
An Efficient Weak Mutual Exclusion Algorithm

Paolo Romano

INESC-ID

Luis Rodrigues

INESC-ID/IST

Abstract

The Weak Mutual Exclusion (WME) is a recently proposed

abstraction which, analogously to classical Distributed Mu-

tual Exclusion (DME), permits to serialize concurrent ac-

cesses to a shared resource. Unlike DME, however, the

WME abstraction regulates the access to a replicated shared

resource and is solvable in the presence of less restrictive

synchrony assumptions, i.e. in an asynchronous system aug-

mented with an eventually perfect failure detector.

This paper presents an efficient WME algorithm which

outperforms previous solutions in terms of both commu-

nication latency and message complexity, while relying on

minimal synchrony assumptions.

1. Introduction

Context. The distributed mutual exclusion problem (DME)

[3], [5], [17] requires to define a distributed coordination

algorithm aimed at resolving conflicts resulting from con-

current, distributed processes accessing a single, indivisible

resource, that can only support one user at a time. An user

accessing the resource is said to be in its critical section

(CS), and the (safety) property guaranteeing that at any

time at most one process is in its CS is known as mutual

exclusion.

Very recently, the work in [16] has formalized a variant of

DME, namely the Weak Mutual Exclusion problem (WME),

which regulates the access to a replicated shared resource

whose copies are locally maintained by every participating

process. More in detail, the WME problem is derived by

extending the classical DME specification in a twofold direc-

tion. On one hand, by explicitly modelling the interactions

with the replicated shared resource to be accessed in mutual

exclusion, which is viewed as a deterministic state machine.

On the other hand, by relaxing the classical mutual exclusion

property in order to detach it from the notion of real-time.

Unlike the classical DME, in fact, in the WME problem a

CS can be granted not only in case there is currently (i.e. at

the same time) no other process in the CS, but rather as long

as the whole sequence of established CSs can be reordered

to yield a sequential history in which: 1) no two CSs overlap

over time, 2) the order of establishment of the CSs and of

the operations executed within the CSs on the (replicated)

shared resource does not contradict the (partial) order in

the original history, and 3) the state trajectories of the set

of replicas of the shared resource are equivalent to a serial

execution over a single copy of the resource. Further, the

specification of the WME problem allows aborting already

established CS instances in case of failure suspicions. In this

case, the process is ejected from its CS and any pending

operation must fail (i.e. not be executed by any process)

delivering an explicit notification to the application level.

Related Research. Over the years, the mutual exclusion

problem has been investigated both in the failure-free model

[15], [18] and under the assumption that the processes

accessing the shared resource can fail according to the

crash-failure model [1], [13]. The large number of DME

algorithms proposed in literature are typically classified into

two main categories [14], [17]: token-based or permission-

based. In token-based algorithms, e.g. [15], [18], only the

site holding the token can execute the CS and make the final

decision on the next site to enter the CS. In permission-based

algorithm, e.g. [3], [12], a requesting site can execute the CS

only after it has received permission from each member of

a subset of sites in the system and every site receiving a CS

request message participates in making the final decision.

Independently of the chosen algorithmic approach, the

DME problem is solvable, in presence of failures, only if

processes are able to accurately distinguish unresponding

processes from crashed ones [5] (i.e. without the possibility

of any mistake). Unfortunately, phenomena such as network

congestions, partitions or nodes’ overloads, can make it very

hard, or even impossible, to guarantee perfectly accurate

failure detections [4] in real-life distributed systems. On the

other hand, the WME problem was shown to be solvable

in presence of much more relaxed synchrony assumptions,

namely the availability of an eventually perfect failure

detector, or ♦P [4]. The ♦P failure detector is allowed to

generate an unbounded number of false failure suspicions,

and is required to ensure accurate failure indications only

eventually, i.e. after an unknown, yet finite, time. In other

words, with respect to the classical DME problem, the

WME is solvable in much more general (and realistic) sys-

tem models such as the partially synchronous (also named

eventually synchronous) one [6], in which the bounds on

communication latency and relative process speed are only

guaranteed to hold after some unknown time.

Contribution. In this paper we introduce a novel WME

algorithm which sensibly outperforms the one presented in

[16], while still tolerating a minority of faulty processes and

relying on the weakest synchrony assumptions required for

solving WME, i.e. the availability of an eventually perfect

failure detector [4].

Unlike the WME algorithm in [16], which triggers a

(costly) consensus instance [7] for entering and exiting

from the critical section, as well as to issue operations, the

algorithm presented in this paper resorts to using consensus

exclusively in the case of failure suspicions of the process

currently in the CS. In absence of failures, the proposed al-

gorithm relies on an efficient token-asking, broadcast-based

coordination scheme [14], which resembles those employed

by classical DME’s algorithms [18], [15]. This allows the

presented WME algorithm to sensibly outperform the WME

algorithm previously presented in [16], in terms of both

message complexity and communication latency. On the

other hand, unlike classical DME token-based algorithms,

which require to enforce the uniqueness of the token at any

time, the presented WME algorithm is designed to tolerate

the simultaneous coexistence of multiple tokens, possibly

generated by the occurrence of false failure suspicions.

Structure of the paper. Section 2 formalizes the considered

system model. The the WME’s specification is recalled in

Section 3. Section 4 presents the WME algorithm, and

discusses its correctness. An analysis of its performance is

provided in Section 5.

2. System Model

We consider a classical crash-prone asynchronous mes-

sage passing system model consisting of a set of n processes

Π = {1, . . . , n} (n > 1). We do not consider Byzantine

failures: a process either correctly executes the algorithm

assigned to it, or crashes and stops forever. We denote the

crash of a process with the event crashi. A process that

does not crash is said to be correct. Communication takes

place over reliable channels guaranteeing that messages are

eventually delivered by the intended receiver, unless either

the sender or the receiver crashes. We assume the existence

of a discrete global clock whose ticks are the set of natural

numbers N. The time instant in which an event e is generated

is denoted as T (e). Note that the global clock is a fictional

device to which processes have no direct access.

The system is augmented with a distributed failure detec-

tor oracle [4], in the sense that every process has access to

a local failure detector module that provides hints on the set

of crashed processes. The algorithm described in this paper

relies on an Eventually Perfect failure detector (♦P), namely

the weakest failure detector for solving WME [16], which is

specified by the following two properties [4]: every crashed

process is eventually suspected by every correct process

(Strong completeness) and, there is a time after which every

correct process is not suspected by every correct process

(Eventual strong accuracy).

Users, stubs, and shared resource replicas. Each process i

hosts a user ui, a stub si, and a replica of the shared resource

ri. A user ui only interacts with its local stub si to request

exclusive access to the shared resource and issue operations

on it. The stub si acts as a wrapper on the local replica

of the shared resource ri and coordinates with the other

processes to ensure that the operations executed on ri are

equivalent to an execution over a single copy of the shared

resource (which is required to be consistent with the order

of establishment of the mutual exclusion). Users, stubs and

replicas of the shared resources are modeled as deterministic

automata that communicate by exchanging input and output

events [5]. A stub si interacts with its local replica ri of the

replicated resource through the following classes of events

from the domain SRevents:

i) invokei[op] is an input event of ri (resp. output event

for si), which triggers the execution of the operation op ∈
Operations, where Operations is the set of admissible

operations for the replicated shared resource automaton. We

assume each op to be univocally identifiable (this is accom-

plishable by associating an unique id with each operation,

which we omit to simplify presentation).

ii) responsei[op, res] is an output event of ri (resp.

input event for si) which notifies the stub about the result

res ∈ Results produced by the execution of a previously

issued operation op on ri, where Results is the set of

possible results that the shared resource automaton can

produce in output.

The interaction with a replica ri is assumed non-blocking,

i.e. if ri receives a invokei[op] event it eventually gener-

ates the corresponding responsei[op, res] unless process i

crashes. A user ui and its local stub si interact using the

following six classes of events from the domain USevents:

i) tryi is an input event of si (resp. output event of ui)

which indicates the wish of ui to enter its CS. In this case

we say that i volunteers.

ii) criti[CS id], where CS id ∈ N, is an input event of

ui (resp. output event of si) which is used by si to grant ui

access to the critical section instance CS id.

iii) issuei[CS id, op], where CS id ∈ N and op ∈
Operations, is an input event of si (resp. output event of

ui), which is used by ui to issue an operation op on the

shared resource.

iv) outcomei[CS id, op, res], where CS id ∈ N, op ∈
Operations and res ∈ Results, is an input event of ui

(resp. output event of si) which notifies the result res of the

execution of operation op by ri.

v) exiti[CS id] is an input event of si (resp. output event

of ui) which indicates the wish of ui to leave the critical

section instance CS id. In this case we say that i resigns.

vi) remi[CS id] is an input event of ui (resp. output event

of si) which notifies ui that it can continue its work out of

its critical section instance.

vii) ejectedi[CS id] is an input event of ui (resp. output

event of process si) which notifies ui that si was forced to

exit from the critical section CS id.

An operation that was issued by a user ui through a

issuei[CS id, op] event, and which is followed neither by

the corresponding outcomei[CS id, op, res] event, nor by

an ejectedi[CS id] event is called a pending operation.

If si generates an outcomei[CS id, op, res] event for a

pending operation, we say that the operation was success-

fully executed, or simply succeeded. If si generates an

ejectedi[CS id] event for a pending operation, we say that

the operation failed to execute, or simply failed.

An event e is said to be associated with a CS instance

CS id iff i) e is an event exchanged between a user and

a process (i.e., e ∈ USevents), and ii) e is either the

try event that determined the establishment of the CS

instance CS id or e has CS id as the value of its CS

instance identifier parameter. The events issuei[CS id, op]
and invokei[op

′] (resp. outcome[CS id, op, res] and

responsei[op
′, res]) are said to be correlated iff op = op′,

i.e. they are associated with the same operation op.

Histories and Sub-Histories. A history H is the (possibly

infinite) sequence of events produced by the automatons of

the system (i.e., users, processes and replicas of the shared

resource), including any process crashes event. A history H

induces a time-based irreflexive partial ordering relation <T
H

on its events:

e0 <T
H e1 ⇔ T (e0) < T (e1)

A process subhistory, H |i (H at i), of a history H is

the subsequence of all events in H generated by process

i. We define the user-stub subhistory HUS as the subse-

quence of the history H restricted to the events exchanged

between stubs and users, i.e. HUS=H ∩ USevents. Anal-

ogously, the stub-resource subhistory HSR is defined as

the subsequence of the history H restricted to the events

exchanged between stubs and replicas of the shared resource,

i.e. HSR=H ∩ SRevents. The subsequence of the user-

stub subhistory HUS restricted to the issuei[CS id, op]
and outcome[CS id, op, res] events is called the user-stub

successful operations subhistory and denoted as HUS|op. We

define a CS instance subhistory, HCS
id , as the subsequence

of the user-process subhistory HUS restricted to the events

associated with CS instance id. We define the init event of

a CS instance subhistory HCS
id , as the try event in H that

determined the establishment of CS instance id, and denote

it as I(HCS
id). The final event of a CS instance subhistory

HCS
id , denoted with F(HCS

id), is defined as the first event in

the set {remi[CS id], ejecti[CS id], crashi} in H .

Well-formed CS instance subhistories. A CS instance

subhistory, HCS
id is said to be well-formed if and

only if it is a prefix of the cyclically ordered se-

quences S1 or S2, where S1 is defined as S1 :=
(tryi criti[id] OPS exiti[id] remi[id]), OPS being any se-

quence of issuei[CS id, op] and outcomei[CS id, op, res]
events generated by the following context free grammar:

OPS := (issuei[id, op] outcomei[id, op, res] OPS | ε)

and S2 is defined as S2 := (tryi criti[id] INT OPS),
INT_OPS being any sequence of issuei[id, op],
outcomei[id, op, res] and ejectedi[id] events generated

according to the following context free grammar:
INT OPS := (issuei[id, op] outcomei[id, op, res] INT OPS |

issuei[id, op] ejectedi[id] | ejectedi[id])

Informally, any well-formed CS instance subhistory HCS
id

starts with the establishment of a new critical section in-

stance, through the tryi-criti[CS id] events. Once entered

the critical section instance, ui can (sequentially) issue

an arbitrary number (possibly null) of operations, through

the issuei[CS id, op] events. In case ui is not ejected by

its CS, it can explicitly resign through the exiti[CS id],
remi[CS id] events.

Complete CS instance subhistories. A well-formed CS

instance subhistory HCS
id is complete iff: i) it has no pending

operations, and ii) the CS instance is concluded via either

a voluntarily resignation or an ejection or a crash, formally

F(HCS
id) 6= ∅.

A legal completion of a well-formed history H is a

well-formed history obtained by completing or deleting any

not complete CS instance subhistory HCS
id by adding or

removing events from H according to the following rules:

1) if HCS
id = {tryi} then either append a criti[id] event

or remove criti, deleting the whole CS instance subhistory,

2) for any pending operation op issued by user ui within

CS instance CS id, append zero or more invokei[op],
responsei[op, res] and outcomei[CS id, op, res] corre-

lated events, preserving its well-formedness,

3) if, after applying rules 1 and 2, HCS
id is not empty,

append either an ejecti[id] event, or the pair of events

exiti[id]-remi[id], or the remi[id] event so to complete it

while preserving its well-formedness.

Equivalent and Isomorphic Histories. Two histories H and

H ′ are said equivalent if for every process i ∈ Π H |i=H ′|i.
A stub-resource subhistory HSR is isomorphic to a user-

stub successful operations subhistory HUS|op iff:

A) a bijection M exists from HSR to HUS|op such that

∀e ∈ HSR and ∀e′ ∈ HUS|op,M(e) = e′ ⇔ e and e′ are

correlated events, and

B) M is an order isomorphism with respect to <T
H , i.e.

∀{e0, e1} ∈ HSR, e0 <T
H e1 ⇔ M(e0) <T

H M(e1).
Informally, a stub-resource subhistory and a user-stub

successful operations subhistory are isomorphic if each event

in HSR has a corresponding event in HUS|op (and vice

versa) (condition A above), and if the order of the issue and

outcome events exchanged between the users and the stubs

matches the order of the correlated invoke and response

events exchanged between the stubs and the replicas of the

shared resource (condition B above).

CS-sequential Histories. We define the irreflexive partial

order <CS
H on well-formed, complete CS instance subhisto-

ries of the history H as follows:

HCS
id <CS

H HCS
id′ ⇔ F(HCS

id) <T
H I(HCS

id′)

A well-formed history H is CS-sequential iff <CS
H is a

total order relation for its user-stub subhistory HUS . Note

that, by this definition, if a user-stub subhistory is CS-

sequential then two CS instances never overlap over time.

This is equivalent, in a sense, to the classical mutual exclu-

sion property [5] (which requires that “No two processes are

in the CS at the same time”) except from that, unlike in the

original DME problem, the “owner of the CS” can be, in

our case, pre-empted by the delivery of an ejected event.

3. The Weak Mutual Exclusion Problem

An algorithm solves the WME problem if, under the

assumption that every user is well-formed, any run of the

algorithm satisfies the following six properties [16]:

Safety Properties

Weak Mutual Exclusion: For every history H there exists a legal

completion H∗, such that:
WME1: HUS

∗
is equivalent to a CS-sequential user-stub

subhistory S.
WME2: <CS

H∗
⊆<CS

S

WME3: the stub-resource subhistory HSR
∗

is isomorphic
to the user stub subhistory of S, SUS .

1CS: The stub-resource subhistory HSR
∗

is equivalent to a serial

execution on a single replica of the shared resource.

Well-formedness: For any i ∈ Π, the history describing the

interaction between ui and si is well-formed.

Liveness Properties
Starvation-Freedom A correct process i that volunteers eventually
enters the critical section, if no other process stays forever in its
critical section.

CS-Release Progress: If a correct process resigns, it enters its
remainder section.

Operation Progress: If a correct process issues an operation,

eventually this either fails or succeeds, and eventually all issued

operations succeed.

The weak mutual exclusion property requires that the CS

instance subhistories can be reordered (without violating

the ordering of events in the original process subhistories)

to yield a history in which no two CS instances overlap

over time (WME1), while preserving the real time ordering

of acquisitions of the critical sections (WME2). WME3

constrains the order of execution of the operations on the

replicas of the shared resource to be consistent with the

execution order perceived by the user while interacting

with its stub. Note that WME does not force processes to

exchange mutual information on the state of the local copies

of the shared resource, ri, whose state trajectories could be

therefore allowed to arbitrarily diverge. Such runs are ruled

out by the 1CS property which guarantees that the replicated

shared resource’s history is 1-copy serializable [2].

The liveness properties provide non-blocking guarantees

on the establishment and release of the CS, as well as

on the execution of operations on the replicated shared

resource. Furthermore, to rule out trivial solutions which

could constantly fail to execute operations, the Operation

Progress property requires that after some unknown, but

finite, time any issued operated is successfully executed.

4. The Algorithm

In this section we present a token-based algorithm which

solves the WME problem using a ♦P failure detector and

tolerates a minority of process crashes.

Overview. A run of the algorithm evolves as a sequence

of epochs, each one being univocally associated with a

sequentially increasing identifier. An epoch starts with

a normal phase, in which the stub executes the pseudo-

code defined in Figure 1, and is (possibly) concluded by a

termination phase in which the stub executes the termination

protocol reported in Figure 2. The code executed in runs

without any failure suspicion (i.e. or simply nice runs)

resembles the classical token-passing broadcast-based DME

algorithm in [15], extended in order to handle the execution

of operations on the replicated resource. The termination

protocol, on the other hand, relies on a consensus service1

[7] to ensure that processes concluding the current epoch

agree on a consistent global state prior to entering the

normal phase of a fresh new epoch.

The switching between the normal and the termination

phases is controlled by the block variable, which is set

to false as soon as the termination protocol is activated,

disabling all the input events defining the stub’s behavior

during nice runs (see Figure 1), and is re-set to the true

value only when the termination protocol is concluded (see

Figure 2). Therefore, at each process, the normal and the

termination phases never overlap. Further, a stub tags all its

output messages with the current epoch identifier, and only

accepts messages tagged with the current epoch identifier.

Local variables. Each stub si maintains the following

local variables: curOwner, storing the token owner’s

identity, which is initialized by all processes with a

common, predetermined, value, namely s1; reqId, namely

a sequentially increasing integer identifier used to tag the

CS establishment requests; granted, namely a n-entries

array, whose j-th entry keeps track of the latest CS

instance already granted to sj ; curSN , a global sequence

number which is used to impose a total order on the

sequence of both i) invoked operations and ii) CS-instance

subhistories; reqs, a FIFO-order queue storing the received

CS establishment requests; opHist, which stores the

ordered sequence of operations issued within an epoch;

lastIssuedOp, storing the last operation to have been

locally issued, but not yet invoked, if any; the current

epoch number, curEp; a boolean flag, block, which inhibits

1. The consensus problem, which is solvable in our model, is specified
by the following properties [7], [6]: i) Validity: Any value decided is a
value proposed; ii) Uniform Agreement: No two correct processes decide
differently; iii) Termination: Every correct process eventually decides, iv)
Integrity: No process decides twice.

PID curOwner=s1; // identity of the token owner
State state=IDLE; // initialized to TOKEN HELD only on s1

int reqId=0; // id of the last issued CS request
int[n] granted={0,. . . ,0}; // last CS granted ∀i ∈ Π
int curSN=0; // current global sequence number
FIFOQueue reqs=∅; // stores CS requests
FIFOQueue opHist=∅; // ordered seq. of invoked operations
Operation lastIssuedOp =⊥; // last pending operation
int curEp=0; // current epoch number
boolean block=false; // set to true during termination phases

upon tryi ∧ ¬block do
if (state=TOKEN HELD)

state=CS IDLE; criti;
else
broadcast[REQUEST, curEp, ++reqId];
state=REQUESTING;

upon receivei[REQUEST, epoch, reqId] from pj

where curEp=epoch ∧¬ block do
if (granted[j] < reqId)
if (state=TOKEN HELD)

curOwner=j; state=IDLE;
broadcast[GRANTED, curEp, j, reqId, curSN+1];

else
reqs.push([j,reqId]);

upon receivei[GRANTED, epoch, newOwner, reqId, sn]
where curEp=epoch ∧ sn=curSN+1 ∧¬ block do

granted[newOwner]=reqId; curSN++;
reqs.remove([newOwner,reqId]);
curOwner=newOwner;
if (curOwner=myself)

state=CS IDLE; criti;

upon exiti ∧ ¬block do
remi;
if (reqs 6= ∅)

[newOwner, newCSID] = reqs.pop();
broadcast[GRANTED, curEp, newOwner, newCSID, curSN+1];
curOwner=newOwner; state=IDLE;

else
state=TOKEN HELD;

upon issuei[CSid, op] ∧¬block do
broadcast[INVOKE, curEp, op, curSN+1];
state=CS ISSUING; lastIssuedOp=op;

upon receivei[INVOKE, epoch, op, sn]
where curEp=epoch ∧ sn=curSN+1 ∧ ¬block do

curSN++;
opHist.push(op);
broadcast [ACK, curEp, op, sn];

upon ¬block ∧ receivei[ACK, epoch, op, sn] where

(curEp=epoch ∧ sn=curSN) from ⌊N
2
⌋ + 1 procs. do

invokei [op];
wait resulti[op,res];
if (CS ISSUING)
outcomei[CSid,op,res];
state=CS IDLE; lastIssuedOp = ⊥;

Figure 1. Pseudo-code during nice-runs (stub si)

message reception during epoch changes; the state variable,

storing values in the domain {IDLE, REQUESTING,

TOKEN HELD, CS IDLE, CS ISSUING}, which

is initialized to IDLE on all processes except on the initial

token owner, s1, where it is set to the TOKEN HELD

value. The possible evolutions of the state variable are

shown in Figure 3 and described in the following.

Behavior during nice runs. The mechanisms underlying

the establishment and the release of the CS are analogous to

those employed in [15]. To establish a new CS instance, a

stub si needs to first establish the ownership of token. If si

already owns the token, i.e. it is in the TOKEN HELD

state, a new CS can be immediately established upon

the reception of a tryi event. Otherwise, si enters the

REQUESTING state, increases the reqId value and

upon receivei [NEWEP, ep, granted, sn, owner, opHist]
where ep=curEp ∨ curOwner∈ ♦Pido

block=true;
if (curOwner∈ ♦Pi)
broadcast[NEWEP,curEp,reqs,granted,curSN,si ,opHist];

else
broadcast[NEWEP,curEp,reqs,granted,curSN,curOwner,opHist];

// collect a majority of NEWEP messages
Set S=∅;

while (|S| < ⌊N
2
⌋ + 1)

wait receivei[NEWEP,ep’,reqs’,granted’,sn’,owner’,opHist’]
where ep’=curEp;

S=S∪[NEWEP, ep’, reqs’, granted’, sn’, owner’, opHist’];
// propose message with maximum sequence number

Msg m = msg∈S : ∀s ∈ S msg.sn ≥ s.sn;
propose([curEp, m.granted, m.sn, m.owner, m.opHist]);
wait decision([ep*, reqs*, granted*, sn*, owner*, opHist*])

where ep*=curEp;

// update local state according to consensus decision
curSN=sn*; granted=granted*; reqs=reqs*;
opHist=opHist*\opHist;
curEp++;
if (state = REQUESTING)
if (owner* = myself)
criti;
state=CS IDLE;

else if ([myself,reqId] /∈ reqs)
broadcast[REQ, curEp, reqId];

else if (state = CS ISSUING)
if (opHist6= ∅)

Operation op* = opHist.pop();
invokei [op*];
wait resulti[op*, res*];
if (op* = lastIssuedOp)
outcomei[CSid,op*,res];
state = CS IDLE;
last issued op = ⊥;

else if (owner*=myself)
broadcast [INVOKE, curEp, last issued op, curSN+1];

// process remaining operations from the previous epoch
while (opHist6= ∅)

op† = opHist.pop();

INVOKEi [op†];

wait resulti[op† ,res†];

curOwner=owner*;
if (curOwner6=myself) ∧ (state=CS IDLE ∪ state=CS ISSUING)

ejecti;
state=IDLE;

else if (curOwner = myself) ∧ (state = IDLE)
if (reqs 6= ∅) // test if there are requests to enter the CS

[newOwner, newCSID] = reqs.pop();
broadcast[GRANTED, curEp, newOwner, newCSID, curSN+1];
curOwner=newOwner;

else // if there are no CS requests, retain the token
state=TOKEN HELD;

block=false;

Figure 2. Termination phase pseudo-code (stub si).

broadcasts a REQUEST message tagged with the current

reqId value. Upon reception of a REQUEST message at

sj , the granted vector is used to determine whether the

incoming CS request has already been served. In such a

case, if sj is not the current token owner, the request is just

added to the reqs queue. On the other hand, if sj is the

token owner and is currently out of the CS, i.e. sj is in the

TOKEN HELD state, it updates its state to the IDLE

value and transfers the token by broadcasting a GRANTED

message tagged with the curSN + 1 sequence number,

the identity of the new token owner, and the reqId value

associated with the enabled CS request. The reception of a

(not obsolete) GRANTED message at stub sk triggers the

update of the k-th entry of the granted vector, the increase

of the global sequence number, as well as the removal of

the corresponding CS request from the reqs queue (if this is

IDLE

pass
token acq. token

eject/

HELD
TOKEN

CS_IDLE

try

REQ.

try/crit

exit

is
su

e

CS

ISSUING

in
vo

ke

pass token
eject/

pass
token

crit
acq

.to
k

en
/

eject/

Figure 3. Stub’s state machine (transitions occurring in
the termination phase shown in dashed lines).

already present). Furthermore, the requesting stub sk enters

the CS and updates its state variable to the CS IDLE

value.

As ui generates an exiti event, si immediately responds

with a remi event and, depending on whether there are

pending requests for acquiring the CS in the reqs queue

or not, the token is, respectively, either transferred (using

the same mechanism above described) to the stub whose

request is first in queue, or locally retained, setting the state

value to TOKEN HELD.

Upon the issuing of an operation, a stub enters

the CS ISSUING state, records the operation in

lastIssuedOp and broadcasts an INVOKE message carrying

the operation along with the curSN + 1 sequence number.

Upon reception of an INVOKE message tagged with the

sn = curSN + 1, a stub appends the operation to opHist,

increases curSN and broadcasts back an ACK message

tagged with the updated curSN value. In order for an

operation to be invoked on the local copy of the shared

resource, a stub waits to gather a majority of ACK messages

tagged with a sequence number equal to the local value of

curSN .

Termination protocol. The termination protocol is activated

as soon as the token owner is suspected to have crashed.

In this case a stub si sets the block variable to false and

broadcasts a NEWEP message conveying its CS requests

queue req, the granted vector, the curSN , the sequence

of operations stored in opHist, as well his own identity,

i.e. i, signaling his intention to candidate itself as the initial

token owner for the next epoch. The reception of a NEWEP

message at sj triggers, in its turn, the broadcast of a NEWEP

message. In this case, however, if sj is not suspecting the

current token owner, say sk, sj specifies sk’s identity, rather

than his own, in the NEWEP message (i.e. sj does not try

to eject sk from the CS).

Henceforth, independently of whether the termination

protocol was activated by the suspect of failure of the current

token owner, or by the reception of a NEWEP message, the

stub’s behavior is identical. First, the stub waits for a ma-

jority of NEWEP messages. Among the received messages,

the message carrying the largest sequence number value is

selected (if more than one message is tagged with the same,

largest sequence number, one of these messages is randomly

selected), and is proposed as input value to the consensus

service. Next, the stub waits for consensus termination. As

consensus outputs a decision value, si accordingly updates

his local variables curSN , granted and reqs. Then, it

determines whether there are operations included in the

opHist∗ output by consensus which have not yet been

executed on the local copy of the resource.
If si was requesting to enter the CS, it first checks whether

he has now been assigned the token ownership. In this case

the stub allows the user to enter the CS and accordingly

updates its state variable to the CS IDLE value. If si

has not become the token owner and his CS request was

not included in the reqs queue output by consensus, si re-

broadcasts it with an increased epoch number to make sure

that it is considered in the new epoch.
Alternatively, if si was issuing an operation while the

termination protocol was triggered, it checks whether any

of the operations in opHist∗ has not been locally executed

yet. If so, si executes the first of such operations and if

this coincides with his own pending operation stored in

lastIssuedOp, the corresponding outcome event is deliv-

ered to ui and the CS IDLE state is entered. On the other

hand, if there are no operations in opHist∗ to be executed

but si results to still be the token owner, si re-broadcasts

his last issued operation in the new epoch.
Next si processes any remaining operation and, before

completing the termination phase, it verifies if the consensus

round has determined an alteration of the token ownership

which requires either i) the generation of an ejecti event

towards ui (this happens in case si was previously in the CS

and lost the token ownership during the epoch change), or

ii) immediately transferring the token ownership to the first

process in the reqs queue (in case si was not requesting

the CS in the former epoch, it has now been assigned the

token ownership, and req is not empty), or iii) just a simple

update of the state variable to the TOKEN HELD value

(if si was not requesting the CS in the former epoch, it has

now become the token owner, and req is empty).

As a final remark, note that, for simplicity of presentation,

in the algorithm’s pseudo-code the local opHist variable is

explicitly garbage collected only during the execution of a

termination phase. However, in order to timely prune un-

needed information from opHist, one could rely on classical

stability detection schemes, e.g. [8], aimed at informing each

stub about the sequence of operations already invoked in the

current epoch by all processes. All such operations can in

fact be immediately garbage collected from opHist.

4.1. Correctness Arguments

For space constraints it is not possible to present a formal

correctness proof with respect to the whole set of properties

defining the WME problem. However, we provide a sketch

of proof aimed at giving some insights on the algorithm’s

correctness. Our argumentation is structured as follows.

We first discuss why the algorithm guarantees the WME

properties in nice runs. Then we analyze the algorithm’ s

dynamics in case of failure suspicions.

Nice runs. First let us derive a legal completion H∗ of

any incomplete history H generated by a nice run using

the following rules: i) if there is any stub si in the CS,

then append a crashi event to H; ii) for any stub sj in the

REQUESTING state, delete the last tryj event from H.

Next, let us recall that in absence of failure suspicions the

presented algorithm can be viewed as a modular extension of

the token-based DME algorithm in [15], extended to include

the logic for the management of the operations issued on

the replicated resource. Since in nice runs the algorithm in

[15] guarantees mutual exclusion, it follows that H∗ must

be CS-sequential (hence WME1 holds). Also, since H∗ is

obtained from H without altering the ordering of any event,

WME2 trivially follows. Further, each stub si issues (the

same set of) operations on its local resource ri according

to the (total) order specified by the global sequence number

curSN , whose advancement is determined exclusively by

the stub in CS either when it issues a new operation, or

when it grants the token ownership (and hence the CS) to

some other process. At the light of these considerations, it

can be shown that i) there can be no mismatch between the

order of execution of operations observed by a user ui and

the order of invocations on the resource ri (hence WME3

holds), as well as that ii) the sequence of operations invoked

on any resource replica produces the same results that would

have been produced if it had been executed on a single copy

of the resource (hence 1CS holds).

The fact that, in nice runs, the establishment and the

release of the CS are handled using mechanisms analogous

to those in [15] explains why the Starvation-Freedom and

CS-Release progress properties (which are common to both

the WME and DME problems) hold also for our algorithm.

Finally, operation progress is ensured since, in nice runs,

all messages sent are received by the designated recipient,

making the distributed acknowledgment phase associated

with operations issuing non-blocking and precluding the

possibility for any operation to fail.

Runs including failures (or failure suspicions). It can

be easily observed that failures of a process that is not

owning the token can not endanger the correctness of the

algorithm (as long as a majority of processes is correct).

In case of crash of the token owner, by the completeness

property of ♦P, we get that eventually some process si enters

the termination phase, broadcasts a NEWEP message, and

waits for a majority of replies before starting consensus. If

si is correct, since a majority of processes is correct and

channels are reliable, si will deliver its NEWEP to at least a

majority of processes. On the other hand, if si were faulty,

eventually some correct process would suspect the token

owner, leading to the same result: a majority of processes

µ ⊆ Π switching from the normal to the termination phase.

Hence, some correct process sk will eventually propose a

value to consensus. Further, since sk is correct, its NEWEP

messages will be eventually received by all other correct

processes, which will all activate the termination protocol

and propose a value to consensus. This suffices to guarantee

termination of consensus.

Now let sn′′ be the largest sequence number associated

with an operation contained in the opHist′′ selected by a

stub sj after gathering NEWEP messages for epoch e from

any majority µ′ ⊆ Π of processes. Since all processes in

µ′ have switched from the normal phase to the termination

phase, then no operation with sequence number larger than

sn′′ can be invoked by any process in the normal phase of

epoch e. In fact, at most a minority of processes can still be

in the normal phase of epoch e, whereas, for an operation

to be invoked, a majority of processes must have first

acknowledged the corresponding INVOKE message. Further,

since any two majorities of processes necessarily intersect, it

follows that opHist′′ must contain all the operations invoked

by at least one process in the normal phase of epoch e.

Hence, all processes that complete the termination phase

for epoch e execute in the same order the same set of opera-

tions. Also, these processes will update their local variables

to reflect the common, consistent, global state determined

by the consensus decision. Further, as already discussed,

upon crash of the current token owner, all correct processes

activate and complete the termination phase, entering the

following epoch.

In other words, the completion of an epoch and the

starting of a fresh new one represents a regeneration point

in which the set of alive processes is brought back to a

state equivalent to the initial one of epoch 0. Further, by

the eventually strong accuracy property of ♦P, we get that

eventually the whole set of correct processes will start a

new epoch (with a consistent initial state) where no failure

suspicions occur. As discussed above, in such conditions (i.e.

in nice runs), the algorithm ensures WME.

5. Performance analysis

In this section we discuss the performances of the pre-

sented WME algorithm and contrast them with those of the

WME algorithm presented in [16]. We consider two clas-

sical metrics for evaluating the performance of distributed

algorithms, namely latency (in terms of communication steps

delay) and message complexity. Our analysis is focused on

nice runs as these are the most likely in practice.

In the algorithm presented in Section 4, which we refer

to as WME-1, the latency for entering the CS is either

0, if the process is already the token owner, or 2, if the

process needs to acquire the token ownership. The algorithm

upon ¬block ∧ receivei[INVOKE, epoch, op, sn]
where (curEp=epoch ∧ sn=curSN+1) do

curSN++;
opHist.push(op);
send [ACK, curEp, op, sn] to curOwner;

upon ¬block ∧ receivei[ACK, epoch, op, sn]

where (curEp=epoch ∧ sn=curSN) from ⌊N
2
⌋ + 1 procs. do

broadcast [DOINVOKE, curEp, op, sn];

upon ¬block ∧ receivei[DOINVOKE, epoch, op, sn] from curOwner
where (curEp=epoch ∧ sn=curSN) do

invokei [op];
wait resulti[op,res];
if (CS ISSUING)
outcomei[CSid,op,res];
state=CS IDLE; lastIssuedOp = ⊥;

Figure 4. A variant of the algorithm in Fig. 1 relying on a cen-
tralized acknowledgment scheme for operations’ invocation

correspondingly exchanges either 0 or O(N) messages. The

release of the CS is immediate and is possibly followed

by a broadcast advertising the change of the token own-

ership. Finally, the invocation of an operation requires 2

communication steps and the exchange of O(N2) messages

(the broadcast of an INVOKE message, followed by a

distributed acknowledgment phase in which each process

broadcasts back an ACK message). Actually, the handling

of the operation invocation in the WME-1 algorithm can

be relatively straightforwardly transformed to yield a lower,

O(N), message complexity, at the cost of an additional

communication step latency. Figure 4 shows exactly such

a variant of the WME-1 algorithm, which we refer to as

WME-2 (only the code related to the operation invocation

is shown as the remaining is unchanged). WME-2 relies

on a centralized acknowledegment scheme in which ACKs

messages are not broadcast, as in the WME-1 algorithm,

but only sent to the current CS Owner. The latter waits to

gather a majority of ACKs before broadcasting a DOINVOKE

message whose reception triggers the actual execution of the

operation on the replicas of the shared resource.

The algorithm in [16] relies on a common scheme for

establishing and releasing the CS, as well as to issue

operations: the execution of a consensus instance, preceded

by a preliminary reliable broadcast aimed at spreading the

consensus proposal value. As shown in [10], consensus

algorithms can be designed to provide optimal performances

either in terms of latency or of message complexity. In

the former case, consensus can be solved in 2 communi-

cation steps exchanging O(N2) messages. Alternatively, the

message complexity can be linear at the cost of at least

an additional communication step. The second and third

rows of Table 1 analyze the performances of the algorithm

[16] when employing, respectively, a consensus algorithm

achieving optimal communication latency, such as the one

in [11], rather than linear message complexity, as, e.g., for

the solution [9].

Table 1 summarizes the performance of the analyzed

WME algorithms, clearly highlighting the significant ad-

vantages arising from the algorithm presented in this paper

in terms of both communication steps latency and message

Enter CS Exit CS Invoke Op.

Lat. Msgs Lat. Msgs Lat. Msgs

WME-1 0/2 O(N) 0 0/O(N) 2 O(N2)

WME-2 0/2 O(N) 0 0/O(N) 3 O(N)

[16]+[11] 3 O(N2) 3 O(N2) 3 O(N2)

[16]+[9] 4 O(N) 4 O(N) 4 O(N)

Table 1. Performance comparison with the algorithm in [16].

complexity.

References
[1] D. Agrawal and A. E. Abbadi. An efficient and fault-

tolerant solution for distributed mutual exclusion. ACM Trans.
Comput. Syst., 9(1):1–20, 1991.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems. Addison-
Wesley Longman Publishing Co., Inc., 1987.

[3] O. Carvalho and G. Roucairol. On mutual exclusion in
computer networks. Comm. of the ACM, 26(2):146–147,
1983.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Communications of the ACM,
43(2):225–267, 1996.

[5] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
P. Kouznetsov. Mutual exclusion in asynchronous sys-
tems with failure detectors. J. Parallel Distrib. Comput.,
65(4):492–505, 2005.

[6] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[7] R. Guerraoui and A. Schiper. Consensus: The big misun-
derstanding. In Proc. of the Workshop on Future Trends
of Distributed Computing Systems, pages 183–188. IEEE
Computer Society, 1997.

[8] K. Guo and I. Rhee. Message stability detection for reliable
multicast. In Proc. of IEEE INFOCOM, pages 814–823, 2000.

[9] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, 1998.

[10] L. Lamport. Lower bounds on consensus, 2000.

[11] L. Lamport. Fast paxos. Distributed Computing, 9(2):79–103,
2006.

[12] M. Maekawa. A
√

N algorithm for mutual exclusion in
decentralized systems. ACM Trans. Comput. Syst., 3(2):145–
159, 1985.

[13] D. Manivannan and M. Singhal. An efficient fault-tolerant
mutual exclusion algorithm for distributed systems. In Proc
of the Conference on Parallel and Distributed Computing,
pages 525–530, 1994.

[14] M. Raynal. A simple taxonomy for distributed mutual
exclusion algorithms. SIGOPS Oper. Syst. Rev., 25(2):47–50,
1991.

[15] G. Ricart and A. Agrawala. Author response to ön mutual
exclusion in computer networksb̈y carvalho and roucairol.
Comm. ACM, 26(2):147–148, 1983.

[16] P. Romano, L. Rodrigues, and N. Carvalho. The weak mutual
exclusion problem. In Proc. of the International Parallel and
Distributed Processing Symposium (IPDPS). IEEE Computer
Society, 2009.

[17] M. Singhal. A taxonomy of distributed mutual exclusion. J.
Parallel Distrib. Comput., 18(1):94–101, 1993.

[18] I. Suzuki and T. Kasami. A distributed mutual exclusion
algorithm. ACM Trans. Comput. Syst., 3(4):344–349, 1985.

