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ABSTRACT
In recent years the world has witnessed many catastrophic
events where the intervention of first responders was re-
quired to manage massive disaster scenarios. To be effective,
emergency management teams must be able to coordinate
and communicate efficiently. To the best of our knowledge
no solution has been proposed to support the communication
and coordination of these teams in an integrated fashion. In
this paper we propose MUSTUS, an architecture that pro-
vides communication mechanisms and coordination primi-
tives, based on the interaction through a tuple space, whose
semantics are specifically designed to support the needs of
emergency management applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture & Design]: Wireless com-
munication; C.2.2 [Network Protocols]: Protocol archi-
tecture

General Terms
Algorithms, Design, Reliability

Keywords
Tuple space, mobility, coordination, emergency management

1. INTRODUCTION
In recent years the world has witnessed many catastrophic

events where the intervention of first responders was re-
quired to manage massive disaster scenarios. Examples such
as the tsunami in the Indian Ocean (Dec. 26, 2004) or the
hurricane Katrina (Aug. 29, 2005), to name a few, have
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shown that disaster recovery teams need to be able to com-
municate and coordinate effectively, in order to provide ef-
ficient emergency assistance. This has highlighted the rel-
evance of research in technologies for the support of emer-
gency management activities.

Recent research has addressed the problem of energy effi-
cient routing [17], modeling the mobility of rescue agents [2],
or characterizing the kind of traffic produced in such scenar-
ios [3]. However, to the best of our knowledge, no effective
solution has yet been proposed that addresses the coordina-
tion requirements of teams acting in disaster recovery situ-
ations.

The way rescue teams are organized in a disaster location
is usually defined by tactical decisions. Typically some form
of command center is established to supervise the operations
on the field. All the teams must report to their respective
leaders, which must coordinate the placement and activities
of each team, in order to maximize the effectiveness of their
operations.

Communication and coordination support is therefore of
the utmost importance to the success of rescue missions. In
this paper we propose MUSTUS, an architecture that pro-
vides communication mechanisms and coordination prim-
itives whose operation semantics are specifically designed
to support the needs of emergency management personnel.
This is achieved through the use of a specialized tuple space
that provides implicit communication through a shared data
storage and coordination support through operations that
change the state of the tuple space.

The rest of the paper is structured as follows. Section 2
surveys the related work. The characteristics of the disaster
recovery scenario considered are described in Section 3. The
architecture is presented in Section 4. A description of the
tuple space service is provided in Section 5. The two strate-
gies supported by the data dissemination layer are presented
in Section 6. Section 7 describes a set of example tuple prop-
erties and how they reflect in the behavior of the underlying
mechanisms. Finally, Section 8 provides the concluding re-
marks.

2. RELATED WORK
Research on communication support for emergency man-

agement in disaster area networks is prolific, addressing a
wide range of topics, from requirements definition to the
service deployment.

Jang et al. [10] propose a set of requirements for a MANET
based rescue information system targeting earthquake dis-
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asters and propose a solution where seismic related infor-
mation is collected by notebook PCs and fed to a command
center. However, very little detail is given on the supported
coordination capabilities.

Graaf et al. [4] define a set of requirements for emergency
networks and propose an architecture focused on routing
and multicast support.

Guo et al. [8] study the dynamic placement of relay nodes
as a solution to overcome network partitioning of the ad hoc
network formed by first responders.

Alves et al. [1] propose a solution for the deployment of
a backup network that helps mitigate the effects of partial
or complete disruption of the primary communication in-
frastructure used by rescue personnel. The idea is to use
off-the-shelf equipment along with specialized software that
provides useful services, like data dissemination and stor-
age or location awareness. Our proposed architecture is less
general, but more simple and focused on the efficient coor-
dination support.

Tuple spaces for ad hoc networks have also been studied
for scenarios other than emergency management, and several
systems have been proposed in the literature.

LIME [14] is an extension of the Linda model specifically
tailored to support applications for mobile hosts. Every host
has access to a local tuple space that is transiently shared
with other hosts in the immediate vicinity, forming a fed-
erated tuple space. This is accomplished by merging both
tuple spaces whenever two hosts become in radio contact
with one another. Since multi-hop sharing of a tuple space
is not supported this system is not adequate for remote co-
ordination support.

EgoSpaces [11] is a coordination model and middleware
for ad hoc mobile environments. It introduces the notion of
a view, that encompasses the subset of tuples available at
other hosts, selected according to some criteria, like number
of hops, tuple patterns or geographic context. Although
a complete specification of a view is provided, few details
are provided on how to efficiently implement the implicit
filtering during routing.

TOTA [12], as opposed to the previous solutions, proposes
a tuple-centric approach, where tuples are spread hop-by-
hop among nodes according to some associated propagation
rules. These can include the scope, i.e. the distance and/or
direction of propagation, and dependency relations regard-
ing other tuples, i.e. the presence or absence of other tuples
can affect the propagation. Furthermore, the propagation
rules can also contain instructions on how the tupleâĂŹs
content should change during propagation. Like LIME, tu-
ples are only accessible when stored locally or by immediate
neighbors.

All the above mentioned solutions provide a set of opera-
tions that support implicit communication and coordination
by manipulating a shared tuple space. However, LIME only
supports transient sharing of tuple spaces between imme-
diate neighbors, while EgoSpaces and TOTA do not pro-
vide optimized communication mechanisms for MANETs in
emergency management scenarios.

3. EMERGENCY MANAGEMENT SCENA-
RIOS

In emergency management scenarios teams of first respon-
ders operate together in order to extinguish fires, rescue
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Figure 1: Architecture.

people from debris, maintain public order and safety, re-
pair infrastructural damages, among other activities. These
teams are usually composed by firefighters, police officers,
paramedics, civil protection officers and construction agents.
Depending on the specificity of the emergency situation,
other structures are deployed, such as emergency transporta-
tion sites (ambulances and helicopters), temporary field hos-
pitals and temporary housing for affected civilians. The
dynamics and responsibilities of each team and functional
unit imply a high degree of coordination activity, usually
performed by a command center deployed near the incident
site.

In this paper we assume no pre-existing communication
infrastructure and that every agent involved in the disas-
ter recovery operation holds an electronic device, capable of
wireless ad hoc communication. Examples of such devices
are PDAs, tablets or specialized artifacts developed specifi-
cally for emergency situations that possess standard wireless
communication capabilities (e.g. 802.11b).

Moreover, we also consider that mobility is unrestricted
and non-uniform, with patterns ranging from quasi-stable
(e.g. agents in the command center) to highly mobile (e.g.
firefighters). Furthermore, we assume that when the amount
and positioning of agents across the operational space is not
enough to ensure connectivity of the ad hoc network, con-
trolled dedicated relay disposition can be used to avoid par-
titioning [8].

4. THE MUSTUS ARCHITECTURE
Given the lack of solutions for providing an integrated sup-

port for communication and coordination in emergency man-
agement scenarios, we propose a modular MUlti-Strategy
TUple Space architecture (MUSTUS) to address this prob-
lem, as illustrated in Figure 1. The architecture is based on
three layers: the application, the tuple space service, and
the dissemination service.

The application layer is responsible for providing the user
interface and functionality required to operate an informa-
tion system capable of aiding rescue personnel, and its imple-
mentation is out of the scope of this paper. The tuple space
service is responsible for providing the coordination primi-
tives provided to the application. Such primitives encapsu-
late the communication activities performed by the bottom-
most layer, the dissemination service. In the next sections
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Tuple Space

<'point','2d',1,2>

<'point','3d',1,2,1>

<'point','2d',4,2>

<'point','3d',3,2,3>

in(p)

out(t)

Figure 2: Example of a tuple space holding 2D and
3D coordinates.

we describe in detail the characteristics and competences of
both layers.

5. TUPLE SPACE
The tuple space is a programming paradigm popularized

by the Linda coordination language [7]. It provides a com-
munication and coordination model where a group of pro-
cesses is allowed to store and retrieve objects from a shared,
virtual, associative memory (cf. Figure 2).

A tuple consists of an ordered, unlimited sized, set of val-
ues. For instance, a point in a Cartesian space can be rep-
resented as <’point’,3,5>.

Usually three operations are supported by all tuple space
implementations:

out(t) stores the tuple t in the tuple space

in(p) retrieves a tuple that matches pattern p

rd(p) reads (but not erases) a tuple that matches p

Tuple matching is usually performed through wildcards
and literals. For instance the pattern <’point’,?,?> would
match any point of a Cartesian space.

The last two operations are typically blocking, only re-
turning when a tuple that matches the pattern exists or is
inserted in the tuple space. To provide more flexibility to the
developer most systems also provide non-blocking variants
of these primitives, that are allowed to return null values
when no tuple matches the pattern.

Coordination can be achieved through a combination of
(blocking) operations that modify the state of the space
(out, and in) in order to achieve a synchronized behavior.
A typical example in emergency management scenarios is
the distribution of rescue teams to incidents. For instance a
paramedic team can issue an in operation on a tuple of the
form <’medical’,?,?> which will only return when an out

operation inserts a tuple patching the pattern, for instance,
<’medical’,’38.73◦’,’-9.30◦’>. No other team will be
directed to the same spot, since the tuple is effectively re-
trieved from the space.

Three challenges arise when developing a tuple space ser-
vice for a MANET network in an emergency management
scenario: i) data access patterns, ii) data availability, iii)
data timeliness.

5.1 Data Access Patterns
Storing data in ad hoc networks is a complex task that,

depending on the level of availability required, may consume
substantial resources (bandwidth and power). Therefore,

the way data is accessed in a tuple space should affect how
tuples are stored in the ad hoc network. For tuples that are
seldom removed and read by many nodes it is worth to spend
resources in the out operation, by creating multiple copies
of the tuple in the network, such that the rd operation can
be implemented efficiently. On the contrary, tuples that are
removed frequently, but read only sporadically, should be
placed close to the source of the updates, such that updates
are cheap at the expense of slower reads.

There are also tuples that do not need to be removed by
an in operation. In this case it is possible to improve the
access times of rd operations, by creating multiples copies
of the tuple and by spreading these copies in the network
such that they can be closer to the readers.

In MUSTUS, each tuple may be labeled with one or more
property tags. One of these tags characterizes the expected
access patterns to the tuple. This tag is used by the tuple
space implementation to decide on the number and location
of the tuple replicas to be placed in the ad hoc network.

The tags supported by MUSTUS regarding data access
patterns are as follows:

ILRH in low, rd high. A tuple for which both in and rd
operations are supported, that is seldom removed and
read frequently.

IHRL in high, rd low. A tuple for which both in and rd
operations are supported, that is frequently removed
and read sporadically.

ROH rd-only high. A tuple for which the in operation is
not supported, that is read frequently.

ROL rd-only low. A tuple for which the in operation is
not supported, that is read sporadically.

Note however, that the tags above are not the only fac-
tor that affects the number and placement of tuple copies.
Data availability needs to be taken into account as well, as
explained below.

5.2 Data Availability
Another challenge in developing a persistent and reliable

storage service, like a tuple space, is the data availabil-
ity guarantees. Since in emergency management scenarios
nodes are likely to become disconnected (due to terrain fea-
tures, battery exhaustion, physical damage, etc), one needs
to use data replication to ensure that data remains available
to all the nodes in the network.

Also, since it is impossible to maintain an up-to-date view
of the status of each node in the system, update operations
(i.e., out and in operations) need to be performed on a quo-
rum of replicas. As in any system of this nature, the use of a
higher number of replicas provides more fault-tolerance but
also induces higher communication costs, since larger update
quorums need to be used (update quorums must intersect).

Read-only tuples are a special case where quorums are
not required, since out is the only update operation and
therefore replicas never get inconsistent.

Therefore, in MUSTUS, each tuple is associated with a
replication tag. Data with greater availability requirements
is stored using a higher replication factor (tagged with HRF),
while less relevant information can be stored with a lower
cost and be available as long as the small number of replicas
exists in the network (tagged with LRF). Each replication
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Figure 3: Data dissemination layer.

tag has an associated replication degree interval, that de-
fines the minimum and maximum number of replicas that
should store the data. A replication tag HRF corresponds to
a higher interval while the LRF tag corresponds to a lower
interval. The exact number of replicas is a number in this
interval that is determined by weighting the characteristics
of the associated data access pattern.

Also, for a given replication degree, the quorum of read
and write operations is adjusted according to the declared
access patterns for that tuple.

5.3 Data Timeliness
In critical scenarios it is common for data to have associ-

ated timeliness properties. To start with, different data may
have different time constraints on how fast it needs to be dis-
seminated in the system. Very urgent notifications may be
required to be added/retrieved in an eager manner (tagged
FAST), while other information may be added/retrieved in
a lazy fashion (tagged LAZY). For instance, a remote re-
quest for medical assistance must be made available to the
paramedic teams with minimum delay. On the other hand,
logistic information, such as the expected time for the ar-
rival of supplies may be propagated at a slower rate, in or-
der to save the scarce communication resources. Typically,
lazy techniques are less demanding on network resources. In
MUSTUS, the timeliness requirements of data are used to
select the communication mechanisms employed to execute
the operation on the tuple space (discussed in detail in the
next section).

Furthermore, many tuples will have a limited lifespan, as
their contents become obsolete after some time. The use
of tuple lifespans is employed in MUSTUS as a means to
garbage collect information that is no longer relevant, to en-
sure that enough resources exist in the system to propagate
and store new tuples.

6. DATA DISSEMINATION
As discussed in the previous section, tuple operations are

implemented by creating a number of replicas for the tuple
and then updating a quorum of these replicas. Furthermore,
MUSTUS attempts to place these replicas on the ad hoc
network in a manner that optimizes the accesses according
to the declared access pattern for each tuple.

There are two basic strategies to perform these operations
in an ad hoc network, namely, eager and lazy dissemination
strategies (cf. Figure 3).

In the eager data dissemination scheme, an update or
query is immediately propagated in the network, such that
the desired number of replicas is created or contacted as soon
as possible. This is the solution that provides lower laten-
cies, and should be used for tuples with stringent timeliness

requirements.
However, the effective use of communication resources is

one of the hardest challenges faced when designing middle-
ware for MANET environments, due to the low bandwidth
and high packet drop ratio that usually characterizes the
wireless medium. Moreover, contention and packet colli-
sions can be easily triggered by an uncontrolled use of the
communication resources, also affecting the provided quality
of service. Therefore, it is interesting to use alternatives to
eager data propagation that allow for a more efficient use of
network bandwidth. Such alternative is lazy data dissemi-
nation. In this strategy the update or the query is not dis-
seminated immediately. Instead, it is combined with other
updates or queries, and propagated in the background.

In the next paragraphs, we discuss how eager and lazy
dissemination strategies are materialized in MUSTUS.

6.1 Eager Dissemination
Eager dissemination is accomplished through an improved

flooding scheme that ensures immediate data propagation
while limiting the number of nodes that forward a packet.
Many heuristics can be used to decide on whether to propa-
gate a packet or not, and the literature is rich in such propos-
als, including probabilistic [9], counter-based [16], distance-
based [13], and location-based [5].

Location-aware solutions provide the best trade-off be-
tween the communication cost and the delivery ratio, since
they can effectively pinpoint the best forwarders. However,
obtaining accurate position readings is not always possible,
and the alternative distance-based schemes provide better
performance in such situations, when compared to the prob-
abilistic and counter-based approaches.

Therefore, to be able to cover all the emergency man-
agement scenarios MUSTUS uses the PAMPA [13] distance-
based algorithm as the eager dissemination scheme.

6.2 Lazy Dissemination
Lazy dissemination relies on a gossip propagation process

inspired by solutions like SharedState [6] or EraMobile [15].
Using background gossip for data dissemination is not

a frequent choice, given the high latency of the approach.
However, in challenging scenarios where the available com-
munication resources are scarce and the mobility of nodes
favors opportunistic communication, the trade-off between
not being able to send messages due to contention or high
packet drop rate, or sacrificing latency, can favor background
gossip.

MUSTUS integrates a lazy dissemination scheme inspired
by SharedState [6] where every node has a local cache where
it deposits the produced messages along with the data re-
ceived from neighboring nodes. The dissemination process
evolves in rounds, where a random subset of the stored mes-
sages is selected for retransmission. Upon reception, this set
of messages is collected in the local storage and a discard
policy ensures that storage space remains available.

7. TUPLE PROPERTIES EXAMPLES
To illustrate our approach, we now provide a set of ex-

amples of how the properties associated with a tuple can
drive the behavior of the MUSTUS components. The ex-
amples consider several combinations of the different tags
supported in the system, namely, access pattern, availabil-
ity and timeliness tags.
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ILRH,LRF,SLOW.
An example of a tuple with this combination of tags is a

tuple that marks a useful landmark found by a team (for in-
stance, a water source or an obstacle). Given that the tuple
is seldom removed but frequently read (ILRH), it is copied
to as much replicas as possible. This number is limited by
the associated low replication degree (LRF) therefore it will
be the maximum allowed value in the lower replication in-
terval. Since the data is not urgent (SLOW) the lazy scheme
is used to disseminate the tuple to the respective replicas.

IHRL,HRF,FAST.
Typical information with such properties are orders from

the command center to field personnel, for instance to pro-
vide assistance to victims on specific locations. Given that
the tuple is frequently removed but seldom read (IHRL), it
is copied to as fewer replicas as possible, in order to improve
the response time of the in operation. Since the associated
replication degree is high, the actual number of replicas used
corresponds to the minimum value in the higher replication
interval. The urgency of the data (FAST) results in the ea-
ger dissemination being used to transmit the tuple to the
respective replicas.

ROH,HRF,FAST.
An example of a tuple with this combination of tags is a

tuple that marks a location to be avoided by teams without
proper protection (for instance, a contaminated building).
Given that tuple is read-only and frequently read (ROH),
it can be spread to as much replicas as possible in order to
improve the speed of the rd operation. Since the replication
degree is high (HRF), as long as storage space is available
every node in the network will store the tuple locally. More-
over, due to the urgency of the data (FAST) the eager dis-
semination scheme is used to spread the tuple throughout
the network.

8. CONCLUSIONS
Research in communication and coordination support in

emergency management scenarios using ad hoc networks is
gaining relevance, due to the proliferation of powerful mobile
devices easily carried by first responders, and the flexibility
offered by not requiring a preexisting communication infras-
tructure.

In this paper we introduce the MUSTUS architecture,
that provides efficient communication and coordination sup-
port through the use of a tuple space service specifically
designed for disaster area networks, where communication
resource usage, data availability and information usefulness
are critical to the performance of the emergency manage-
ment teams.

The simplicity of the operations provided allows applica-
tion developers to produce effective services to support the
coordination activities in this type of scenario.
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