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Abstract. Peer-to-peer (P2P) systems have emerged as a potential tech-
nology to build very-large distributed data sharing systems. A key prob-
lem in these systems is the location of resources. This report makes a
survey of the main strategies to implement resource location in P2P sys-
tems and identifies some possible lines of research to improve the current
state of the art.

1 Introduction

Since the appearance of Napster[1] in 1999, P2P systems have been the subject
to intensive research and development efforts, both in academia and industry.
Peer-to-peer file sharing systems such as Gnutella[2], eMule[3], Kazaa[4] and
more recently BitTorrent[5] have had tremendous success. Unfortunately, these
systems have been mainly used to illegally distribute copyrighted material. For-
tunately, examples of legitimate uses of this technology also exist and can be
found in[6–8]. From the technological point of view, the potential of the technol-
ogy to build extremely large-scale shared repositories makes it a very interesting
research topic.

One of the main challenges in P2P systems is how to efficiently support re-
source location. Due to scalability and dependability issues, centralized solutions
are not adequate. On the other hand, exhaustive search on all peers is also a
non-scalable solution. Therefore, it comes as no surprise that resource location
algorithms have been intensely studied, and many different solutions have been
proposed in the literature.

As it will be surveyed in the report, there are two main types of P2P sys-
tems: structured and unstructured systems. Typically, structured P2P systems
implement a distributed-hash-table (DHT), such as Chord[9], CAN[10] and Pas-
try[11]. These systems are highly optimized to implement exact-match queries,
but provide poor support for more complex inexact queries. In addition, struc-
tured systems may be expensive to maintain in highly dynamic environments.
An alternative to this approach are unstructured P2P systems, that have low
maintenance cost but poor support for query operations. The most basic ap-
proach to implement resource location in unstructured systems is the use of
limited flooding, an extremely expensive solution that can however, easily sup-
port complex queries. In between these two extreme solutions, many algorithms
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have been proposed, including content-based[12], probabilistic[13], and index-
based[14] resource location algorithms.

This report makes a survey of the main techniques that have been proposed in
the literature to support resource location in both structured and unstructured
P2P systems. From the analysis of these solutions, the report makes the case for
an hybrid solution that combines both structured and unstructured support in
order to improve the current state of the art.

The remaining of the report is organized as follows. Section 2 describes the
goals and motivation for this work. Sections 3 and 4 provide the context, by sur-
veying previous research, covering P2P overlays and resource location techniques
respectively. Section 5 presents the proposed architecture. Section 6 describes
how we plan to evaluate the proposed techniques. A schedule of future activities
is provided in Section 7. Finally, Section 8 concludes the report.

2 Goals

This work addresses the problem of resource location in large-scale P2P systems.
More precisely:

Goals: This works aims at analyzing, designing, and evaluating algo-
rithms to efficiently support complex queries in large-scale overlay net-
works.

Our approach to tackle this problem departs from the observation that struc-
tured and unstructured overlays both have advantages and disadvantages to sup-
port resource location. On the one hand, structured solutions provide fast and
efficient exact-match search but lack flexibility to efficiently support complex
or inexact queries. On the other hand, systems based on unstructured overlay
networks support complex queries but are usually inefficient as they typically
resort to flooding mechanisms that can be extremely CPU and bandwidth con-
suming. Therefore, we aim to explore new solutions that combine the usage of
systems based on both unstructured and structured overlay networks in order
to achieve a more efficient and flexible solution for locating resources in a P2P
environment. In summary:

Expected results: This work will: i) design and implement overlay topolo-
gies that simplify the implementation of resource location algorithms; ii)
design and implement search algorithms that leverage on the previous
topologies; iii) provide an evaluation of these algorithms based on simu-
lations.

Depending on time constraints, we will also try to perform some experiments
on the PlanetLab[15] platform.
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3 P2P Overlay Networks

As the name implies, in a P2P system all nodes cooperate in a similar manner
to achieve a common goal. In this report we focus on P2P systems that support
distributed content sharing, however, it should be noticed that P2P systems
can be used for other purposes, such as content distribution[6], cycle sharing[8],
among others.

In a large scale P2P system, it is often undesirable or even impossible for
each node to know and cooperate directly with each and every other node in the
system. Instead, each peer only knows a small subset of all the system partic-
ipants. The peering relations among nodes form a network; since this network
is constructed on top of a physical (usually IP-based) network, it is called an
overlay network, as illustrated in Fig. 1.

Fig. 1. Overlay Network

An overlay network, as any other network, can be modeled as a graph. There
are some properties of the graph that are relevant for the operation of the overlay
network. We list some of these properties below.

The node degree is the number of edges that connect the node. The graph is
said to be regular if all nodes have the same degree. Typically, this is not the
case in most overlay networks and, in fact, in some unstructured overlays, the
node degree can vary substantially from node to node.

Another property is the network diameter, which is the number of edges that
form the longest of all the shortest paths between any 2 nodes in the network.
For instance, in Fig. 1 the underlying network diameter is 5.
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Another property is connectivity. A network overlay is connected if there is a
path that allows every node to reach every other node. If the overlay is connected
nodes can rely on the overlay to communicate, and no peer is isolated from the
rest of the system.

A property that affects both the network diameter and the connectivity of
the network, is the clustering coefficient. The clustering coefficient of a node N
is defined as:

C(N) =
e(N)

deg(N) ∗ (deg(N)− 1)/2
(1)

Where deg(N) is the node degree of N and e(N) is the number of links
between 2 nodes that are also connected to N, i.e., N ’s neighbours.

A measure of the efficiency of routing in the overlay network is the path
stretch: the ratio between the number of edges, of a certain path, in the un-
derlying network and the overlay network. For instance, in Fig. 1 the stretch of
the path between A and B is 5/1 since, the distance between A and B in the
underlying network is 5 edges and the distance in the overlay level is 1 edge. It
is worth noting that, when a path is used for communication, each edge crossed
by a message is usually called a hop.

Finally, it should be noticed that overlays are not static, as nodes leave, crash
and join the network. It is also possible that the overlay management protocols
cause nodes to change their peers (neighbours), changing the overlay topology. A
sequence of multiple join, leave, and crash events at a fast pace is a phenomena
that often affect overlay networks that has been dubbed churn.

3.1 Unstructured and Structured Overlays

Overlay networks may be classified into two categories: structured and unstruc-
tured.

Unstructured Overlays In unstructured overlay networks, few or no constraints
are imposed on the network topology, which means that the neighbours of each
node may be chosen at random or emerge from the way the user interacts with
the application. This makes these networks simpler to build and to maintain. For
instance, in order to maintain overlay connectivity it is important for each node
to maintain a minimum number of links to other nodes in the network (neigh-
bours). When one of the neighbours fails or becomes disconnected, it should be
replaced by another neighbour. Since unstructured networks require few con-
straints to be preserved, it becomes easier to find a suitable replacement.

Even if little effort is put in maintaining an unstructured network, it has
been observed that many of these networks have (by emergence or by construc-
tion) small world properties, i.e., networks with a small average path length and
large clustering coefficient[16]. These properties can be exploited in benefit of
the operations that execute on top of the overlay. Furthermore, these networks
are also naturally redundant and therefore more resilient to node failures and
dynamic environments (such as churn).
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Despite the characteristics listed above, unstructured networks pose chal-
lenges to the support of efficient resource location, because there is no correla-
tion between the topology of the network and the location of the resources. The
most simple manner to implement resource location on unstructured networks is
through the use of flooding. However, flooding is very expensive and may cause
network congestion due to the large number of redundant messages that it may
generate. Therefore, flooding is not a scalable solution, unless optimizations are
employed[17], as we will present later in this report.

Structured Overlays Structured overlay networks usually implement a distributed
hash table (DHT). These overay networks, by construction, impose strong con-
straints on which nodes may be neighbours. Typically, these neighbours are
determined by the node’s unique identifier (uid). Objects stored in a DHT also
own a unique identifier (commonly in the same identifier space as the nodes),
which determines the node responsible for storing that object. DHTs support
uid-based routing, tipically in a number of hops logarithmic with the system’s
size. This functionally can trivially be used to support exact-match queries.
However, structured networks also have their own drawbacks. To start with, de-
composing a complex query in a set of exact queries is often non-trivial or even
impossible. Furthermore, in order to retain their structure, DHTs have significa-
tive associated maintenance costs. Structured overlays are also less resilient to
identity forging attacks, for instance, sybil attacks[18], and to churn.

3.2 Flat and Hierachical Overlays

Overlay networks can also be classified into flat and hierarchical overlays. Hierar-
chical overlays usually consist of, as described in [19], ”two-tier overlays whereby
the peers are organized into disjoint groups”. The overlay routing to the target
group is done using an inter-group overlay and then, an intra-group overlay is
used to route to the target peer.

Hierarchical unstructured networks are often built considering that nodes
have heterogeneous capacity and stability, and can be classified into two cate-
gories: regular peers of lower capacity (and/or more volatile) and super-peers of
higher capacity (and/or more stable). Super-peers coordinate a group of regular
peers and coordinate with other super-peers to form an inter-group overlay.

In hierarchical DHTs each hierarchical group or set forms its own overlay[20]
and, together they form a hierarchical overlay. Hierarchical DHT overlays offer
several important advantages over flat DHT-based P2P overlays[19], namely:

– Reduce the average number of hops in a lookup query. Fewer hops per query
implies less communication overhead. Also, if the higher-level overlay topol-
ogy consists of stable superpeers the network itself will become more stable.

– Reduce the query latency when the peers in the same group are topologically
close. In addition, the stability and the high capacity of the higher-level
superpeers can also help to cut down the query delay.
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– Facilitate large-scale deployment by providing administrative autonomy and
transparency, while enabling each participating group to choose its own over-
lay protocol. Intra-group overlay routing is totally transparent to the higher-
level hierarchy. If there are any changes to the intragroup routing and lookup
query algorithms, the change is transparent to other groups and higher-level
hierarchy. That is, any churn events within a group are local to the group,
and routing tables outside the group are not affected.

3.3 Some Important Features

We now discuss a number of important features that any P2P system should
own, regardless of the approach used to its construction. These features are:
load balance, low maintenance overhead, scalability, and fault-tolerance.

3.3.1 Load balance The P2P system operation should balance the commu-
nication and processing overhead among all nodes of the network. For storage,
each node should be responsible for an equivalent fraction of the objects being
stored in the network. When supporting resource location, it is important that
all the nodes receive an equivalent fraction of the queries being made.

The hash function used in structured P2P system may help to balance the
load, but this is often insufficient, and additional load-balancing measures need
to be considered. Some examples of load balancing algorithms/solutions are:

– The use of multiple hash functions to balance the storage of objects in a
structured P2P system such as Chord[9] has been suggested in [21]. The
basic idea is that each object may have several identifiers, each one generated
by a different hash function and, therefore, increasing the number of nodes
(at most as many as the number of hash functions used) where it can be
stored. The object is stored in the node with the lowest load. Other nodes
that could also be responsible for the given object may also store pointers
to the object’s location.

– In [22], the notion of virtual servers is explored to design load-balancing
algorithms. The idea is that each node can have multiple identifiers and
join a DHT in different logical locations. As a result, each node becomes
responsible for noncontiguous intervals of the identifier space. To achieve
load balance, identifiers may be migrated from one node to another.

– In [23] a new and very simple approach for balancing stored data between
peers in a fashion inspired by the dissipation of heat energy in materials is
presented. During thermal dissipation, a material warmer than its environ-
ment delivers energy to the surrounding area. This process continues until a
balanced distribution of energy is reached in the overall system. Assuming
a DHT architecture in which each interval of identifiers is stored at several
nodes, 3 methods to balance the storage load are presented. Assuming f as
the minimum number of nodes assigned to a specific DHT region (or inter-
val), if more than f nodes are assigned to a specific interval, one or more of
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them may be moved to a different interval. If 2f different nodes in the same
interval are overloaded, then the respective interval can be split in two so
that a node only has to manage half of the objects. Finally, nodes in low
data load regions can be moved to and/or merged with overloaded regions
reducing the load imposed by storing data.

– Overnesia[24] is an unstructured overlay that creates and maintains nesos,
which are clusters of peers used for load-balancing and fault tolerance. The
load of queries directed to each cluster is distributed among the members of
the cluster.

3.3.2 Low Maintenance Overhead Another important aspect of any P2P
solution is the overhead required to maintain its operation. This overhead tends
to be higher in structured overlay networks, since their join and leave algorithms
are more complex. It is also important to consider the relationship between churn
and the bandwidth consumption at a peer for overlay maintenance traffic. There
are two strategies to perform maintenance in any overlay:

– Reactive Maintenance: In a reactive approach, maintenance is only per-
formed in response to some external event that affects the overlay (e.g. a
node joining or leaving). For instance, in a DHT-based network ,a peer han-
dles the failure or departure of an existing neighbour (or the new joining
peer added to its neighbour table) by sending a copy of its new neighbour
set to other peers in the system. To save bandwidth, a peer can send only
differences from the last sent information.

– Opportunistic or Cyclic Maintenance: In this type of approach maintenance
is performed periodically and usually involves the exchange of information
of each peer with one or more neighbours. This process takes place indepen-
dently of the peer detecting changes in its neighbour set.

3.3.3 Scalability Scalability is the capacity of a system to maintain or grace-
fully degrade its performance as it grows (in number of users, number of objects
stored, etc). Early unstructured file-sharing systems such as Gnutella[2] suffered
from scalability issues, mostly due to the need of flooding the network when
performing queries. These scalability issues in unstructured networks, led some
to propose DHT solutions to the wide-area file search problem. There are how-
ever several proposals to improve scalability in unstructured networks such as
GIA[25].

3.3.4 Fault-tolerance This is an important feature of any large-scale P2P
system, given that, as the number of members increases, the probability of node
or link failures occurring also increases. It is therefore crucial for P2P systems
to be able to sustain these type of faults. Otherwise, the whole system operation
may be in jeopardy.
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3.4 An Example of a Centralized P2P System

Napster The first prominent and popular P2P file-sharing system was Nap-
ster[1], which was solely dedicated to sharing music files. Napster used a central-
ized server-based service model, illustrated in Fig. 21, where the central server
was used for indexing functions and to bootstrap the entire system. In Napster
this centralized server was also responsible for executing the queries each node
required. This design is simple but suffers from various problems such as:

Fig. 2. Centralized Server Model

– The central server represents a single point of failure, as the system is unable
to operate without it.

– The central server is a bottleneck as it has to sustain all the query load in
the system.

– Given that peers cannot cooperate without first contacting the central server,
the network resources of the server are also a bottleneck.

3.5 Examples of Unstructured Overlay Networks

3.5.1 Gnutella Gnutella[2] has been proposed in 2000 as a fully decentralized
P2P system based on an unstructured overlay network. Queries are supported
using flooding techniques. In the initial Gnutella version (v0.4), each node would
run a Gnutella client software and, on startup, it would have to find at least one
other node that was already a part of the Gnutella network. Different methods
can be employed this operation, including a pre-existing address list of possibly
working nodes shipped with the software and web caches of known nodes (called
Gnutella Web Caches). Once connected to a contact node, the client would
request from the contact node a list of addresses of other nodes in the network.
The client would then try to connect to those nodes, as well as to other nodes
provided by the new neighbours, until it reached a certain quota. When a user
wanted to perform a search, the client software would send the request to each
1 Fig. 2 taken from http://en.wikipedia.org/wiki/Peer-to-peer
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actively connected node. Historically (version 0.4 of the protocol), the number
of actively connected nodes for a client was quite small (around 5), so each node
that received the request, would then forward it to all its actively connected
nodes, and they in turn forwarded the request, and so on, until the packet
reached a predetermined number of ”hops” from the sender (maximum 7). This
number of ”hops” is commonly known as TTL (Time-to-live). Unfortunately,
this approach has some scalability issues, as nodes can easily become overloaded
by simultaneous queries performed by different nodes.

Later in 2001 a new version of Gnutella was released (version 0.6), that
addressed these scalability problems. This new version introduced the notion of
super-peers, illustrated in Fig. 32, to which regular peers registered with the goal
of reducing the signaling traffic. Flooding was now restricted to the super-peer
level. In this system new super-peers are elected when: i) a super-peer leaves the
network; ii) a super-peer has too many regular peers connected to it (denoted
leaf-nodes); iii) a super-peer has too few leaf-nodes. This election was based on
an estimate of the capacity of the peer, in terms of CPU, storage, bandwidth,
and availability (uptime). Gnutella is therefore an example of a hierarchical P2P
system.

Fig. 3. Super-Peer Architecture

3.5.2 HyParView HyParView, which stands for Hybrid Partial View, is a
gossip-based membership protocol[26] that builds and maintains an unstructured

2 Fig. 3 adapted from http://schuler.developpez.com/articles/p2p/images/super-
peer.jpg
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overlay network. The protocol is characterized by each node maintaining two
distinct views: a small and symmetric active view and a larger passive view.

The active views define an overlay that is used for cooperation among peers
(the use of HyParView is illustrated with message dissemination applications).
Links in this overlay are symmetric, which means that if node q is in the active
view of node p then node p is also in the active view of node q. When a node
receives a message for the first time, it broadcasts the message to all nodes of
its active view (except, obviously, to the node that has sent the message). A
reactive strategy is used to maintain the active view. Nodes can be added to the
active view when they join the system. Also, nodes are removed from the active
view when they fail.

On the other hand, the passive view is not used to support node communi-
cation. Instead, the goal of the passive view is to maintain a list of nodes that
can be used to replace failed members of the active view. The passive view is
maintained using a cyclic strategy. Periodically, each node performs a shuffle
operation with one of its neighbours in order to update its passive view. In this
shuffle operation, the node provides to its neighbour a sample of its partial views
and, symmetrically, collects a sample of its neighbour’s partial views. In fact, in
this operation the identifiers that are exchanged belong not only to the passive
view, but also to the active view. This increases the probability of having nodes
that are active in the passive views and ensures that failed nodes are eventually
expunged from all passive views.

This approach offers a strong resilience to node failures, even in the presence
of extremely large numbers of crashes in the system. High resiliency to node
failures is important to face unintentional (for instance, natural disasters) or
intentional (for instance, software worms and virus) events that take down a
significant portion of nodes in the system.

3.5.3 X-Bot X-Bot[27] is a protocol to bias the topology of an overlay accord-
ing to some target efficiency criteria, for instance, to better match the topology
of the underlying network, i.e., to reduce the average path stretch (it can be
used to bias the topology for different criteria though). Based on HyParView,
X-BOT relies on the combined usage of two distinct partial views; the goal of the
protocol is to reduce the average link cost of the overlay network defined by the
active views. For that purpose, X-BOT actively bias the neighbours in the active
view using random peers extracted from the larger passive view. Moreover, the
cyclic strategy used to maintain the passive view ensures that its contents are
periodically updated and therefore, gives access to different potential neighbours
over time to each node. Unlike HyParView, that strives to ensure the stability
of the overlay, X-BOT relaxes stability to be able to continuously improve the
overlay. This allows the topology of the unstructured overlay to self adapt to
better match the requirements of the application executed on top of it. Periodi-
cally, each node starts an optimization round in which it attempts to switch one
member of its active view for one (better) neighbour of its passive view. In the
optimization protocol, a node uses its local Oracle to obtain an estimate of the
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link cost to some random selected peers of its passive view. Examples of oracles
are:

– Latency Oracle: This Oracle operates by measuring round trip times (RTT)
to peers. This can be performed by exchanging probe messages with Oracles
located at other nodes. The Oracle must be aware of the peers which are
known at the local host, and it slowly measures the RTT for each know node
(this value can be directly used as the cost value).

– Internet Service Provider Oracle: In a setting where exchanging messages
across different ISPs has an increased monetary cost, it might be useful to
keep as many neighbours as possible that share the same ISP. To this end, a
simple oracle can be built by maintaining information concerning the local
ISP and a table of costs for each known ISP. When the Oracle becomes aware
of a new peer, it simply exchanges local ISP information with the remote
Oracle and asserts the cost for the link using the local cost table.

– IP-based Oracle: These Oracles are able to calculate neighbour proximity
values, which can be used as cost, using IP aggregation information (for
instance, using a match of common IP prefixes to calculate a measure of
proximity between two peers).

3.6 Examples of Structured Overlay Networks

3.6.1 Chord The first four DHT’s (CAN[10], Chord[9], Pastry[11], and Tapestry[28])
were introduced at about the same time in 2001. Since then, this area of research
has been quite active. Chord peers are organized in a flat circular (Fig. 43) over-
lay network. Each node in chord, as in other DHT solutions, has its own identifier
and so does each data item stored in the network. Chord provides support for
just one operation: given a key, it maps the key onto a node. Data location
can be easily implemented on top of Chord by associating a key with each data
item, and storing the key/data item pair at the node to which the key maps.
Each key/data item pair should be stored at the node in the network that has
the lowest ID which is still equal or bigger than the item’s ID. Chord addresses
difficult problems such as:

– Load balance: Chord acts as a distributed hash function, spreading keys
evenly over the nodes, providing a degree of natural load balance.

– Decentralization: Chord is fully distributed and no node is more important
than any other. This improves robustness and makes Chord appropriate for
loosely-organized peer-to-peer applications.

– Scalability: The cost of a Chord lookup grows as the log of the number of
nodes, so even very large systems are feasible.

– Availability: Chord automatically adjusts its internal tables to reflect newly
joined nodes as well as node failures, ensuring that, barring major failures in

3 Fig. 4 taken from [9]
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the underlying network, the node responsible for a key can always be found.
This is true even if the system is in a continuous state of change.

Fig. 4. Chord Architecture

In order to achieve efficient location of data items in the network, each node
must mantain a reference to his successor in the ring and also a finger-table in
which a set of routing entries are kept, to allow for larger hops in the overlay
network. In this finger-table as can be seen in Fig. 54:

– Each node mantains m entries (where m is the number of bits of the identi-
fiers used).

– The ith entry in the table at a node with an identifier n contains the iden-
tity of the first node s that succeeds n by at least 2i−1 on the identifier
circle(s=successor(n+ 2i−1)).

– A finger table entry includes both the Chord identifier and the IP address
(and port number) of the relevant node.

– The first finger of n is the immediate successor of n in the circle.

Using the finger-table, Chord can efficiently route any query to its destination
node. To achieve this, when a node n does not know the successor of a key k,
that node will search its finger-table for a node j whose ID is closer (biggest
predecessor of k) to k and ask j for the node it knows whose ID is closest to k.
By repeating this process, n learns about nodes with IDs closer and closer to k.
At each step of this process, the distance to the destination node is cut down by
half, thus bringing n closer and closer until the successor of k is found. In fact,
the number of steps of this process is logarithmic with the number of nodes in
the system.

4 Fig. 5 taken from [9]
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Fig. 5. Finger Tables

3.6.2 Kademlia Another example of DHT-based systems is Kademlia[29],
which is a peer-to-peer < key, value > storage and lookup system based on the
XOR metric. Each node in Kademlia has 160-bit id chosen at random or by
using an hash function such as SHA-1[30]. Keys are also 160-bit identifiers and,
to publish and find < key, value > pairs, Kademlia relies on a notion of distance
between two identifiers (x and y) defined as the XOR (exclusive OR) of those
two indentifiers (d(x,y) =x ⊕ y ). To route query messages, each node keeps
contact information about other nodes. This means that, for each 0 < i < 160,
every node stores a list of < IPaddress;UDPport;NodeID > triples for nodes
of distance between 2i and 2i+1 from itself. These lists, also known as k -buckets
are kept sorted by last time seen (least recently seen node at the top) mainly
because studies[31] have shown that the longest a node has been online, the
more likely it is for that same node to remain online. Therefore, by keeping
the oldest live contacts, k -buckets maximize the probability that the nodes they
contain will remain online. For small values of i, k -buckets will generally be less
populated or even empty (as few suitable nodes will exist). For larger values of i,
the lists can grow up to size k, where k is a system-wide replication parameter.
k should be chosen so that any given k nodes are very unlikely to fail or leave
within an hour of each other, thus preventing the loss of the stored data.

Whenever a node receives a message from another node, it updates the cor-
respondent k -bucket for the sender’s node ID. This update operation follows a
series of rules:

– If the sending node’s ID already exists in the recipient’s k -bucket then, the
recipient moves it to the end of the list.

– If the node is not already in the appropriate k -bucket and the bucket has
fewer than k entries, then the recipient inserts the new ID at the end of the
list.

13



– If the correspondent k -bucket is full, then the recipient pings the k -bucket’s
least-recently seen node. If the least-recently seen node fails to respond, it is
evicted from the k -bucket and the new sender is inserted at the end of the
list. Otherwise, if the least-recently seen node responds, it is moved to the
end of the list, and the new sender’s contact is discarded.

This update strategy diminishes the need for cyclic maintenance to be performed
since it keeps the k -buckets updated as a result of network traffic. For its oper-
ation, the Kademlia protocol relies on 4 RPC’s:

– PING - This RPC probes a node to see if it is online.
– STORE (ID,value) - This RPC instructs a node to store a < key, value >

pair for later retrieval.
– FIND NODE(ID) - The recipient of a FIND NODE RPC should return
< IPaddress, UDPport,NodeID > triples for the k nodes it knows about
closest to the target ID. These triples may come from a single k -bucket, or
from multiple k -buckets, if the closest k -bucket is not full. Either way, the
RPC recipient must always return k items (unless there are fewer than k
nodes in all its k -buckets combined, in which case it returns every node it
knows about).

– FIND VALUE(ID) - This RPC behaves like the FIND NODE RPC returning
< IPaddress, UDPport,NodeID > triples unless, the RPC recipient has
received a STORE RPC for the key, in which case it just returns the stored
value.

The most important procedure a Kademlia peer must perform is locating the
k closest nodes to some given node ID. This procedure is called a node lookup
and consists of a recursive algorithm in which:

– The lookup initiator starts by picking α nodes (where α is a system-wide con-
currency parameter) from its closest non-empty k -bucket (or if that bucket
has fewer than α entries, it just takes the α closest nodes it knows of).

– Then the initiator sends parallel, asynchronous FIND NODE RPC’s to the
α nodes it has chosen.

– The initiator then recursively sends the FIND NODE RPC to nodes it has
learned about from previous RPC’s until the initiator has queried, and col-
lected responses, from the k closest nodes it has seen.

When α = 1 the lookup algorithm resembles Chord’s in terms of message cost
and the latency of detecting failed nodes. However, Kademlia can route for lower
latency because it has the flexibility of choosing any one of k nodes to forward
a request to. Most operations are implemented using the lookup procedure. For
instance, to store a < key, value > pair, a participant locates the k closest nodes
to the key and sends them STORE RPCs. Additionally, each node re-publishes
the < key, value > pairs that it has every hour in order to ensure persistence
with very high probability.
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3.6.3 Hieras The usage of Hierachical DHT’s has been explored in works
such as Hieras[20], Cyclone[32] and Canon[33]. Hieras is a multi-layer (Fig. 65)
DHT-based P2P routing algorithm. Like in other DHT’s, all the peers in a Hieras
system form a structured P2P overlay network. However, Hieras contains many
other P2P overlay networks (P2P rings) in different layers inside the global P2P
network. Each of these P2P rings contains a subset of all system peers. These
rings are organized in such a way that the lower the layer of a ring, the smaller the
average link latency between two peers inside it. In Hieras, the routing procedure
starts in the lowest layer P2P ring in which the request originator is located and
moves up until it eventually reaches the largest P2P ring. A large portion of
the routing hops in Hieras are therefore taken in lower layer P2P rings, which
have relatively smaller network link latencys. Therefore, an overall lower routing
latency is achieved.

Fig. 6. Overview of a Two-Layer HIERAS System

In the Hieras’s design, Chord was chosen as the underlying routing algo-
rithm for its simplicity (it should however be easy to extend it to other DHT
algorithms). A few changes have to be made to Chord’s finger tables to comprise
the hierarchical structure imposed by Hieras (Fig. 76).

The original Chord finger table is used as the highest layer finger table. In
addition, each node creates m-1 (m is the hierarchy depth) other finger tables
in lower layer P2P rings it belongs to. For a node to generate a lower layer finger
table, only the peers within its corresponding P2P ring can be chosen and put
into this finger table. Fig. 7 shows the finger tables of a node with the ID 121.
This node’s second layer P2P ring is ”012”. In the highest layer finger table, the
successor nodes can be chosen from all system peers. For example, the layer-1
successor node in the range [122,123] is 124 and it belongs to the layer-2 P2P
ring ”001”. Whilst in the second layer, finger table successor nodes can only
be chosen from peers inside the same P2P ring as node 121. For instance, the

5 Fig. 6 taken from [20]
6 Fig. 7 taken from [20]
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Fig. 7. Node 121 (012)’s Finger Tables in a Two-Layer HIERAS System

successor node in the range [122,123] is 143, which also belongs to layer-2 P2P
ring ”012”.

4 Resource Location in P2P Systems

According to Webster’s Dictionary, to search is “to look into or over carefully or
thoroughly in an effort to find or discover something”. In P2P Systems, in order
to find the resources one is looking for, a search strategy must be applied. The
choice of which search strategy to use depends not only on the type of network
involved (structured or unstructured, hierarchical or non-hierarchical,...) but also
on the results expected. Therefore, it is of extreme importance to understand
which are the most common strategies and in which context they may be applied
to achieve desired results.

4.1 Query Types

The selection of the query algorithm may depend on how the query is expressed.
The simplest form of query is an exact match query, where objects that have a
single attribute (for instance, a given name) are searched. However, it is often
interesting to support richer forms of search, such as keywords, range-queries,
or semantic queries as described below.

Exact Match Queries In exact-match queries, the object to be searched is spec-
ified by the value of a given attribute, for instance its name. DHTs are designed
to support exact-match very effectively.

Keyword Queries Keyword queries are a generalization of exact match. Instead
of characterizing the searched objects by a single attribute value, the objects
to be searched are characterized by a logical expression that combined multiple
attribute values (keywords) using and and or operators. For instance, one may
search for a document tagged with string s1 but not tagged with string s2.
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Range Queries A range query aims at retrieving all records where some value
is contained in some given interval. This type of query is commonly used in
databases. An example of such type of query is: “list all employees of a company
with more than 2 and less than 6 years of experience”. Range queries are a
challenging issue in the P2P search domain. They have been addressed by works
such as Mercury[34].

Semantic Search A semantic search is a content-based, full-text search, whereby
queries are expressed in natural language instead of simple keyword matches[35].
These types of queries aim at finding resources that are semantically similar to
one described in the query itself. Semantic searches are even harder to support
than range-queries: given a query, the system either has to search a large number
of nodes or miss some relevant documents. Later in the document we will briefly
overview pSearch[36], a system that supports this type of queries.

4.2 Characteristics and Performance Metrics

Peer-to-peer search algorithms may be optimized for different criteria. For in-
stance, one might wish to get results faster at the cost of not being able to find all
the possible results for a certain query. In this section, we list the most relevant
characteristics and performance metrics of search algorithms.

Convergence A search algorithm is said to converge if, in each step executed
by the algorithm, one becomes closer to finding the the desired object. This
concept is clear in systems implementing exact-match queries on top of DHTs,
where each hop in the lookup operation approximates the query to the target.
In this case, the average number of steps for convergence is log(n) hops where
n is the number of nodes in the network. In an unstructured overlay where
exact-match is implemented by flooding, convergence is only ensured if a TTL
with the diameter of the network is used (i.e., if the entire network is searched).
Obviously, the cost of each step is quite different in both scenarios. Furthermore,
when more complex queries are supported, the notion of convergence becomes
blurred, given that it may be possible for the algorithm to return only a subset
of the matching objects.

Recall Rate The query recall rate is defined as the ratio between the number of
relevant documents retrieved during the processing of the query and the total
number of relevant documents that existed in the system when the query was
processed. For example, assume that when a query is placed there are in the
network 60 objects that match the query but only 30 of those are returned;
the recall rate for this query is 0.5. Obviously, the higher the recall the better,
although there may be a tradeoff between the recall rate and the cost of the
query.

Message Cost Message cost can either be measured as the average or total
number of messages necessary to execute queries, and as a result the amount of
network traffic generated by such queries.
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Latency Latency is a measure of how long it takes to obtain the response to
the query. Latency can be measured in absolute time, which is actually the
metric of relevance to the user, but that does not depends exclusively on the
search algorithm but also on the properties of the IP network that supports the
overlay. A more abstract manner to measure latency is to use the number of
communication steps required to execute the query.

Precision Precision is defined as the fraction of the documents retrieved in a
query that are relevant to the user’s needs. Poor and inflexible query languages
can lead to low levels of precision since users can experience difficulties when
trying to describe the contents they are looking for. Therefore, one of the ways
to improve a search mechanism’s precision is to provide rich and flexible search
languages and mechanisms so that its users can properly define the data they
are looking for. Another approach to improve query precision is the usage of
feedback mechanisms with which systems can learn from the user’s input about
query results. However, sometimes there might be a trade-off between the level of
precision and the recall rate of a search algorithm. This means that, by relaxing
the precision one can increase the algorithm’s recall rate and vice-versa.

4.3 Query Dissemination Strategies

In order to execute queries in a P2P system, different query dissemination strate-
gies may be applied. Each strategy has its own set of advantages and disadvan-
tages, and the choice of using one or another is not always easy to make. The
organization and structure of the peers in the overlay network is just one of the
factors that affects this choice. This section aims at providing an overview of
commonly used query dissemination strategies in P2P Systems.

Network Flooding As noted before, the basic and most straightforward approach
to the search problem is network flooding. Flooding-based search was a popular
approach in early unstructured P2P networks such as Gnutella[2]. In this strat-
egy, the querying peer sends the query request to all or a subset of its neighbours.
Then, each of these neighbours processes the query, returns the result if a match
is found, and then forwards the query to its own neighbours. This procedure is
repeated by each neighbour until a given TTL threshold is reached. This type
of query dissemination mechanism, if the network is large (i.e. if each peer has
a large amount of neighbours), generates a massive amount of network traffic
per query. Gnutella used breadth-first search (BFS) and fixed TTL to limit the
number of hops each query may take, in an attempt to reduce query bandwidth
cost. Obviously, the downside of these cost mitigation strategies is the reduction
of the query recall rate.

Iterative Deepening Iterative deepening is a variant of flooding that aims at
reducing the number of nodes that are required to process the query[37] until a
target number of responses is obtained. The basic idea is to initiate the query
procedure by performing a limited flood with a small TTL; if the desired number
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of responses is not achieved, a new flood with a larger TTL is initiated. This
process is repeated until a maximum TTL is reached. Variants of this scheme
are often called expanded ring search. An obvious limitation of this approach is
that, when a new flood (with larger TTL) is initiated, all nodes involved in the
previous flood need to re-execute the query. To prevent this behavior, when the
query is re-sent, it is marked with the previous TTL, such that nodes already
visited may simply forward the query without executing it. Alternatively, nodes
at the border of the previous ring search may store the query for some time.
In this case, the originator may just transmit a resend message, with the query
identifier; when the resent reaches one of the border nodes, these ”unfreeze” the
corresponding query and forward it with the new TTL.

Random Walks This strategy is an alternative to flooding, that aims at avoiding
the scalability issues posed by flooding on unstructured P2P systems[38]. Given
a query, a random walk is essentially a blind search in which, at each step, the
node that receives the query processes it and then forwards it to another single
randomly chosen node. This process may go on until the query is satisfied and
may be terminated in two ways: TTL and checking. TTL means that, similarly
to solutions based on flooding, each random walk terminates after a certain
number of hops in the overlay network, while checking means that a walker (i.e.
the query message being forwarded in the network) periodically checks with the
query originator before advancing to the next node. Random walks can effectively
reduce the number of redundant messages, but at the cost of increasing search
latency. To reduce this delay, one may use k -way random walks (k-walkers) where
the querying node forwards the original query message to k randomly selected
neighbours instead of only one. Since the number of nodes reached by k random
walkers in h hops is the same as in one random walk over kh hops, a reduction
of around k times in query delay can be expected.

Guided Searches Guided search is a search technique based on the construction,
at each node, of indices that can “guide” the routing of the query[39]. Guided
searches allow nodes to forward queries to neighbours that are more likely to
have answers, rather than forward queries to randomly chosen neighbours or
flood the network by forwarding the query to all neighbours. Routing indices
indicate a promising direction toward the answers for queries. These distributed
indices are small (i.e., compact summary) and provide hints on the probable best
direction toward the resource one is looking for, rather than its actual location.
Indices may be built incrementally, for instance based on the results of previous
queries.

Probabilistic Search Probabilistic search is a name used to characterize a form
of guided search based on incomplete information. These type of queries usually
rely on the usage of data structures, such as Bloom Filters[40], or result caching
mechanisms to determine when a certain peer or region of peers is likely to
store a certain object or not. Because they rely on probability, some of these
approaches may generate false positives and/or false negatives.
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Similar Content Group-Based Search The basic idea behind this strategy is to
organize P2P nodes into groups in which peers store similar content. This is
usually applied on top of unstructured P2P systems such as Gnutella[2]. The
intuition behind this approach is that nodes within a certain group tend to be
relevant to the same queries. As a result, this type of search strategy will guide
the queries to regions of nodes that are more likely to have answers to the queries,
thus allowing to configure a flooding dissemination strategy with a smaller TTL
value allowing these solutions to achieve a lower operation overhead. Several
works such as [41] and [42] have addressed this type of strategy.

4.4 Examples of Systems Supporting Resource Location

This section illustrates how the techniques described previously have been used
in different systems.

4.4.1 pSearch The fundamental challenge that the authors of pSearch[36]
identified as being one of the causes for the complexity of P2P resource location
solutions is that, with respect to semantics, documents are randomly distributed
in the system. Therefore, given a query, a system has to either search a large
amount of nodes or risk not being able to find relevant documents. To address
this issue, the notion of semantic overlay is presented as ”a logical network where
contents are organized around their semantics, in such a way that the distance
between two documents in the network is proportional to their dissimilarity in
semantics”. pSearch is a prototype P2P information retrieval system that works
by representing documents as semantic vectors and organizing them in the net-
work around their vector representations. In pSearch, to generate the semantic
space, extensions to Vector Space Model (VSM)[43] and Latent Semantic Index-
ing (LSI)[44] are used, and CAN[10] is used to support the semantic overlay.
CAN stands for content-addressable network. CAN organizes the logical space
as a d-dimensional cartesian space and partitions it into zones. One or more
nodes are responsible for each zone and every object key corresponds to a point
in the space and is stored at the zone which contains that point. Locating an
object in CAN is reduced to routing to the node that hosts the object. Routing
from a source node to a destination node is equivalent to routing from one zone
to another in the Cartesian space. Vector space model (VSM) represents doc-
uments and queries as term vectors. Each element of the vector represents the
importance of a word (term) in the document or query. Two factors decide the
importance of a term in a document: the frequency of the term in the document
and the frequency of the term in other documents. If a term appears in a doc-
ument with a high frequency, there is a good chance that term could be used
to differentiate the document from others. However, if the term also appears in
several other documents, the importance of that term is reduced. During a re-
trieval operation using VSM, the query vector is compared to document vectors
and those closest to the query vector are considered to be similar and are re-
turned. Latent semantic indexing was proposed to address synonymy, polysemy,
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and noise problems in literal matching schemes such as VSM. For instance, al-
though car, vehicle and automobile are different terms, they all reference the
same or very similar objects. In VSM this would make no differnce but, LSI may
be able to discover that they are related in semantics and therefore generate
more reliable semantic vectors. The basic idea of pSearch is to use the semantic
vector(generated by LSI) of a document as the key to store the document in the
CAN.

Fig. 8. Search in a Semantic Space

Fig. 87 shows how a semantic overlay can benefit searches. Each document
is placed as a point in the (semantic) Cartesian space. Documents close in the
semantic space have similar contents (e.g. documents A and B). Each query can
also be positioned in this semantic space and to find documents relevant to that
query it is only necessary to compare it against documents within a small region
centered at the query, because the relevance of documents outside that region is
relatively low. This results in an effectively smaller search space for the query.

To set-up the semantic overlay, an index for each document is stored in the
CAN using the document’s semantic vector as the key. Among other things, an
index includes the semantic vector of a document and a reference (URL) to the
document itself. The basic operation model in pSearch can be summarized in 4
steps:

– When receiving a new document (which can be submited by any node, inside
or outside of the CAN) a, the Engine node, a node that is part of the CAN,
generates its semantic vector Va using LSI and uses Va as the key to store
the index in the CAN.

– When receiving a query q, the Engine node generates its semantic vector Vq
and routes the query in the overlay using Vq as the key.

– When a query reaches its destination, it is flooded to nodes within a radius r,
determined by the similarity threshold or the number of wanted documents
specified by the user.

– All nodes that receive the query do a local search using LSI and report the
references to the best matching documents back to the user.

7 Fig. 8 taken from [36]
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4.4.2 Cubit Cubit[45] takes a different approach on the issues discussed in
psearch[36]. While the focus of pSearch is on finding documents with high seman-
tic relevance to the search keys it is unable to match misspelled search keys to
documents with correctly spelled keywords.To overcome this issues, cubit works
by creating a keyword metric space that encompasses both the nodes and the
objects in the system and where the distance between two points is a measure
of the similarity between the strings that those points represent. The objective
of the cubit system is to find the k closest data items for any given search key.
This is achieved by creating a keyword metric space that captures the relative
similarity of keywords, assigning portions of this space to nodes in the overlay
and to resolve queries by routing them through this space. The focus of Cubit is
on providing approximate keyword search for multimedia content with limited
content description. Keywords are derived from the content’s filename and in-
formation specific to the content type, such as the comment section of torrent
files or the extended video information for YouTube video clips.

Fig. 9. The edit distance between keywords

An object stored in Cubit is characterized by one or more keywords. Cu-
bit’s approach to approximate matching relies on a notion of distance between
keywords. Cubit mainly uses the most common notion of distance on strings,
the Levenshtein distance, commonly known as the edit distance(Fig. 98). It is
equal to the minimum number of insertions, deletions, and substitutions needed
to transform one string to another. However, search queries typically consist
of more than one keyword (for instance, the title of a movie). Therefore, cubit
matches queries using the phrase distance (i.e. the distance between two sets of
keywords) which is used to calculate the distance between a query and an object.

In Cubit, nodes are distributed in the same space as keywords. This means
that each node in Cubit is assigned a unique string ID chosen from the set
of keywords associated with previously inserted objects in the system. This ID

8 Fig. 9 taken from [45]
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determines a node’s position in the keyword space and each Cubit node is re-
sponsible for storing the set of keywords for which it is the closest node.

Fig. 10. Cubit concentric rings structure

In Cubit, a search operation is processed by a distributed protocol which
navigates through nodes in the keyword space, gradually zooming in on a neigh-
bourhood of a given (possibly misspelled) keyword, and thus locates nodes that
store possible matches. To achieve this, Cubit creates and maintains a multi-
resolution overlay network on nodes such in which each node has several peers
at every distance from itself. Each Cubit node organizes its peers into a set of
concentric rings. In each ring, a node retains a fixed number, k, of neighbours
whose distance to the host lies within the ring boundaries. This ring structure
enables a Cubit node to retain a relatively large number of pointers to other
nodes in its surroundings, while also providing a sufficient number of pointers
to far-away peers. This ring structure is depicted in Fig. 109 in which, the solid
circles represent peers in node A’s neighbourhood-set, the empty circles repre-
sent other nodes, and the squares represent object keywords in the system. The
shaded region depicts the subspace that is closer to A than any other node. The
master record for each keyword in the shaded region is stored at node A.

The way the Cubit search protocol operates is by iteratively collecting more
and more information of the target region. In Fig. 1110, x is the location of the
search term in the keyword space, the solid circles are node A’s peers, empty
circles are additional nodes in the space, and the circle around x are all nodes
within an edit-distance q of x. Node A first finds the nmin = 2 closest nodes to x
from its neighbourhood-set, and requests their nmin closest nodes. As a result,
two new closer nodes are discovered and subsequently sent the same query. The
protocol terminates when all nodes within the circle around x, or when the nmin

9 Fig. 10 taken from [45]
10 Fig. 11 taken from [45]

23



closest nodes have been discovered. These nodes are then queried for their objects
closest to x.

Fig. 11. The Cubit Search Protocol

4.4.3 Adaptive Probabilistic Search (APS) Search methods can be cat-
egorized as either blind or informed/guided. In blind searches, nodes do not
store any information regarding file locations. In informed/guided approaches,
nodes locally store metadata that assist in the search for the queried objects.
Blind methods usually need to consume a lot of bandwidth to achieve high per-
formance. On the other hand, informed methods use their indices to achieve
similar quality results and to reduce traffic overhead. The problem with most
informed methods is the maintenance cost of the indices after peers join/leave
the network or update their collections. In most cases, these events trigger floods
of update messages inflating network traffic.

In [46] a new search algorithm called Adaptive Probabilistic Search (APS)
method is proposed. This algorithm achieves high performance at low cost. In
APS, a node deploys k -walkers for object discovery, but the forwarding process is
probabilistic instead of random. Peers direct these walkers using feedback from
previous searches, while keeping information only about their neighbours.

The APS algorithm is defined for deployment over unstructured P2P net-
works and is based on some assumptions:

– Peers initiate searches for various objects that are distributed across the
network according to a replication distribution, which dictates which objects
are stored at each node.

– Popular objects get many more requests than unpopular ones.
– The search algorithms cannot dictate the placement and replication of ob-

jects in the system and are not allowed to alter the topology of the P2P
overlay.

– A node is directly connected to its neighbours, and these are the only peers
whose addresses the node knows about.
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– Nodes can keep some soft state for each query they process. Each search
is assigned an identifier, which, together with the soft state, enables peers
to make the distinction between new and duplicate messages. Identifiers are
also assigned to objects and nodes from a flat, non-hierarchical space.

In APS, each node keeps a local index per neighbour, consisting of an entry
for each object it has requested, or forwarded a request for. The value of each
entry reflects the relative probability of this node’s neighbour to be chosen as the
next hop in a future request for the specific object. In the forwarding process,
a node chooses its next-hop neighbour according to the probabilities given by
its index values and appends its identifier in the search message, keeping soft
state about that search. If two walkers from the same request cross paths (i.e., a
node receives a duplicate message due to a cycle), the second walker is assumed
to have terminated with a failure and the duplicate message is discarded. Index
values stored at peers may be updated using one of the following strategies:

– Optimistic Approach: In this approach, when a node chooses one or k (if
the node is the query originator) peers to forward the request to, it pro-
actively increases the relative probability of the peer(s) it picked, assuming
the walker(s) will be successful

– Pessimistic Approach: In this approach, the node decreases the relative prob-
ability of the chosen peer(s), assuming the walker(s) will fail.

Upon walker termination, if the walker is successful, nothing is done in the
optimistic approach but if the walker fails, index values relative to the requested
object along the walker’s path must be corrected. Therefore, using information
included in the search message, the last node in the path sends an update message
to the preceding node. This node, decreases its index value for the last node
to reflect the failure and the update process continues along the reverse path
towards the requester. If the pessimistic approach is used, the update procedure
is analogous, and nodes increase the index values along the walker’s path, but
the update only takes place when a walker succeeds (instead of when a walker
fails).

This method uses probabilistic walkers with a learning feature that incorpo-
rates knowledge from past and present searches to enhance future performance.
The learning process adaptively directs the walkers to promising zones of the
network. In fact, this method has an increased recall rate in comparison to the
original blind k -walker[38]. APS also does not require message exchange on node
arrivals or departures. If a node detects the arrival of a new neighbour, it will
associate some initial index value to that neighbour and if a neighbour discon-
nects, each node that has that node as a neighbour, removes the relative entries
and stops considering it in future queries.

4.4.4 SETS : Search Enhanced by Topic Segmentation SETS[41] is an
architecture for efficient search in peer-to-peer networks, building upon ideas
drawn from machine learning and social network theory. The key idea behind
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SETS is to arrange sites (peers) in a network such that a search query probes
only a small subset of sites where most of the matching documents reside. In
particular, SETS partitions sites into topic segments such that sites with simi-
lar documents belong to the same segment. Each topic segment has a succinct
description called the topic centroid. Sites are arranged in a segmented network
that consists of two kinds of links. Short distance links connect sites within a
segment. Long distance links connect pairs of sites from different segments.

When a search query is initiated, it is forwarded to other sites using a topic-
driven routing protocol. First, topic centroids are used to select a small set of
relevant topic segments. Next, the selected segments are probed in sequence. A
probe to a particular segment proceeds in two steps: First, the query is routed
along long distance links to reach a random site belonging to the target segment.
Next, the short distance links are used to propagate the query to all/most/few
sites within a segment. By applying this content-based search approach, SETS
is able to reduce the number of nodes that are queried while mantaining a high
recall rate since the nodes that are queried, are those with higher probability of
holding the desired resources.

5 Proposed Architecture

To efficiently support complex queries in large-scale overlay networks, we propose
an architecture that comprises 2 layers. The first of which will be composed by
all the peers in the system, which will form an unstructured overlay network.
The second layer will be composed by some selected peers, belonging to the first
layer, which will in turn form a structured overlay network more precisely, a
DHT. The way these two layers will interact in order to execute queries will be
explained further ahead. For now though, a few observations must be made:

– We consider that each peer in the system has a set of resources (Music,
Video, Documents, Processor,...) of its own, which it shares with the rest of
the network.

– Each of these resources is characterized by a number of keyword tags (such
as Music, Movie, TV Show, Game, Book, Application, Comics, ...).

– Under no circumstance is a peer required to store any resource other than
the ones it chooses to share with the network.

– Peers may join or leave the network at any given time.

Unstructured Layer This layer will be composed by all the peers in the system,
which will form an unstructured overlay. Peers in this overlay will organize them-
selves according to the type(s) of content they share. This will be done using
X-Bot[27], with the type(s) of content shared by each peer as the biasing factor
for the overlay topology. In particular, each peer will define the most relevant
types of content (defined by the tags of each resource it shares) and try to find
neighbours that share the same types of contents and keep them in its active
views. For instance, if a peer defines Audio and Games as the most relevant
types of contents it shares, the network topology will be biased (using X-Bot)
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so that, that peer has some neighbours that have Audio as a relevant type of
shared content, and also have neighbours whose relevant types of shared content
include Games.

Structured Layer Some peers that belong to the unstructured layer, will also be
selected to participate in a DHT overlay. This selection will be made according to
peer capacity (e.g.: cpu and storage), bandwidth, availability (uptime), and also
amount of shared content. Each peer that participates in this DHT, will register
itself to one or more resource categories (keyword tags) which are amongst that
peer’s most relevant types of shared content. This means that for each resource
category, there will be one or more peers who are representatives of that category
in the DHT. This DHT will then be used by all the peers in the system to route
their queries towards peers that share the type of content being searched for.
For this, each peer in the unstructured layer will also mantain a small additional
view containing some DHT participant peers.

Queries Whenever a peer wishes to perform a query in the system, that peer
must define the category tags that the query is valid for (for instance, if the peer
is searching for an audio book by, let’s say, “Tolstoi”, the tag book and audio
should be used but for instance the tag video should not). Then, there are 2
possibilities for a peer p to execute this query:

– For each of the category tags, that the query is valid for, and that are
amongst p’s relevant types of shared content, p will use limited flooding
in the unstructured layer. In this step, the query message will be forwarded
to the subset of peers in p’s active view that also share that type of content.
That subset of peers will execute the query and also forward the query to
their own subset of neighbours who also share that type of content. This
process will continue until a previously defined value of TTL is achieved.

– For each category tag, that the query is valid for, that is NOT amongst p’s
relevant type of shared content, p will forward that query to the DHT using
that category’s hash as the destination, so that one of the peers in the DHT
registered to that type of content receives the query. Then, that peer will
disseminate the query using limited flooding in the same fashion as indicated
in the previous item.

Main Advantages This solution should provide some relevant advantages:

– Query Flexibility: The only requirement is that the querying peer defines the
resource categories for which that query is valid. The query itself can be of
any type and the query language can be as rich and complex as desired. This
presents an advantage when comparing to traditional DHT-based solutions
which can only be used for exact-match queries.

– Directed Flooding: The usage of X-Bot with the type(s) of content shared by
each peer as the biasing factor for the overlay topology, allows for the queries
to be forwarded only to peers which share contents for which that query is
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relevant. This, combined with the usage of a TTL value, should lower the
amount of network traffic generated in each query, while still providing a
high query recall rate (since the peers that receive the query are more likely
to store relevant content).

6 Evaluation

The performance of the proposed solution will be evaluated both by simulation
using Peersim[47] and, if time permits, via an experimental deployment in the
testbed PlanetLab[15]. Simulations will be useful to test the proposed architec-
ture under several scenarios in which the number of network participants will
vary overtime. This will allow us to evaluate the solution’s scalability as well as
its resistance to churn events. In addition, it will also be crucial to analyze the
level of maintenance overhead induced by the proposed solution.

On another note, the main performance metrics that will be analysed are:

– The Search Algorithm’s Recall Rate.
– The Message Cost of Queries.
– The Search Algorithm’s Precision.

These metrics will allow us to compare the search algorithm’s performance
against existing state-of-the-art solutions.

7 Schedule

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 29 - May 2: Perform the complete experimental evaluation of the
results.

– May 3- May 23, 2009: Write a paper describing the project.
– May 24 - June 13: Finish the writing of the dissertation.
– June 14, 2009: Deliver the MSc dissertation.

8 Conclusion

In this report we surveyed the most representative approaches to support re-
source location in large-scale P2P system. In order to provide the adequate
context for this work, we have also introduced the main classes of P2P systems.
We have observed that different classes of P2P systems have advantages and
disadvantages for supporting resource location in an efficient manner. Finally,
we have sketched a solution to implement resource location that is based on a
combination of structured and unstructured overlays that we plan to develop in
the future. We concluded the report with a description of the methodology to
be applied for evaluating our solution.
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