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Abstract

After the seminal paper by L. Lamport, which introduced (scalar) logical clocks, several other data struc-

tures for keeping track of causality in distributed systems have been proposed, including vector and

matrix clocks. These are able to capture causal dependencies with more detail but, unfortunately, also

consume a substantially larger amount of network bandwidth and storage space than Lamport clocks.

This raises the question of whether the benefits of these more complex structures are worth their cost.

We address this question in the context of partially replicated systems. We show that for some work-

loads the use of more expensive clocks does bring significant benefits and that for other workloads no

visible benefits can be observed. In this thesis, we provide a characterization of the scenarios where

each type of clock is more beneficial, helping designers to develop more efficient distributed storage

systems.
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Resumo

Após a introdução de relógios lógicos (escalares) por L. Lamport no seu trabalho seminal, várias outras

estruturas de dados utilizadas para rastrear a causalidade em sistemas distribuı́dos foram propostas.

Entre elas incluem-se os relógios vetoriais e matriciais que têm a capacidade de capturar dependências

causais com maior precisão. Infelizmente, comparando com os relógios de Lamport, estas estruturas

consomem uma quantidade de largura de banda de rede e espaço de armazenamento substancial-

mente maior. Este facto levanta a questão de se os benefı́cios que elas trazem compensam o seu

custo. Abordamos esta questão no contexto de sistemas parcialmente replicados e mostramos que,

para alguns perfis de carga, o uso de relógios mais caros traz benefı́cios significativos e que, para

outros, nenhum benefı́cio pode ser observado. Nesta dissertação fornecemos uma caracterização dos

cenários onde cada tipo de relógio é mais benéfico, ajudando os programadores a desenvolver sistemas

de armazenamento distribuı́do mais eficientes.
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1.1 Motivation

The notion of causality is a fundamental concept in the context of distributed systems, and the ability

to capture cause-effect relations accurately is a requirement of many distributed tasks, such as taking

global snapshots [1], implementing distributed mutual exclusion [2], or maintaining the consistency of

data [3]. After the seminal paper by L. Lamport [4], that introduced (scalar) logical clocks, several

other data structures for keeping track of causality in distributed systems have been proposed, including

vector [5, 6] and matrix clocks [7], among others. Each of these mechanisms offers a different trade-

off between the space complexity and the ability to track causal dependencies accurately. Note that

Lamport clocks consist of a single scalar (the space complexity is O(1)), vector clocks typically require

an entry per node in the system (the space complexity is O(N)), and matrix clocks, as their name

suggests, have a space complexity of O(N2). Thus, despite their potential advantages, vector and

matrix clocks consume a substantially larger amount of network bandwidth and storage space. This

raises the question of whether, in practice, the benefits of these more complex structures are worth their

cost. From the abstract point of view, it is clear that larger clocks can capture causality more accurately

and reduce the remote visibility latency. Assume that all updates are timestamped with some form of

logical clocks to keep track of causality. Let t(u) be the timestamp assigned to update u. It is well known

that, with Lamport clocks ux → uy =⇒ t(uy) > t(ux) but that t(uy) > t(ux) 6=⇒ ux → uy. This means

that, when using Lamport clocks, a node that has received uy and not ux, cannot immediately assess if

it is safe to deliver uy. We call this artifact of Lamport clocks a false dependency. False dependencies

have a negative impact on the remote visibility latency, by forcing updates to wait for other updates that

may not be in their causal past. Vector clocks suffer less from this problem. However, to completely avoid

false dependencies with vector clocks, updates need to be timestamped with not only one vector clock,

but with a set of vector clocks, one vector clock for each data item. When the number of items is larger

than the number of nodes in the system (arguably, the most common case) accurate clocks degenerate

in a matrix clock. For any reasonably sized system, this has a significant overhead, both in terms of

storage space and in terms of bandwidth utilization. Thus, in practice, the costs of maintaining accurate

clocks can outweigh the potential advantages they may bring in terms of reduced visibility latency.

We study the trade-off between the space complexity of the vector clocks and the remote visibility la-

tency in partially replicated storage systems under different workloads and different replica deployments.

We show that for some workloads/deployments the use of more expensive clocks does bring significant

benefits and that for others no visible benefits can be observed.

Unfortunately, there are many factors that affect the performance of a certain type of clocks, including:

how many replicas of each object are kept and where these replicas are located, the read/write ratio of

the workload, the access frequency to each object, the time between consecutive operations executed

by clients, among others. This makes the task of identifying the best clock for a given scenario very

2



hard.

To solve this puzzle, we introduce two novel features that capture relevant patterns for the perfor-

mance of causality tracking mechanisms: the Update Generation Rate Asymmetry (GRA), defined as

the ratio between the fastest and slowest average update frequency for all nodes in the system, and the

Object Ownership to Objects in Causal Past Ratio (OPR), defined has the ratio between the number of

objects replicated at a node and the objects with updates in the causal frontier of an update. With these

new features, the thesis provides a characterization of the scenarios where each type of clock is more

beneficial, helping system designers to develop more efficient distributed storage systems.

1.2 Research history

This work was performed in the context of a research project, named NG-STORAGE, that aims at finding

efficient mechanisms to store data on the network edge. A key aspect of this project is to find the right

amount of metadata that needs to be stored and exchanged to ensure that updates are applied in causal

order at all edge nodes. My work aims at finding the best metadata as a function of the workload profile.

The work described in the thesis has been partially published in a paper, namely:

”H. Guerreiro, L. Rodrigues, N. Preguiça and N. Quental. Causality Tracking Trade-offs for Distributed

Storage. In IEEE NCA 2020” [8]

This work was partially supported by the FCT via project NG-STORAGE, with reference PTDC/CCI-

INF/32038/2017, and by projects INESC-ID (ref. UIDB/ 50021/ 2020) and NOVA LINCS (ref. UIDB/

04516/ 2020).

1.3 Contributions

This thesis studies existing logical clocks data structures and identifies a set of features that help to

understand the performance of the different mechanisms. The main resulting contributions of this dis-

sertation are:

• The proposal of two novel metrics, the Update Generation Rate Asymmetry (GRA) and the Object

Ownership to Objects in Causal Past Ratio (OPR), that capture key aspects of the workload for the

purpose of selecting the best metadata to keep track of causality.

• A decision tree to help system designers choose the best logical clock based on the values of the

two metrics above.
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1.4 Results

This thesis achieved the following results:

• A common framework to support the implementation and comparison of different causal order

algorithms.

• An implementation of the selected algorithms using the Peersim simulator.

• An experimental evaluation and comparison of different algorithms to keep track of causal order in

face of multiple workloads with different characteristics.

1.5 Organization of the Document

This thesis is organized as follows:

• Chapter 2 presents important definitions regarding causality in distributed systems (namely, happened-

before and causal consistency ) and related work that stems from said definitions.

• Chapter 3 introduces the different logical clocks considered in the thesis and how they can be used

to enforce causal consistency.

• Chapter 4 describes some of the implementation details of the prototypes used to test the different

logical clocks and algorithms.

• Chapter 5 presents an empirical study of different algorithms under different workloads.

• Chapter 6 defines a set of guidelines to help decide between the different algorithms.

• Chapter 7 concludes the thesis and unveils some possible lines of work for future work.
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In this chapter, we discuss the concept of time in the context of distributed systems, the different

mechanisms we use to track it, and how we can use them to establish an order to events. We focus on

a specific ordering of events named causal order that is used to build the causal consistency model and

we finish by addressing some known problems of ensuring causal consistency.

As such, Section 2.1 describes time in distributed systems; Section 2.2 presents causal order, the

definition of happened-before and the different mechanisms to track causal dependencies; Section 2.3

shows how causal order can be adapted to construct a consistency model, namely causal consistency;

Finally, Section 2.4 discusses some of the trade-offs that are present when providing causal consistency.

2.1 Time in Distributed Systems

Time is an essential concept when reasoning about how events are ordered in a system; it ties well

with our way of thinking and numerous applications rely on accurate time tracking to function correctly.

Being able to assign a timestamp to an event accurately is of paramount importance. For example, in

an application that manages bank transactions, it is of extreme importance that a withdrawal operation

doesn’t happen in the system before a previous money deposit (i.e., it is assigned a lower timestamp).

Various problems in distributed systems rely on the usage of clocks to be solved. The problem of

data consistency is especially interesting in this context since it relies on establishing a correct order of

operations (in fact, the banking example can be modeled as a data consistency problem). This order

is typically based on the time each operation was first observed by the system. Since there can exist

multiple observers (i.e., multiple processes), defining an order of events is not trivial and depends on

what has been observed by each process.

A simple way to address this problem would be to rely on the physical clocks that are present in each

machine to assign timestamps to events. However, these devices are not perfect and their readings are

prone to diverge from one another. This problem can result in events being timestamped incorrectly and,

therefore, result in inconsistent data versions at different processes. To mitigate this issue it is required

that clocks are frequently synchronized through the usage of an external source of highly accurate time

(e.g. NTP, Coordinated Universal Time UTC [9]). However, the quality of the synchronization attainable

through these algorithms may vary significantly and depends on factors such as the network load. This

fluctuation leads to unbounded uncertainty intervals that can vary from a few to hundreds of millisec-

onds. To guarantee clear and well-defined uncertainty intervals, one would require specialized hardware

devices such as atomic clocks, which are expensive and usually not available or easily accessible.

Intuitively, events are ordered from the point of reference of every process, which means they need to

use local information to assign timestamps to events ( i.e. their local clock). For the reasons mentioned

above and as Lamport pointed out in his seminal work [4], since it is not easy to synchronize physical
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clocks in a distributed system, we cannot rely on this physical time to determine the order of any random

pair of events without having a global picture of the system. Timestamping events according to the

cause-effect relationship that they present when using physical time (i.e, physical causality) is proven

useful, which led to the proposal of a similar type of ordering usually named causal ordering or potential

causal ordering. This type of ordering introduced what is known as logical time, which can be tracked

using data-structures named logical clocks. In the next section, we present this type of partial ordering

in more detail.

2.2 Causal Order in Message Passing Systems

The notion of cause-effect is intrinsic to the way we perceive the world. For example, it is intuitive that if

I am to pick up a rock from the ground and drop it, the rock will fall and hit the ground again. This is a

case of a direct cause-effect relationship: the fact that I dropped the rock, resulted in it falling. However,

other events may have influenced the rock falling. For instance, millions of years of erosion eventually

resulted in the small rock being on the ground to be picked up in the first place. Since we cannot tell for

sure if erosion was the cause of the rock falling, we assume that it potentially caused it. In distributed

systems, this concept was formalized by L.Lamport which introduced the happened-before relationship

as the basis for potential causal ordering. The happened-before relationship is based on two intuitive

aspects:

• first, if two events occurred in the same process then they occurred in the order in which said

process observed them.

• second, when a process sends a message, it is clear that the event of sending said message

cannot happen after the message has been received by other processes.

Happened-before: More formally, an event e1 is said to have happened-before an event e2 (e1  e2) iff:

(i) If e1 and e2 are events that happened in the same process and e1 occurred before e2 then e1  e2;

(ii) If e1 is the event that corresponds to a message being sent by a process and e2 is an event that

corresponds to that message being received by some other process, then e1  e2;

(iii) If e1  e2 and e2  e3 then e1  e3.

To better understand this definition, consider the example in Figure 2.1. Consider the interactions

between the three processes p1, p2 and p3. In this scenario, it is clear that a happens-before b because

they happen in the same process, therefore we can say that a  b (i). Event b generates message

m1 which upon arrival at process p3 also generates event c. Given this fact, it is immediate that event c
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happened-before event b, therefore we say that b c (ii). Since a b and b c we can say that a c

(iii). For similar reasons, a  f . Notice that we cannot determine whether a  e or e  a because

we cannot find any causal link between the two events. In this scenario we say that events a and e are

concurrent and we represent it as a‖e.

Figure 2.1: Example of the evolution of Lamport clocks

The design of distributed applications can be simplified if there is a communication layer that delivers

messages to processes in an order that respects the happened-before relation [10,11]. Mechanisms to

enforce causal order have been widely studied in the literature [11]. These techniques typically rely on

data structures called logical clocks to operate. Next, we present some of the most widely used logical

clocks.

2.2.1 Lamport Clocks

Lamport clocks are essentially software scalars that increase monotonically and do not share any de-

pendencies with real physical devices (unlike physical clocks). For the sake of exposition and to under-

stand how Lamport clocks work, let’s consider the original definition in the context of message-passing

systems. A Lamport clock Li associated with an arbitrary process pi is defined as follows:

(i) Initially Li = 0.

(ii) Before any event happens at pi, Li is incremented: Li := Li + 1, and everytime process pi sends

a message, its value Li is piggybacked in the message.

(iii) On the receiving site, process pj computes Lj := max(Lj + 1, Li).
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The behavior of Lamport clocks is depicted in the example of Figure 2.1. The use of Lamport clocks

is sufficient to enforce causal ordering. In fact, given two events e1 and e2 we have e1  e2 ⇒ L(e1) <

L(e2); The contrary, however, is not true (L(e1) < L(e2) ; e1  e2). This means that Lamport clocks

are not sufficient to determine whether two events e1 and e2 are concurrent or not. For example, in the

scenario of Figure 2.1 it is not possible to determine if a‖e.

Notice that there is a difference between what we use to enforce causal ordering and how we actually

enforce it. The definition of a Lamport clock presented in this section only specifies that they can be used

as a mechanism to enforce causal ordering, setting aside how to achieve it. Therefore, in Section 3.1 we

expose how we can use these mechanisms to achieve causal multicast in a partial replication context.

2.2.2 Vector Clocks

To overcome the aforementioned limitation, vector clocks were introduced [6, 12]. A vector clock joins

multiple logical clocks, typically one for each process in the system - e.g., if the system has N processes,

the vector clock will contain N Lamport clocks. Similarly to Lamport clocks, each process pi keeps a

vector clock Vi which is updated every time an event happens, and the vector clock is piggybacked in

every message sent by a process. The rules for updating a vector clock in message-passing systems

are:

(i) Each entry in the vector Vi is initialized to 0

(ii) Each time an event occurs at process pi , its vector clock is incremented Vi[i] = Vi[i] + 1

(iii) When process pi receives a message from another process pj , the value of the vector clock is set

to the pairwise maximum of each entry in both clocks: Vi[k] := max(Vi[k], Vj [k]) , for k = 1, 2, ..., N .

In Figure 2.2 we depict the same interactions as in Figure 2.1 but change the timestamps to show the

behavior of vector clocks instead. Unlike logical clocks, this mechanism ensures that for two events e1

and e2 the following is true: e1  e2 ⇒ L(e1) < L(e2); L(e1) < L(e2)⇒ e1  e2. This property makes it

possible to compare two vectors in such a way that we can not only identify whether one event happened

before other, but also if two events are concurrent.

Although vector clocks are a better approximation of causality than logical clocks, they have the

disadvantage of growing linearly in size with the number N of processes in the system. As N grows

large, so does the penalty incurred in terms of bandwidth and storage. In later sections, we study these

trade-offs in more detail.

Matrix clocks: Several other causality tracking mechanisms and optimizations have been proposed in

the literature [5, 13–19]. Among all other data structures we give special attention to Matrix clocks [7].

Matrix clocks extend the concept of vector clocks in another dimension. They allow us to capture causal
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relationships at the granularity of a single network link by keeping one vector clock for each process in

the system.

Hybrid Logical Clock: Another particularly interesting data structure is the hybrid logical clock [19].

Which mixes both physical time and logical time. The hybrid logical clock timestamp involves two parts:

i) the physical part which contains a physical clock and ii) the logical part which contains a logical clock,

typically a single scalar.

Figure 2.2: Example of the evolution of vector clocks

2.3 Causal Consistency in Shared Memory

The happened-before relation was originally defined in the context of message-passing systems, but it

also applies to shared memory systems where processes interact by reading and writing on objects. In

this case, we can define the cause-effect relations as follows:

(i) Thread of Execution. If a and b are two operations executed by the same thread of execution (for

instance, by the same client), then a b if a is executed before b.

(ii) Reads From. If a is an update operation and b is a read operation that reads the value written by

a, then a b.

(iii) Transitivity. If a b and b c, then a c.

More specifically, let w(oa) and w(ob) be two write operations on, oa and ob. Let r(oa) and r(ob) be

two read operations by the same client, where r(oa) is executed before r(ob) and where r(oa) returns
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the value written by w(oa) and r(ob) returns the value written by w(ob). This execution satisfies Causal

Consistency (Causal Consistency (CC)) [3] if there is no write w′(ob) such that w(ob) w′(ob) w(oa).

Causal consistency is extremely relevant in the context of highly-available distributed storage as it has

been proven to be the strongest consistency model that can provide availability in face of transient net-

work partitions [20, 21]. Stronger consistency models, such as serializability [22] or linearizability [23],

require processes to reach consensus and to establish a total order among concurrent operations, there-

fore, being prone to blocking [24]. One of the most common strategies to achieve causal consistency

in distributed and replicated storage systems is to ensure that updates performed at remote nodes are

applied to any replica in causal order.

Notice that by allowing concurrent updates to execute at different orders in different processes, the

states may diverge. A slightly stronger model named Causal+ [25] has been proposed, where the

additional condition of eventual and independent conflict resolution of concurrent updates needs to be

ensured. This condition is such that the states of every process will eventually reach the same value.

Conflict-free replicated data types (Conflict-free Replicated Data Types (CRDT)) [26] are a known way

to implement causal+ consistency.

2.3.1 Causally Consistent Partially Replicated Systems

The use of data replication is almost unavoidable in modern distributed systems. First, data replication is

a fundamental technique to provide fault-tolerance, a key requirement in most systems. Second, when

the applications have clients that reach the system from different geographic locations, only replication

can ensure that these clients access data with low latency. Having all existing data in the system present

at all replicas increases not only its redundancy but also the storage and bandwidth costs associated

with having to maintain said data. Partial replication is a technique where each data object is potentially

only replicated in a subset of all replicas. This approach manages to reduce the mentioned costs.

A major part of the existing causally consistent systems assumes that data is fully replicated. Having

data fully replicated allows designers to make the assumption that all replicas eventually receive all

updates, which in turn allows metadata to be more compressed. If we consider partial replication, this

cannot be assumed.

We now raise awareness of the difficulties involved with achieving causal consistency in a partial

replication setting and present an overview of some systems that were able to achieve it.

2.3.1.A Causal Consistency vs Partial Replication

Achieving causal consistency under full replication has been widely studied [25, 27–35]. These sys-

tems implement protocols that are usually efficient when compared with protocols that implement strong

consistency models. When transposing to partial replication, using the same techniques may not work;
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those that do, either require extra metadata to be maintained or further coordination between replicas to

obtain said metadata. One way or the other, both cases have scalability problems.

X

Y

X

Y
Z

Z

Figure 2.3: Events leading to a break in causality in a genuine partial replication scenario

In an ideal scenario, each partial replica would only maintain causal information regarding data

objects that are currently being replicated. Attaining genuine partial replication [36] without breaking

causality is difficult and might even be impossible without further coordination between replicas or defin-

ing a replica communication topology (e.g., Saturn [37]). To give a sense of why causally consistent

genuine partial replication is hard to accomplish, consider the scenario displayed in Figure 2.3. In this

example, we consider a distributed system with three replicas (R1, R2 and R3); R1 stores information

regarding objects x, z, R2 objects x, y and R3 objects y, z. Each replica maintains causal information

(e.g., a vector clock per object) about the objects it is interested in and only propagates updates to repli-

cas that are interested in said object. For the sake of the example, let’s also consider that all updates

causally depend on all previous updates of the originating replica (i.e, clients read all objects before

performing an update). R1 updates object x (update up1) and z (update up2) and then propagates the

updates to replicas R2 and R3 respectively. Update up2 is causally dependent on update up1. If replica

R3 updated object y (update up3) there is a possibility that the information about this update reaches

replica R2 before update up1. Since replica R2 does not store any information about object z it would

not be able to see the causal dependency that exists between update up3 and the in-flight update up1.

This would result in replica R2 mistakenly applying it, when it should wait for the arrival of update up1.

As we can see, causal consistency under partial replication can raise a different set of challenges

that do not happen with full replication.

12



2.3.1.B An Overview of Current Solutions

As seen in Section 2.3, several mechanisms have been developed to track causality. While efficient

in representing the causality dependencies, these mechanisms typically either suffer from a lack of

scalability due to the size of the metadata or lose information about causal dependencies, which can

lead to false dependencies between concurrent updates. In partially replicated scenarios, keeping the

size of the metadata lean is key for the performance of the system. When designing a causally consistent

system, these issues need to be taken into account. We now take a look at some approaches that

enforce causal consistency in partial replication setting.

PRACTI [38]: PRACTI is a replicated system that is able to simultaneously achieve partial replication

(PR), arbitrary consistency (AC), and topology independence (TI). In this system, replicas can choose

each individual object that they will replicate. These objects are then added to the interest set of the

replica, which is free to change its contents at any given time. Apart from the interest set, each replica

maintains a version vector with one entry per replica. Updates and reads are executed locally at each

replica and propagated afterward. Each update is tagged with the current value of the node’s Lamport

clock and the node’s ID. PRACTI propagates updates in a similar way to Bayou’s [39] log exchange

protocol; however, it introduces a novel mechanism; the idea is to separate the propagation of the up-

dates’ metadata from the actual values set up by the update. This separation of responsibilities gives

PRACTI some freedom regarding the way metadata and data flow through the system. While update

messages (named Body messages) can be delivered in any order to the replicas, the metadata prop-

agation channels (named Invalidation streams) must respect a causal ordering of delivery. Invalidation

streams deliver two types of messages: precise invalidations and imprecise invalidations. Precise invali-

dations correspond to the metadata regarding single updates. Imprecise invalidations represent multiple

ordered precise invalidations and act as a summary of this group of messages. To guarantee correct-

ness, all replicas must maintain all invalidation messages. By doing so, they can control the arrival order

of the Body messages and apply them according to the current consistency policy of the system - e.g if

the system is guaranteeing causal consistency then replicas need to wait for the arrival of the dependent

Body messages before applying one.

Saturn [37]: Saturn is another system that decouples the metadata from the actual data propagation.

It is a metadata service for geo-replicated systems; therefore, it focuses only on metadata management

and assumes that data is propagated using an existing bulk-data mechanism that fits the application

business requirements. Saturn works with small-size metadata that takes the form of labels. Labels

work as tags for updates and are generated by each server. They can be ordered through their times-

tamps that are generated from a physical clock at each server. Inside each datacenter exists a central-

ized component called the label sink. This component is responsible for gathering all labels, ordering,

and then propagating them to the inter-dc module of Saturn. Clients attach to a certain data center
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in order to communicate with the system. If a client desires to change datacenters, it must request

a migration to Saturn. While Saturn introduces protocols to ensure clients respect causality, the most

interesting mechanism lies in how Saturn propagates labels between datacenters that lets it achieve

genuine partial replication: Labels are distributed according to a fixed dissemination tree between data-

centers. In this tree topology, data centers act as leaves, and the nodes leading up to those leaves are

servers named Serializers. Serializers Inter-communication and communication with the datacenters

are done through FIFO channels. This allied to the tree dissemination is sufficient to guarantee causal

consistency. Another advantage with the use of a tree is that serializers do not need to propagate labels

through branches that will lead to data centers that do not replicate the item associated with the label.

This mechanism is fundamental in the sense that it enables genuine partial replication. The use of a

tree can raise some challenges. In the case of a failure in a node of the tree, it needs to be recomputed,

which is a time-consuming process.Another problem is the fact that every label must be propagated

through the tree, which can become a bottleneck in the system. One system that tries to mitigate these

issues is C3 [40]. Like Saturn, C3 also separates the metadata from the data propagation; however, the

information is propagated directly between every pair of nodes. Not considering a tree raises the need

for a larger amount of metadata to be tracked (timestamps increase from a single scalar to a vector with

one entry per data-center), and genuine partial replication cannot be achieved.

Swiftcloud [41]: A tradeoff that appears to be predominant in causally consistent systems is the

throughput at which writes can be applied versus data visibility latency [42]. Swiftcloud provides fast

writes and reads at the expense of clients having to access more stale data. In this system, clients

maintain a local cache to which they apply updates and later send them to possibly different datacenters.

The effect of each update only becomes visible once the operation is replicated in K datacenters (K

¿= 1); in the case of a fault, this allows clients to migrate to other datacenters without being rejected

(a rejection would happen in the case where clients read a more up-to-date version of the data and

the new datacenter cannot communicate with the faulty datacenter). While clients partially replicate

information, data centers are fully replicated. Each client maintains a set of objects in its interest set

to which they can write immediately. Datacenters will constantly be pushing notification updates to

the clients regarding those objects. Clients, on the other hand, will constantly be sending messages

regarding unacknowledged updates to the datacenters. The communication channel is FIFO, and clients

must maintain a session opened with the first node they contact. To guarantee convergence and solve

conflicts, Swiftcloud’s clients use a library of CRDT objects. When clients need to read an object,

they do so in a causally coherent state that is exposed by the datacenter. This state may be stale on

some occasions, but by exposing a coherent state, the system avoids the possibility of clients generating

causal gaps due to the clients’ access patterns. In terms of the metadata, Swiftcloud compresses causal

dependencies into a vector clock with an entry per data-center.
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PaRiS [43]: In PaRiS, a transactional causally consistent system that also supports partial replication,

clients also maintain a local cache and read from a coherent snapshot computed through the use of a

novel causality tracking mechanism named Universal stable time (UST). The snapshots are such that

they have been installed in every datacenter; therefore, and unlike Swiftcloud, reads do not block. Other

approaches also rely on clients reading from a stable snapshot [44, 45]. Regarding metadata, PaRiS

uses Hybrid logical clocks [19] complemented with two vector clocks, for each partition, to keep track of

current partition timestamp and other to keep track of the global stabilization time.

Legion [46]: Legion is a framework that allows client web applications to easily replicate data from

the servers and between them in low latency and secure manner. Communication between clients can

be done directly without the need to use a server as a middle-man. Since clients’ devices are limited

in storage, Legion adopts a client-side partial replication approach. In Legion, objects are stored in

containers. Each container has an associated multicast group to which clients can join if interested in

the objects in the container. Legion opts to use a vector clock with one entry per replica of a container.

This means that more popular containers will have bigger metadata. Locally, at each client, objects are

modified using a library of CRDT objects, and updates are transmitted between nodes through a FIFO

channel, which allied to the multicast primitive guarantees causal delivery of updates. All reads and

writes are applied to the versions of the objects that are locally available. When performing an update,

the client creates a new object version that is timestamped with the current clock value.

Karma [47]: Karma partially replicates data at the datacenter level. Groups of geographically close

datacenters form a consistent hashing ring and in which data is replicated. Karma ensures that causality

is guaranteed inside each ring; however, between ring updates are propagated asynchronously. To avoid

clients breaking causality, the system keeps track of in-flight messages and blocks the client from reading

from a different ring until the system deems it to be safe. Regarding the type of metadata used, Karma

tracks dependencies with great detail using a approach similar to the one used by COPS [25]. It tracks

dependencies at the granularity of data items.

Discussion: Comparing the different systems, one can notice some characteristics of partially repli-

cated causally consistent systems. Regarding where the partial replication happens, we can divide the

systems into two types: client-level and server-level. Client-level systems replicate data on the client’s

devices; systems such as Swiftcloud, PaRiS and Legion maintain a cache on each client. Server-level

systems partially replicate data between the different nodes of the system; The level of replication can

go from simple replica servers (PRACTI) to datacenters (Saturn).

A predominant approach in these systems is to let clients read from data that that is potentially stale.

Some systems, such as PaRiS and Saturn, expose a consistent snapshot to clients from which they can

read. Another approach is the one proposed by SwiftCloud where a client observes a certain update

only if it is stored in K different replicas (k-staleness).
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Another characteristic of these systems is the topology of the communication of replicas. PRACTI

and Legion set no restriction on this topology; however, by limiting the topology of the system, one can

introduce some mechanisms (the tree topology in Saturn and the consistent hash rings in Karma) that

are not possible in a more generalized scenario.

The separation of the propagation of metadata from the actual data is another interesting mechanism.

This approach gives the system more flexibility on how metadata is handled as opposed to other systems

that require metadata to be piggybacked inside each message. Systems that take advantage of this

technique are PRACTI, Saturn, and C3.

Regarding the type of metadata used by each system, as we have seen, most systems use some

form of logical clock to keep track of causal dependencies. These logical clocks are mostly based on

the ones that were presented in the previous Section. One of the major differences between systems is

the semantic attributed to each logical clock. This semantic dictates how the clocks are used to enforce

causal consistency and also the amount of metadata used. The fact that a lot of systems use some form

of logical clock shows how important it is to be able to correctly decide on the metadata representation,

which is the main focus of this thesis.

2.4 Causality tracking trade-offs

There is a considerable amount of work that addresses causal consistency, however, to the best of our

knowledge, only a small part of this work provides an analysis of the trade-offs imposed by the different

causality tracking mechanisms.

Bravo [11] makes a thorough analysis of the numerous systems that support causal consistency and

shows that there is a direct correlation between the metadata size and the number of false dependen-

cies, even for systems with optimized mechanisms. This correlation stems from the fact that when we

compress the metadata, we fuse together sources of potential concurrency, which in turn increases the

number of false dependencies. An intuitive example of this phenomenon is when we compress all the

entries of a vector clock into a single Lamport clock. If we were to perform this compression, indepen-

dent events (concurrent) happening at two different servers would now have a dependency between

them which in reality would not exist. This false dependency would result in each server losing concur-

rency because the operation would not be able to be immediately applied without the arrival of its false

dependency. This would increase the time it takes to apply a certain update.

The extra time it takes to apply an update after it has arrived at the destination server is named

remote visibility latency and, as we have seen, is related to the level of concurrency offered by the type

of metadata used. Having high visibility latencies has a significant impact in the system in two ways:

first, users will observe increasingly staler data as visibility latency increases, which is not desirable for
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systems that depend on data freshness; Secondly, clients performing migrations will have to wait longer,

since their view of the data is not yet consistent with the server they are trying to connect.

Bravo also raises awareness to the fact that efficient causal consistency in partially replicated scenar-

ios is difficult to achieve. This difficulty is, in fact, a trade-off between minimizing the amount of metadata

being handled and the loss of concurrency by minimizing said metadata. On the one hand, having more

metadata means that we can more precisely track causal dependencies. Although this may result in

fewer false dependencies, it also costs more CPU, storage, and bandwidth, which in some systems may

not be highly available. On the other hand, having less detail in the metadata may not be possible in

partial replication scenarios as we have seen in Section 2.3.1.A.

Cheriton and Skeen [48] perform a very detailed exposition of the limitations of causally ordered

communication and correlate visibility latency with the amount of buffering of updates due to missing

dependencies. Still from a more theoretical point of view, Bailis et. al. [42] extend this analysis in

the context of causal consistency. Their work also identifies throughput (i.e. the rate at which clients

generate new updates) and visibility latency as competing goals. Additionally, they raise awareness to

the poor scalability of the mechanisms used to ensure causal consistency.

While our work focuses on studying the trade-offs of logical clocks, Bravo et. al. [49] make an inter-

esting analysis between the advantages of using different types of clocks to enforce causal consistency

by analyzing different existing systems. Their observations address the impact of the client’s access

patterns on the performance of systems that use logical clocks, while also presenting physical clocks as

an alternative to avoid some of the limitations of logical clocks. Although they may potentially increase

performance on some scenarios, physical clocks still require that data stores inject delays in order to

synchronize clocks across the system. Their work addresses the fact that time is, as well as other char-

acteristics of a system, also a resource that can be traded for other resources. This means that the

overall performance of a given algorithm is hard to predict, and strongly depends on which resources

the system is more constrained on. For example, if the system is constrained in bandwidth, having a

lean metadata representation may or may not result in better performance, it highly depends on how

much bandwidth is actually available.

Interestingly, they make the observation that fully decentralized systems may be as little scalable

as fully centralized ones. They also identify the issue that the use of different clock implementations

may highly depend on factors such as the type of workload, the hardware that is used in the system,

network properties, etc. This makes it hard to define when it is better to use each type of metadata

representation. These types of trade-offs is what we explore in this thesis, by trying to identify which

workload patterns favor a certain type of metadata.

The analysis, in all these studies, is based on simplified models that fail to capture the interactions

among the different parameters that characterize the workload of causally consistent storage systems.

17



To the best of our knowledge, our work is the first to identify a set of features that help to understand the

performance of different mechanisms. Our study is also the first to make an experimental assessment

of how different metadata choices affect the remote visibility latency in distributed storage systems.

2.5 Summary

This chapter presented the concept of time applied to distributed systems. We exposed the difficulties

of keeping track of time and different approaches to achieve said goal. We focused on logical time,

which goes hand in hand with the concept of causal order, and studied how we can keep track of causal

dependencies. We then addressed causal consistency, a useful data consistency model that stems from

the happened-before relation. Finally, we studied some of the trade-offs that exist when providing causal

consistency in a system and how different data structures may affect the performance of the system.
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Metadata management and costs
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As we have seen in the previous Chapter, several algorithms and systems have been proposed

to achieve causal consistency under partial replication. These algorithms are highly optimized and

are often specialized to specific system conditions. In this Chapter, we present a generic framework

that allows instantiating several causal multicasting algorithms using different data structures to track

causality. Additionally, we also present a generic causal storage algorithm that builds upon the causal

multicasting framework. Finally, we discuss some instances of the framework that are relevant and that

will be used as a baseline for our future discussions. We give a theoretical analysis of the metadata

costs associated with each one of the algorithms.

This Chapter is organized as follows: Section 3.1 presents the generic framework to provide causal

multicast; Section 3.2 provides the generic causal storage algorithm, and Section 3.3 describes the

relevant algorithms and metadata costs.

3.1 Attaining Causal Multicast

This Section presents a generic algorithm to implement causal multicast. The algorithm, depicted in

Alg. 1 can be adapted to use different types of clocks. The algorithm assumes that multiple multicast

groups can exist in the system but that causality is maintained across groups, similarly to what was

provided by the Isis system [50]. Groups can be mapped to application-level abstractions, such as

distributed objects. Later in Section 3.2, we show how groups can be used in the context of distributed

storage systems.

The algorithm assumes that, for each group in the system, there is a set of reliable First-In First-

Out (FIFO) channels connecting every pair of processes. These FIFO channels are used exclusively to

send messages for that group. FIFO channels can be trivially achieved in practice, for instance, by using

Transmission Control Protocol (TCP)/IP connections to support the message exchange. Each process

pi maintains a logical clock denoted local clocki. The format of this clock is implementation-dependent:

it can be one Lamport clock, one vector clock, one matrix clock, or even a set of clocks (one for each

group). The initialization of this clock is encapsulated by the primitive INIT CLOCK.

For sending a message m, the process starts by updating its local clock in function PREPARE. The

message m carries a logical clock, denoted clockm, with the value of the local clock. The message is

sent, using the FIFO channels, to the set of destination peers, typically the set of all processes in the

group. Additionally, the message is locally delivered.

When receiving a message m for group g from process j, the process adds the message to the list

of pending messages for g and j, pendingi[g][j]. A message that reaches the top of the pending list for

some process pj and group g (i.e. for which prior messages from pj to g have already been delivered)

can be delivered if its dependencies are satisfied, i.e., if all dependent messages have already been
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Algorithm 1 Generic Causal Order Implementation for process Pi

1: Let N be a set of processes
2: Let G be a set of multicast groups
3:
4: procedure INIT NODE(i)
5: INIT CLOCK (local clocki);
6: delivered uptoi[g][j]← 0; ∀g ∈ G, ∀j ∈ N
7: pendingi[g][j]← ∅;∀g ∈ G,∀j ∈ N
8: my groupsi ← groups to which process i belongs
9:

10: procedure SEND(m, g, destination set)
11: PREPARE(g, destination set)
12: clockm ← local clocki;
13: for k ∈ destination set do
14: FIFO SEND (m, clockm, g, i, k);
15: DELIVER(m, clockm, g, i);
16:
17: procedure FIFO RECEIVE(m, clockm, g, j)
18: ENQUEUE(pendingi[g][j], 〈m, clockm〉);
19:
20: when ∃m : FIRST(m, pendingi[g][j]) do
21: MESSAGE READY (m, clockm, g, j);
22: done
23:
24: when ∃m : FIRST(m, pendingi[g][j]) ∧ MESSAGE SAFE(m, clockm, g, i, j) do
25: UPDATE LOCAL CLOCK(m, clockm, g, j);
26: DELIVER(m, clockm, g, j);
27: done

delivered – this is checked in function MESSAGE SAFE. For helping in this check, each process pi keeps

a record, delivered uptoi[g][j], with the largest clock for which a message from pj to g has already been

delivered in pi or for which it is known that such message does not exist. This information is updated

both when a new message is delivered (function UPDATE LOCAL CLOCK), and when a new message

reaches the top of the list of pending messages (function MESSAGE READY). This latter case is used

to register that messages with smaller clocks from pj to g do not exist – this follows from using FIFO

channels: if an undelivered message with a smaller clock existed, it would be the message on the top of

pending messages.

3.1.1 Causal Order with Lamport Clocks

Alg. 2 shows the functions to instantiate the generic algorithm for the case where Lamport clocks are

used to keep track of causality. In this case, for each group g, each process keeps a Lamport’s clock

that is initiated to 0 (function INIT CLOCK).

When sending a message, the local Lamport’s clock associated with the group is incremented (func-

tion PREPARE). Note that the message is timestamped with the full local clock, which includes the set of

clocks for all groups to trace dependencies across groups.

The MESSAGE READY function, called when a message m reaches the top of the pending list from

process pj for group g, updates delivered upto record to register that all messages with smaller Lamport
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Algorithm 2 Causal Order with Lamport Clocks for process Pi

1: procedure INIT CLOCK(clock)
2: clock[g]← 0, ∀g ∈ G;
3:
4: procedure MERGE TS(ts1, ts2)
5: result ts[g]← MAX(ts1[g], ts2[g]),∀g ∈ G
6: return result ts
7:
8: procedure PREPARE(g, destination set)
9: local clocki[g]← local clocki[g] + 1;

10:
11: procedure MESSAGE READY(m, clockm, g, j)
12: delivered uptoi[g][j]← clockm[g]− 1

13:
14: function MESSAGE SAFE(m, clockm, g, i, j)
15: condition1 ← clockm[g]− 1 ≤ delivered uptoi[g][k],∀k ∈ N : k 6= j
16: condition2 ← clockm[g′] ≤ delivered uptoi[g

′][k], ∀g′ ∈ my groupsi : g
′ 6= g,∀k ∈ N

17: return condition1 ∧ condition2

18:
19: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
20: delivered uptoi[g][j]← clockm[g]
21: local clocki ← MERGE TS(local clocki, clockm)

clocks from pj to g either have been delivered or do not exist (this follows from the use of FIFO channels,

as explained before).

The MESSAGE SAFE function verifies that a message for group g is safe to be delivered by check-

ing that all of its dependencies have already been delivered. This can be assessed by checking

that: i) all messages for g with smaller clocks from all other processes have already been delivered

(condition 1); ii) the dependencies for other groups the local process belongs to have already been

delivered (condition 2).

The UPDATE LOCAL CLOCK function, called when a message is delivered, updates delivered uptoi[g]

to reflect the delivered message, and the local clock by taking the maximum of the local clock and the

message’s clock for each group. This guarantees that, when sending a new message, the message clock

for the group will be larger than the clocks of all dependencies, which makes the use of the conditions

defined in MESSAGE SAFE correct.

3.1.2 Causal Order with Vector Clocks for process Pi

A well known extension of Lamport clocks are vector clocks [6, 12]. As presented in Section 2.2.2 a

vector clock keeps multiple logical clocks, one for each process in the system, precisely recording the

last message from each process - e.g., if the system has N processes, the vector clock will contain

N logical clocks. Alg. 3 presents the functions to instantiate the generic causal multicast algorithm for

vector clocks.

The implementation of these functions is conceptually similar to the corresponding implementation

for Lamport clocks, described in the previous section. There are two major differences. First, for each
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Algorithm 3 Causal Order with Vector Clocks for process Pi

1: procedure INIT CLOCK(clock)
2: clock[g][k]← 0,∀g ∈ G,∀k ∈ N ;
3:
4: procedure MERGE TS(ts1, ts2)
5: result ts[g][k]← MAX(ts1[g][k], ts2[g][k]), ∀g ∈ G, ∀k ∈ N
6: return result ts
7:
8: procedure PREPARE(g, destination set)
9: local clocki[g][i]← local clocki[g][i] + 1;

10: procedure MESSAGE READY(m, clockm, g, j)
11: delivered uptoi[g][j]← clockm[g][j]− 1.
12:
13: procedure MESSAGE SAFE(m, clockm, g, i, j)
14: condition1 ← clockm[g][k] ≤ delivered uptoi[g][k], ∀k ∈ N : k 6= j
15: condition2 ← clockm[g′][k] ≤ delivered uptoi[g

′][k], ∀g′ ∈ my groups : g′ 6= g,∀k ∈ N
16: return condition1 ∧ condition2

17:
18: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
19: delivered uptoi[g][j]← clockm[g][j].
20: local clocki ← MERGE TS(local clocki, clockm);

group, we keep a vector clock instead of a Lamport clock, with each entry in the vector clock initiated with

0; when a message is sent on a group g, only the ith entry in g’s vector clock is incremented. Second, as

a message records precisely its causal past, the function that assesses if it is safe to deliver a message

can verify that, for each process, the dependencies have already been delivered.

3.1.3 Causal Order with Matrix Clocks

Matrix clocks [7] expand vector clocks in an extra dimension. Instead of maintaining one logical clock

for each process in the system, matrix clocks maintain one logical clock for each link in the system,

allowing a process to know not only the messages received from each of the other processes, as with

vector clocks, but also what messages each of the other process has received, allowing to track precise

information about indirect dependencies.

When processes are logically organized in a clique, and every process has a unidirectional link to

every process in the system (including to itself), the number of links is quadratic. In Alg. 4 we present the

functions to support causal ordering using matrix clocks. The structure of the code is, again, very similar

to the two implementations presented before, for Lamport and vector clocks, with the exception that the

clocks carry much more detailed information, in particular, the causal past of a node (or message) is

captured by the last message observed on each link. Sending a message on group g, updates the ith

vector clock by incrementing all kth entries of said vector, where k are all processes that will receive the

update message.
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Algorithm 4 Causal Order with Matrix Clocks for process Pi

1: procedure INIT CLOCK(local clocki)
2: local clocki[g][j][k]← 0, ∀g ∈ G, ∀j, k ∈ N ;
3:
4: procedure MERGE TS(ts1, ts2)
5: result ts[g][j][k]← MAX(ts1[g][j][k], ts2[g][j][k]), ∀g ∈ G, ∀j, k ∈ N
6: return result ts
7:
8: procedure PREPARE(g, destination set)
9: local clocki[g][i][j]← local clocki[g][i][j] + 1, ∀j ∈ destination set;

10:
11: procedure MESSAGE READY(m, clockm, g, j)
12: delivered uptoi[g][j]← l(m)[g][j][i]− 1.
13:
14: procedure MESSAGE SAFE(m, clockm, g, i, j)
15: condition1 ← clockm[g][k][i] ≤ delivered uptoi[g][k], ∀k ∈ N : k 6= j
16: condition2 ← clockm[g′][k][i] ≤ delivered uptoi[g

′][k], ∀g′ ∈ my groups : g′ 6= g,∀k ∈ N
17: return condition1 ∧ condition2

18:
19: procedure UPDATE LOCAL CLOCK(m, clockm, g, j)
20: delivered uptoi[g][j]← clockm[g][j][i].
21: local clocki ← MERGE TS(local clocki, clockm);

3.2 Causal Storage

As we have done for causal multicast, it is possible to derive a generic algorithm to ensure causal

consistency in a distributed storage system. The algorithm is presented in Alg. 5 and it builds on the

generic causal multicast algorithm introduced in the previous Section.

The extensions of Alg. 5 with regard to Alg. 1 are mostly focused on tracking and handling each

client’s read and write dependencies (variable client clock ). When the client performs a write, a new

timestamp is associated with the update. This timestamp is computed by combining the value of the

client clock with the clock of the storage node to which the client is attached. Updates are afterward

multicasted to all nodes that replicate that object. These updates are delivered in causal order and

are kept pending at remote nodes until its safe to apply them. When an update is delivered, the value

written by the client is merged with the locally stored object value and the corresponding timestamps

are also merged. Note that, similarly to Alg. 1, Alg. 5 can also be instantiated to use Lamport, vector,

or matrix clocks: this can be achieved by selecting the appropriate implementations of the INIT CLOCK,

MERGE TS, PREPARE, MESSAGE READY, MESSAGE SAFE, and UPDATE LOCAL CLOCK procedures from

Alg. 2, Alg. 3, or Alg. 4, respectively.

The algorithm also assumes the existence of a MAP KEY TO GROUP function that can map objects to

the groups used by the multicast algorithm. The next Section discusses how object keys can be mapped

to groups.
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Algorithm 5 Generic Causally Consistent Storage Implementation for process Pi

1: Let N be a set of processes
2: Let G be a set of multicast groups
3: Let K be a set of object keys
4:
5: procedure INIT NODE(i)
6: INIT CLOCK (local clocki);
7: delivered uptoi[g][j]← 0; ∀g ∈ G, ∀j ∈ N
8: pendingi[g][j]← ∅;∀g ∈ G,∀j ∈ N
9: my groupsi ← groups to which process i belongs

10:
11: procedure INIT CLIENT(client clock)
12: INIT CLOCK(client clock)
13: procedure READ(client clock, k)
14: 〈value, ts〉 ← STORAGE READ(k)
15: client clock← MERGE TS(client clock, ts)
16: return(value)
17:
18: procedure WRITE(client clock, k, value)
19: g ← MAP KEY TO GROUP(k)
20: PREPARE(g, REPLICAS(k))
21: update clock← MERGE TS(client clock, local clock)
22: for j ∈ replicas(k) do
23: FIFO SEND(〈k, value〉, update clock), g, i, j)
24:
25: procedure FIFO RECEIVE(m, clockm, g, j)
26: ENQUEUE(pendingi[g][j], 〈m, clockm〉);
27:
28: when ∃m : FIRST(m, pendingi[g][j]) do
29: MESSAGE READY (m, clockm, g, j);
30: done
31:
32: when ∃m : FIRST(m, pendingi[g][j]) ∧ MESSAGE SAFE(m, clockm, g, i, j) do
33: DELIVER(m, clockm, g, j);
34: UPDATE LOCAL CLOCK(m, clockm, g, j);
35: done
36:
37: procedure DELIVER(〈k, new value〉, new ts, g, j)
38: 〈old value, old ts〉 ← STORAGE READ(k)
39: merged value← MERGE UPDATE(old value, new value)
40: merged ts← MERGE TS(old ts, new ts)
41: STORAGE WRITE(k, 〈merged value,merged ts〉)

3.3 Metadata Costs

The implementation of causally consistent storage proposed in the previous Section, captured by Alg. 5,

can be configured to use different amounts of metadata. There are two main mechanisms that affect the

amount of metadata required by the algorithm. The first is the type of clocks that are used to keep track

of causality, i.e., if the algorithm is instantiated to use Lamport clocks, vector clocks, or matrix clocks.

The letters “L”, “V”, and “M” are used to identify each of these alternatives. The other is how to map

object keys to multicast groups. In this thesis, only two scenarios are considered, namely: updates for

all objects are propagated using a single multicast group (we identify this option by the prefix “1”) or each

object uses a different group, of its own, to propagate updates (this option is identified by the prefix “k”).

The two mechanisms can be combined in different ways, as depicted in Table 3.1. For example, it is
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Table 3.1: Metadata Configurations

One single group in the system One group per object
1 K

Lamport clock L 1L O(1) kL O(K)
Vector clock V 1V O(N) kV O(KN)
Matrix clock M 1M O(N2) - -

N < K 1L < 1V < 1M < kL < kV

possible to use Lamport clocks to track causality, and keep a different clock for each object (configuration

named “kL”) or to use a vector clock to track of causality but maintain a single vector clock for the entire

system (configuration “1V”). These mechanisms address orthogonal aspects of the system’s operation.

The choice between Lamport, vector, or matrix clocks allows to capture different levels of detail about

the processes that produce updates and the processes that are going to receive the update. The choice

of the mapping function allows to capture different amounts of detail about which objects have been

targeted by each update. To illustrate this fact consider the following examples:

• Consider a system with 4 process, p1, . . . , p4, using kL and a process p3 that receives an update

u from p2 with timestamp 5 for object o without having received previously an update for o with

timestamp 4 from p1. On one hand, because each object uses its own clock, the process p3

knows that the missing update is for object o and not for some other object. On the other hand,

because Lamport clocks are being used, p3 cannot know which other process(es) did generate the

update(s) in the past of update u. Due to this lack of detail, p3 needs to wait for an update from

both p1 and p4 before delivering u.

• Consider a system that uses 1V and a process p3 that receives an update u from p2 with times-

tamp [4, 1, 0, 0] for object o without having received previously an update from p1 with timestamp

[4, 0, 0, 0]. On one hand, because vector clocks are used, it knows that the missing update must

be received from p1, and not from p4. However, because a single vector is used for all objects,

p3 cannot guess which object generated the missing update. Due to this lack of detail, p3 may be

forced to wait for an update from p1, even if update with timestamp [4, 0, 0, 0] was performed on an

object not replicated by p3.

To avoid both types of false dependencies, illustrated by the examples above, one may use one

vector clock for each different object (configuration kV). Unfortunately, as Table 3.1 shows, this is the

most expensive configuration (note that, in most practical systems, the number of objects is much larger

than the number of nodes in the system). Conversely, the configuration 1L is the configuration that uses

less metadata, as a single Lamport clock is used to track causality for all objects. The table also shows

how the other configurations compare to each other regarding the amount of metadata they require.
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Note that, because updates are always propagated to all replicas of a given object, the configuration

MO does not bring any advantages over kV, and therefore we do not consider it in our study.

3.4 Summary

This chapter presented a generic framework to achieve causal multicast which is independent of the data

structures used to keep track of causal dependencies. We then presented three algorithms that build

upon the mentioned framework to provide causal multicast using the classical data structures, namely

Lamport clocks, Vector clocks, and Matrix clocks. Next, we proposed a generic algorithm for causal

storage that, again, uses the causal multicast framework. Having presented the algorithms, we make a

brief theoretical analysis of the possible costs of each instantiation and present the five algorithms that

will be used in our empirical analysis. Finally, we described how the prototypes for the chosen algorithms

were implemented.
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In this chapter we present the implementation details of the different chosen algorithms that will be

considered in our evaluation. In order to fairly evaluate all algorithms, a common framework was built

which allows the same conditions and code to be applied for each algorithm. Section 4.1 describes the

technologies used in order to build the framework and run the simulations. Section 4.2 presents the

implementation details of the framework. Finally, Section 4.3 describes how each individual algorithm

was implemented using the described framework.

4.1 Development Environment

All algorithms are simulated using the PeerSim [51] simulator which allows the creation of specific sys-

tem conditions, some of which are not possible to achieve in real-life systems. These conditions do not

change between simulation sessions due to a seed system. This allows us to precisely measure the

performance of each algorithm as the same interactions with the system are performed each time for a

given seed. This is especially important in our experiences since different clients’ interactions influence

the outcome of each algorithm’s performance. The prototype was implemented using the Java program-

ming language (OpenJDK 14 [52]). Additionally, to ease the testing process, a setting system was built

where specific scenarios can be written, loaded, and reproduced when testing different algorithms. This

system allows to configure not only the characteristics of the system, as well as the placement of objects

and the client’s interactions with the system.
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Tracker

Message

Causal
Broadcast

Replication
Manager Storage Statistics

Connection Manager
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Causal Order
Algorithm

Communication
Group

CLIENT

Application Local
Storage

Client

Figure 4.1: Framework components and interactions between components
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4.2 Framework

We now describe in more detail the framework that was built in order to run the different algorithms. This

framework tries to generalize as much as possible all of the code that is common and it allows all of the

algorithms presented in Sections 3.1 and 3.2 to be instantiated. All the components and interactions of

the framework are present in Figure 4.1. Overall, we divide the framework in two bigger components:

the server and the client. The server is what is present at each node of the system; the client is the

specific application that interacts with a single node. Now, we describe the components that do not need

to be implemented when a new algorithm needs to be created.

4.2.1 Server Components

• Storage: The Storage component is a generic key-value storage used to store all the objects

replicated locally at the node. The storage is accessed by the Backend to apply the updates that

were executed or to read the current value of a certain object.

• Replication Manager: The Replication Manager is responsible for keeping track of which objects

are locally replicated and which other nodes replicate a given object. The Backend and the Causal

Broadcast component access the Replication Manager. The Backend registers where new objects

are replicated, and the Causal Broadcast component consults the placement of objects in the

system.

• Causal Order Algorithm: The Causal Order Algorithm is responsible for providing the data struc-

tures and the concrete algorithm implementation used to order the arriving messages. Every new

algorithm that is added to the framework needs to implement this component. The specific algo-

rithm that is to be used in the simulation, is decided through the use of a scenario configuration

file.

• Causality Tracker: The Causality Tracker keeps track of the messages that are currently buffered

(i.e. are not safe to be applied yet) and decides when a certain update message can be delivered

to the Backend to be executed. It accesses the Causal Order Algorithm to causally order pending

messages.

• Causal Broadcast: The Causal Broadcast component is responsible for providing causal multicast

primitives that are used by the Backend in order to propagate updates. The Causal Broadcast

accesses the Causality Tracker to order and store arriving messages before they can be applied. It

is also used by the Backend to help decide when a certain message is safe to apply. Additionally,

the Causal Broadcast accesses the Connection Manager in order to not only send messages using

a FIFO connection, but to also get information regarding the different communication groups.
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• Statistics: The statistics component has the responsibility of keeping track of all the relevant

interactions that occur in the system and of extracting relevant statistics from them. As an example,

the statistics component keeps track of the time it takes for a pending update to be applied in order

to compute relevant metrics such as the Consistency Maintenance Overhead (CMO) (which will

be presented in Chapter 5).

• Connection Manager: The Communication Manager is responsible for keeping track of all the

existing connections to the server, for both clients and other servers. It is also responsible for

providing FIFO channels for all the communications. The Communication Manager accesses the

Message component, which varies depending on the Causal order algorithm being currently used.

This component also accesses the Communication Group component to consult and register in-

formation about existing communication groups.

• Message: The Message component holds information that is sent between servers. This compo-

nent is implementation-specific and depends on the implementation of the Causal Order Algorithm,

as each algorithm needs to send different data structures and data in each message. As such,

when creating a new Causal Order Algorithm, it is also necessary to build a specific Message

component.

• Communication Group: The Communication Group tracks information about the existing com-

munication groups.

• Backend: Finally, the Backend component is the core of the Server and is responsible for bridging

the interactions between the other different components.

4.2.2 Client components

Regarding the client components, we have:

• Client: The client component provides an abstraction of a real person interacting with the system.

Therefore, it can be configured to behave in different ways and to perform specific access patterns

at different rates. This module interacts with the Application module to simulate a user interacting

with an application.

• Application: The application provides a simple interface to interact with the Backend of a given

server. When a Client updates an object, it propagates the update to the system and, upon return,

applies the changes to the local storage.

• Local Storage: The Local Storage component stores the objects that are accessed by each client.

Therefore, it serves the purpose of simulating the client’s local device storage.
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4.2.3 Conflict Resolution

Updates to objects are propagated asynchronously to other nodes. When we have two updates that

are concurrent (i.e., we cannot establish which update happened first), the order in which they are

applied may vary between nodes. When we consider updates to data, applying different updates in

different orders may result in distinct states across the system. While under causal consistency this is

valid, in this prototype both servers and clients use commutative or convergent replicated data types

(CRDT [53]), a class of distributed data structures that can be replicated throughout different nodes and

have two important properties:

(i) Updates to a certain replica can be done without any coordination and conflicts are automatically

resolved

(ii) Replicas are guaranteed to eventually and deterministically reach the same state given that they

saw the same set of updates

Using CRDTs allowed nodes to work as asynchronously as possible and to focus on the effects of dif-

ferent metadata structures without worrying about the performance impact of running conflict resolution

algorithms.

4.3 Algorithms

This section details how the One Lamport clock per system (1L),one Lamport clock per object (kL), One

Vector clock per system (1V), kL, and One Matrix clock per system (1M) algorithms were implemented

using the framework described in the previous section. Because there are algorithms that share the

same data structures, the implementations are similar, therefore, they will be described together.

4.3.1 1L and kL

The 1L and kL algorithms use as their main data structure a Lamport clock to keep track of causal de-

pendencies. As described earlier, to add a new algorithm to the framework, we needed to implement a

Causal Order Algorithm and Message components. Regarding 1L, each Causal Order Algorithm com-

ponent keeps a Lamport clock structure which was implemented as a separate Java class. Additionally,

it also keeps track of all highest seen Lamport clocks from other nodes which are represented as a java

List of Lamport clocks. Regarding the message implementation, Lamport clocks are serialized as Java

Integers. Since the 1L maps all communication groups towards a single entry (representing the entire

system), the message does not need to carry additional information regarding which group the update

happened.
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Since kL also uses Lamport clocks, the 1L component was adapted to support multiple groups by

keeping a map of Lamport clocks, one for each communication group. The same was done to the

List of Lamport clocks. Regarding the message implementation, each message now holds a map of

Lamport clocks, and an additional parameter that identifies the communication group was added. The

communication group’s identifiers are, in this algorithm, the keys of the objects.

4.3.2 1V and kV

Similarly, the 1V and one Vector clock per object (kV) algorithms use Vector clocks. Vector clocks are

also implemented as separate Java classes that contain lists of Lamport clocks. Similarly to the 1L

algorithm, the 1V algorithm keeps a single Vector clock to track the current highest known timestamp.

Each server also keeps a vector clock for each object’s version, together with the current clock of each

client connected to the system. Regarding the message implementation, Vector clocks are serialized as

lists of integers.

Again, the kV algorithm expands the 1V’s Causal Order Algorithm component and adds support for

multiple communication groups by keeping a map of all the previously mentioned structures, one for

each object. Messages contain a map of lists of integers, as well as the identifier of the communication

group (in this case object), which was the target of the update.

4.3.3 1M

Finally, the 1M algorithm keeps track of causal dependencies using a Matrix clock. The Matrix clock

was also implemented as a separate Java class and is internally represented as a list of Vector clocks.

Similarly to the 1V algorithm, each server keeps a single Matrix clock to keep track of the highest

seen timestamp. It also keeps a Matrix clock for each object to track their versions, and a Matrix clock

for each connected client. Matrix clocks are serialized as lists of lists of integers and do not need to

send additional information regarding the communication group, since it is assumed to only exist one

communication group.

4.4 Summary

This chapter presented a high-level overview of how the prototypes of the algorithms were implemented.

First, the development environment was explained; Next, the components that make part of the frame-

work used to build the prototypes were described; Finally, a more detailed explanation of how the algo-

rithms were implemented was presented.
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While comparing the cost of the different metadata configuration is straightforward, to assess the

benefits of using a more expensive solution is harder. This chapter presents a study that compares

the performance of the different configurations under different workloads. Our goal is to characterize the

scenarios where using more expensive metadata brings advantages that justify the additional bandwidth

and storage space.

The chapter is organized as follows: Section 5.1 presents the goals of this empirical study; Sec-

tion 5.2 describes the system settings in which simulations were run; Section 5.3 provides a description

of the features and metrics considered in the study; Section 5.4 describes the tested scenarios; Sec-

tion 5.5 presents a preliminary assessment of the possible costs and benefits that we can expect; Finally,

in Section 5.6 the results of the experiment are presented.

5.1 Goals

The goal of this empirical study is to determine which algorithms are more suitable to be used depending

on the workload of the system. We try to answer the following questions:

• Which features or combination of features of the system’s workload favor each algorithm?

• In which scenarios can less metadata be used without affecting the system’s performance?

To answer these questions, we compare all systems against each other considering various work-

loads. We also try to clearly characterize the features of each tested workload.

5.2 Experimental Setting

All experiments were performed using the PeerSim simulator [51], extended with a networking mod-

ule that provides point-to-point First In, First Out (FIFO) channels, and allows network latency to be

configured.

We consider a setting of N = |N | nodes that collectively store K = |K| objects. Storage nodes rep-

resent data centers placed in different geographical locations. The latency among nodes is configurable.

Every object k ∈ K is partially replicated and stored in a subset of all nodes replicas(k) ⊆ N , i.e., we

considered a setting with partial replication. Full replication is a particular case of this general setup,

where every node replicates all objects.

Each node has a fixed number of clients that perform read and write operations on objects replicated

on that node. Clients execute a loop where they perform a sequence of 0, 1, or more reads followed

by a single write. The number of reads that precede each write defines the read/write ratio of the

workload. Clients select objects to read or write randomly according to some distribution. There is a
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configurable think time between any two consecutive client operations, for simulating processing time,

user interaction, and client-server latency.

The set of parameters that control our experiments, listed in Table 5.1, is the following:

• The total number of nodes is denoted N ; in all experiments we have N = 16. Each node (server)

has 10 clients.

• The network latency, among any pair of nodes (i, j), follows a Gaussian distribution with average

δi,j . The averages are taken from the real latencies observed in AWS datacenters [54], with 6

nodes in Europe, 4 in North America, and 6 in Asia.

• The number of objects K is constant in all experiments and set to 1600.

• All objects have the same number of replicas, and we vary the number of replicas from 2 to N , with

the latter corresponding to full replication.

• The number of objects stored at each node is uniform (i.e., all servers store R ·K/N objects).

• Each server is configured to have 10 clients; Additionally, it is considered that clients join the

system and start performing updates at different moments in time. This is dictated by the Ji

variable that states the rate at which new clients join the system.

• Two scenarios were considered for the think time Ti used by clients. In the first scenario, the think

time of all clients is constant, with all clients producing updates at the same pace. In the second

scenario, clients of different nodes have different think times, according to the average (λ) of an

exponential. This means that each individual client will produce updates at different rates.

• All clients use the same write-read ratio, that we set to 0.1.

• Finally, each object has a pre-determined probability Pi(k) of being accessed by any client. This

probability can follow either a uniform distribution where all objects in a certain server i have the

same probability of being accessed, or the access pattern follows a Zipfian distribution where some

objects are accessed more frequently than others.

5.3 Characterizing the Workloads

The large number of features that define a scenario, make the analysis of distributed storage systems

particularly hard. In fact, it is infeasible to experiment with all possible combinations of the features enu-

merated in Table 5.1. Still, in this experimental work, it was possible to observe that some mechanisms

exhibited the same performance in a multitude of apparently distinct scenarios. This observation is what
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Table 5.1: Parameterization

Configuration Variable Distribution Value
Number of nodes N - 16
Network latency δi,j gaussian [30ms, 400ms] taken from [54]
Number of objects K - 1600
Replication degree R(k) constant [2, N ]
Objects per node S(ni) uniform R ·K/N = R · 100
Clients per node Ci constant 10
Client join rate Ji gaussian 50ms
Client think time Ti constant [10ms, 1000ms]

exponential λ ∈ [10ms, 100ms]

Read/Write ratio rwratio constant writes
reads = 0.1

Object access pattern Pi(K) uniform 1/S(ni)
zipfian α = 0.9 (from [55])

motivated the search for a new set of features that can capture the properties of the scenarios that are

relevant for the performance of the different causality tracking mechanisms.

Therefore, next, two novel features that help characterize the workload are proposed. As mentioned,

these features have the purpose of understanding the impact of different metadata techniques. Recall

that vector clocks capture information about which nodes have sent updates in the causal past and that

the mapping function allows us to capture information about which objects were updated in the causal

past.

5.3.1 Update Generation Rate Asymmetry (Update Generation Rate Asymmetry

(GRA))

Definition: Update generation rate asymmetry is defined as the ratio between the fastest and slowest

average update frequency for all nodes in the system.

5.3.2 Intuition

The update generation tries to capture the level of asymmetry in the generation of updates in the system.

The higher the GRA, the more asymmetric are the events happening at a given server (for example, one

server has lots of clients accessing and another server has few). The smaller the GRA, the more uniform

the system is (for example, all clients access the same object at different replicas at the same time).
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5.3.2.A Computing GRA

Several parameters influence the computation of the GRA. In real-life systems, these parameters may

be dynamic and, therefore, the GRA may vary accordingly. Nevertheless, in the following experiments,

these parameters are fixed which allows an easier computation of this feature. Since the GRA is a ratio

between the average update frequencies, we need to be able to compute the update frequency for a

given node. Predicting when updates happen is not an easy task but can be approximated. In this

thesis, the update frequency ufi of a given node i is given by Formula 5.1.

ufi =
rwratio ∗ Ci

Ti
(5.1)

Consider UF as the set of update frequencies for all nodes in the system. More precisely: UF =

{ufi|∀i ∈ N}. Given set UF , we can compute the GRA of the system as follows:

GRA = 1− min(UF )

max(UF )
(5.2)

The GRA formula will output values between 0 and 1. When the GRA is closer to 0 it means that

both the min(UF ) and max(UF ) are similar and, therefore, the update generation rate asymmetry is

low. In contrast, the further apart the min(UF) and max(UF) are, the closer to 1 will the GRA be and the

update generation rate is more asymmetric.

5.3.3 Object Ownership to Objects in Causal Past Ratio (Object ownership to

objects in causal Past Ratio (OPR))

Definition: Given the set of updates received in a node, U , the causal frontier contains all updates

u ∈ U for which there is no other updates that happened after u, i.e., @u′ ∈ U : u  u′. The causal

frontier defines the direct dependencies of an update, i.e., the updates that are relevant to track causality.

We define OPR as the ratio between the objects with updates in the causal frontier and the number of

objects replicated at a node.

5.3.4 Intuition

The OPR feature captures the composition of objects and replicas in the system as well as the access

patterns to said objects. The OPR feature allows, for example, to say that two different systems will

perform similarly given that the OPR is equal for the two systems. A small OPR value tells us that the

system is, most likely, partially replicated, with few objects in common between replicas that are being

accessed by clients. On the other hand, an higher OPR value means that the system is most likely fully

replicated and clients access similar objects at different replicas.
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5.3.4.A Computing OPR

The Object Ownership to Objects in Causal Past Ratio is a more complex feature to compute. An accu-

rate way to compute this metric would be to, first, let the system run for a while and gather all messages

passed between nodes. Next, for each message, compute the OPR based on the causal frontier of

the timestamp and the objects replicated at the node that received the message. This approach, while

accurate, has a few drawbacks. First, one needs to run the system for a while before being able to

compute the feature. This means that while testing different system configurations one could not take

into consideration the OPR without running said configuration first. Secondly, gathering all messages

may be a time consuming, and storage and bandwidth costly process. Another way to compute the OPR

would be to approximate it.

Instead of computing the OPR for each individual message, it is simplified by considering each

network link. First, we approximate the number of objects that would be in the causal frontier of a

message between two nodes. Given two nodes i and j, and the set of objects replicated at both nodes

(respectively Oi and Oj), the approximated number of objects in the causal frontier for link i→ j (ACFij)

is given by the formula:

ACFij = sum({min(Pi(k) ∗ Ci, 1) | ∀k ∈ Oi ∩Oj}) (5.3)

Function sum receives a set of numbers and adds up each element of the set. Function min chooses

the minimum value between two numbers.

Finally, the average OPR for the system is given by:

OPR = avg({ACFij

Kj
| ∀i∀j}) (5.4)

Similarly to the GRA, this formula will also output values between 0 and 1. An OPR value closer to 0

means that for any server i that receives a message from server j, the causal past of said message will

contain fewer updates to objects that are replicated by both i and j. If instead, the OPR value is closer

to 1, then messages will contain more updates to objects in the causal past that both replicate.

5.4 Scenarios

Given the high number of variables in the system, it is neither possible to test all combinations nor is it

relevant to consider all scenarios. To this end, only a few relevant cases were chosen. The scenarios

that were considered in the empirical study are the following:

• Variable OPR scenario: In this scenario we vary the OPR and change the asymmetry of the

system by considering multiple fixed GRA values.
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• Variable GRA scenario: In this scenario we vary the GRA and increase the asymmetry of the

system by considering different OPR values as well as the Ti and Ji distribution.

• Highly uniform scenario: In this scenario we consider an highly uniform system and vary the

underlying network latency.

5.5 Costs and Benefits

This section discusses the costs and benefits of the different choices that are considered in this analysis.

The size of the metadata used by the different techniques was presented in Table 3.1. As noted

before, metadata consumes network bandwidth and storage, because the metadata needs to be sent

with each update and needs to be stored to be later retrieved. The larger the metadata, the more

processing time and memory is needed to compare and merge clocks. In our experiments, we abstract

from storage and CPU/memory costs and only take into account the bandwidth costs.
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Figure 5.1: Bandwidth saturation: CMO 99th percentile; varying Bandwidth. N = 16; K = 1600; uniform think time
T (i) = 15; uniform R(k) = 5; uniform access pattern; GRA = 0.7 OPR = 0.2

Naturally, if the deployment is constrained in terms of storage, processing, or bandwidth, the forms of

causality tracking that consume more metadata may saturate the system. This is illustrated in Figure 5.1

that shows the point where different configurations saturate the links among the nodes. However, a

more interesting problem is to understand if the techniques that uses more metadata brings benefits in

an unconstrained system. Therefore, even if the system is not saturated, there is no reason to waste

additional resources unless some benefits can be extracted. As such, in the remaining of the experi-
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ments, it is always considered that the available bandwidth is enough to avoid link congestion when the

target causality track is used. This allows us to assess if a mechanism can bring benefits when enough

resources are available.

In this thesis we consider the consistency maintenance overhead (CMO) on remote update visibility

latency as the benefit function. CMO is measured as the time it takes for an update u to be applied at

node i after u has been received by node i. The smaller the value of CMO the better. As described,

an update u received at a given node i can only be applied after the node knows that all updates in its

causal past have been applied. As discussed, in this process, u may need to wait for a real dependency

that is missing (because the system is asynchronous, messages can be delayed in the network) or may

be delayed due to a false dependency, that results from the lack of detail of the metadata scheme. As

schemes that use larger metadata are likely to exhibit less false dependencies, we expect schemes

that use larger metadata to introduce fewer delays in applying remote updates, contributing to a smaller

latency in the visibility of remote updates.

5.6 Experimental Analysis

This experimental analysis starts by observing how varying the OPR affects the CMO metric. All these

experiments are presented in Figure 5.2. In this scenario, we start with a relatively uniform system and

increase its asymmetry by considering different values of GRA; additionally, for each GRA value, we vary

the OPR. By comparing Figures 5.2(a), 5.2(b), 5.2(c) and 5.2(d) we can mainly extract two interesting

results: First, as we consider increasing GRA values, we can notice that the performance of 1V and 1L

starts deteriorating. Second, as the OPR increases, independently of the GRA value, the CMO of both

mentioned algorithms also decreases; In fact, the point from which this phenomenon appears to happen

is when OPR > 0.35. This happens because as objects get more replicated the average OPR also

increases, which in turn results in nodes receiving more updates with objects in their causal past that

they also replicate. Regarding algorithms with more detail, the kL algorithm presents an unexpectedly

poor performance as we can see in Figure 5.2(e), in fact as the OPR increases, the CMO also increases.

We postpone the intuition on why the kL algorithm performs poorly to Section 6 and do not include kL

in the rest of our experiments due to its general poor performance. As seen in Figure 5.2(f) both 1M

and kV improve the performance as the OPR increases. Notice, that kV and 1M have similar behaviors

when we change the OPR, but kV has slightly better performance; this is due to the fact that kV can use

one FIFO connection per object, increasing the concurrency of each individual server. Keep in mind that

this is only true considering we are not reflecting the effect of bandwidth in our experiments.

We now address the scenarios where we vary the GRA (Figure 5.3). As one may have already

noticed, increasing the asymmetry of the system induces higher CMO values for 1V and 1L. We can
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increase the asymmetry in various ways: different object access patterns; object placement; the number

of replicas, etc. In Figures 5.3(a) and 5.3(b) we can observe that 1V performs especially well in

full replication (OPR= 1), and despite the GRA varying, its performance is similar to the 1M and kV

algorithm. Additionally, notice how the client join rate Ji, slightly affects the CMO of the 1L algorithm.

As we further increase the asymmetry and consider a smaller value of OPR (Figures 5.3(c) and 5.3(d))

the 1V algorithm starts performing fairly bad. In fact, for GRA values larger than 0.7 the algorithm

shows a shift in performance. An interesting phenomenon can be observed in Figures 5.3(e) and

5.3(f); the 1M and 1V algorithms seem to perform better as the GRA increases. This happens because

updates are more diverse, meaning that most likely a certain FIFO connection will be less saturated

with constant updates, resulting in a lower load for each link, and, consequently inducing lower CMO

values. Additionally notice how for higher OPR values, the 1M and kL algorithms output lower CMO

values overall.

It is clear that, if clients access the system at the same moment and have the same uniform think

time, updates will be generated at the exact same rate. Intuitively, in such a scenario, one would expect

the 1L algorithm to output CMO values closer to the 1V algorithm. However, this is not the case and

the 1L algorithm still experiences a high CMO. This is an artifact of the asymmetry introduced by the

latencies of the underlying network. In Figure 5.4 we can observe such relationship. Each server can

only apply messages as fast as the slowest node generates them; since, in this case, every server

generates new updates at the same rate, the asymmetry happens when messages take different times

to arrive at the various servers. The 1L algorithm would only perform well if every server generates

messages at the exact same rate and all messages arrive at every server at the same time, which is a

highly unlikely scenario in real systems.
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Figure 5.4: All uniform scenario: CMO 99th percentile; varying average δij ; N = 16; K = 1600; Ji = 0; uniform
Ti = 15; R(k) = N ; OPR = 0; GRA = 0; uniform P (k). In this scenario, the worst case δij is equal to
the average δij
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5.7 Summary

In this chapter, we provided a thorough evaluation of the five causal consistency algorithms. We began

by characterizing the system in which we ran the simulations and the default system settings. Next,

we provided a characterization of the workloads and defined two novel features to help in this task,

namely the Update Generation Rate Asymmetry (GRA) and the Object Ownership to Objects in Causal

Past Ratio (OPR). Before we provided some experimental results we identified the potential costs and

benefits that were tracked in our simulations. Finally, we presented the results of the empirical study

and identified how each workload affects each algorithm. Among other results, we give special atten-

tion to the asymmetry of the system’s load that appears to have the biggest impact on the algorithms’

performance.
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(a) GRA = 0
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(b) GRA = 0.5
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(c) GRA = 0.7
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(d) GRA = 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5k

10k

15k

20k
1L
1V
1M
kL
kV

Average OPR

CM
O 

(m
s)

(e) GRA = 0.7; kL included
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(f) GRA = 0.7; 1M and kV experiments only

Figure 5.2: Variable OPR scenarios: CMO 95th percentile for varying OPR values;N = 16;K = 1600; Ji = 45ms;
multiple GRAs considered; variable uniform R(k); zipfian P(K)
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(a) OPR = 1; Ji = 0ms;R(k) = N uniform P (k)
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(b) OPR = 1; Ji = 50ms;R(k) = N uniform P (k)
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(c) OPR = 0.26; Ji = 0ms;; zipfian P (k)
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(d) OPR = 0.26; Ji = 50ms; zipfian P (k)
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(e) OPR = 1; Ji = 0ms;R(k) = N ; 1M and kV in-
cluded; uniform P (k);
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(f) OPR = 0.26; Ji = 50ms; 1M and kV included; zip-
fian P(k)

Figure 5.3: Variable GRA scenarios: CMO 95th percentile for varying GRA values;variable exponential Ti; N =
16;K = 1600; uniform R(K); multiple OPRs considered
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Our experiments highlight some interesting properties of the different metadata choices. This chapter

enumerates the main takeaways from the empirical study and derives a decision chart that aims at

helping system designers to pick the right technique for their applications, namely, Section 6.1 describes

the metadata properties that originated from the empirical study, and in Section 6.2 the decision tree is

presented.

6.1 Metadata Properties

6.1.1 1L only performs well in symmetric scenarios:

Lamport clocks cannot capture concurrency and do not allow us to identify the source of updates in

the causal past of another update. This forces a node to wait for updates from every other node in the

system in order to make a single update visible. From the point of view of a single node, it is intuitive

that all updates will be delayed by the rate of the slowest node. Consider the simple example of Figure

6.1(a) where a node receives updates every 1 millisecond from every other node except for one that only

sends updates at a rate of one update every second. The node can only apply part of all the previously

received updates once every second because of a single node. It is then clear that when nodes produce

updates at different paces, the entire system is affected by the rate of the slowest node in the system.

(a)

100ms200ms

150ms

(b)

Figure 6.1: Example of asymmetry in the rate of updates and network in a system
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6.1.2 Even in symmetric scenarios, 1L is affected by the network latency:

Picking up from the previous point, if we assume that the system is symmetric i.e. nodes produce

updates at exactly the same pace. In order to deliver an update u with logical clock x, node i needs to

receive an update with timestamp≥ x from every other node. Even if these updates have been produced

exactly at the same real-time instant as update u there is most likely some asymmetry that is introduced

by the underlying network latency. Consider the example of Figure 6.1(b) In this scenario, if replica

R2 and R3 produced an update at the same time, replica R1 would only see the update generated by

replica R2, 100ms after it had received the update from replica R3. From our experiences, the additional

delay introduced by the network appears to tend towards the average network latency. This is clearly

visible in Figure 5.4. This suggests that Lamport clocks are not advisable in geo-replicated scenarios,

where inter-node latencies are large and diverse.

6.1.3 kL brings no advantages w.r.t. 1L, expect in cases of extreme symmetry

or extreme partial replication:

Although kL keeps additional detail over 1L, which is substantially more expensive, it brings little or no

advantages to most scenarios. In fact, to use kL can even be detrimental to the performance of the

system. This happens because the CMO of an update depends on both the GRA for that object and the

OPR. Objects that are seldom accessed will have an extremely high CMO. Whenever they are updated,

they will delay any updates that read that object.

To better understand this phenomenon consider the example of Figure 6.2. In this example we have

three replicas R1, R2, and R3 which together replicate objects A,B, and C. Notice that object B is fully

replicated and replicas R2 and R3 both replicate object C. Depending on the access patterns of the

clients, the kL algorithm will suffer a penalty in performance. Following the example, in replica R1, a

client generates updates to object B every one millisecond which are then propagated towards replica

R2 and R3 (both also replicate object B). Once the update arrives at replica R2, it also needs to wait for

an update from replica R3 to object B. Since object B is seldom accessed in replica R3 (in our example

it is only accessed every 10 seconds), it will take a long time before the pending update can be applied.

Notice that in replica R3 there is a client that generates updates at the same rate as the client in

replica R1, however, these updates are towards object C which means that it will not advance forward

the logical clock of object B, and therefore cannot unblock the queued updates in replica R2. Compared

to the 1L algorithm, since a single Lamport clock cannot capture which object was accessed, the updates

made in replica R3 towards object C are able to unblock the queued messages in replica R2.

This phenomenon is magnified by the number of objects in the system, the level of replication of each

object, the popularity of each object, and the number of dependencies between updates. For example,
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if a client reads other objects (i.e., create a causal dependency) that suffer from the same problem as

object B, then we would only be able to apply the update once all dependencies have been also been

seen, which may take an indefinite time. This creates a cascading effect of causal dependencies that

highly impacts the CMO of each replica.

100ms200ms

150ms

Actor

Actor

Actor

Figure 6.2: Example of a possible object placement and client’s access patterns that results in poor performance
when using the kL algorithm

There are, however, two exceptions to this. The first exception is when we have a uniform R(x) = 2,

which, in that case, a certain node doesn’t need to wait for all other nodes to perform an update on the

said object; this results in the kL algorithm to perform similarly to kV. The other corner case is when

all objects are updated at the same rate by all nodes; in such a scenario, kL would perform similarly to

1L. This result is somewhat unintuitive but also an interesting one because it means that having more

metadata does not necessarily imply better performance. Apart from having more metadata, it is also

necessary to use the metadata in the correct way for it to be useful. We can say that the kL algorithm

suffers from a curse of knowledge.

6.1.4 1M and kV have similar performance:

Both 1M and kV have similar performance in our experiments. Thus, the choice between 1M and kV

only depends on the size of the metadata. For scenarios where the number of objects is larger than the

number of nodes, the 1M is more advisable. For scenarios where the number of objects is smaller than

the number of nodes, kV is better. Note that, in many practical systems, it is possible to group objects

in a few numbers of partitions, where objects in the same partition use the same replication strategy. In
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this case, the use of kV can be a sensible choice since the size of the metadata would be considerably

reduced.

6.1.5 Despite 1M and kV having similar performances, the kV algorithm can

perform slightly better:

The kV algorithm establishes one FIFO connection per object. When the system has enough network

bandwidth, it is intuitive that propagating messages in parallel results in a higher level of concurrency.

When we compare multiple connections with having only one FIFO connection such as in 1M, there

seems to exist room for some performance gain. Despite having this apparent benefit, the differences

in the CMO are actually very low, which, in some cases, doesn’t seem to pay up the much metadata

cost. An example where this phenomenon would be amplified would be in a scenario where all updates

to different objects were concurrent (i.e., clients did not generate causal dependencies by reading other

objects).

6.1.6 1M and kV perform better in systems with higher GRA:

The 1M and kV experience a fairly lower number of false dependencies than other algorithms which

are sufficient for the algorithms to output lower CMO values. However, there are other features that,

allied to the reduced number of false dependencies, further increase their performance. These features

are the asymmetry in the update generation rate and the degree of replication of objects. First, when

updates are generated at different rates, it means that updates will also be propagated at different times.

Secondly, when objects are fully replicated, all replicas will be interested in all updates. This results in

fewer cases that generate false dependencies compared to partial replication. The first observation lets

us conclude that the higher the GRA, the less will FIFO connections be saturated which means that, on

average, updates arrive faster (the same applies to the dependencies of an update). This result allied

with fewer false dependencies leads to smaller CMO values. This phenomenon can be observed in

Figures 5.2(f), 5.3(e) and 5.3(f).

6.1.7 1M/kV significantly outperform 1V in systems where OPR is low:

In partially replicated systems, nodes do not store a replica of every object. Therefore, it is likely that in

the causal past of updates that need to be applied at node i there are updates to objects that are not

replicated by i (a false dependency). Keeping different vector clocks for each object, or a matrix clock

offers the necessary detail to prevent nodes to wait for updates they will never receive. This is clearly

visible in Fig. 5.2, where the 1V algorithm gains performance as the OPR increases.
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Figure 6.3: Decision chart for the various metadata schemes

6.2 Decision tree

Based on these insights, it is possible to construct a decision tree to help system designers select the

most suitable metadata scheme for their storage system, as a function of the deployment and workload

characteristics. The decision tree is depicted in Fig. 6.3. First, if the system is fully replicated, there is

no need to use additional metadata and the choice is between the 1L and the 1V algorithms. We do

not need to use extra metadata because as we are in a full replication scenario, all updates will reach

all servers and, therefore, a single scalar is sufficient to track all necessary causal dependencies. In

this scenario, if the system is not highly uniform (we consider a highly uniform system to be OPR =

1; GRA = 0; Ji = 0; uniform Ti; uniform P (K); sd(δij) = 0, where sd is the standard deviation), the

wise choice is to use a vector clock, otherwise, if the system designer supports having higher CMOs (e.g.

bandwidth/processing power may be scarce which justifies the use of less metadata at the expense of a

higher CMO) then it is better to use a Lamport clock. If we are instead on a partially replicated scenario,

we first check if our OPR is greater than 0.35. As we have seen, the higher the OPR, the better the 1V

algorithm will perform. If the OPR is lower than 0.35, it means that most likely we also have few replicas

for each object; In such a case, we must assess whether the system is uniform. From our previous

analysis, we can correlate GRA with the system asymmetry. For GRA > 0.7 the 1V algorithm starts

showing performance problems, therefore we should use a vector only when the GRA is lower than 0.7.

We use the kV algorithm if the scenario where the number of objects is smaller than the number of

nodes; otherwise, it is generally better to use a Matrix clock for the entire system. There is still a special

case where objects are replicated in only two servers and the number of objects is smaller than N which

in that case you should use kL.
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6.3 Summary

In this chapter, we presented some of the takeaways that can be extracted from the empirical study of

Chapter 5. More specifically, we identified some of the properties of the different metadata structures

and were able to define in which scenarios a certain data structure is more suitable. We concluded that

for most scenarios using a single vector clock is sufficient, however, its performance starts declining for

less uniform systems. From these results, we derived a decision tree that can help system designers

select the most suitable metadata scheme for their storage system.
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7.1 Conclusions

Ensuring causal consistency is at odds with the mechanisms used to keep track of causal dependencies.

On the one hand, one can opt to use more detail to better track causality. On the other hand, this results

in consuming a substantially larger amount of network bandwidth and storage space. In this paper,

we addressed the problem of whether the benefits of using more complex structures are worth their

cost in the context of partially replicated systems. We have shown that for some workloads the use of

more expensive clocks does bring significant benefits and that for other workloads no visible benefits

can be observed. To help system designers to pick the right mechanisms for their applications, the

paper introduces two novel features, GRA and OPR, that capture relevant properties that affect the

performance of different causality tracking mechanisms. Based on these features and an extensive

experimental evaluation, we derived a decision chart that characterizes different scenarios where each

type of clock is more beneficial.

7.2 Future Work

The analysis focused on three classic causal dependency tracking data structures. There is possibly

some work that can be done to include other existing data structures in this study. An example of a

possible data structure is causal histories which are extremely accurate in capturing causal dependen-

cies at the cost of possibly having higher metadata sizes. Additionally, the work done in this thesis

does not consider hybrid logical clocks which seem to be a very present approach in the industry. The

assessment of their trade-offs compared to regular logical clocks is, however, not trivial.

Another possible line of work is based on using the presented results and methodology as a baseline

for a possible system. One could idealize a system where the type of metadata structure used is defined

at runtime and adapts to the current system workload. Additionally, different servers could communicate

using different, but compatible, data structures as a way to minimize the costs of the system.

54



Bibliography

[1] M. Chandy and L. Lamport, “Distributed snapshots: Determining global states of distributed sys-

tems,” ACM TOCS, vol. 3, no. 1, p. 63–75, Feb. 1985.

[2] G. Ricart and A. Agrawala, “An optimal algorithm for mutual exclusion in computer networks,” Com-

mun. ACM, vol. 24, no. 1, p. 9–17, Jan. 1981.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, and P. Hutto, “Causal memory: definitions, implementa-

tion, and programming,” Distributed Computing, vol. 9, no. 1, pp. 37–49, Mar 1995.

[4] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communications of

the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[5] D. Parker, G. Popek, and et. al., “Detection of mutual inconsistency in distributed systems,” IEEE

Transactions on Software Engineering, vol. 3, pp. 240–247, 1983.

[6] F. Mattern, “Virtual time and global states of distributed systems,” in Proc. Workshop on Parallel

and Distributed Algorithms, 1989, pp. 215–226.

[7] S. Sarin and N. Lynch, “Discarding obsolete information in a replicated database system,” IEEE

Transactions on Software Engineering, vol. 1, pp. 39–47, 1987.

[8] H. Guerreiro, L. Rodrigues, N. Preguiça, and N. Quental, “Causality tracking trade-offs for dis-

tributed storage,” IEEE International Symposium on Network Computing and Applications, 2020.

[9] R. Nelson, D. McCarthy, S. Malys, J. Levine, B. Guinot, H. Fliegel, R. Beard, and T. Bartholomew,

“The leap second: its history and possible future,” Metrologia, vol. 38, no. 6, p. 509, 2001.

[10] A. Acharya and B. Badrinath, “Recording distributed snopshots based on causal order of message

delivery,” Information Processing Letters, vol. 44, no. 6, pp. 317–321, 1992.

[11] M. Bravo, “Metadata management in causally consistent systems,” Ph.D. dissertation, Université
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