ∈ replicas(k) do
20: FIFO SEND(〈k, value〉, update clock), g, i, j)
21: procedure FIFO RECEIVE(m, clockm, g, j)
22: ENQUEUE(pendingi[g][j], 〈m, clockm〉);
23: when ∃m : FIRST(m, pendingi[g][j]) do
24: MESSAGE READY (m, clockm, g, j);
25: done
26: when ∃m : FIRST(m, pendingi[g][j]) ∧

MESSAGE SAFE(m, clockm, g, i, j) do
27: DELIVER(m, clockm, g, j);
28: UPDATE LOCAL CLOCK(m, clockm, g, j);
29: done
30: procedure DELIVER(〈k, new value〉, new ts, g, j)
31: 〈old value, old ts〉 ← STORAGE READ(k)
32: merged value← MERGE UPDATE(old value, new value)
33: merged ts← MERGE TS(old ts, new ts)
34: STORAGE WRITE(k, 〈merged value,merged ts〉)

that, similarly to Alg. 1, Alg. 5 can also be instantiated to
use Lamport, vector, or matrix clocks: this can be achieved by
selecting the appropriate implementations of the INIT CLOCK,
MERGE TS, PREPARE, MESSAGE READY, MESSAGE SAFE,
and UPDATE LOCAL CLOCK procedures from Alg. 2, Alg. 3,
or Alg. 4, respectively.

The algorithm also assumes the existence of a
MAP KEY TO GROUP function that can map objects to
the groups used by the multicast algorithm. The next section
discusses how object keys can be mapped to groups.

IV. METADATA COSTS

The implementation of causally consistent storage proposed
in the previous section, captured by Alg. 5, can be configured
to use different amounts of metadata. There are two main
mechanisms that affect the amount of metadata required by
the algorithm. The first is the type of clocks that are used
to keep track of causality, i.e., if the algorithm is instantiated
to use Lamport clocks, vector clocks, or matrix clocks. We
use the letters “L”, “V”, and “M” to identify each of these
alternatives. The other is how to map object keys to multicast
groups. In this paper, we consider only two scenarios, namely:
updates for all objects are propagated using a single multicast
group (we identify this option by the prefix “1”) or each object



TABLE I: Metadata Configurations

One single group One group per object
1 K

Lamport clock L 1L O(1) kL O(K)
Vector clock V 1V O(N) kV O(KN)
Matrix clock M 1M O(N2) - -

N < K 1L < 1V < 1M < kL < kV

uses a different group, of its own, to propagate updates (this
option is identified by the prefix “k”).

The two mechanisms can be combined in different ways, as
depicted in Table I. For example, it is possible to use Lamport
clocks to track causality, and keep a different clock for each
object (configuration named “kL”) or to use a vector clock
to track of causality but maintain a single vector clock for
the entire system (configuration “1V”). These mechanisms
address orthogonal aspects of the system’s operation. The
choice between Lamport, vector, or matrix clocks allows to
capture different levels of detail about the processes that
produce updates and the processes that are going to receive
the update. The choice of the mapping function allows to
capture different amounts of detail about which objects have
been targeted by each update. We illustrate this fact with the
following examples:
• Consider a system with 4 process, p1, . . . , p4, using

kL and a process p3 that receives an update u from p2
with timestamp 5 for object o without having received
previously an update for o with timestamp 4 from p1. On
one hand, because each object uses its own clock, the
process p3 knows that the missing update is for object o
and not for some other object. On the other hand, because
Lamport clocks are being used, p3 cannot know which
other process(es) did generate the update(s) in the past
of update u. Due to this lack of detail, p3 needs to wait
for an update from both p1 and p4 before delivering u.

• Consider a system that uses 1V and a process p3 that
receives an update u from p2 with timestamp [4, 1, 0, 0]
for object o without having received previously an update
from p1 with timestamp [4, 0, 0, 0]. On one hand, because
vector clocks are used, it knows that the missing update
must be received from p1, and not from p4. However,
because a single vector is used for all objects, p3 cannot
guess which object generated the missing update. Due
to this lack of detail, p3 may be forced to wait for an
update from p1, even if update with timestamp [4, 0, 0, 0]
was performed on an object not replicated by p3.

To avoid both types of false dependencies, illustrated by
the examples above, one may use one vector clock for each
different object (configuration kV). Unfortunately, as Table I
shows, this is the most expensive configuration (note that, in
most practical systems, the number of objects is much larger
than the number of nodes in the system). Conversely, the
configuration 1L is the configuration that uses less metadata,
as a single Lamport clock is used to track causality for all

objects. The table also shows how the other configurations
compare to each other regarding the amount of metadata they
require. Because updates are always propagated to all replicas
of a given object, the configuration MO does not bring any
advantages over kV, and therefore we do not consider it in our
study.

V. EMPIRICAL STUDY

This section presents a study to characterize the scenarios
where using more expensive metadata brings advantages that
justify the additional bandwidth and storage space.

A. Experimental Setting

All experiments were performed using the PeerSim simu-
lator [17], extended with a networking module that provides
point-to-point First In, First Out (FIFO) channels, and allows
network latency to be configured.

We consider a setting of N = |N | nodes that collectively
store K = |K| objects. Storage nodes represent data centers
placed in different geographical locations. The latency among
nodes is configurable. Every object k ∈ K is partially repli-
cated and stored in a subset of all nodes replicas(k) ⊆ N , i.e.,
we considered a setting with partial replication. Full replication
is a particular case of this general setup, where every node
replicates all objects.

Each node has a fixed number of clients that perform read
and write operations on objects replicated on that node. Clients
execute a loop where they perform a sequence of 0, 1, or more
reads followed by a single write. The number of reads that
precede each write defines the read/write ratio of the workload.
Clients select objects to read or write randomly according to
some distribution. There is a configurable think time between
any two consecutive client operations, for simulating process-
ing time, user interaction, and client-server latency.

The set of parameters that control our experiments, listed
in Table II, is the following:
• The total number of nodes is denoted N ; in all exper-

iments we have N = 16. Each node (server) has 10
clients.

• The network latency, among any pair of nodes (i, j),
follows a Gaussian distribution with average δi,j . The
averages are taken from the real latencies observed in
AWS datacenters [18], with 6 nodes in Europe, 4 in North
America, and 6 in Asia.

• The number of objects K is constant in all experiments
and set to 1600.

• All objects have the same number of replicas, and we
vary the number of replicas from 2 to N , with the latter
corresponding to full replication.

• The number of objects stored at each node is uniform
(i.e., all servers store R ·K/N objects).

• We consider that each server has 10 clients; We also
consider that clients join the system and start performing
updates at different moments in time. This is dictated by
the Ji variable that states the rate at which new clients
join the system.



TABLE II: Parameterization

Configuration Variable Distribution Value

Number of nodes N - 16
Network latency δi,j gaussian [30ms, 400ms] taken from [18]
Number of objects K - 1600
Replication degree R(k) constant [2, N]

Objects per node S(ni) uniform R ·K/N = R · 100
Clients per node Ci constant 10
Client join rate Ji gaussian 50ms
Client think time Ti constant [10ms, 1000ms]

exponential λ ∈ [10ms, 100ms]

Read/Write ratio rwratio constant writes
reads

= 0.1

Object access pattern Pi(K) uniform 1/S(ni)
zipfian α = 0.9 (from [19])

• We consider two scenarios for the think time used by
clients. In the first scenario, the think time of all clients
is constant, with all clients producing updates at the same
pace. In the second scenario, clients of different nodes
have different think times, according to the average (λ)
of an exponential. This means that each individual client
will produce updates at different rates.

• All clients use the same write-read ratio, namely 0.1.
• Finally, each object has a pre-determined probability
Pi(k) of being accessed by any client. This probability
can follow either a uniform distribution where all objects
in a certain server i have the same probability of being
accessed, or the access pattern follows a Zipfian distri-
bution where some objects are accessed more frequently
than others.

B. Characterizing the Workloads

The large number of features that defines a scenario, make
the analysis of distributed storage systems particularly hard.
In fact, it is infeasible to experiment with all possible com-
binations of the features enumerated in Table II. Still, in
our experimental work, it was possible to observe that some
mechanisms exhibited the same performance in a multitude of
apparently distinct scenarios. This observation has motivated
us to find a new set of features that can capture the properties
of the scenarios that are relevant for the performance of the
different causality tracking mechanisms.

Therefore, we propose two novel features that help char-
acterize the workload for the purpose of understanding the
impact of different metadata techniques. We recall that vector
clocks capture information about which nodes have sent up-
dates in the causal past and that the mapping function allows
us to capture information about which objects were updated
in the causal past. The following parameters take these facts
into consideration:
• Update Generation Rate Asymmetry (GRA): We define

the update generation rate asymmetry as the ratio between
the fastest and slowest average update frequency for all
nodes in the system.

• Object Ownership to Objects in Causal Past Ratio
(OPR): Given the set of updates received in a node,
U , the causal frontier contains all updates u ∈ U for
which there is no other updates that happened after u,
i.e., @u′ ∈ U : u  u′. The causal frontier defines the
direct dependencies of an update, i.e., the updates that
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Fig. 1: Bandwidth saturation: CMO 99th percentile; varying
Bandwidth. N = 16; K = 1600; uniform think time T (i) =
15; uniform R(k) = 5; uniform access pattern; GRA = 0.7
OPR = 0.2

are relevant to track causality. We define OPR as the ratio
between the number of objects replicated at a node and
the objects with updates in the causal frontier.

C. Scenarios

• Variable OPR scenario: In this scenario we vary the
OPR and change the asymmetry of the system by con-
sidering multiple fixed GRA values.

• Variable GRA scenario: In this scenario we vary the
GRA and increase the asymmetry of the system by
considering different OPR values as well as the Ti and
Ji distribution.

• Highly uniform scenario: In this scenario we consider an
highly uniform system and vary the underlying network
latency.

D. Costs and Benefits

We now discuss the costs and benefits of the different
choices that we consider in this analysis.

The size of the metadata used by the different techniques
was presented in Table I. As noted before, metadata consumes
network bandwidth and storage, because the metadata needs
to be sent with each update and needs to be stored to be later
retrieved. The larger the metadata, the more processing time
and memory is needed to compare and merge clocks. In our
experiments, we abstract from storage and CPU/memory costs
and only take into account the bandwidth costs.

Naturally, if the deployment is constrained in terms of stor-
age, processing, or bandwidth, the forms of causality tracking
that consume more metadata may saturate the system. This
is illustrated in Figure 1 that shows the point where different
configurations saturate the links among the nodes. However, a
more interesting problem is to understand if the techniques
that use more metadata bring benefits in an unconstrained
system. Therefore, even if the system is not saturated, there is
no reason to waste additional resources unless some benefits
can be extracted. As such, in the remaining of our experiments,
we always consider that the available bandwidth is enough to
avoid link congestion when the target causality track is used.



This allows us to assess if a mechanism can bring benefits
when enough resources are available.

In this paper we consider the consistency maintenance
overhead (CMO) on remote update visibility latency as the
benefit function. We measure CMO as the time it takes for an
update u to be applied at node i after u has been received by
node i. The smaller the value of CMO the better. As described,
an update u received at a given node i can only be applied
after the node knows that all updates in its causal past have
been applied. As discussed, in this process, u may need to wait
for a real dependency that is missing (because the system is
asynchronous, messages can be delayed in the network) or
may be delayed due to a false dependency, that results from
the lack of detail of the metadata scheme. As schemes that use
larger metadata are likely to exhibit less false dependencies,
we expect schemes that use larger metadata to introduce fewer
delays in applying remote updates, contributing to a smaller
latency in the visibility of remote updates.

E. Experimental Analysis

We begin our experimental analysis by observing how vary-
ing the OPR affects the CMO metric. All these experiments
are presented in Figure 2. In this scenario, we start with
a relatively uniform system and increase its asymmetry by
considering different values of GRA; additionally, for each
GRA value, we vary the OPR. By comparing Figures 2a, 2b, 2c
and 2d we can mainly extract two interesting results: First,
as we consider increasing GRA values, we can notice that
the performance of 1V and 1L starts deteriorating. Second,
as the OPR increases, independently of the GRA value, the
CMO of both mentioned algorithms also decreases; In fact,
the point from which this phenomenon appears to happen
is when OPR > 0.35. This happens because as objects get
more replicated the average OPR also increases, which in turn
results in nodes receiving more updates with objects in their
causal past that they also replicate. Regarding algorithms with
more detail, the kL algorithm presents an unexpectedly poor
performance as we can see in Figure 2e, in fact as the OPR
increases, the CMO also increases. We postpone the intuition
on why the kL algorithm performs poorly to Section VI and
do not include kL in the rest of our experiments due to its
general poor performance. As seen in Figure 2f both 1M and
kV improve the performance as the OPR increases. Notice,
that kV and 1M have similar behaviors when we change the
OPR, but kV has slightly better performance; this is due to
the fact that kV can use one FIFO connection per object,
increasing the concurrency of each individual server. Keep in
mind that this is only true considering we are not reflecting
the effect of bandwidth in our experiments.

We now address the scenarios where we vary the GRA
(Figure 3). As one may have already noticed, increasing
the asymmetry of the system induces higher CMO values
for 1V and 1L. We can increase the asymmetry in various
ways: different object access patterns; object placement; the
number of replicas, etc. In Figure 3a we can observe that 1V
performs especially well in full replication, and despite the

GRA varying, its performance is similar to the 1M and kV
algorithm. As we further increase the asymmetry (Figures 3b
and 3c) the 1V algorithm starts performing fairly bad. In fact,
for GRA values larger than 0.7 the algorithm shows a shift in
performance. An interesting phenomenon can be observed in
Figure 2f; the 1M and 1V algorithms seem to perform better
as the GRA increases. This happens because updates are more
diverse, meaning that most likely a certain FIFO connection
will be less saturated with constant updates, resulting in a
lower load for each link, and, consequently inducing lower
CMO values.

It is clear that, if clients access the system at the same
moment and have the same uniform think time, updates will
be generated at the exact same rate. Intuitively, in such a
scenario, one would expect the 1L algorithm to output CMO
values closer to the 1V algorithm. However, this is not the
case and the 1L algorithm still experiences a high CMO. This
is an artifact of the asymmetry introduced by the latencies
of the underlying network. In Figure 4 we can observe such
relationship. Each server can only apply messages as fast as
the slowest node generates them; since, in this case, every
server generates new updates at the same rate, the asymmetry
happens when messages take different times to arrive at the
various servers. The 1L algorithm would only perform well if
every server generates messages at the exact same rate and all
messages arrive at every server at the same time, which is a
highly unlikely scenario in real systems.

VI. RESULTS AND TAKEAWAYS

Our experiments highlight some interesting properties of
the different metadata choices. In the following section, we
enumerate the main takeaways from our study and derive a
decision chart that aims at helping system designers to pick
the right technique for their applications.

1L only performs well in symmetric scenarios: Lamport
clocks cannot capture concurrency and do not allow us to
identify the source of updates in the causal past of another
update. This forces a node to wait for updates from every
other node in the system in order to make a single update
visible. When nodes produce updates at different paces, the
entire system is affected by the rate of the slowest node in the
system.

Even in symmetric scenarios, 1L is affected by the network
latency: Assume that nodes produce updates at exactly the
same pace. In order to deliver an update u with logical clock
x, node i needs to receive an update with timestamp ≥ x from
every other node. Even if these updates have been produced
exactly at the same real-time instant as update u, there is a
delay of approximately the average network latency. This is
clearly visible in Figure 4. This suggests that Lamport clocks
are not advisable in geo-replicated scenarios, where inter-node
latencies are large and diverse.

kL brings no advantages w.r.t. 1L, expect in cases of
extreme symmetry or extreme partial replication: Although
kL keeps additional detail over 1L, which is substantially more
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(b) GRA = 0.5
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(c) GRA = 0.7
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(e) GRA = 0.7; kL included
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Fig. 2: Variable OPR scenarios: CMO 95th percentile for varying OPR values;N = 16;K = 1600; Ji = 45ms; multiple GRAs
considered; variable uniform R(k); zipfian P(K)

expensive, it brings little or no advantages to most scenarios.
In fact, to use kL can even be detrimental to the performance
of the system. This happens because the CMO of an update
depends on both the GRA for that object and the OPR. Objects
that are seldom accessed will have an extremely high CMO.
Whenever they are updated, they will delay any updates that
read that object. There are, however, two exceptions to this.
The first exception is when we have a uniform R(x) = 2,
which, in that case, a certain node doesn’t need to wait for all
other nodes to perform an update on the said object; this results
in the kL algorithm to perform similarly to kV. The other
corner case is when all objects are updated at the same rate
by all nodes; in such a scenario, kL would perform similarly
to 1L.

1M and kV have similar performance: Both 1M and kV
have similar performance in our experiments. Thus, the choice
between 1M and kV only depends on the size of the metadata.
For scenarios where the number of objects is larger than the
number of nodes, the 1M is more advisable. For scenarios
where the number of objects is smaller than the number of
nodes, kV is better. Note that, in many practical systems, it
is possible to group objects in a few numbers of partitions,
where objects in the same partition use the same replication
strategy. In this case, the use of kV can be a sensible choice.

Despite 1M and kV having similar performances, the kV
algorithm can perform slightly better: The kV algorithm has
one FIFO connection per object. When the system has enough
network capacity, this results in a higher level of concurrency
when compared with having only one FIFO connection such
as in 1M. Despite having this benefit, the differences in the

CMO are actually very low, which, in some cases, doesn’t
seem to pay up the much metadata cost.

1M and kV perform better in more asymmetric systems:
The 1M and kV experience fairly lower false dependencies
than other algorithms. This fact, allied with asymmetry to up-
date generation and object placement, results in links between
servers to be less saturated which itself results in updates
arriving faster to nodes (because there are fewer messages to
be FIFO ordered) and lower CMOs. This phenomenon can be
observed in Figure 3d

1M/kV significantly outperform 1V in systems where OPR
is low: In partially replicated systems, nodes do not store
a replica of every object. Therefore, it is likely that in the
causal past of updates that need to be applied at node i there
are updates to objects that are not replicated by i. Keeping
different vector clocks for each object, or a matrix clock offers
the necessary detail to prevent nodes to wait for updates they
will never receive. This is clearly visible in Fig. 2, where the
1V algorithm gains performance as the OPR increases.

Based on these insights, it is possible to construct a de-
cision tree to help system designers select the most suitable
metadata scheme for their storage system, as a function of the
deployment and workload characteristics. The decision tree
is depicted in Fig. 5. First, if the system is fully replicated,
there is no need to use additional metadata and the choice
is between the 1L and the 1V algorithms. In this scenario,
if the system is not highly uniform (we consider a highly
uniform system to be OPR = 1; GRA = 0; Ji =
0; uniform Ti; uniform P (K); sd(δij) = 0, where sd is
the standard deviation), the wise choice is to use a vector
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Fig. 3: Variable GRA scenarios: CMO 95th percentile for vary-
ing GRA values;variable exponential Ti; N = 16;K = 1600;
uniform R(K); multiple OPRs considered

clock, otherwise, if the system designer supports having higher
CMOs (e.g. bandwidth/processing power may be scarce which
justifies the use of less metadata at the expense of a higher
CMO) then it is better to use a Lamport clock. If we are instead
on a partially replicated scenario, we first check if our OPR is
greater than 0.35. As we have seen, the higher the OPR, the
better the 1V algorithm will perform. If the OPR is lower than
0.35, it means that most likely we also have few replicas for
each object; In such a case, we must assess whether the system
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Fig. 5: Decision chart for the various metadata schemes.

is uniform. From our previous analysis, we can correlate GRA
with the system asymmetry. For GRA > 0.7 the 1V algorithm
starts showing performance problems, therefore we should use
a vector only when the GRA is lower than 0.7. We use the
kV algorithm if the scenario where the number of objects is
smaller than the number of nodes; otherwise, it is generally
better to use a Matrix clock for the entire system. There is
still a special case where objects are replicated in only two
servers and the number of objects is smaller than N which in
that case you should use kL.

VII. RELATED WORK

There is a considerable amount of work that addresses
causal consistency, however, to the best of our knowledge, only
a small part of this work provides an analysis of the trade-offs
imposed by the different causality tracking mechanisms.

Bravo [9] makes a thorough analysis of the numerous
systems that support causal consistency and shows that there is
a direct correlation between the metadata size and the number
of false dependencies, even for systems with optimized mech-
anisms. Bravo also raises awareness to the fact that efficient
causal consistency in partially replicated scenarios is difficult
to achieve, and it’s a trade-off between minimizing the amount
of metadata being handled and the loss of concurrency by
minimizing said metadata.

Cheriton and Skeen [20] perform a very detailed exposition
of the limitations of causally ordered communication and
correlate visibility latency with the amount of buffering of
updates due to missing dependencies. Still from a more
theoretical point of view, Bailis et. al. [21] extend this analysis
in the context of causal consistency. Their work also identifies



throughput (i.e. the rate at which clients generate new updates)
and visibility latency as competing goals. Additionally, they
raise awareness to the poor scalability of the mechanisms used
to ensure causal consistency.

While our work focuses on studying the trade-offs of logical
clocks, Bravo et. al. [22] make an interesting analysis between
the advantages of using different types of clocks to enforce
causal consistency by analyzing different existing systems.
Their observations address the impact of the client’s access
patterns on the performance of systems that use logical clocks
and present physical clocks as an alternative to avoid some of
the limitations of logical clocks. However, unlike our work,
their study does not identify which workload patterns favor a
certain type of metadata.

The analysis, in all these studies, is based on simplified
models that fail to capture the interactions among the dif-
ferent parameters that characterize the workload of causally
consistent storage systems. To the best of our knowledge,
our work is the first to identify a set of features that help
to understand the performance of different mechanisms. Our
study is also the first to make an experimental assessment
of how different metadata choices affect the remote visibility
latency in distributed storage systems.

VIII. CONCLUSIONS

Ensuring causal consistency is at odds with the mechanisms
used to keep track of causal dependencies. On the one hand,
one can opt to use more detail to better track causality.
On the other hand, this results in consuming a substantially
larger amount of network bandwidth and storage space. In
this paper, we addressed the problem of whether the benefits
of using more complex structures are worth their cost in the
context of partially replicated systems. We have shown that
for some workloads the use of more expensive clocks does
bring significant benefits and that for other workloads no
visible benefits can be observed. To help system designers
to pick the right mechanisms for their applications, the paper
introduces two novel features, GRA and OPR, that capture
relevant properties that affect the performance of different
causality tracking mechanisms. Based on these features and
an extensive experimental evaluation, we derived a decision
chart that characterizes different scenarios where each type of
clock is more beneficial.
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