
Partitionable Light-Weight Groups�

Lu��s Rodrigues

Faculdade Ciências

Universidade de Lisboa

Campo Grande, Lisboa, Portugal

ler@di.fc.ul.pt

Katherine Guo

Lucent Bell Laboratories

101 Crawfords Corner Road Rm 4G-506

Holmdel, NJ 07733, USA

kguo@bell-labs.com

January 17, 2000

Abstract

Group communication, providing virtual synchrony semantics, is a powerful paradigm

for building distributed applications. For applications that require a large number of

groups, signi�cant performance gains can be attained if these groups share the resources

required to provide virtual synchrony. A service that maps multiple user groups onto

a small number of instances of a virtually synchronous implementation is called a

Light-Weight Group Service.

This paper describes the design of a light-weight group service able to operate in

partitionable networks. Partitions pose challenges to the design of this service, in
particular because inconsistent mapping decisions can be made when the system is

partitioned. The paper focuses on the design of reconciliation mechanisms needed

when a partition is healed.

1 Introduction

For developing distributed applications, virtually synchronous group communication [4, 15]
is a powerful paradigm. It allows processes to be organized in groups within which messages
are exchanged to achieve a common goal. Virtual synchrony ensures that all processes in the
group receive consistent information about the group membership in the form of views. The

�This work was partially supported by Praxis/ C/ EEI/ 12202/ 1998, TOPCOM and by Funda�c~ao Oriente.
Sections of this report will be published in Proceedings of the Proceedings of the 20th IEEE International
Conference on Distributed Computing Systems, Taipe, Taiwan, April, 2000. These sections have IEEE
Copyright. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from
the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

membership of a group may change over time because new processes may join the group and
old processes may fail or voluntarily leave the group. Virtual synchrony also orders messages
with view changes, and guarantees that all processes that install two consecutive views
deliver the same set of messages between these views. The usefulness of virtually synchronous
semantics have been demonstrated in several areas, such as Computer Supported Cooperative
Work [13], databases [10] and fault-tolerant distributed object systems [5].

In order to provide virtual synchrony, failure detectors and protocols which provide
agreement and ordering are needed. Naturally, these components consume some amount
of system resources such as bandwidth and processing power, but the overall performance
impact is usually small. Opportunities for optimization occur when several groups have a
large percentage of common members, because these groups can share common services.
Such opportunities arise in several real-world applications. The Swiss Exchange Trading
System [11] uses a group based system for data access and dissemination. A di�erent group
is associated with a di�erent data \subject" and the resulting system uses as many as 50
groups that may overlap. Another example is CCTL [13], a group communication based
collaboration system that manages several groups on behalf of the same application.

One way to achieve this bene�t is to map several user level groups onto a single virtually
synchronous group. Since the groups share common resources, they are subject to lower
overhead than stand-alone groups and are consequently called Light-Weight Groups (Lwgs).
In contrast, the underlying virtually synchronous group is called a Heavy-Weight Group
(Hwg). A Light-Weight Group Service maps Lwgs onto Hwgs .

In previous work, we have designed and implemented a transparent and dynamic light-
weight group service in non-partitionable networks [14, 8]. In this paper, we propose exten-
sions to address the issue of network partitions. Network partition poses several challenges
to the design of a light-weight group service. In particular, it is impossible to ensure the
consistency of mapping decisions made in distinct partitions. Thus, partitionable operation
requires certain reconciliation mechanisms to be executed when a partition heals. In addi-
tion, our original design assumes the availability of a naming service where mappings are
stored, therefore, the naming service must also be augmented to tolerate partitions.

The paper is organized as follows. Related work is surveyed in Section 2. For self-
containment, the design of the transparent and dynamic light-weight group service in non-
partitionable environments is summarized in Section 3. The extensions required to tolerate
partitions are introduced in Section 4, then the auxiliary support services are described in
Section 5 and the operation of the partitionable light-weight group service is presented in
Section 6. Section 7 concludes the paper.

2 Related Work

The light-weight group service idea can be traced to several sources. In the Delta-4 group
communication subsystem, several session level groups could be mapped statically onto a
single virtually synchronous MAC level group [12]. The Isis system extended this principle,
o�ering a light-weight group service that supports dynamic associations between user level

groups and core Isis groups [7]. However, the Isis Lwgs require the speci�cation of the
target membership of a user group to make appropriate mapping decisions. Neither of these
approaches is transparent, because they force the application designer to be aware of details
that are related with the way the service is provided.

Some light-weight group approaches have all groups in the system share some resources,
such as a failure detector or an underlying ordered channel [1]. Another approach, followed
in CCTL [13] and Maestro [3], consists of building a \coordination" layer to manage a
collection of di�erent protocol stacks. Because these approaches implement a static form
of a light-weight group service, they do not address the problem of minimizing interference
among unrelated groups.

In previous work we have addressed the issue of building a transparent light-weight
group service in non-partitionable networks [14, 8]. The work addressed the following prob-
lems raised by the transparency requirements: i) the need to perform mappings between
Lwgs and Hwgs in an automatic and dynamic manner; ii) the design of mechanisms to al-
low these mappings to be changed in run time. Another contribution of our previous work
was to study the interference e�ect in light-weight group systems. Interference occurs when
Lwgswith di�erent membership, or even non-overlapping Lwgs , are mapped on the same
Hwg and events in one group a�ect the performance of another group. Sources of inter-
ference are the use of a common multicast transport channel, executions of failure recovery
protocols, and the need to �lter information at the Lwg layer. Thus, the task of mapping
Lwgs onto Hwgs addresses two con
icting goals: increasing resource sharing and minimizing
interference.

To our knowledge, the issue of supporting a light-weight group service in partitionable
networks has not been addressed previously in the literature. This work discusses di�culties
introduced by network partitions and proposes new protocols to overcome them.

3 Light-Weight Groups in Non-Partitionable Networks

Informally, virtual synchrony provides group membership information to each process in the
form of views. The model guarantees that all processes that install two consecutive views
deliver the same set of messages between the views. The main goal of the transparent and dy-
namic Lwg service is to support resource sharing by mapping multiple Lwgs that have over-
lapping membership onto a single Hwg , while fully preserving the original Hwg interface
when these Lwgs are accessed. For self-containment, this section brie
y describes the com-
ponents of a transparent and dynamic Lwg service in non-partitionable networks [14, 8].

The task of Lwg service is performed by managing a pool of Hwgs and establishing
associations between Lwgs and these Hwgs . Each time a new Lwg is created, the service
determines whether the Lwg can be associated with one of the existing Hwgs (if any), if
not, a new Hwg is created and added to the pool. Whatever decision is made, the new
Lwgwill be associated with some Hwg and may subsequently share that Hwgwith other
Lwgs . Since the design imposes no restriction on the way the membership of Lwgs changes
in time, mappings that were appropriate at one point may become ine�cient as the system

Requests(Downcalls)

Name Parameters

Join GroupId gid, Pid pid

Leave GroupId gid, Pid pid

Send GroupId gid, BitArray data

StopOk GroupId gid

Upcalls

Name Parameters

View GroupId gid, PidList view

Data GroupId gid, Pid src, BitArray data

Stop GroupId gid

Table 1: VS interface primitives

evolves. To compensate, the Lwg service dynamically rede�nes mappings as membership
changes. When this happens, we say that a Lwg is switched from one Hwg to another.

As a result, the Lwg service has three main tasks: (i) preserve the virtually synchronous
interface of the Hwgs to Lwgusers; (ii) de�ne the mapping and switching policies; and (iii)
invoke a switching protocol, which changes the association between a Lwg and a Hwg at run
time.

3.1 Protocols

In order to preserve the original virtually synchronous interface, the Lwg layer has to execute
protocols that support the standard group operations. A typical interface of a virtually
synchronous layer contains the following primitives, as listed in Table 1: Join, allows a
member to join a group; Leave, allows a member to leave a group; Send, sends a virtually
synchronous multicast; View, installs a new view; Data, indicates the delivery of a multicast;
Stop, indicates that the tra�c must be stopped temporarily (usually, when a view change
in the virtually synchronous layer is in process); and StopOk, con�rms the Stop indication.
Stop and StopOk may be hidden from the user at upper layers.

The Lwgprotocols use the services of the underlying Hwg group to provide service to
Lwgusers with minimal overhead. Some of these protocols, such as the message passing
protocol, are straightforward: the Lwg Send service simply encapsulates the Lwgmessage
in a new hDATA, lwg id, datai message which is multicast on the Hwg ; on the receiving
side, when such message arrives, the lwg id part is examined and the data part forwarded to
the speci�ed Lwg . Other protocols, namely joining (performed in response to Join), leav-
ing (performed in response to Leave), and switching (triggered internally by recon�guration
policies) are more complex since they must preserve virtual synchrony with minimal inter-
ference with the operation of other Lwgs . The core of these protocols is a
ush procedure,
that makes sure that all in-transit messages are delivered before a new view is installed. The
details of the protocols can be found in [14].

Name Parameters Returns

ns.set LwgId lwg, HwgId hwg none

ns.read LwgId lwg HwgId hwg

ns.testset LwgId lwg, HwgId hwg HwgId hwg

Table 2: Naming service interface primitives

An important aspect of the implementation of a light-weight group service is the co-
ordination among processes to establish the same mappings for the Lwgs , that is, in the
same partition, all members of a given Lwgmust share exactly the same Hwg . The imple-
mentation of the light-weight group service requires mappings between Lwgs and Hwgs to
be stored in a way that can be accessed by every process. In this paper we assume that
mappings are stored in an external Naming Service. The naming service exports three prim-
itives, as illustrated in Table 2: ns.set, which establishes a mapping between a Lwg and
a Hwg ; ns.read, which returns the current mapping for a given Lwg ; and ns.testset,
which returns the current mapping for a given Lwg or, if no such mapping exits, establishes
a new mapping to the Hwg speci�ed.

When a new mapping is established, the naming service is informed of the new mapping
so that further joins are directed to the appropriate Hwg . A problem of using an external
naming service to keep the mapping information is that it is di�cult to guarantee that pro-
cesses always read up-to-date information. To avoid expensive synchronization procedures,
we allow processes to read outdated information. To compensate for this, all members of
a Hwg keep information about the new mappings of previously mapped Lwgs . This infor-
mation is used like a forward-pointer, to redirect a process that is using outdated mapping
information.

Note that, for availability, the naming service may be replicated. A possible implemen-
tation would replicate the naming service at every process, making updates expensive but
read operations purely local. The use of the naming service in a partitionable network is
discussed in Section 5.2.

3.2 The policies of dynamic light-weight group service

A dynamic light-weight group service is interesting in systems where a process is not required
to know its future group membership in advance, as the membership often depends on run-
time parameters like number and location of users, load, occurrence of faults and so on.
Systems such as Isis [4], Horus [16], and Ensemble [3, 9] all share this feature. Thus, the
Lwg service must be able to operate without this a priori information, using heuristics to
�nd the most appropriate mappings between Lwgs and Hwgs . An optimal mapping for
a given set of Lwgs is one that balances the twin goals of increasing resource sharing and
minimizing interference. We brie
y summarize the mapping policies used in [8].

When a Lwg group is created, a mapping needs to be established. In our work we use an

optimistic approach that assumes the membership of the new Lwgwill be similar to some
other already existing Lwg . The new Lwg is mapped onto some existing Hwg and if the
choice is later proven to be inappropriate, the Lwgwill be switched onto a more appropriate
Hwg . Due to the lack of information about the future, some of the mappings done at group
creation time will later reveal to be disadvantageous. Corrective measures are based on the
ability to change the mappings between Lwgs and Hwgs at run-time.

In general terms, the adaptive measures follow a number of simple guidelines:

� Sharing rule. Since the ultimate goal is to promote resource sharing, Lwgswith similar
membership should be mapped onto the sameHwg . Keeping the number of Hwgs low
produces other advantages. When the number of Hwgs is low, the search space is small
and the heuristics can be applied in more e�cient ways.

� Interference rule. To minimize interference, a Lwg should be mapped onto aHwgwith
a similar membership.

� Shrink rule. Due to system evolution, it is possible that a process will �nd itself a
member of a Hwgwithout having any Lwgmapped on it. If this situation persists
for some time, the process should leave the Hwg . Ultimately, this strategy causes a
Hwgwith no Lwgmapped onto it to be deleted.

These guidelines are applied using exclusively local heuristics to avoid using a central
server that would be both a bottleneck and a single point of failure. The share, interference,
and shrink rules are executed at every process and are based on comparing the membership of
all Lwgs and Hwgs that are known to that process. The details of these rules are presented
in Figure 1.

Poorly chosen local heuristics lead to instability, preventing the system from converging
to a stable mapping. To avoid this problem, we have implemented a number of preventive
measures, as described below. For each Lwg , only one process is responsible for changing
its mapping. This is the coordinator of the group (usually its oldest member). This strat-
egy prevents di�erent processes from making incompatible mapping decisions. For a given
con�guration, the mapping decision is deterministic. For instance, if several Hwgsmatch a
mapping criterion, the total order of group identi�ers is used to make the selection. Following
this approach, di�erent invocations of the heuristics on the same con�guration will always
achieve the same results. We have selected the parameters so that a signi�cant change in the
membership must occur before a new mapping will be de�ned. Speci�cally, in the prototype
we have set km = 4, kc = 4 in Figure 1. In this setting, for a Lwg to be mapped on a
Hwg , the number of their common members must be greater than 75% of the size of the
Hwg , and the mapping remains stable until this number is reduced to 25%. To avoid a
cascade of switch events when groups are being created or deleted, the heuristics are applied
periodically with a relative large period (in the prototype we ran them once every minute).
This also makes the overhead of executing the heuristics and running the switch protocol
negligible.

De�nitions: (km and kc are con�guration parameters)
minority: given groups g1 � g2, g1 is a minority of g2 i� sizeof(g1) � sizeof(g2)=km.
closeness: given g1 � g2, g1 and g2 are close enough to each other i� sizeof(g2) - sizeof(g1) � sizeof(g2)=kc.

Share rule (for some con�guration parameter km)
Considering a Lwgs pair (lwg1; lwg2) with (hwg1; hwg2) as their underlying Hwg pair,
where sizeof(hwg1) = n1 + k,
sizeof(hwg2) = n2 + k and sizeof(hwg1 \ hwg2) = k.
if : ((hwg1 � hwg2 ^ hwg1 is a minority of hwg2) _ (hwg2 � hwg1 ^ hwg2 is a minority of hwg1))

^ (k >
p
2n1n2) then

collapse hwg1 and hwg2 into a single hwg;
fi

Interference rule

Considering a Lwg lwg1 with hwg1 as its underlying Hwg .
if (lwg1 is a minority of hwg1) then

if (9hwgx with membership close enough to lwg1) then
switch lwg1 to hwgx;

else

create a hwgnew with membership identical to lwg1;
switch lwg1 to hwgnew;

fi

fi

Shrink rule

for (each Hwgmember h) do
if (:(9 a Lwgmapped onto h))then h leaves its Hwg ; fi

od

Figure 1: The local algorithms

3.3 Performance of light-weight groups

We have conducted a large number of experiments to evaluate the performance of the trans-
parent and dynamic light-weight group service. The experiments were done using an im-
plementation of the Lwg service in Horus [16], on a system of SUN Sparc10 workstations
running SunOS 4.1.3, connected by a loaded 10M bps Ethernet (the low level protocol we
used is UDP/IP with IP multicast extension). For simplicity, we illustrate the result from
one of several con�gurations reported in [8].

The con�guration in Figure 2 presents the performance of two sets of n user groups
where each group within a set has identical membership of 4 processes, and the two sets
have disjoint membership. When no Lwg service is used, each user group is mapped onto
one virtually synchronous group. When a static Lwg service is used, each user group is
mapped onto a Lwg of size 4 and each Lwg is mapped onto the Hwg consists of all the

lwg a1

lwg an

...
lwg b1

...

lwg bn

HWG2HWG1

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

number of groups n in each of set A and B

av
e

on
e−

w
ay

 la
te

nc
y

(m
se

c)

− . − Static LWG Service

− − − No LWG Service

− Dynamic LWG Service

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

number of groups n in each of set A and B

av
e

cr
as

h
re

co
ve

ry
 ti

m
e

(m
se

c)

− − − No LWG Service

− . − Static LWG Service

− Dynamic LWG Service

Figure 2: Performance of light-weight groups

8 processes. When a dynamic Lwg service is used, Lwgs a1 to an are mapped onto the
Hwgwith identical membership { HWG1, and Lwgs b1 through bn are mapped onto HWG2.
We have measured the latency and throughput of data transfer and the time to recover
from the crash of a member. The results illustrate the e�ects of interference and resource
sharing. In data transfer, a static Lwg service is much worse than dynamic Lwg service
or even no Lwg service at all due to problems of interference among unrelated groups. On
the other hand, the advantage of having dynamic Lwgs over having no Lwg service are
clear in the recovery time �gure, which shows the bene�ts of resource sharing. Overall the
dynamic Lwg service provides the best performance because it balances resource sharing and
interference reduction.

4 Partitionable Light-Weight Groups

Previous work on light-weight groups did not address the issue of network partitions [12, 7,
14, 8]. However, tolerance to network partitions is of practical importance when networks of
large geographical scale are used. This type of networks may exhibit partitioned behavior due
to crashes of routers or links. They can also exhibit what has been called virtual partitions,
triggered by excessively loaded portions of the network, whose delays cause timeouts to
expire and the connections to be marked as crashed. In asynchronous systems a virtual
partition is indistinguishable from a network partition [2]. In practice, virtual partitions
tend to disappear and \heal" faster than partitions caused by crashes and may result in
higher system instability. To the best of our knowledge, this work is the �rst design of a
light-weight group service that addresses network partitions.

Partitions raise several challenges to the design of a light-weight group service. In parti-
tionable networks, group members must perform \peer-discovery" for partition healing. In
other words, the group service must have the mechanisms to allow members to detect that
they can communicate again (or for the �rst time) with other members that have been active
in concurrent partitions. In our case, this task is complicated due to the fact that nodes
in di�erent partitions are unable to coordinate mapping decisions. This may lead to the
establishment of di�erent mappings for the same Lwg in concurrent partitions. When these
partitions merge, the light-weight group service is required to merge the concurrent views
of the Lwgs but, in order to do so, it also has to conciliate the mapping decisions. The
following strategy is used to achieve these goals.

1. We rely on a partitionable Hwg to o�er us failure detection, \peer-discovery" at the
Hwg level, merging of Hwg views, and virtually synchronous communication.

This follows from the approach used in non-partitionable networks, that allows us
to avoid \re-implementing" at the Lwg layer complex protocols that are supported
by the Hwg layer. Therefore, the details of how partition healing is performed at the
Hwgbecome transparent to the Lwg layer. This makes the Lwg layer highly portable,
since some of these mechanisms can be tailored to speci�c network classes without
forcing any change in the light-weight group service.

2. We rely on an external naming service to provide up-to-date mappings between Lwg views
and Hwg views. The naming service must be implemented using distributed cooper-
ative servers in order to be able to provide service during network partitions. Special
care is needed to re-conciliate the name servers' databases when a partition heals.

3. With the two previous mechanisms, once a Hwgpartition heals, the Lwg can merge
in the following steps:

Step 1: Using the re-conciliated state of the name server, members of concurrent Lwg views
mapped on di�erent Hwgbecome aware of one another.

Step 2: Lwg views in Step 1 (if any) need to be re-mapped, in order to have all concurrent
views of the same Lwgmapped onto the same Hwg . (Notice they can be mapped
onto di�erent views of the same Hwg .)

Step 3: As a result of partition healing at the Hwg , concurrent views of a Lwgwith a consis-
tent mapping will share the same Hwg view; they become aware of one another using
a peer-discovery mechanism local to the Hwg .

Step 4: Concurrent views of a Lwgmapped on the same Hwg view are merged into a single
Lwg view.

Section 5 introduces the two support mechanisms, namely the partitionable Hwg service
and the partitionable naming service. Section 6 describes each of the four steps in detail.

5 Support Services

5.1 Underlying partitionable group service

As previously discussed, the Lwg layer is implemented on top of aHwg layer. We assume the
Hwg layer is able to operate in a partitionable environment. To avoid a long detour, we do
not discuss how the de�nition of virtual synchrony can be extended to address partitions or
describe protocols required to implement it. Interested readers can consult the rich bibliogra-
phy on the subject (for instance, [1, 6, 2]). Instead, we assume that the Hwg layer continues
to deliver views in the presence of partitions, allowing groups to split into concurrent views
when a partition occurs and these views to merge when the partition is healed.

Since in a partitionable system there could be multiple concurrent views of the same
group, we identify each view using a view identi�er, de�ned as a pair (coordinator, view-
sequence-number), where view-sequence-number is a local counter incremented by the coordi-
nator of the view whenever a new view is installed. Each protocol message in the Lwg service
design is tagged with a view identi�er when it is sent and is only delivered to members of
that view. This allows to decouple the merge of the Lwgs from the merge of the underlying
Hwg .

5.2 The naming service

The light-weight group layer needs to store the mappings between Lwgs and Hwgs . As
mentioned in Section 3, we have opted to rely on an external naming service to store these
mappings. If the naming service is implemented by a single server, then it becomes a
bottleneck and a single point of failure, therefore limiting the scalability of the external
naming service approach. However, the naming service simply abstracts many di�erent
ways to maintain a distributed database of Lwg to Hwgmappings, and should not a�ect
the scalability of the Lwgdesign.

In fact, in partitionable networks the naming service has to be implemented using a set
of cooperative servers. The servers must be physically placed in strategic locations, to ensure
that there is a high probability of having at least one server available at each partition (for
instance, by placing a server in each autonomous system or on each local area network).
Since coordination is not possible in the presence of partitions, strong replica consistency
cannot be enforced on the name servers. In order to provide high degree of availability, our
design of the naming service allows inconsistent mappings to coexist and provides support
for reconciliation of mappings.

When name servers become reachable by other name servers after a network partition has
been healed, a database reconciliation procedure needs to be performed. Mappings that are
known in one view and not known in the other view are simply propagated. However, since
con
icting mappings are unavoidable, the mapping information needs to be rich enough to
avoid ambiguities. For partitionable operation, we augment the name service to include ad-
ditional information about mappings. Instead of merely storing mappings between Lwgs and
Hwgs , it stores mappings between speci�c Lwg views and Hwg views, that is, the naming
service recognizes that concurrent group views can exist both at the Lwg level and at the
Hwg level.

The example in Figure 3 illustrates this behavior. In partition p, the Lwg view lwga
is mapped onto Hwg view hwg1 and Lwg view lwgb is mapped onto Hwg view hwg2. In
partition p0, lwg0

a
is mapped onto hwg0

2
and lwg0

b
is mapped onto hwg0

1
. When the partition

heals, these concurrent views will coexist for some time, thus the name server will store both
mappings as presented in Table 3.

lwg a lwg b lwg b’ lwg a’

partition p partition p’

hwg 1 hwg 2 hwg 1’ hwg 2’

Figure 3: Inconsistent mappings

In response to the reconciliation, the naming service can detect inconsistent mappings.
However, it is not the role of the naming service to conciliate these mappings although it
can provide some help, by notifying the relevant Lwgs , as it will be explained in the next
section.

When two concurrent views are merged (eitherHwg views or Lwg views), a new view-to-
view mapping is de�ned, thus the naming service needs to be noti�ed to update the database.
Note that, in absence of further partitions, the system should converge to a scenario where
a single merged view of a Lwg is mapped onto exactly one Hwg . A typical evolution from
Figure 3 would be: the views of the Hwgswould merge; the views of the Lwgswould be
migrated such that concurrent views are mapped onto the same Hwg view; �nally concur-

partition p partition p0

Lwg a: lwga ! hwg1 Lwg a: lwg
0

a
! hwg0

2

Lwg b: lwgb ! hwg2 Lwg b: lwg
0

b
! hwg0

1

merged naming service
Lwg a: lwga ! hwg1, lwg

0

a
! hwg0

2

Lwg b: lwgb ! hwg2, lwg
0

b
! hwg0

1

Table 3: Merging the naming service database

rent views of the Lwgswould be merged. This evolution is illustrated in Figure 4 and the
associated content of the naming service is presented in Table 4.

lwg b lwg a’
lwg a lwg b’

lwg b lwg a’
lwg a lwg b’

lwg b
lwg a lwg a’

lwg b’

lwg a’’

lwg b’’

2

1

3

4

hwg 2 hwg 2’

hwg 1 hwg 1’

hwg 1’’
hwg 2’’

hwg1’’
hwg 2’’

hwg 2’’
hwg 1’’

Figure 4: Partition merge. A typical evolution from Figure 3.

Note that, in order to discard obsolete information from the database, the naming service
must be aware of the partial order of views. For instance, in Figure 4, when a mapping for
lwg00

a
is stored in the database, the naming service needs to be informed that view lwg00

a
is

the result of merging lwga and lwg0

a
. Therefore, the mappings for these previous views are

deleted from the database.

6 Operation of the Partitionable LWGs

Whenever a partition heals at the Hwg level, Lwgmembers go through the following four
steps to merge the partition at the Lwg level: i) discover other concurrent Lwg views with
di�erent mappings (if any) through global \peer discovery"; ii) reconcile di�erent mapping

1) merged naming service
Lwg a: lwga ! hwg1, lwg

0

a
! hwg0

2

Lwg b: lwgb ! hwg2, lwg
0

b
! hwg0

1

2) merged Hwgs
Lwg a: lwga ! hwg00

1
, lwg0

a
! hwg00

2

Lwg b: lwgb ! hwg00

2
, lwg0

b
! hwg00

1

3) switched Lwgs
Lwg a: lwga ! hwg00

1
, lwg0

a
! hwg00

1

Lwg b: lwgb ! hwg00

2
, lwg0

b
! hwg00

2

4) merged Lwgs
Lwg a: lwg

00

a
! hwg00

1

Lwg b: lwg
00

b
! hwg00

2

Table 4: Evolution of the naming service database

decisions in concurrent Lwg views to map views of the same Lwg onto the same Hwg ; iii)
discover other concurrent Lwg views mapped on the same Hwg view; iv) merge concurrent
Lwg views of the same Lwg into one.

6.1 Global peer discovery

Global peer discovery refers to identifying mappings of the same Lwg to di�erent Hwgs in
di�erent partitions. Consider again the example in Figure 3. How can a member of lwga
mapped on hwg1 be aware of the existence of a concurrent view lwg0

a
mapped on another

Hwg ? One possible way is to require group members to periodically inquire one of the
reachable name servers. Unfortunately, this could load the servers with unnecessary re-
quests. Instead, we use the callback approach which requires the name servers to notify
the a�ected groups whenever inconsistent mappings are detected during the name server
reconciliation procedure. Again, in our example, after the reconciliation the name server
will detect inconsistent mappings and inform both concurrent views with a MULTIPLE-
MAPPINGS message. The message contains all the mappings stored for the Lwg in the
name server.

6.2 Reconciliating inconsistent mappings

When the MULTIPLE-MAPPINGS message is received at a member, the switching proce-
dure is triggered. We recall that only the coordinator of each view is responsible for initiating
the switching of the view. To ensure that coordinators of concurrent views make the same
decision, we enforce inconsistent mappings to be conciliated by switching to the Hwgwith
highest group identi�er. In our example, if gid(hwg1) < gid(hwg2), the mapping should be
switched to Hwg 2; thus the view lwga needs to be switched and the view lwg0

a
should keep

the same mapping. As a result of the switch, two concurrent views of Lwg a, lwga and lwg0

a

are mapped onto the same Hwg view { hwg00

2
.

6.3 Local peer discovery

Local peer discovery refers to identifying di�erent views of a Lwgmapped onto the same
Hwg . When two concurrent Lwg views are mapped onto the same Hwg group view, peer
discovery becomes straightforward. Recall that messages sent to a given Lwg view are mul-
ticast on the underlying Hwg and received by all Hwgmembers. When a Lwgmessage
arrives at the Lwg layer at a given node, the layer discards the message if there is no local
member of the Lwg . Otherwise it checks which view the local member is in. If the member
is in the same view in which the message is sent, the Lwg layer delivers the message to the
Lwgmember as usual. If not, the member must be in some other concurrent view, and the
Lwg layer detects the presence of multiple concurrent Lwg views and triggers the procedure
to merge Lwg views.

6.4 Merging light-weight group views

The �nal part of the reconciliation procedure is for concurrent Lwg views, mapped on the
same Hwg view to be merged.

The concurrent views of Lwgsmapped onto the same Hwg can be merged by forcing a

ush of the Hwg and using this synchronization point to merge all Lwg views at once. The
protocol is initiated by making the node that triggers the procedure multicast a MERGE-
VIEWS message to the Hwg . Upon receipt of MERGE-VIEWS, each member multicasts
a MAPPED-VIEWS message to the Hwg , containing a list of current mappings. After
receiving the �rst MERGE-VIEWS message, the coordinator of the Hwg
ushes the Hwg 1.
The
ush of the Hwgwill, in turn, force the
ush of all concurrent Lwg views and ensure
that, by the end of the
ush procedure, all members have received the same set of MAPPED-
VIEWS messages. When the coordinator of the Hwg installs a new view, concurrent views
of the Lwg are merged into a single view in a decentralized and deterministic way (since all
processes have the same information).

The pseudo-code for the merge-views algorithm is presented in Figure 5. Note that
the algorithm merges all concurrent views of all Lwgsmapped in the same Hwg in a single

ush operation. Resource sharing is promoted because a
ush for each light-weight group is
avoided. Interference is avoided because other Lwgs , mapped onto unrelated Hwgs are not
a�ected. Note also that when the Lwg views are merged, the naming service is updated to
produce the behavior illustrated by Table 4.

1Notice every node can send a MERGE-VIEWS message, the coordinator of the Hwg starts the
ush
after receiving the �rst MERGE-VIEWS message and ignores further MERGE-VIEWS messages until a new
view is installed.

100 variables:

101 Vp: set of light-weight views process p belongs to.
102 AVp(hwg): all views mapped on hwg and known by p

103 when hDATA, lwg, view, datai received at p do

104 if view 2 Vp then

105 deliver data to local member;
106 elseif 9v 2 Vp : v is concurrent with view then

107 multicast hMERGE-VIEWSi on the Hwg .

108 when hMERGE-VIEWSi received at p do

109 multicast hALL-VIEWS, Vpi on the Hwg .
110 if p is the coordinator of the Hwg then
111 force the
ush of the hwg;

112 when hALL-VIEWS, Vqi received at p do

113 let AVp(hwg) := AVp(hwg) [Vq;

114 when the hwg is
ushed do

115 merge all concurrent views in AVp(hwg);
116 update Vp;
117 update the naming service;
118 deliver views and re-start groups.

Figure 5: Merge views protocol

7 Conclusions

When several groups have the same or similar membership, resource sharing can improve
performance. Light-weight groups allow resource sharing by mapping several user level
groups onto a single virtually synchronous group. The implementation of Lwgs in partition-
able environments is of practical importance but raises several challenges, namely because
inconsistent mapping decision can be made in concurrent partitions.

In this paper we have discussed the reconciliation procedures that need to be performed
when partitions are healed. A weakly consistent naming service that employees a specialized
reconciliation algorithm is used to maintain mapping decisions. The naming service is loosely
synchronized with the mechanisms used to merge concurrent views of light-weight groups.
The paper also shows the importance of preserving information about the causal order of
views: in our case this information is used to garbage collect obsolete information in the
naming service.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system
for high availability. In Proc. 22nd Annual International Symposium on Fault-Tolerant

Computing, pages 76{84, July 1992.

[2] �O. Babao~glu, A. Davoli, A. Montresor, and R. Segala. System support fpr partition-
aware network applications. In Proceedings of the 18th International Conference on
Distributed Computing Systems, pages 184{191, Amsterdam, The Netherlands, May
1998. IEEE.

[3] K. Birman, R. Friedman, and M. Hayden. The Maestro group manager: A structuring
tool for applications with multiple quality of service requirements. Technical Report
TR97-1619, Dept. of Computer Science, Cornell University, Feb. 1997.

[4] K. Birman and T. Joseph. Exploiting replication in distributed systems. In S. Mullender,
editor, Distributed Systems, pages 319{366. ACM Press Frontier Series, 1989.

[5] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, H. Sander, D. Bakken, M. Berman,
D. Karr, and R. Schantz. AQuA: An adaptive architecture that provides dependable
distributed objects. In Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS'98), West Lafayette, Indiana, USA, Oct. 1998.

[6] D. Dolev, D. Malki, and R. Strong. An asynchronous membership protocol that tolerates
partitions. Technical report, The Hebrew University of Jerusalem, 1993.

[7] B. Glade, K. Birman, R. Cooper, and R. van Renesse. Light-weight process groups in
the ISIS system. Distributed System Engineering, (1):29{36, 1993.

[8] K. Guo and L. Rodrigues. Dynamic light-weight groups. In Proceedings of the 17th
International Conference on Distributed Computing Systems, pages 33{42, Balitmore,
Maryland, USA, May 1997. IEEE.

[9] M. Hayden. The Ensemble System. PhD thesis, Cornell University, Ithaca, NY, Jan.
1998. Also available as Dept. of Computer Science Tech. Rep. TR98-1662.

[10] B. Kemme and G. Alonso. A suite of database replication protocols based on group com-
munication primitives. In Proceedings of 18th International Conference on Distributed
Computing Systems, Amsterdam, The Netherlands, May 1998.

[11] R. Piantoni and C. Stancescu. Implementing the swiss exchange trading system. In
Digest of Papers, The 27th International Symposium on Fault-Tolerant Computing Sys-
tems, pages 309{313, Seattle, WA, July 1997.

[12] D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Com-
puting. ESPRIT Research Reports. Springer Verlag, Nov. 1991.

[13] I. Rhee, S. Cheung, P. Hutto, and V. Sunderam. Group communication support for
distributed collaboration systems. In Proc. 17th International Conference on Distributed
Computing Systems, pages 43{50, Balitmore, MD, May 1997.

[14] L. Rodrigues, K. Guo, A. Sargento, R. van Renesse, B. Glade, P. Ver��ssimo, and K. Bir-
man. A transparent light-weight group service. In Proceedings of the 15th IEEE Sym-
posium on Reliable Distributed Systems, pages 130{139, Niagara-on-the-Lake, Canada,
Oct. 1996.

[15] A. Schiper and A. Ricciardi. Virtually-synchronous communication based on a weak
failure suspector. In Digest of Papers, The 23th International Symposium on Fault-
Tolerant Computing, pages 534{543, Toulouse, France, June 1993.

[16] R. van Renesse, K. Birman, and S. Ma�eis. Horus, a
exible group communication
system. Communications of the ACM, 39(4):76{83, Apr. 1996.

