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Abstract

Atomic Broadcast is a fundamental problem of distributed systems: it states that

messages must be delivered in the same order to their destination processes. This

paper describes a solution to this problem in asynchronous distributed systems in

which processes can crash and recover.

A Consensus-based solution to Atomic Broadcast problem has been designed by

Chandra and Toueg for asynchronous distributed systems where crashed processes

do not recover. Although our solution is based on di�erent algorithmic principles, it

follows the same approach: it transforms any Consensus protocol suited to the crash-

recovery model into an Atomic Broadcast protocol suited to the same model. We

show that Atomic Broadcast can be implemented without requiring any additional

log operations in excess of those required by the Consensus. The paper also discusses

how additional log operations can improve the protocol in terms of faster recovery and

better throughput. It is interesting to note that our work bene�ts from recent results

in the study of the Consensus problem in the crash-recovery model.
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1 Introduction

Atomic Broadcast is one of the most important agreement problems encountered in the
design and in the implementation of fault-tolerant distributed systems. This problem con-
sists in providing processes with a communication primitive that allows them to broadcast
and deliver messages in such a way that processes agree not only on the set of messages
they deliver but also on the order of message deliveries. Atomic Broadcast (sometimes
called Total Order Broadcast) has been identi�ed as a basic communication primitive in
many systems (such as the ones described in [16]). It is particularly useful to implement
fault-tolerant services by using software-based replication [8]. By employing this primitive
to disseminate updates, all correct copies of a service deliver the same set of updates in
the same order, and consequently the state of the service is kept consistent.

Solutions to the Atomic Broadcast problem in asynchronous systems prone to process
crash (no-recovery) failures are now well known [3, 6, 17]. In this model process crashes
are de�nitive (i.e., once crashed, a process never recovers), so, a failed process is a crashed
process. Unfortunately, the crash-no recovery model is unrealistic for the major part of
applications. That is why, in this paper, we consider the more realistic crash-recovery

model. In this model, processes can crash and later recover. We assume that when a
process crashes (1) it loses the content of its volatile memory, and (2) the set of messages
that has been delivered while it was crashed is also lost. This model is well-suited to feature
real distributed systems that support user applications. Real systems provide processes
with stable storage that make them to cope with crash failures. A stable storage allows a
process to log critical data. But in order to be e�cient, a protocol must not consider all
its data as critical and must not log a critical data every time it is updated (the protocol
proposed in this paper addresses these e�ciency issues).

It has been shown in [3] that Atomic Broadcast and Consensus are equivalent prob-
lems in asynchronous systems prone to process crash (no-recovery) failures. The Consensus
problem is de�ned in the following way: each process proposes an initial value to the oth-
ers, and, despite failures, all correct processes have to agree on a common value (called
decision value), which has to be one of the proposed values. Unfortunately, this apparently
simple problem has no deterministic solution in asynchronous distributed systems that are
subject to even a single process crash failure: this is the so-called Fischer-Lynch-Paterson's
(FLP) impossibility result [5]. The FLP impossibility result has motivated researchers to
�nd a set of minimal assumptions that, when satis�ed by a distributed system, makes
Consensus solvable in this system. The concept of unreliable failure detector introduced
by Chandra and Toueg constitutes an answer to this challenge [3]. From a practical point
of view, an unreliable failure detector can be seen as a set of oracles: each oracle is attached
to a process and provides it with information regarding the status of other processes. An
oracle can make mistakes, for instance, by not suspecting a failed process or by suspect-
ing a not failed one. Although failure detectors were originally de�ned for asynchronous
systems where processes can crash but never recover, the concept has been extended to
the crash-recovery model [1, 4, 11, 14]. The reader should be aware that the existing
de�nitions of failure detectors in the former model do have quite signi�cant di�erences.
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Chandra and Toueg have also shown how to transform any Consensus protocol into
an Atomic Broadcast protocol in the asynchronous crash (no-recovery) model [3]. In the
present paper we follow a similar line of work and we show how to transform a protocol that
solves Consensus in the crash-recovery model in a protocol that solves Atomic Broadcast
in the same model. Thus, our protocol assumes a solution to the Consensus problem in the
crash-recovery model (such protocols are described in [1, 4, 11, 14]]). Our transformation
owns several interesting properties. In �rst place, it does not require the explicit use of
failure detectors (although those are required to solve the Consensus problem). Thus, it is
not bound to any particular failure detection mechanism. It relies on a gossip mechanism
for message dissemination, avoiding the problem of reliable multicast in the crash-recovery
model. Also, it allows recovering processes to skip over Consensus executions that already
have a decided outcome. Additionally, our solution is non-blocking [2], i.e., as long as
the system allows Consensus to terminate the Atomic Broadcast is live. Finally, but not
the least, we show that Atomic Broadcast can be implemented without requiring any
additional log operations in excess of those required by the Consensus. Thus, our protocol
is optimal in terms of number of log operations.

Chandra-Toueg's approach and ours are similar in the sense that both of them trans-
form a Consensus protocol into an Atomic Broadcast protocol. But, as they consider
di�erent models (crash-no recovery and crash-recovery, respectively), they are based on
very di�erent algorithmic principles. This come from the fact we have to cope with pro-
cess crashes and message losses (that is why our protocol requires a gossiping mechanism,
which is not necessary in a crash-no recovery + no message loss model). Actually, when
solving a distributed system problem, modifying the underlying system model very often
requires the design of protocols suited to appropriate models [9].

The paper is organized as follows. Section 2 de�nes the crash-recovery model and
the Atomic Broadcast problem in such a model. Then, Section 3 presents the underlying
building blocks on top of which the proposed protocol is built, namely, a transport pro-
tocol and a Consensus protocol suited to the crash-recovery model. A minimal version
of our Atomic Broadcast protocol for the crash-recovery model is then presented in Sec-
tion 4. As indicated before, this protocol actually extends to the crash-recovery model
the approach proposed by Chandra and Toueg for the crash/no recovery model [3]. The
protocol proceeds in asynchronous rounds. Each round de�nes a delivery order for a batch
of messages. This common delivery order is de�ned by solving an instance of the Consen-
sus problem. The extension of this approach to the crash/recovery model is not trivial as
(due to crashes) messages can be lost, and (due to crashes and recoveries) process states
can also be lost. The impact of additional log operations on the protocol is discussed
in Section 5. Section 6 relates the Atomic Broadcast problem in the crash-recovery with
other relevant problems. Finally, Section 7 concludes the paper.
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2 Atomic Broadcast in the Crash-Recovery Model

2.1 The Crash-Recovery Model

We consider a system consisting of a �nite set of processes � = fp; : : : ; qg. At a given
time, a process is either up or down. When it is up, a process progresses at its own speed
behaving according to its speci�cation (i.e., it correctly executes its program text). While
being up, a process can fail by crashing: it then stops working and becomes down. A down
process can later recover: it then becomes up again and restarts by invoking a recovery
procedure. So, the occurrence of the local event crash (resp. recover) generated by the
local environment of a process, makes this process transit from up to down (resp. from
down to up).

A process is equipped with two local memories: a volatile memory and a stable storage.
The primitives log and retrieve allow an up process to access its stable storage. When it
crashes, a process de�nitely loses the content of its volatile memory; the content of a stable
storage is not a�ected by crashes.

Processes communicate and synchronize by sending and receiving messages through
channels. We assume there is a bidirectional channel between each pair of processes.
Channels are not necessarily FIFO; moreover, they can duplicate messages. Message
transfer delays are �nite but arbitrary. Even if channels are reliable, the combination of
crashes, recoveries and arbitrary message transfer delays can entail message losses: the set
of messages that arrive at a process while it is down are lost. Thus, the protocol must be
prepared to recover from messages losses.

The multiplicity of processes and the message-passing communication makes the sys-
tem distributed. The absence of timing assumptions makes it asynchronous. It is the role
of upper layer protocols to make it reliable.

2.2 Atomic Broadcast

Atomic Broadcast allows processes to reliably broadcast messages and to receive them in
the same delivery order. Basically, it is a reliable broadcast plus an agreement on a single
delivery order. We assume that all messages are distinct. This can be easily ensured by
adding an identity to each message, an identity being composed of a pair (local sequence
number, sender identity)..

At the syntactical level, Atomic Broadcast is composed of two primitives: A-broadcast(m)
(used to send messages) and �p =A-deliver-sequence() (used by the upper layer to obtain
the sequence of ordered messages). As in [3], when a process executes A-broadcast(m)
we say that it \A-broadcasts" m. We also de�ne a boolean predicate A-delivered(m;�p)
which evaluates to \true" is m 2 �p or \false" otherwise. We also say that some process
p \A-delivers" m if A-delivered(m; A-deliver-sequence()) is \true" at p.

In the context of asynchronous distributed systems where processes can crash and
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recover, the semantics1 of Atomic Broadcast is de�ned by the four following properties:
Validity, Integrity, Termination and Total Order. This means that any protocol implement-
ing these communication primitives in such a crash/recovery context has to satisfy these
properties.

The validity property speci�es which messages can be A-delivered by processes: it states
that the set of A-delivered messages can not contain spurious messages.

� Validity: If a process A-delivers a message m, then some process has A-broadcast m.

The integrity property states there are no duplicates.

� Integrity: Let �p be the delivery sequence at a given process p. A message m appears

at most once in �p.

The termination property speci�es the situations where a message m has to be A-delivered.

� Termination: For any message m, (1) if the process that issues A-broadcast(m) even-
tually remains permanently up, or (2) if a process A-delivers a message m, then all

processes that eventually remain up A-deliver m.

The total order property speci�es that there is a single total order in which messages
are A-delivered. This is an Agreement property that, joined to the termination property,
makes the problem non-trivial.

� Total Order: Let �p be the sequence of messages A-delivered to process p. For any

pair (p; q), either �p is a pre�x of �q or �q is a pre�x of �p.

3 Underlying Building Blocks

The protocol proposed in Section 4 is based on two underlying building blocks: a Transport
Protocol and a protocol solving the Uniform Consensus problem. This section describes
the properties and interfaces of these two building blocks.

3.1 Transport Protocol

The transport protocol allows processes to exchange messages. A process sends a message
by invoking a send or multisend primitive2. Both send and multisend are unreliable: the
channel can lose messages but it is assumed to be fair, i.e., if a message is sent in�nitely
often by a process p then it is received in�nitely often by its receiver [13]. When a message

1We actually consider the de�nition of the Uniform Atomic Broadcast problem [10].
2The primitive multisend is actually a macro that allows a process p to send (by using the basic send

primitive) a message to all processes (including itself).
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arrives at a process it is deposited in its input bu�er that is a part of its volatile memory.
The process will consume it by invoking a receive primitive. If the input bu�er is empty,
this primitive blocks its caller until a message arrives.

3.2 Consensus Interface

In the Consensus problem each process proposes a value and all correct processes have to
decide on some value v that is related to the set of proposed values [5]. The interface with
the Consensus module is de�ned in terms of two primitives: propose and decided. As in
previous works (e.g., [3]), when a process p invokes propose(w), where w is its proposal to
the Consensus, we say that p \proposes" w. A process proposes by logging its initial value
on stable storage; this is the only logging required by our basic version of the protocol. In
the same way, when p invokes decided and gets v as a result, we say that p \decides" v

(denoted decided(v)).

The de�nition of the Consensus problem requires a de�nition of a \correct process".
This is done in Section 3.3. As the words \correct" and \faulty" are used with a precise
meaning in the crash (no-recovery) model [3], and as, for clarity purpose, we do not want
to overload them semantically, we de�ne their equivalents in the crash-recovery model,
namely, \good" and \bad" processes (we use the terminology of [1]). If crashed processes
never recover, \good" and \bad" processes are equivalent with \correct" and \faulty"
processes, respectively. Section 3.4 speci�es the three properties de�ning the Consensus
problem in this model.

3.3 Good and Bad Processes

A good process is a process that eventually remains permanently up. A bad process is a
process that is not good. So, after some time, a good process never crashes. On the other
hand, after some time, a bad process either permanently remains crashed or permanently
oscillates between crashes (down periods) and recoveries (up periods). From a practical
point of view, a good process is a process that, after some time, remains up long enough
to complete the upper layer protocol. In the Atomic Broadcast problem for example,
this means that a good process that invokes A-broadcast(m) will eventually terminate this
invocation (it is possible that this termination occurs only after some (�nite) number of
crashes).

It is important to note that, when considering a process, the words \up" and \down"
refer to its current state (as seen by an external observer), while the words \good" and
\bad" refer to its whole execution.

3.4 Consensus De�nition

The de�nition of the Consensus problem in the crash-recovery model is obtained from
the one given in the crash (no-recovery) model by replacing \correct process" by \good
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process".

Each process pi has an initial value vi that it proposes to the others, and all good
processes have to decide on a single value that has to be one of the proposed values. More
precisely, the Consensus problem is de�ned by the following three properties (we actually
consider the Uniform version [3] of the Consensus problem):

� Termination: Every good process eventually decides some value.

� Uniform Validity: If a process decides v, then v was proposed by some process.

� Uniform Agreement: no two processes (good or bad) decide di�erently.

3.5 Enriching the Model to Solve Consensus

As noted previously, the Consensus problem has no deterministic solution in the simple
crash (no-recovery) model. This model has to be enriched with a failure detector that,
albeit unreliable, satis�es some minimal conditions in order that the Consensus be solvable.

In the same way, the crash-recovery model has to be augmented with a failure detec-
tor so that the Consensus can be solved. Di�erent types of failure detectors have been
proposed to solve the Consensus problem in the crash-recovery model. Protocols proposed
in [11, 14] use similar failure detectors that outputs list of \suspects"; so, their outputs
are bounded. [1] uses failure detectors whose outputs are unbounded (in addition to lists
of suspects, the outputs include counters). The advantage of the later is that they do not
require the failure detector to predict the future behavior of bad processes. A positive
feature of our protocol is that it does not require the explicit use of failure detectors (al-
though these are required to solve the Consensus problem). Thus, it is not bound to any
particular failure detector mechanism.

4 The Basic Protocol

4.1 Basic Principles

The proposed protocol borrows some of its principles from the total order protocol designed
for the crash (no-recovery) model that is described in [3].

As illustrated in Figure 1, the protocol interfaces the upper layer through two variables:
the Unordered set and the Agreed queue. Messages requested to be atomically broadcast
are added to the Unordered set. Ordered messages are inserted in the Agreed queue,
according to their relative order. The Agreed is a representation of the delivery sequence.
Operations on the Unordered and Agreed variables must be idempotent, i.e., if the same
message is added twice the result is the same as if it is added just once (since message
have unique identi�ers, duplicates can be detected and eliminated).
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Unordered

Application

Atomic Broadcast

(k, proposed)
result

Consensus

add−to−tail (m)

multisend (m) receive (m)

Transport

Agreed

A_delivered−sequence()

A−delivered−sequence ()

A−broadcast (m)

Figure 1: Protocol Interfaces

The protocol requires the use of a Consensus protocol and of an unreliable (but fair)
transport protocol o�ering the send, multisend, and receive primitives described in Sec-
tion 3. The transport protocol is used to gossip information among processes. The inter-
face with the Consensus protocol is provided by the propose and decided primitives. The
propose primitive accepts two parameters: an integer, identifying a given instance of the
Consensus, and a proposed value (a set of messages) for that instance. When a Consensus
execution terminates, the decided primitive returns the messages decided by that instance
of the Consensus in the variable result. The Consensus primitives must also be idempo-
tent: upon recovery, a process may (re-)invoke these primitives for a Consensus instance
that has already started or even terminated.

The Atomic Broadcast protocol works in consecutive rounds. In each round, messages
from the Unordered set are proposed to Consensus and the resulting decided messages
moved to the Agreed queue. Before proceeding to the next round, the process logs its
state in stable storage such that, if it crashes and later recovers, it can re-start ordering
messages from the last agreed messages.

Processes periodically gossip their round number and their Unordered set of messages
to other processes. This mechanism provides the basis for the dissemination of unordered
messages among good processes. When a gossip message is received from a process with
a lower round number, this means that the sender of the gossip message may have been
down and missed the last broadcasts.
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4.2 Protocol Description

We now provide a more detailed description of the protocol. The protocol is illustrated in
Figure 2. The state of each process p is composed of:

� kp: the round counter (initialized to 0)

� Proposedp: an array of sets of messages proposed to Consensus. Proposedp[kp] is the
set of messages proposed to the kthp Consensus. All entries of the array are initialized
to ? (? means \this entry of the array has not yet been used").

� Unorderedp: a set of unordered messages, requested for broadcast (initialized to ;)

� Agreedp: a queue of already ordered messages (initialized to ?)

� gossip-kp: a variable that keeps the value of the highest Consensus round known as
already decided (this value is obtained via the gossiping mechanism).

The �rst four variables can be structured as two pairs of variables. The (kp;Proposedp)
pair is related to the current (and previous) Consensus in which p is (was) involved. The
(Agreedp,Unorderedp) pair is related to the upper layer interface. Statements associated
with message receptions are executed atomically. The sequencer task and the gossip task
constitute the core of the protocol. Both tasks access atomically the variables kp and
Unorderedp.

A-broadcast(m) issued by process p consists in adding m to its set Unorderedp. Then
the protocol constructs the common delivery order. A-deliver issued by p takes the next
message from the Agreedp queue and A-delivers it to the upper layer application. The
activation of the protocol is similar in the initial case and in the recovery case: the gossip
and sequencer tasks are started (line a).

The gossip task This task is responsible for disseminating periodically a relevant part of
the current state of processes. The gossip message sent by a process p, namely gossip(kp,Unorderedp),
contains its round number and its set of unordered messages. The goal of the gossip task
is twofold. In �rst place, it ensures the dissemination of data messages, such that they
are eventually proposed to Consensus by all good processes. In second place, it allows a
process that has been down to know which is the most up-to-date round.

Upon reception of a gossip message, an active process p updates its Unorderedp set
and checks if the sender q has a higher round number (kp > kq). In this case, p records
that it has lagged behind by updating the gossip-kp variable. This variable is used by the
sequencer task to get the result of the Consensus p has missed.

The sequencer task This task is the heart of the ordering protocol [3]. The protocol
proceeds in rounds. In the round k, a process p proposes its Unorderedp set to the kth

instance of Consensus. Before starting the Consensus, the proposed value is saved in
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Initial values:
kp = 0; 8k : Proposedp[k] = ?; Unorderedp=;; Agreedp=?; gossip-kp = 0;

procedure replay ():
// may be shortened by logging kp and Agreedp (see discussion in Section 5)
kp  0;
while Proposedp [kp] 6= ? do

propose(kp,Proposedp [kp]);
wait until decided (kp; result);
kp  kp + 1; Agreedp  Agreedp� result

// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule

end while

upon initialization or recovery:
retrieve (Proposedp);
replay ();

(a) fork task f sequencer and gossip g

Task gossip:
repeat forever multisend gossip(kp,Unorderedp)

upon A-broadcast(m): // (issued by the upper layer)
Unorderedp  (Unorderedp [ fmg) � Agreedp;
wait until (m 2 Agreedp) // see discussion

upon receive gossip(kq ,Uq) from q:
Unorderedp  (Unorderedp [ Uq) � Agreedp;
if (kq > kp) then gossip-kp  max (gossip-kp,kq) � // q was ahead

Task sequencer :
repeat forever

if Proposedp [kp]=? then
// Process p has to de�ne its initial value for the next Consensus
wait until ((Unorderedp 6= ;) or (gossip-kp > kp));
Proposedp [kp]  Unorderedp;
// Ensure that despite crashes p always proposes the same input to the kthp Consensus
log(Proposedp [kp]);
propose(kp,Proposedp [kp]);
// Actually, the log is done as the �rst operation of the Consensus (see Section 4.3)

�;
wait until decided (kp; result);
// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule
// Initializes the new round and commits results from previous round
[ kp  kp + 1; Agreedp  Agreedp� result ];
Unorderedp  Unorderedp � Agreedp

end repeat

upon A-delivered-sequence: // (issued by the upper layer)
return Agreedp

Figure 2: Atomic Broadcast protocol (Behavior of Process p)
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stable storage. Note that the propose primitive must be idempotent: in case of crash
and recovery, it may be called for the same round more than once. The result of the
Consensus is the set of messages to be assigned sequence number k. These messages
are moved (according to a deterministic rule) from the Unorderedp set to the Agreedp
queue. Then, the round number kp is incremented and the messages that remain in the
Unorderedp set are proposed by process p during the next Consensus.

To avoid running unnecessary instances of Consensus, a process does not starts a
new round unless it has some messages to propose or it knows it has lagged behind other
processes. In the later case, it can propose an empty set as the initial value for those
Consensus it has missed (this is because for those Consensus a decision has already been
taken without taking p's proposal into account).

The sequencer task has to execute some statements atomically with respect to the
processing of gossip messages. This is indicated by bracketing with \[\ and \]" the
corresponding statements in the sequencer task.

Logging into stable storage Logging is used to create checkpoints from which a recov-
ering process can continue its execution and consequently make the protocol live. So, at a
critical point, the values of relevant variables are logged into stable storage. In this paper
we are interested in discussing a protocol that makes a minimal number of ckeckpoints
(independently of those required by the underlying Consensus protocols). Thus, we only
log the initial value proposed for each Consensus round. This guarantees that if process p
crashes before the Consensus decides, p will propose the same value again after recovering.
We will later argue that this logging step cannot be avoided.

Note that we do not log the Unorderedp set or the Agreedp queue. The Agreedp queue
is re-constructed upon recovery from the results of past Consensus rounds by the replay

procedure. To ensure that messages proposed to Atomic Broadcast are not lost, the A-

broadcast(m) primitive does not returns until the message m is in the agree queue. If the
process fails before that, there is no guaranty that the message has been logged, so the
message may have or may have not been A-broadcasted. The latter case, it is the same
as if the process has failed immediately before calling A-broadcast(m). Note that these
design options that aim at minimizing the number of logging operations, do not necessarily
provide the more e�cient implementation. Alternative designs are discussed below.

Recovery Since the protocol only logs the initial values proposed for each instance
of Consensus, the current round kp and the Agreedp queue have to be re-constructed
upon recovery. The current round is simply the round for which no initial value has
been proposed yet. The agreed queue can be reconstructed by reading the results of the
Consensus instances that have terminated. Thus, before forking the sequencer and gossip

tasks, the process parses the log of proposed and agreed values (which is kept internally
by Consensus).
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4.3 On the Minimal Logging

Our solution only requires the logging of the initial proposed value for each round of
Consensus. We argue that this logging operation is required for every atomic protocol
that uses Consensus as a black box. In fact, all Consensus protocols for the crash-recovery
model we are aware of assume that a process p proposes a value by writing it on stable
storage. For instance, upon recovery the protocol of [1] checks the stable storage to see if
a initial value has been proposed.

5 An Alternative Protocol

We now present a number of modi�cations to our basic protocol that, although increasing
slightly the complexity and the number of log operations, may provide some bene�ts in
practical systems. The protocol proposes a state transfer mechanism and additional log
operations to reduce the recovery overhead and increase throughput. Additionally, the
protocol shows how to prevent the number of entries in the logs from growing inde�nitely,
by taking application-level checkpoints. These changes are described below. The version
of the protocol that takes into account the previous considerations is illustrated in Figure 3
and Figure 4.

5.1 Avoiding the Replay Phase

In the previous protocol, we have avoided any logging operation that is not strictly required
to ensure protocol correctness. In particular, we have avoided to log the current round
(kp) and agreed queue (Agreedp), since they can be recomputed from the entries of the
array proposedp that have been logged. However, this forces the recovering process to
replay the actions taken for each Consensus result (i.e., insert the messages in the agreed
queue according to the predetermined deterministic rule).

Faster recovery can be obtained at the expense of periodically checkpointing both
variables. The frequency of this checkpointing has no impact on correctness and is an
implementation choice (that must weight the cost of checkpointing against the cost of
replaying). Note that old proposed values that do are not going to be replayed can be
discarded from the log (line c).

5.2 Size of logs and application-level checkpoint

A problem with the current algorithm is that the size of the logs grows inde�nitely. A way
to circumvent this behavior is to rely on an application-level checkpointing has described
below.

In some applications, the state of the application will be determined by the (totally
ordered) messages delivered. Thus, instead of logging all the messages, it might be more
e�cient to log the application state which logically \contains" the Agreed queue. For
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Initial values:
kp = 0; 8k : Proposedp[k] = ?; Unorderedp=;; Agreedp=(A-checkpoint(?); V C(?)); gossip-kp = 0;

procedure replay (): ***** same as before without its �rst line *****
while Proposedp [kp] 6= ? do

propose(kp ,Proposedp [kp]);
wait until decided (kp; result);
kp  kp + 1; Agreedp  Agreedp� result

// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule

upon initialization or recovery: ***** same as before with the addition of the �rst line *****
retrieve (kp,Agreedp); retrieve (Unorderedp);
retrieve (Proposedp);
replay ();

(a) fork task f sequencer and gossip and checkpoint g

upon A-broadcast(m): // (issued by the upper layer) ***** �rst line: same as before *****
Unorderedp  (Unorderedp [ fmg) � Agreedp;
log(Unorderedp)

upon receive gossip(kq ,Uq) from q: ***** �rst two lines: same as before *****
Unorderedp  (Unorderedp [ Uq) � Agreedp;
if (kq > kp) then gossip-kp  max(gossip-kp,kq) // q is ahead

(d) else if (kp > kq + �) then// � is a con�guration parameter
send state(kp � 1; Agreedp) to q

� �

upon receive state(kq ,Aq) from q: ***** new message *****
if kp < kq � � then // p is late

(e) terminate task fsequencerg; // Skip Consensus whose number k is such that kp � k < kq
// so, during the processing of the state message, the sequencer task is aborted
kp  kq + 1; Agreedp  Aq ;

(f) fork task f sequencer g
else

gossip-kp  max(gossip-kp,kq) // small de-synchronization
�

Figure 3: Reducing the log size and the number of replay steps (main)
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Task gossip: ***** same as before *****
repeat forever multisend gossip(kp,Unorderedp)

Task checkpoint: ***** new task *****
repeat forever // implementation dependent frequency

(b) [ Agreedp  (A-checkpoint(Agreedp ); V C(Agreedp)) ]
log (kp,Agreedp)

(c) // Proposedp [i]; i < kp can be discarded from the log

Task sequencer : ***** same as before *****
repeat forever

if Proposedp [kp]=? then
// Process p has to de�ne its initial value for the next Consensus
wait until ((Unorderedp 6= ;) or (gossip-kp > kp));
Proposedp [kp]  Unorderedp;
// Ensure that despite crashes p always proposes the same input to the kthp Consensus
log(Proposedp [kp]);
propose(kp,Proposedp [kp]);
// Actually, the log is done as the �rst operation of the Consensus

�;
wait until decided (kp; result);
// Messages in result and not in Agreedp are moved to the tail of
// the Agreedp queue according to a predetermined determinisitic rule
// Initializes the new round and commits results from previous round
[ kp  kp + 1; Agreedp  Agreedp� result ];
Unorderedp  Unorderedp � Agreedp

end repeat

upon A-deliver-sequence: // (issued by the upper layer) ***** same as before *****
return Agreedp

Figure 4: Reducing the log size and the number of replay steps (tasks)
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A−delivered−sequence ()

A−broadcast (m)

A−checkpoint ()

Figure 5: Augmented Protocol Interfaces

instance, when the Atomic Broadcast is used to update replicated data, the most recent
version of the data can be logged instead of all the past updates. Thus, a checkpoint of
the application state can substitute the associated pre�x of the delivered message log.

In order to exploit this property, one needs to augment the interface with the appli-
cation layer with an upcall to obtain the application state, as illustrated in Figure 5. The
upcall, state=A-checkpoint(�p), accepts as an input parameter a sequence of delivered mes-
sages and returns the application state that \contains" those updates. A-checkpoint(?)
returns the initial state of the application. In order to know which messages are asso-
ciated with a given checkpoint, a checkpoint vector clock V C(�p) is associated to each
checkpoint. The vector clock stores the sequence number of the last message delivered
from each process \contained" in the checkpoint. An application-level checkpoint is de-
�ned by the pair (A-checkpoint(�p); V C(�p)). The sequence of messages delivered to a
process is rede�ned to include an application checkpoint plus the sequence of messages
delivered after the checkpoint. A message m belongs to the delivery sequence if it appears
explicitly in the sequence or if it is logically included in the application checkpoint that
initiates the sequence (this information is preserved by the checkpoint vector clock).

In our protocol, the application state is periodically checkpointed and the delivered
messages in the Agreed queue are replaced by the associated application-level checkpoint.
This not only o�ers a shorter replay phase but also prevents the number of entries in the
logs from growing inde�nitely.
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5.3 State Transfer

In the basic protocol, a process that has been down becomes aware that it has missed some
Consensus rounds when it detects that some other process is already in an higher round of
Consensus (through the gossip messages). When this happens, it activates the Consensus
instances that it has missed in order to obtain the correspondent agreed messages. A
process that has been down for a long period may have missed many Consensus and may
require a long time to \catch-up".

An alternative design consists in having the most up-to-date process to send a state
message containing its current round number kp and its Agreedp queue. When a process
p that is late receives a state message from a process q with a higher round number
(kp < kq) it stops its sequencer task (line e), updates its state such that it catches up with
that process, and re-starts its sequencer task from the updated state (line f), e�ectively
skipping the Consensus instances it has missed.

Both approaches coexist in the �nal protocol. A late process can recover by activating
the Consensus instances that it has missed or by receiving a state message. The amount
of de-synchronization that triggers a state transfer can be tuned through the variable �

(line d).

Note that, for clarity, we have made the state message to carry the complete Agreed
queue. Simple optimizations can minimize the amount of state to be transfered. For
instance, since the associated gossip messages carries the current round number of the
late process, the state message can be made to carry only those messages that are not
known by the recipient (see [12, 19]).

5.4 Sending Message Batches

For better throughput, it may be interesting to let the application propose batches of
messages to the Atomic Broadcast protocol, which are then proposed in batch to a single
instance of Consensus. Unfortunately, the de�nition of Atomic Broadcast implies that
every message that has been proposed by a good process be eventually delivered. When
there are crashes, a way to ensure this property is not to return from A-broadcast(m) before
m is logged. In the basic protocol we wait until the message is ordered (and internally
logged by the Consensus). In order to return earlier, the A-broadcast interface needs to
log the Unorderedp set.

5.5 Incremental logging

As described, the protocol emphasizes the control locations where values have to be logged.
The actual size of these values can be easily reduced. When logging a queue or a set (such
as the Unordered set) only its new part (with respect to the previous logging) has to be
logged. This means that a log operation can be saved each time the current value of a
variable that has to be logged does not di�er from its previously logged value.
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5.6 Correctness of the Alternative Protocol

As previously, when crashes are de�nitive, the protocol reduces to the Chandra-Toueg's
Atomic Broadcast protocol [3]. When processes crash and recover, the properties de�ning
the Atomic Broadcast problem (de�ned in Section 2.2) can be proved by taking into ac-
count the following properties3 (Due to space limitation, the development of the full proof
is omitted).

- (P1) The sequence of consecutive round numbers logged by a process p is not decreasing.
- (P2) If a process p has logged kp whose value is k, then its variable kp will always be
� k.
- (P3) If a good process joins round k, then all good processes will join a round � k.
- (P4) For any k, independently of the number of times p participates in Consensus num-
bered k, the value it proposes to this Consensus is always the same (despite crashes and
despite total/partial Consensus re-executions).
- (P5) For any k, independently of the number of times p participates in Consensus num-
bered k, the result value is the same each time the invocation of decided(k; :) terminates
at p (4). (This property follows from the Consensus speci�cation.)
- (P6) Any message m that has been A-broadcast by a good process will eventually be
deposited in Unorderedp or Agreedp by any good process p.
- (P7) Any message m that has been A-delivered by a process will eventually be deposited
in Agreedp by any good process p.

The Termination property follows from these properties and from the fact Consensus
executions terminate. (So, the Atomic Broadcast protocol is live when the underlying
Consensus is live.) The Integrity property follows from The � operation on the Agreedp
queue that adds any messagem at most once into this queue. The Validity property directly
follows from the fact the protocol does not create messages. The Total Order property
follows from the use of the underlying Consensus and from the appropriate management
of the Agreedp queue.

6 Related Problems

6.1 Consensus vs Atomic Broadcast

In this paper we have shown how to transform a Consensus protocol for the asynchronous
crash-recovery model into an atomic broadcast protocol. It is easy to show that the
reduction in the other direction also holds [3]. To propose a value a process atomically
broadcasts it; the �rst value to be delivered can be chosen as the decided value. Thus,

3These properties actually constitute lemmas of a complete proof. This complete proof bears some
ressemblance to the proof described in [11].

4Using the terminology used in [3], this means that, after the �rst Consensus execution numbered k,
the result value associated with round k is \locked".
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both problems are equivalent in asynchronous crash-recovery systems.

6.2 Atomic Broadcast and Transactional Systems

It has been shown that a deferred update replication model for fully replication databases
can exhibit a better throughput if implemented with an Atomic Broadcast-based termina-
tion protocol than if implemented with Atomic Commitment [15]. The idea of the deferred
update model is to process the transaction locally and then, at commit time, execute a
global certi�cation procedure. The certi�cation phase uses the transaction's read and
write sets to detect conicts with already committed transactions. The use of an Atomic
Broadcast primitive ensure that all managers certify transactions in the same order and
maintain a consistent state. [15] also proposes designs for Atomic Broadcast protocols in
the crash-recovery model but these solutions are not Consensus-based.

6.3 Atomic Broadcast and Quorum-Based Systems

In a recent report [18] we show how to extend the Atomic Broadcast primitive to support
the implementation of Quorum-based replica management in crash-recovery systems. The
proposed technique makes a bridge between established results on Weighted Voting and
recent results on the Consensus problem.

6.4 Total Order Multicast to Distinct Groups

In this paper we have focused on the Atomic Broadcast problem for a single group of
processes. Often, one is required to send messages to more than on group. The problem
of e�ciently implementing atomic multicast across di�erent groups in crash (no-recovery)
asynchronous systems has been solved in several papers [6, 17]. Since these solutions are
based on a Consensus primitive, it is possible to extend them to crash-recovery systems
using an approach similar to the one that has been followed here.

7 Conclusion

This paper has proposed an Atomic Broadcast primitive for asynchronous crash-recovery
distributed systems. Its concept has been based on a building block implementing Con-
sensus. This building block is used as a black box, so our solution is not bound to any
particular implementation of Consensus. The protocol is non-blocking in the following
sense: as long as the underlying Consensus is live, the Atomic Broadcast protocol does
not block good processes despite the behavior of bad processes. Moreover, our solution
does not require the explicit use of failure detectors (even though those are required to
solve the underlying Consensus). Thus, it is not bound to a particular failure detection
mechanism. Also, we have shown that Atomic Broadcast can be solved without requiring
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any additional log operation in excess of those required by the Consensus. Finally, we
have discussed how additional log operations can improve the protocol.
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