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Abstract

A causal ordering protocol ensures that if two messages are causally related and have the

same destination, they are delivered to the application in their sending order. Causal order

strongly simpli�es the development of distributed object-oriented systems. To prevent causal

order violation, either messages may be forced to wait for messages in their past, or late messages

may have to be discarded. For a real-time setting, the �rst approach is not suitable since when

a message misses a deadline, all the messages that causally depend on it may also be forced

to miss their deadlines. We propose a novel causal ordering abstraction that takes messages

deadlines into consideration. Two implementations are proposed in the context of multicast

and broadcast communication that delivers as many messages as possible to the application.

Examples of distributed soft real-time applications that bene�t from the use of a deadline-

constrained causal ordering primitive are given.

Keywords: causal ordering, real-time communication, distributed object systems.

1 Introduction and Motivation

A causal ordering protocol ensures that if two messages are causally related and have the same
destination, they are delivered to the application in their sending order. Causal order strongly
simpli�es the development of distributed object-oriented systems, since it alleviates the programmer
from the need to store and reorder messages that are delivered to the application.

Consider a distributed application that uses, among others, three cooperating objects that
exchange events among them. The �rst object represents a sensor that periodically reads the
speed of a machine and noti�es two other objects: a controller and a monitor. The sensor readings
have a limited validity in the time domain and expire when a new reading is performed; only the
last reading is relevant and thus some of the sensor noti�cations can be dropped. The controller
collects noti�cations from this and other sensors and controls the machine. In some causes, the
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servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the
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Figure 1: Exchanging Noti�cations

controller might decide to stop the machine, in which case it also sends a noti�cation to the monitor.
The monitor just collects noti�cations from the other components and represents them in a form
suitable for human operators. This scenario is illustrated in Figure 1-a.

Consider that the controller decides to stop the machine due to a noti�cation from the sensor.
In this case, causal order would ensure that the monitor would receive the sensor reading before
the noti�cation that the machine was stopped: the processing of these noti�cations in the wrong
order would falsely indicate a malfunction in the controller (the delayed reading could indicate that
the machine was still operating).

To prevent causal order violation, i) a message may be forced to wait for messages in its past, or
ii) late messages may have to be discarded. The �rst approach is not suitable for real time settings
since, when a message misses a deadline, all the messages that causally depend on it may be also
forced to miss their deadlines. In our example, if a noti�cation of a reading from the sensor to the
monitor is delayed, all causally dependent noti�cations, including the noti�cation that the machine
was stopped, would be also delayed as illustrated in Figure 1-b.

In several soft real-time environments such as the ones described here, it makes more sense to
allow delayed messages to be dropped than to force many other causality related messages to miss
their deadlines. In Section 2 we show that this model also matches the requirements of distributed
trading systems. For such applications, it is crucial to deliver messages within their deadlines and,
possibly, without violating their sending order.

The paper introduces the notion of deadline-constrained causal order and presents an algorithm
to enforce this ordering policy in the context of multicast and broadcast communication. The paper
also relates deadline-constrained causal order with the notion of �-causal ordering [21], introduced
in the context of multimedia systems and later re�ned and formalized in [3, 4].

The paper is structured into �ve sections. Section 2 presents the model of asynchronous dis-
tributed executions and introduces the formal de�nition of deadline-constrained causal order. Sec-
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Figure 2: Message Delay Distribution

tion 3 presents the deadline-constrained causal ordering protocol. Section 4 presents a version of
the protocol optimized for the case where broadcast communication is used. Section 5 concludes
the paper. A sketch of the correctness proof of the protocol of Section 3 is given in the Appendix.

2 Deadline-Constrained Causal Ordering

2.1 Distributed System

A distributed program is a �nite set P of n sequential processes fP1; P2; : : : ; Png that do not have
shared memory and communicate and synchronize only by exchanging messages. The underlying
system, on which distributed programs execute, is composed of n processors (for simplicity, we
assume one process per processor) that can exchange messages. When a message arrives on a
channel, it can be delivered as soon as its delivery condition becomes true; in a system with
no special constraints on deliveries1 this condition is always true. We assume that each pair of
processes is connected by a real-time unreliable channel (messages can be lost or duplicated).
Messages delays have a distribution similar to the one depicted in Figure 2. Thus, if deadlines
are reasonably selected, most messages will meet those deadlines. Nevertheless, the channel may
exhibit occasional timing-failures [6] if the chosen deadline is smaller than the absolute worst-case
delay (TDmax, in the �gure). For sake of clarity, we assume that processing steps take no time, only
message transfer delays consume time. In this paper we are concerned with the class of applications
with timeliness requirements where it is acceptable to drop some messages.

2.2 Distributed Executions

At the application level, execution of a process produces a sequence of events which can be clas-
si�ed as: send events, delivery events, and internal events. An internal event may change only
local variables; send or delivery events involve communication. The causal ordering of events in a
distributed execution is based on Lamport's happened-before relation [12] denoted by !. If a and
b are two events then a!b i� one of these conditions is true:

(i) a and b occur at the same process and a precedes b;

(ii) a = send(m) is the send event of a message m and b = delivery(m) is the delivery event of
the same message;

1Examples of special constraints in deliveries are FIFO order, causal order and deadline-constrained causal order.
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(iii) there exists an event c such that a!c and c!b.

Such a relation allows us to represent a distributed execution as a partial order of events, called
bE = (E;!) where E is the set of all events. Hereafter, we callM

bE
the set of all messages exchanged

in bE and we do not consider internal events since they do not a�ect the causal ordering of events.

2.3 Global Clock

To enforce the real-time delivery constraints, processes are endowed with a global clock value whose
drift with respect to physical time is bounded, and whose granularity and precision [11, 17] are such
that all the causally dependent events are produced at di�erent times. Many clock synchronization
protocols have been described in the literature. Some currently used protocols provide a global clock
synchronization that bounds the clock drift value, �, within 5 � 10 milliseconds [8]. Additionally,
new algorithms exist that can synchronize clocks in the large-scale [18].

2.4 Deadline of a Message

The deadlinem of a message m is the absolute value of the global clock before which the message
must be delivered to the application. Without loss of generality, we assume that � is incorporated
in the deadline of the message.

If a message arrives at its destination before the deadline and if its delivery does not violate
causal order it should be delivered to the application. Such message is allowed to wait for preceding
messages. A message is delivered to the application as soon as all the preceding messages have been
delivered or when its deadline is about to expire, whichever comes �rst. If a message is received
after one of its successors has been delivered, it is considered late and must be discarded to avoid
a causal order violation [19]. Deadline-constrained causal order can thus be de�ned as follows:

De�nition [Deadline-Constrained Causal Ordering]: A distributed computation bE respects

deadline-constrained causal ordering if:

i. All delivery events respect causal ordering. This means that for any two messages m1

and m2 2M
bE
, if send(m1)! send(m2) and m1, m2 have the same destination process

pj, and both are delivered to pj, then deliver(m1)! deliver(m2) at pj.

ii. Any message m in M
bE
that arrives before its deadline (deadlinem) and whose

delivery will not violate causal order with respect to previously delivered messages, is

delivered before deadlinem.

In the context of broadcast communications, an example of deliveries respecting deadline-
constrained causal ordering is shown in Figure 3. Note that the deadlines of m2 and m3 are
shorter that that of m1 even though m1 ! m2 ! m3. In this example m2 and m3 are delivered to
all processes before their deadlines but, in order to do so, m1 must be dropped at r.

2.5 Related work

Causal ordering means that if two message sends are causally related [12] and have the same des-
tination, then the corresponding messages are delivered in their sending order. Typically, causal
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Figure 3: Broadcast Deliveries Respecting Deadline-Constrained Causal Ordering

order protocols assume reliable channels [5, 16]; a message is only delivered when all preceding
messages have been delivered.

The notion of �-causal ordering, introduced in [21], and later re�ned and formalized in [3, 4]
extends this principle. In this model, messages can be lost and have a lifetime, �, after which their
data can no longer be used. In other words, messages whose transmission delays are greater than
� are considered to be lost. �-causal order strives to deliver as many messages as possible before
their deadlines in such a way that these deliveries respect causal order. �-causal order considers
that all messages have the same lifetime, namely, �.

Deadline-constrained causal order resembles �-causal order in the sense that both associate a
deadline with a message. However, in �-causal a message must wait for its predecessors if these
predecessors are timely. In deadline-constrained causal order, each message has its own deadline
and, it if arrives on time, never misses its deadline due to preceding messages. It should be noted
that if all the messages have the same timeliness constraints (i.e, if the deadline is always set to
the sending time plus the constant �) deadline-constrained causal order and �-causal order are
equivalent. More generally, when we consider a reliable distributed system and messages whose
contents have no delivery constraints, both deadline-constrained causal order and �-causal ordering
are equivalent to the original de�nition of causal ordering given by Birman and Joseph in [5].

Several protocols implementing pure causal ordering [2, 5, 16] and �-causal ordering [3, 1, 4]
appeared in the literature. In this paper we introduce a new protocol able to enforce deadline-
constrained causal order.

2.6 Where Deadline Constrained Causal Ordering is Useful

Scheduling messages deliveries respecting deadline constrained causal order can be useful for dis-
tributed trading systems such as stock market exchange and distributed auction sales where each
message contains an o�er and this o�er is valid till a given time (which corresponds to the deadline
of the message).

As an example, let processes in Figure 4 participate to an auction sell of a good and let us
assume, for simplicity, that each message (or o�er) gets its destination within its deadline. Each
o�er is broadcast to all participants and its value must be greater than all the o�ers that causally
precede it. In such an application, all participants would like to see as many o�ers as possible in
their sending order to de�ne their buy strategies. However, an auctioneer does not want to miss a
recent (and thus bigger) o�er while waiting for a previous (and smaller) one.
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Figure 4: An Example of Communication Pattern During an Auction sale

The auctioneer starts the public sale of a good by using message \start-auction" which piggy-
backs, among others, the initial o�er. Process p receives start message from the auctioneer and
issues the o�er \o1". This o�er is valid till deadlineo1. Process q receives the o�er \o1" and makes
the o�er \o2". The o�er of q cannot be delivered to r and to the auctioneer upon its arrival as it
would violate deadline constrained causal ordering (\o1" has not arrived yet). According to that
ordering, the delivery of \o2" at r occurs after the arrival (and the delivery) of \o1". This meets
the fact that as many o�ers as possible are delivered in their sending order to any participant. The
delivery of \o2" at the auctioneer occurs at time deadlineo2. As, each o�er is greater than all the
o�ers that causally precede it, the auctioneer meets its requirement.

The previous example indicates that distributed trading systems need a communication protocol
that is able to deliver messages within their deadlines and, possibly, without violating their sending
order. Deadline constrained causal order is a tool solving such a problem in a simple way.

3 A Deadline-Constrained Causal Order Multicast Protocol

An implementation of deadline-constrained causal order multicast consists of a protocol built on
top of the original underlying system, such that the send an delivery events that appear at the
application layer respect the de�nition given in Section 2.4.

Each process Pi manages an array MCPi (MCP stands for Message Causal Past). This array
summarizes all the messages that have been sent in the current causal past of Pi. It is used by Pi
to describe the causal past of the message it sends, and to ensure correct delivery -or to discard-
each message it receives. The meaning of this array is:

� MCPi[x; y] = t ,
To the knowledge of Pi, the last message sent by Px to Py has been sent at time t

So, to correctly maintain its semantics, this array is updated each time Pi sends a message or
delivers a message.

3.1 Multicast of a Message

To multicast a messagem, a sender process Pi �rst associates with it a speci�c deadline (deadlinem)
and a particular set of destination processes (Destm). Then, Pi calls the multicast procedure with
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Procedure multicast(m;deadlinem; Destm)
(S1) send timem  current time;
(S2) 8j 2 Destm do MCPi[i; j] send timem od;
(S3) let MCPm = MCPi;
(S4) 8j 2 Destm do send(m; deadlinem;MCPm) od

When (m; deadlinem;MCPm) is received from Pj :
let Deadline arr succm � fdeadlinem0 such that m0 arrived and MCPm �MCPm0 g;
let too late � (deadlinem < current time);
let logical deadlinem � (current time = min(fDeadline arr succmg));
let Del viol CO � (MCPm[j; i] �MCPi[j; i]);
let Del ok � ((MCPi[j; i] < MCPm[j; i]) ^ (8x 6= j : (MCPm[x; i] �MCPi[x; i]));

(R1) if too late _Del viol CO then discard(m)
(R2) else

(R3) wait (Del ok _ logical deadlinem); Delivery Condition: DC(m)
% If DC(m1) and DC(m2) become simultaneously true, and if if MCPm1 < MCPm2 %
% then deliver m1 before m2 %

(R4) 8(x; y) : MCPi[x; y] max(MCPi[x; y];MCPm[x; y]);
(R5) Delivery of m to Pi % Event deli(m) %
(R9) endif

Figure 5: Multicast protocol

the parameters m; deadlinem and Destm (Figure 5). It is important to note that di�erent messages
can have di�erent deadlines and distinct sets of destination processes.

This procedure is implemented as described in Figure 5. It works in the following way. First
(lines S1-S2), Pi updates the entries of the array MCPi[i; j] corresponding to all the destination
processes. If Pj 2 Destm, then MCPi[i; j] is updated to the sending time of m. So, 8(x; y),
MCPi[x; y] is the sending time of the last message sent by Px to Py, to the current pi knowledge,
i.e., it represents the knowledge of m about its causal past. This knowledge it stored in MCPm
(line S3). Finally, the message with all its control data is sent to each destination process.

It is important to note that the message causal past associated with m includes m itself. More
precisely, if m is sent to Pj, then MCPm[i; j] = send timem. Using this approach,

m! m0 ,MPCm < MPCm0

where

MPCm < MPCm0 , 8x; y :: MCPm[x; y] �MCPm0 [x; y] ^ 9x; y : MCPm[x; y] < MCPm0 [x; y]

Also, if

MPCm0 6�MPCm00 ^ MPCm00 6�MPCm0

then m and m0 are said to be concurrent messages.

3.2 Reception of a Message

Let us �rst give a simple description of the protocol shown in Figure 5, then we point out more
precisely the predicates that govern protocol actions.

When a message m, multicast by Pj , arrives at Pi, a predicate is evaluated (R1) to check if m
has to be discarded due to its deadline expiration or if to the fact its delivery would violate causal
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ordering. Otherwise, m enters a wait condition (R3), called delivery condition DC(m). When it
becomes true, this condition gives rise to the corresponding delivery event (R5). Note that, in
some cases multiple messages exit from the wait condition at the same time, then their deliveries at
process Pi must be sequenced in a correct way to guarantee deadline-constrained causal ordering as
remarked in the protocol. When delivering a message, the current knowledge of Pi on the message
causal past (MCPi) is updated accordingly (line R4): the knowledge carried by m (MCPm) is
added to the current knowledge of Pi (MCPi). Let us �nally remark that once a message has been
delivered, it does not longer exist at the multicast protocol layer.

The condition to discard a message, to deliver a message and to sequence multiple concurrent
deliveries are detailed in the rest of the section.

Discarding a Message. When a message m arrives at process Pi, m is discarded if the following
the predicate is true (line R1):

(too late _Del viol CO)

where

� too late � (deadlinem < current time).
If this predicate is true, m has bypassed its deadline. Consequently, it is discarded in order
not to violate part (ii) of Deadline-Constrained Causal Ordering De�nition.

� Del viol CO � (MCPm[j; i] �MCPi[j; i]).
If this predicate is true, a message m0 such that m ! m0 has previously been delivered to
Pi. Consequently m is discarded in order to not violate part (ii) of the deadline-constrained
causal ordering de�nition.

This situation is described in Figure 6, where four messages are multicast. Destm1
= fPi; Pkg,

Destm2
= fPi; Pjg, Destm3

= fPig, and Destm4
= fPk; Pig. Due to its short deadline, m4

is delivered when this deadline occurs without violating the causal ordering with respect
to already delivered messages. But, due to this delivery, MCPi[j; i] will be updated to
send timem1

(this information comes from the causal chain of messages m1;m2;m4 and from
the update at line R7 when these messages are delivered). As it can be observed, the delivery
of m4 at Pi will entail the discard of m1 when m1 arrives at Pi (even if it arrives before its
deadline).

Delivering a Message. If the predicate (too late_Del viol CO) is false, thenm can be delivered.
The time at which this event will occur will be de�ned by the wait condition of line (R3). This
condition allows the delivery of m only when the following predicate, namely delivery condition
DC(m), becomes true:

(Del okm _ logical deadlinem) DC(m)
where

� Del okm � ((MCPi[j; i] < MCPm[j; i]) ^ (8x 6= j : (MCPm[x; i] �MCPi[x; i])).
If this predicate is true, m can be delivered as its delivery respects part (i) of the deadline-
constrained causal ordering de�nition. Let us note that this condition expresses causal deliv-
ery when there are no deadline constraints [16].
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g) = deadlinem4

min(fdeadline arr sucm3
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MCPm2
< MCPm3

< MCPm4

deli(m2) precedes deli(m3) precedes deli(m4)

Figure 6: Sequencing Multiple Concurrent Deliveries

� logical deadlinem � (current time = min(fdeadline arr succmg))
where deadline arr succm = fdeadlinem0 such that m0 arrived and MCPm � MCP 0

m g
(note that this set include deadlinem and the deadlines of the successors of m that have
arrived and are not yet delivered). In other words, each arrived message m is associated with
a logical deadline which corresponds to the closest deadline among its own deadline and those
from the arrived messages that causally follow m. We have two cases:

1. If deadlinem = min(fdeadline arr succmg)), then logical deadline � (current time =
deadlinem). In this case, if the predicate becomes true, m can be delivered as this action
does not violate deadline-constrained causal ordering. Note that here the logical dead-
line of m corresponds to its physical deadline (deadlinem). This is the case of message
m4 depicted in Figure 6 at time deadlinem4

.

2. If deadlinem > min(fdeadline arr succmg), when the predicate logical deadline be-
comes true it means that the deadline of a message m0 such that m ! m0 is imminent
and m0 is being delivered. In this case, m must be delivered before m0 in order not to
violate deadline constrained causal ordering and to deliver as many messages as possible.
As an example, upon the arrival of message m4 at process Pi, depicted in Figure 6, the
logical deadline of messages m2 and m3 becomes deadlinem4

.

Handling Concurrent Deliveries. Each time a message m is delivered at a process due to its
physical deadline expiration, all waiting messages (i.e., messages arrived and not delivered) at the
process that causally precede m and whose deadlines are later than deadlinem must be delivered
(i.e, their predicate logical deadline becomes true) as all these message have the same logical
deadline (deadlinem) and these deliveries must be causally ordered (line R3). In order to accomplish
the last point, delivery must be done consistently with the relation \<". More precisely, let m
and m0 be two messages such that min(fdeadline arr succmg) = min(fdeadline arr succm0g) if

9



Procedure broadcast(m;deadlinem)
(S1) send timem  current time;
(S2) V Ci[i] send timem od;
(S3) let V Cm = V Ci;
(S4) 8j 2 P do send(m;deadlinem; V Cm) od

When (m; deadlinem; V Cm) is received from Pj :
let Deadline arr succm � fdeadlinem0 such that m0 arrived and V Cm � V Cm0 g;
let too late � (deadlinem < current time);
let logical deadlinem � (current time = min(fDeadline arr succmg));
let Del viol CO � (V Cm[j] � V Ci[j]);
let Del ok � ((V Ci[j] < V Cm[j]) ^ (8x 6= j : (V Cm[x] � V Ci[x]));

(R1) if too late _Del viol CO then discard(m)
(R2) else wait (Del ok _ logical deadlinem) DC(m);

% If the delivery conditions of m1 and m2 become simultaneously true %
% and if V Cm1 < VCm2, deliver m1 before m2 %

(R3) 8x : V Ci[x] max(V Ci[x]; V Cm[x]);
(R4) Delivery of m to Pi % Event deli(m) %
(R5) endif

Figure 7: A Broadcast Deadline-Constrained Causal Order Protocol

MCPm < MCPm0 , then the delivery of m must precede the delivery of m0.
As an example, Figure 6 shows at time deadlinem4

messages m2, m3 andm4 have to be delivered
as they have the same logical deadline. The delivery sequence will occur in that order as MCPm2

<

MCPm3
< MCPm4

.

4 A Protocol for Broadcast Causal Order

The protocol shown in the previous section su�ers from the pitfall of the logical timestamping tech-
nique: to ensure causal order, the dimension of the matrix piggybacked on messages is O(n2) [16].
This complexity can be reduced to O(n) if we consider broadcast communication among processes.

In this section we show a simple protocol derived from the one of the the previous section.
We assume hence that each message is sent to all the processes (including the sender itself) in
the distributed system. As far as events of the underlying system and the de�nition of a delivery
condition associated with each message are concerned everything said in the previous section still
holds.

Since each non-lost message arrives at all the processes, data structures and the protocol result
simpli�ed. In particular, in each process, each row of the array MCP will have the same value.
Hence, in each process, we can replace MCP array with the following vector V C:

V Ci[x] : array[1 : : : n] of time;

where the variable V Ci[x] represents the knowledge of process Pi about the sending time of the
last message broadcasted by Px and V Cm < V Cm0 , 8x :: V Cm[x] � V Cm0 [x] ^ 9y : V Cm[y] <
V Cm0 [y]. The other data structures do not change. The new protocol for deadline-constrained
causal broadcast is shown in Figure 7.
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5 Conclusion

In the context of broadcast communication, the deadline-constrained causal ordering abstraction
matches the requirements of soft-real time applications, where some messages may be dropped
in favor of delivering others according to their deadlines. However, the 
ow of information must
preserve the causal dependency even though part of the information can be lost or discarded when
it violates the real-time constraints. As deadline constrained causal ordering is a generalization of
�-causal ordering it can be used in distributed multimedia real-time applications. Moreover, as
it is possible to specify a distinct deadline for each message, deadline constrained causal ordering
matches requirements of another important class of distributed application, namely distributed
trading systems. These applications need a communication protocol that is able to deliver messages
within their deadlines and, possibly, without violating their causal sending order.

In this paper, we introduced two e�cient deadline-constrained causal ordering protocols in the
context of multicast and broadcast communication. Each message m carries control data that
allows it to be delivered to the destination process as soon as each message belonging to its past
has been delivered or as soon it is about to miss its deadline.
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Appendix: Correctness Proof

To prove that our algorithm guarantees deadlined-constrained causal order, we use two steps. In
the �rst one we show that all messages received within their deadlines and whose delivery does not
violate causal ordering with respect to already delivered messages, will be delivered within their
deadlines and the other messages will be discarded (liveness property). Secondly, we prove that all
delivery events respect causal order (safety property).
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Liveness

Before proving liveness property, let us remark that, from the de�nition of MCP array and from
the assumptions on the minimum delay between two any communication events in any process (Tp)
and the minimum transmission delay (Tc) of any message with respect to the precision and the
granularity of the virtual global time (see Section 2.3), the following relation holds for each message
m:

send timem �MCPm[x; y] 8 (x; y) (P)

Note that this relation holds even at start-up time of the protocol since MCPm's components
are initialized to a value lower than the value of the variable current time (see Section 3).

Theorem (Liveness) (i) All messages arrived after the expiration of their deadlines or whose

delivery would cause a causality violation will be discarded and (ii) all messages arrived within

their deadlines and whose deliveries do not violate causal ordering will be delivered within their

deadlines.
Proof (Sketch) Point i follows from the test (line R1) of the protocol of Figure 5.

Point ii is proved by contradiction. Suppose that there exists a message m that arrived within
its deadline (deadlinem) and has not been delivered within its deadline. Hence, on its dead-
line, from the delivery condition (line R3), the following condition NDC follows when considering
MCPm[j; i] = send timem:

9x : (MCPm[x; i] > MCPi[x; i])^
(MCPm[x; i] > current time� (deadlinem � send timem)) (NDC)

On the deadline of message m we have: current time = deadlinem. So the second term of NDC
becomes: 9x : (MCPm[x; i] > send timem). But this contradicts property P.

Hence the only reason for not delivering m is: multiple DC(m)s, related to messages m1; : : : mk

with k > 1, become true simultaneously and there is the following situation. MCPmp < MCPmq

and MCPmq < MCPmp for some q and p in f1; : : : kg. This is clearly impossible because the
relation < de�nes a partial order on the set of all matrices MCP .

It follows that, at the deadline of an arrived message m, NDC is false contradicting our initial
assumption. Therefore for any message m (not discarded at line R1), its delivery will be executed
before its deadline expires. 2

Safety

Lemma 1 Each variable MCPi[x; y] (8i; x; y) does not decrease.

The proof follows directly from the protocol (lines S2 and R7).

Lemma 2 Consider a pair of messages m1 and m2 sent respectively by Pi and Pj such that m1
has been sent to Pl. We have: send(m1) ! send(m2) ) MCPm1 < MCPm2 with MCPm1[i; l] �
send timem1 �MCPm2[i; l].
Proof Label the happened before relation between two send events send(m1) and send(m2) by a
non-negative integer k in the following way; k represents the number of messages that establish the
causal path from send(m1) to send(m2) (by de�nition k does not include m1). So, we have:
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� send(m1)
0
! send(m2) i� m1 and m2 have the same sender or the sender of m2 has been

delivered m1 before sending m2 (see Figure 8.a and Figure 8.b).

� send(m1)
k>0
! send(m2) i� 9m0 : send(m1)

k�1
! send(m0) and send(m0)

0
! send(m2).

The lemma is proved by induction on k. Remember that Pi (resp. Pj) is the sender of m1 (resp.
m2) and Pl is the destination process of m1.

1. k = 0 (m1 and m2 have the same sender Pi = Pj , Figure 8.a).

At the sending of m1, we have (de�nition of send timem1, lines 4 and 6): send timem1 =
MCPi[i; l] = current time. So at the sending of m2 by Pi, as MCPi[i; l] does not de-
crease (lemma L1), we have: MCPm2[i; l] � send timem1. From property P, it follows that
MCPm1[i; l] � send timem1 �MCPm2[i; l].

Further we have (because m1 and m2 have been sent by the same process, and by Lemma 1)
8 (x; y) : MCPm1[x; y] �MCPm2[x; y].

2. k = 0 (m1 and m2 have distinct senders Pi and Pj , and Pl = Pj , Figure 8.b).

Pj has been delivered m1 before sending m2; at the delivery of m1 to Pl(= Pj), we have:
MCPl[i; l] = send timem1 (line 19).

At the sending ofm2 by Pl, asMCPl[i; l] does not decrease (lemma L1), we have: MCPl[i; l](=
MCPm2[i; l]) � send timem1. So, from property P, it follows thatMCPm1[i; l] � send timem1 �
MCPm2[i; l].

Moreover, as 8x; y : MCPl[x; y] does not decrease (lemma L1) and as m1 is delivered to Pl
(line 21) before m2 is sent by Pl (line 4), we have: 8 (x; y) : MCPm1[x; y] �MCPm2[x; y].

3. k > 0.

i: send(m1)
k�1
! send(m0):

By the induction hypothesis we have: MCPm1[i; l] < send timem1 �MCPm0 [i; l] and

8 (x; y) : MCPm1[x; y] �MCPm0 [x; y]

ii: send(m0)
0
! send(m2):

As k = 0, we have 8 (x; y) : MCPm0 [x; y] �MCPm2[x; y].

Then, the lemma follows from i and ii.

2

Theorem Delivery Events Respect Causal Order

Proof (sketch) Let us consider two messagesm1 andm2 sent to process Pl respectively by processes
Pi and Pj and let us suppose that they have been delivered out of causal order (i.e., send(m1) !
send(m2) and deliver(m2) ! deliver(m1)). When m2 is delivered to Pl, its delivery condition
(DC(m2), line R3) requires one of these two conditions at process Pl be true: MCPm2[i; l] �
MCPl[i; l] _ current time = min(Deadline arr succ).
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Figure 8: Proof of Lemma 2

� if MCPm2[i; l] �MCPl[i; l] then:

from MCPm2[i; l] � send timem1 (Lemma 2), we conclude: send timem1 � DELl[i].

The last message sent by Pi and delivered to Pl was sent at MCPl[i; l] (see de�nition of
MCPl[i; l], line R4 and line S2). All messages sent by Pi to Pl before MCPl[i; l] have
been either delivered or discarded. As m1 is delivered (by hypothesis) and has been sent
at send timem1 � MCPl[i; l], it has already been delivered; this contradicts the hypothesis
that m1 was delivered after m2.

� if current time = min(Deadline arr succ) then two cases are possible while delivering m2.

{ m1 has not arrived yet. In this case m2 is delivered and m1 will be discarded if it arrives
(line R1) contradicting our hypothesis (namely, m1 is delivered).

{ If m1 has arrived, then, its delivery condition (DC(m1), line R3) is necessarily true (as
8x : MCPm1[x; l] �MCPm2[x; l], Lemma 2); moreover it became true, at worst, at the
same time as DC(m2) as min(Deadline arr succ) is equal for each arrived message. So
if DC(m1) is satis�ed before DC(m2), m1 is delivered �rst; if it is satis�ed at the same
time it is also delivered �rst as MCPm1 < MCPm2 (see below line R3).
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