Resource Location in P2P Systems

(extended abstract of the MSc dissertation)

Jodo Pedro Fernandes Alveirinho

Mestrado em Engenharia de Redes de Comunicagdes

Instituto Superior Técnico

Advisor: Professor Luis Rodrigues

Abstract—Peer-to-peer (P2P) systems have emerged as a
potential technology to build very-large distributed data and
resource sharing systems. A key problem in these systems
is the location of resources. Most approaches, address the
scale challenge using either structured (DHTSs) or unstructured
overlay networks. Unfortunately, these solutions have a tradeoff
between efficiency and flexibility. DHTs are more efficient
but are specialized to address exact-match queries, whereas
unstructured solutions, that typically rely in some sort of
blind search mechanism, incur in additional overhead, but
can address arbitrary complex queries. This thesis presents a
novel self-organizing architecture to perform resource location.
This architecure, that was named Curiata, combines structured
and unstructured approaches to support flexible and efficient
resource location. For instance, the architecture can be used
to perform distributed resource allocation in cloud computing
infrastructures. Experimental results extracted through simula-
tion validate this design, and show that the proposed solution
is able to offer a good recall, with small overhead and low
latency.

Keywords: Resource Location, Self-Organizing Systems, Unstruc-
tured Overlays, Structured Overlays, Peer-to-Peer Systems.

I. INTRODUCTION

Since the appearance of Napster[1] in 1999, P2P systems
have been subject to intensive research and development
efforts, both in academia and industry. Peer-to-peer file
sharing systems such as Gnutella[2] and more recently
BitTorrent[3] have had tremendous success. Unfortunately,
these systems have been mainly used to illegally distribute
copyrighted material. Still, several examples of legitimate
uses of this technology also exist and can be found in,
among others[4]. From the technological point of view, the
potential of the technology to build extremely large-scale
shared repositories makes it a very interesting research topic.

One of the main challenges in P2P systems is how to
efficiently support resource location. Due to scalability and
dependability issues, centralized solutions are not adequate.
On the other hand, exhaustive search on all peers is also a
non-scalable solution. Therefore, it comes as no surprise that
resource location algorithms have been intensely studied,
and many different solutions have been proposed.

II. CURIATA

In order to improve the current state-of-the-art, a solution
to the resource location in P2P system needs to address the
following two key challenges:

i) Query Flexibility: Querying mechanisms should be
flexible and allow rich and complex query languages. This
would present an advantage when comparing to traditional
DHT-based solutions which are typically only used for
exact-match queries.

ii) Efficient Location of Resources: The proposed solu-
tion should be able to provide an efficient way to locate
resources, in contrast with traditional unstructured solutions
that typically rely on inefficient blind search mechanisms.

To answer these challenges the thesis proposes Curiata, a
scalable and efficient resource location system that employs
self-organizing techniques to integrate and combine the
benefits of both structured and unstructured approaches. This
approach supports flexible queries, like most unstructured
solutions, while retaining the speed and efficiency provided
by structured (DHT-based) solutions. The operation of Cu-
riata is inspired by the organization of human societies.
During the first two decades of the Roman Republic, the
people were organized into units called curia of ethnic na-
ture; the curia gathered into an assembly, the comitia curiata,
for legislative, electoral, and judicial purposes, and where
consuls had a special role. Similarly, in Curiata, peers self-
organize in an unstructured overlay where nodes with similar
shared resources establish neighbouring relations via a low-
cost background process (the curia). Furthermore, nodes of
each curia elect representatives to join a structured overlay
(the curiata). Members of the structured overlay serve as
contact points for other nodes with similar content. Thus, the
structured layer is used to efficiently route queries towards
regions of the unstructured layer which contain peers that
share the type of resources being queried for. Then, the
query is propagated amongst the members of the curia
using unstructured techniques such as limited flooding or
random walks. Curiata has a number of generic components
that constitute the Curiata core architecture. Furthermore,
some of these components can be specialized to optimize

Curiata’s performance in each application scenario.

The components of a Curiata peer, are the following:
i) The resource index, that describes the local resources
available at the peer. ii) The biased unstructured overlay
layer, that uses a distributed self-organizing protocol to
ensure that peers establish neighboring relations with other
peers with similar resources. iii) The structured overlay
layer, which is only activated when a peer is elected as a
consul. iv) The consul election module, that employs a local
self-organizing protocol to select which peers belong to the
structured layer. v) The query routing module, responsible
for propagating and processing queries. In addition, some
of these modules have specific methods that can be imple-
mented in various ways to accomodate the requirements for
different application scenarios.

A. Resource Index

In Curiata, it is assumed that resources can be classified
in a set of categories. The resource index keeps a local
record of all categories of the resources owned (locally) by
the peer as well as (if applicable) the number of resources
available for each of these categories. This information is
used to identify which peers have similar resources. The
classification scheme is orthogonal to Curiata. For instance,
a distributed library of computer science papers could use
the ACM Computing Classification System to classify the
content. A distributed repository of music could extract
the categories required to classify content from the most
used tags used in popular applications such as “Last.fm”
(http://1ast.fm).

B. Unstructured Layer

The unstructured layer organizes all peers that have avail-
able resources in a biased unstructured overlay network.
More specifically, peers run a self-organizing distributed
algorithm, to adapt the overlay topology according to the
resources available at each node. The used algorithm is
a specialized version of X-BOT [5], adapted to meet the
requirements of Curiata.

X-BOT biases the unstructured overlay topology so that
each node becomes neighbour with other nodes that have
similar available resources. The rationale for this strategy is
to be able to efficiently process queries by limiting the rele-
vant areas of the unstructured overlay where nodes owning
resources relevant for a query are located. For this, each node
keeps two types of neighbors, denoted active and passive.
The set of active neighbors defines the overlay that is used to
propagate queries. Passive neighbours are used for exploring
the network and finding other peers with similar interests.
The passive view is updated by a periodic and random
shuffle process similar to the one described in [6]. The
active view is updated through the coordination procedure
introduced by X-BOT, using a strategy specifically designed

for Curiata. The the active view/unstructured layer update
routine can be found in Listing. 1.

if (!active—View.has—Enough—Neighbours ())

// Establish network connectivity
active —view . get—More—Neighbours ();
}

else

//Test if the active view is optimized
//Instance Dependent!
if (lactive—View.is—Fully—optimized ())
{
//Trade old for ‘‘better’’
//Instance Dependent!
active —View.optimize ();

neighbours

}

return;

Listing 1. Unstructured Layer/Active View Maintenance Routine

C. Structured Layer and Consul Election

The unstructured layer is able to organize itself so that it
promotes neighboring relations among nodes that have sim-
ilar resources (i.e., resources fall into the same categories).
Therefore, when searching for resources, as soon as one
finds a peer that owns resources from the desired category,
one can expect to find other nodes with similar categories in
the overlay vicinity. The purpose of the structured layer is
to facilitate the first step of the resource location procedure.

For this purpose, a fraction of the nodes that belong to
the unstructured overlay also join a DHT. These nodes are
elected to represent a category owned by nodes in each
region of the unstructured overlay (or curia) and are referred
to as regional consuls or regional contacts. A c-consul
joins the DHT with an identifier constructed by assigning
hash(node_id) to the s less significant bits and hash(c) to
the remaining (most-significant) bits. Thus, the structured
overlay layer acts as an assembly of representatives of the
different regions in the unstructured space: its purpose is
to efficiently route a query to regions of the unstructured
overlay where the searched resources are likely to be located.

A c-consul node uses the unstructured overlay to period-
ically send a beacon to nodes in its r-vicinity. Nodes that
receive the beacon, abstain from competing to become a c-
consul. For higher values of 7 there’ll be larger regions and
a smaller number of consuls in the DHT. On the contrary,
lower values of r will lead to the opposite scenario. The
Structured Layer maintenance routine is in Listing 2.

if (this.is—Consul()){ // Test if node is already consul
Category cat = this.get—Representing—Category ();
this .send—Beacon(cat,r);
return;}
// Set of categories for which the node can be a consul
// Instance Dependent!
Array [Category] Categories
= this.get—Categories —Node—Can—Represent ();

for (Category ‘‘c’’ in Categories){
//Test if node has received a beacon for ‘‘c’’
if (! this.has—Received—Beacon(‘‘c’’))
{ //Try to become a ‘‘c’’—consul
this . compete—For—Election(“‘c’’,r);

return; }

//Terminate if categories already have a consul
return;

Listing 2. Structured Layer Maintenance Routine

If a node that belongs to a category c, that it can represent
and, does not receive any beacons (within a time interval 1),
it competes with other potential candidates to become a c-
consul. A node that is elected to be a c-consul, can use a
consul of another category ¢’ as a contact point for joining
the DHT or may perform a random walk in the unstructured
overlay to find a node that has information concerning any
other regional consul. In addition, each node may only be
the c-consul for a single category. A node that already is a
c-consul does not compete to become the regional contact
for any of the other categories.

D. Query Routing

Curiata does not constrain the format, nor the language, of
the queries. There is only one requirement: from the query,
it should be possible to extract the set Q of categories that
match the query. For instance, if a query searches for a music
by Aldina Duarte, one should be able to extract categories
such as world music, fado, and Portugall.

Thus, the query routing module is reponsible for routing
queries towards regions of the unstructured layer which
contain peers whose categories match the ones defined in
the query. This involves the partipation of nodes in the
unstructured layer - forwarding the query within the regions
that match such categories - and nodes in the structured
layer, that route queries towards those regions.

To avoid flooding the network with query messages, the
idea is to disseminate and process each query with some
approximate message cost k. In the current prototype the
value of k is static and defined offline. However, k& could
be dynamically adjusted to match the estimated rarity of the
searched resource (for instance, based on the results returned
by previous searches). A query is disseminated as follows:

o First, the query is routed to a member of the DHT.

e Then a copy of the query is routed to each category
¢ € Q using the DHT. Each copy is received by a c-
consul for that category. To promote load balancing, for each
category ¢, the query is routed to an identifier composed
by hash(c)||{s random bits}. This ensures that different
queries are injected into the unstructured layer via different
representatives of that category.

e Each c-consul starts a random walk of length ﬁ in
its vicinity. In each hop in the random walk, the query is
preferably forwarded to a node that has not yet received the
query These random walks are biased and are preferably
forwarded to a neighbor that owns resources of the category
c associated with the random walk.

IThese categories were extracted from the user tags associated with this
artist in Last FM.

e Each node visited by the random walks (including the c-
consuls) executes the query locally and checks if it satisfies
the query. In affirmative case, it adds to the random walk its
own identifier.

e Finally, when a random walk reaches the maximum
number of hops, it returns to the source all nodes matching
the query that were visited by the random walk.

The total message cost of a query is & x |Q| plus the
cost of reaching a DHT member from the source (typically
1), plus the number of hops in the DHT required to reach
the c-consuls (which is logarithmic with the number of peers
in the DHT).

The query dissemination process may be optimized by
having nodes avoiding to route the query to consuls of
categories the originator of the query already owns. In this
case, the originator of the query can use such neighbors as
representative of these categories and having them initiate
the random walk.

III. INSTANTIATING THE ARCHITECTURE

Two possible instantiations for the Curiata arquitecture
are now presented. For both scenarios, the Curiata core
architecture remains unchanged; only the methods that are
instance dependent are refined. In the first scenario the
Curiata architecture is supports resource allocation in cloud
computing infrastructures. The second scenario addresses
resource location in P2P file sharing systems.

A. Resource Allocation in Cloud Infrastructures

In cloud computing infrastructures, outside users allocate
resources in the cloud in order to store and execute their
applications or services. However, inherent to the cloud com-
puting paradigm is the ability to adjust or deploy, on demand,
services to face dynamic changes on the workload. This
brings upon the need for an infrastructure to keep track of
the resource allocation in the cloud and to efficiently locate
the resources required to launch/redimension a new/running
service or application.

1) Resource Index: In this scenario, every resource avail-
able at each node in the cloud, which can be allocated
by clients, is classified into some category from a finite
set of categories defined a priori; although the number of
categories can be arbitrarily high.

For instance, it is possible to classify nodes according to
the amount of available memory as memXS (1.7Gb), memS
(7.5Gb), memM (15Gb), etc. Also, nodes can be classified
according to their architecture in the categories 32bits or
64bits. A similar approach can be used to classify other
types of resources, such as disk space, number of cores,
physical location, etc.

When characterizing resources that can take a discrete
value from a possibly large range, the definition of categories
simplifies the task of defining which nodes are more similar.
In these cases each category represents an interval I of values

for that resource. Each peer in the system that shares that
resource and has a value v for it, will fall into a category ¢
so that v € L.

2) Unstructured Layer: In this particular scenario, be-
cause each category owned by a node is considered to have
the same importance for that node, our X-BOT proximity
metric when applied to a pair of nodes returns a distance
value that depends on the number of resource categories
shared by those nodes. This means that, the returned value
is zero if both nodes share exactly the same set of resource
categories, and increases by a fixed amount for each category
owned by only one of the nodes.

Therefore, X-BOT operates by exchanging overlay links,
so that for each node n it maximizes the number of neighbors
of n that share the same set of resource categories.

For instance, consider nodes a,b,c and d that belong to
the following sets of category respectively:

o Node a € {memXS; 64-bit; diskSpaceXL}

o Node b € {memsS; 64-bit; diskSpaceXL}

o Node ¢ € {memXS; 64-bit; diskSpaceXL}

o Node d € {memM; 32-bit; diskSpaceXL}

The distance d between the each of the nodes is the
following: d(a,b) = I; d(a,c) = 0; d(a,d) = 2; d(b,c) = I,
db,d) = 2; d(c,d) = 2.

This means that in order for a node’s active view to be
fully optimized, all neighbours that belong to a node’s active
view need to have a distance of O to that node. Therefore,
the is-Fully-Optmized() method only returns true when all
the distances in a node’s active view are 0. Furthermore,
in each optimization step, nodes try to gather peers in their
active views so that their distance is as little as possible.In
fact, each time this method is executed, the current node n
trys to exchange a node n’ in its active view with the highest
distance to himself for a node n” from its passive with the
lowest distance to himself if d(n,n”)<d(n,n’).

3) Structured Layer and Consul Election: In this sce-
nario, nodes can compete to become consuls in any category
¢ to which they belong. Therefore, for this scenario, the
get-Categories-Node-Can-Represent() method returns all the
categories to which a node belongs. This is so because
all categories are considered equally important for a node
and therefore the node can represent any of them in the
Structured Layer.

4) Resource Allocation: In response to a query, the source
receives a list of at most k£ nodes that match the query. Some
of these nodes serve as regional consuls and others do not.
However, in this particular scenario, because resources are
dynamic (i.e. they may change often overtime), to promote
DHT stability, resources should be preferably allocated from
nodes that are not consuls.

Resource allocation itself is application dependent and
orthogonal to the Curiata architecture. For instance, a new
service may be deployed on the selected nodes or be
expanded to use additional resources available in the cloud.

When resources are allocated, the categories owned by a
node may change. In response, X-BOT will iteratively move
the node to another region of the unstructured overlay.

B. Resource Location in File Sharing Systems

In peer-to-peer file sharing systems users share different
content with each other. From audio or video files, doc-
uments and e-books, to applications and computer games,
a large variety of content is shared within these systems.
Setting aside the legal issues sometimes associated with file-
sharing systems, the truth is that they have had tremendous
success and a definite impact on internet users around the
world. One of the key challenges for these systems lies on
how to efficiently locate the resources (files) that users are
looking for.

1) Resource Index: As mentioned earlier in Curiata’s
core architecture description, the resource index keeps a
local record of all the categories of the resources owned by
a peer, as well as the number of resources available for each
of these categories. However, to accommodate the diversity
in both shared content and quantity that characterizes users
in a P2P file sharing system, the resource index component
also keeps, for each category c of the resources owned by
a peer, the fraction of resources of that peer that fall in that
category.

This value is denoted by frac.. For instance, consider
a node that stores computer science papers, and half of
these papers fit in the self-stabilizing system category. Then,
fracsss = 0.5. Also, all the categories are sorted by frac val-
ues. The top ¢ categories are used to define the neighboring
relations at the unstructured layer.

2) Unstructured Layer: For this scenario, the curia layer
divides the active view in t slices, where t is the same
configuration parameter that is used to select the ¢ top
categories with larger fraction of local resources. Each of
these slices is devoted to one of the ¢ top categories. The
slice for category c has a dimension slice. in the interval
[smin,d - frac.|. Where smin is the minimum size of a
slice, and is set as 2%. For instance, consider a system where
the curia layer is configured to select neighbors according
to the top 5 categories (tf = 5). Consider a peer p such
that the top 5 categories (cl,...,c5) have the following
associated fractions: (0.5,0.2,0.1,0.1,0.1). If peer p had a
degree d = 20, its active view would be sliced as follows:
(10,4,2,2,2). Considering the slicing of the active view as
described above, a node uses the following steps to bias its
neighbors:

i) The first concern of a peer when it joins the unstructured
overlay is to fill its active view, regardless of the similarity of
its potential neighbors. This step aims at ensuring network
connectivity.

ii) After filling the active view, the next priority for the
peer is to have neighbors that belong to his top categories.

(i.e, each slice contains at least one neighbor of that cate-
gory).

iii) Then, the peer tries to exchange neighbors so that
each slice is filled with neighbours that have resources of
the corresponding category.

iv) Finally, as soon as this last criteria is achieved the peer
stops executing the self-organizing algorithm and maintains
its neighbors unchanged.

This slicing of the active view leads to a different im-
plementation of the is-Fully-Optimized(). In fact, the active
view is only considered to be fully optimized if all peers
in the active view belong to at least one category from the
node’s top categories and if each slice is filled with peers that
belong to that category. In addition, the optimize() method
follows two steps. In the first step, the node attempts to
trade neighbours that belong to neither of its categories for
nodes that belong to at least one of his categories. In the
second step, the node trys to gather enough nodes in each
category so that the active view respects the pre-defined slice
sizes. During this process, when a node finds a category ¢
that lacks neighbours in the active view, if the active view
still has some open slots, the node simply trys to gather
one more neighbour from its passive-view that belongs to
c. Otherwise, if the active view is completely full, the node
trys to find a category c2 that has a number of neighbours
higher than its slice size and then trys to replace a neighbour
from ¢2 (that does not also belong to ¢) for a new neighbour
from its passive view that belongs to c.

3) Structured Layer and Consul Election: In this sce-
nario, nodes can only compete to become c-consuls for the
category c that is their topmost category (i.e. the category
with the highest fraction in a node’s active view). Therefore,
for this scenario, the get-Categories-Node-Can-Represent()
method returns only the node’s topmost category. This
policy attempts to ensure that a consul for ¢ has enough
neighbours that belong ¢ not to run the risk of receiving
a query for ¢ and not being able to forward it because
all its neighbours that belong to ¢ have suddenly failed.
In addition, regarding the query routing procedure, when
trying to locate rare resources, it could be important to start
several random-walks, for each category c that the query
targets, in the unstructured layes instead of only a single
one. Having nodes only being able to represent their topmost
category, effectively makes this feasible as they will have
more neighbours to initiate these random-walks.

IV. EVALUATION

The performance of the proposed solution was evaluated
by simulation using the Peersim[7] simulator. Evaluation
results for both the cloud computing infrastructure scenario
(presented in III-A) and also for the peer-to-peer file sharing
system scenario (presented in III-B) are now provided.

A. Cloud Computing Infrastructure

This scenario was based on the pre-configured instances
provided by Amazon Web Services. In the experimental
setup, 17 distinct resource categories were considered (5
categories for different sizes of each resource type — CPU,
Memory, and Disk — and two categories for the CPU
architecture — 32 and 64 bits), each node belongs to 4 of
these categories (one per resource type) and maintains 30
unstructured overlay neighbors (d = 30). Finally, the radius
to which nodes announce their presence in the DHT was set
to 3 hops (r = 3). Each physical host, in the simulated
cloud computing infrastructure, is assumed to own twice
the resources of the most powerful pre-configured virtual
machine used by the Amazon Web Services.

The system was evaluated for two types of queries. In
the first experimental setting approximately 20.000 virtual
machines were allocated with random configurations (from
the ones employed by Amazon) over 10.000 physical nodes
in order to promote the heterogeneity of available resources
among nodes. Then, 4.576 queries were executed initiated
from random nodes in the system, where trying to locate
a machine with free resources in 1, 2, 3, and 4 different
categories (1.144 queries of each type were executed). The
k parameter was set (associated with the cost of performing
random walks) to 48, therefore 48 nodes is the maximum
number of nodes that can be returned by a query.

The goal was to evaluate the number of nodes returned
by each query (i.e. number of hits) and the cost, in num-
ber of messages, of disseminating queries targeting dif-
ferent number of categories. Results are reported in Fig-
ures 1(a) and 1(b) respectively. On average, queries are
able to return a large set of answers. The number of nodes
returned by queries mostly decreases with the increase of
associated categories. This is expected, as a smaller number
of nodes in the system have adequate resources to reply
to such queries. However, even when performing queries
for 4 resource categories, our approach is able to find more
than 30 nodes that fit the requirements. Interestingly a query
for a single resource category returns less elements than a
query that targets 2 categories. This likely happens because,
in such scenario only a single random walk is employed
which can transverse, and exit, the overlay region biased for
that category, being unable to locate additional valid answers
afterwards.

Figure 1(b) reports the message cost for disseminating
each type of query. As expected the cost in number of
messages slightly increases as the number of categories rises.
This happens due to the additional cost of forwarding one
message through the DHT for each query category. Notice
however, that the cost does not rise linearly, as the cost of
performing random walks is maintained constant (k = 48).
Moreover, notice that, even when performing a query for 4
categories, the additional cost (i.e. the number of messages

224225226

1category 2categories 3categories 4categories 1eategory 2categories

First Match

= second Match

= Third Match
150

Numberof hops

72 73 74

17 18 19

50% 25% 5% 1%

Percentage of nodes with 64bits ako belonging to memL category.

(a) Number of Hits for Random (b) Message cost for Random Queries

Queries

Figure 1.

above 48) is, on average, below 15 additional messages.

Experiences have also been performed in an additional
setting where queries target two resource categories being
each of these categories very popular individually, but where
the intersection of both is rare. Notice that this is a scenario
that presents a relevant challenge to our system, as the
DHT will route queries to nodes belonging to each of the
categories individually, starting random walks in regions of
the unstructured overlay network that are biased for each
category independently.

To this end, the system was configured to have half of
the computational nodes belonging to category 64bits (i.e.
5.000 nodes) and a varying fraction of these nodes was
configured to also have the category memL. 5.000 individual
queries were then issued for each tested configuration. Only
a single query was routed in the DHT to a representative
of the 64bits category, as this is the worst entry point for
queries in this scenario. The number of hops required to
find to first, second, and third nodes that belong to both
categories were then measured.

Results are depicted in Figure 1(c). As expected, as the
percentage of nodes belonging to 64bits that also belong to
memL diminishes, the random walk requires additional hops
to find the region in the unstructured overlay where nodes
belonging to both categories are clustered. This happens
because the queries are injected into the unstructured layer
at representatives of a single category therefore it is possible
that the region of the unstructured overlay where the query
is injected is only biased for 64bits. Such limitation can
however be easily circumvented, by allowing representatives
of multiple categories to emerge. This question will be
addressed as future work. Notice however that the biasing
of the unstructured overlay network allows our system to
find the second and third hit for the query in the hops
immediately after locating the first hit.

(c) Hops for Rare Intersections

Resource Allocation

B. P2P File Sharing Systems

In order, to demonstrate the importance of each module in
the Curiata architecture, the performance of the following
four different sub-architectures was compared:

Random walks on a Random Topology (RWRT): This
corresponds to a system that uses only a random unstruc-
tured overlay, where no self-organizing background process
is employed. In this architecture, there is no DHT and peers
are not defined by the similarity of their resources.

Biased Random Walks on a Random Topology (BWRT):
This corresponds to a system that uses uses a random un-
structured overlay, where no biasing is applied. However, in
this architecture, queries (i.e., disseminated through random
walks) are guided using a mechanism similar to the one used
in Curiata.

Biased Random Walks on a Biased Topology (BWBT):
This corresponds to a system that uses an unstructured over-
lay that is biased by the same self-organizing background
process employed in Curiata. In this architecture the queries
are also guided. However no DHT is used to route queries.

Curiata: This implements the full architecture as de-
scribed in section III-B. In this architecture, peers self-
organize to bias their neighbors according to the similarity
of their resources and consuls are elected and organize
themselves in a DHT.

1) Queries: Each query is implemented using a single
k-length guided random walk with £ = 128 and k = 256.
The length of the random walk is counted from the peer that
originates the query. Thus, all hops are considered, including
the (non-random) hops required to reach the nearest consul,
and then to route the query in the DHT until a representative
of the searched category is found.

To simplify the analysis of the results, each query in
our simulation searches for a single resource. Since each
resource is associated with a single category, this category
is used to guide the query, both in the BWRT architecture
(to guide the walk in the unstructured layer), in the BWBT
architecture and in the full Curiata system (both in the

unstructured layer and when routed in the DHT). Note that
the fact that resources have unique identifiers is an artifact
of the simulation. As noted before, Curiata is aimed at a
system where users perform complex queries. Thus, a search
for a specific resource simulates any complex query that is
satisfied only by the resource with that identifier.

2) Metrics: Most of the experiments executed in this
scenario use the following metrics:

o Success rate: The percentage of queries that found at

least one copy of a given resource.

e Recall rate: The percentage of copies of a given re-
source that are found by a query (with regard to the
total number of copies of that resource in the system).

o Latency: The number of hops required to find x copies
of the resource. In most scenarios latency values to find
1, 2, and 3 copies of the resource were provided.

3) Experimental Setup A: For the first experiments a
network of 10.000 peers was configured and 11 resource
categories. Each node in the system is assigned 1 category
out of the 11. Resources in the network are associated with
a single category and have a unique identifier. Resources
of each category c are randomly allocated to peers of
that category, such that each resource exists in 5 distinct
nodes.Each node was configured to have 20 neighbors in the
unstructured overlay network. The radius of the regions for
consul election in the curia layer is set to 2 and in this sce-
nario approximately 200 peers out of the 10.000 are elected
as consuls and join the structured layer. Furthermore, each
category falls over one of 3 popularity ranks as follows: Rare
Categories: categories with less than 100 peers (Categories
G to K); Intermediate Categories: categories with 100
to 1.000 peers (Categories D to F'); Common Categories:
categories with more than 1.000 peers (Categories A to
C). Category A is the most common category with 5.000
peers whilst K is the least famous with only 10 peers. In
each experiment,10.000 distinct queries were issued starting
at randomly select nodes that targeted a single existing
resource.

4) Overall Performance Results: This section presents
the overall results for queries in the scenario described
above. Results were not discriminated by different categories
as the goal of these results is to provide an overall overview
of the system’s performance. This section presents results
only for k = 256, however the same tests were executed for
k = 128 generating similar results.

As in Fig 2(a), Curiata outperforms the alternative archi-
tectures, both in terms of success and recall rates. Fig 2(b)
presents latency values. Due to the DHT initial routing of
queries Curiata has significant lower latency times. Notice
that the lack of DHT support leads to a scenario where
no significant differences can be found in the number of
hops required to find the first hit for a query. Additionally,
the self-organizing topology of the curia combined with
the DHT routing allows Curiata to present a much lower

u Recall £1.4% o

msuccess Rate

PATA PAGTA PAGTE CURIATA

(a) Recall and Success Rate(k = 256)

250

218 mist Hit

m2nd Hit

3rd Hit

LATENCY

65 64

PATA PAGTA PAGTE CURIATA

(b) Hop Count (k = 256)

Figure 2. Overall Performance Results

number of hops required for locating the second and third
hit of each query. Note that these results, only take into
account the hop count of successful queries (this explains
why, in Fig 2(b), the hop count for the third hit has
lower values than the second hit hop count when using
a k = 256 using the Curiata system). As expected, the
performance of the evaluated solutions vary for queries that
target items belonging to categories with different popularity
(i.e., with a variable number of nodes belonging to it). In
order to evaluate the effects of resource category popularity,
the following section provides detailed results for different
scenarios.

5) Performance According to Category: Fig 3 presents
results for queries that target resources in rare categories
(namely, categories G, H, I, J, and K) and common
categories (categories A, B, and C). Due to space constrains
only results for £k = 256 were plotted, as this is the better
scenario for the remaining considered architectures.

Comparative performance results show that Curiata brings
no advantages when looking for resources in common cate-
gories. This happens because the DHT is unnecessary when
the categories are very popular (given that resources from
common categories are available in every region).

In sharp contrast, Curiata excels when searching re-
sources from rare categories. For those resources, Curiata
can achieve both a perfect recall and success rates and
outperforms the remaining architectures in terms of latency.
In the evaluated scenario, Curiata can locate every resource.
Fig 3(d) depicts detailed results for latency only for the
rarest categories J and K. Results show that Curiata offers a

=PATA
R sox HPAGTA
T

=PAGTE

&
0%
& WCURIATA

(a) Success Rate (common)

100% 100% 100% 100%
4 51

=PATA
HPAGTA
=PAGTE
=CURIATA

BPATA
HPAGTA
HPAGTE

= CURIATA

HPATA
HPAGTA
= PAGTE

HCURIATA

J(@Res) K(1°Res) K(2°Res) K(3*Res)

J(1"Res) J(2°Res)

(d) Hop Count (rare)

Figure 3. Performance Results for Rare and Common Categories

significant latency gain when compared to the other alterna-
tives. This steams from the DHT routing that places queries
in the relevant region of the self-organizing unstructured
overlay. Since these regions are small, our system can easily
visit all relevant nodes, effectively locating resources that are
targeted by the query.

1e+06

100000

10000

1000

Tag Frequency

2
3

1
[1000 2000 3000 4000 5000 6000 7000
Tag Rank

Figure 4. Tag Frequency for Resources

C. The Last.fm Dataset

In this evaluation scenario, data from 10.000 Last.fm
user profiles and their top-50 most listened to tracks was
retrieved. In the simulation architecture, the user’s most
listened tracks were their shared files/resources and the
associated tags were used as categories in Curiata. In
particular, the top 3 most voted tags of each track were used
to categorize them.

Analysis of the retrieved data shows that for these 10.000
users there were 197.018 unique music tracks (from a total
of 492.061 tracks), and these tracks were tagged by Last.fm
users with no less than 6.150 different tags (considering only
the 3 most voted tags of each track). In addition, the average
number of tags per user was approximately 23.9 (note that
this regards only the top-50 most listened to tracks by each
user). Fig. 4 depicts the frequency of tags in all tracks.
Out of curiosity, the most common tag is “Alternative” with
129.905 tagged tracks and the second one is “Indie” with
92.830 tracks.

This presents a challenging scenario for Curiata. Firstly,
because there are some very popular tags/categories that are
owned by a large portion of peers. This causes the search
region for such categories to be very large and, therefore,
a low TTL value might not be enough to find the desired
resources. In addition, there are in average approximately
only 2.5 copies of each resource in a universe of 10.000
users, which represents a very low replication factor of each
file. Furthermore, the number of categories that each user
belongs to is high (23.9 in average), especially considering
only the top-50 most listened to tracks are being used. This
high number of categories per peer makes it too costly for
each peer to establish connections for all categories, causing
some categories to be ignored during the biasing process.
This may cause some resources to be unreachable since
they do not belong to the top categories of their respective
owners.

For the system simulation, the active view size was set
to d = 45, peers biased their active views based on their
top-15 tags/categories (the ones they had the most resources
of), and can compete to become consuls for any of these
15 categories. The minimum number of neighbours for each

Success Rate

1024 512 256

TTL (Hops)

Figure 5. Success Rate for various TTL values

category was set to 3 (smin = 3) and the radius of the
consul beacons was r = 3. This setup led around 1.400
peers to join the structured layer (DHT) in which 864
categories were represented. In addition, 1.063 resources
(out of the 492.061) had none of their categories represented
on the structured layer and therefore were unreachable using
Curiata’s standard search protocol (although, they could
still be reached using only a biased random walk). 10.000
queries were then issued originated in random nodes and
targeting unique random resources. Different values of TTL
were tested and thus obtained the results for the success
rate (percentage of queries that found at least 1 matching
resource) of such queries. These queries targeted only a
single music track and a copy of the query was routed
towards each category of the resource that was represented
in the DHT. Each of these copies would be disseminated
with a certain value of TTL (Fig. 5).

As expected, the success rate increases with the TTL
value. This is mainly due to the existence of some very
popular categories such as “Alternative” which 6.731 peers
have in their top-15 categories or “Hip-Hop” which 4.699
peers have in their top-15 categories. Thus, the search region
for these categories is huge and it is not easy to find copies of
the target resources (note that the song tracks have in average
2.5 copies in the whole system) using these categories.
However, when other (less popular) categories for the target
resource are also represented in the structured layer, Curiata
can use those those categories, which have smaller regions in
the unstructured overlay, to find matches quicker. Therefore,
even with a TTL of 256, the success rate is already close
to 70%. To sum up, although Curiata did not achieve a
perfect success rate, the results are encouraging, given the
scenario used. More specifically, it is important to notice that
resources have a very low replication rate (only 2.5 copies
in average), and so this scenario strengthens the idea that
Curiata can achieve a high hit-rate for rare resources.

V. RELATED WORK

The simplest approach to perform resource location in
P2P systems is to use a centralized scheme, where a single
node is responsible for maintaining information about the
location of all resources available in the system[1]. Since

a central index maintains global knowledge of all resources
available in the entire system, it can easily process complex
queries. However, the overhead imposed on a single node,
to maintain full and updated information concerning all re-
sources, and to process queries on behalf of all peers, can be
excessively high in a large-scale dynamic P2P environment.

Structured P2P systems implement distributed hash-tables,
that support distributed exact-match lookups in a number
of hops logarithmic with the system size [8]. Unfortunately,
DHTs provide limited support for complex queries, as de-
composing a complex query into a set of exact queries is
often non-trivial and may even be impossible. Andrzejak and
Xu[9] proposed Space Filling Curve over CAN construction
to deal with range queries in DHTs. However, this approach
is unable to provide full query flexibility, as the overlay
has to be built taking into consideration a specific search
space. The work by Reynolds and Vahdat [10], proposes
a mechanism to add support for multiple search terms to
DHT’s. In order to achieve this goal, resources are inserted
in the DHT using a set of associated keywords, such that
each peer is responsible for maintaining the correspondence
between keywords and respective resources. In order to
process a query, a peer is required to obtain resource lists for
each keyword and calculate their intersection. When com-
pared with Curiata, this solution requires additional com-
munication overhead, specially when searching for common
keywords. Additionally, nodes in the DHT are required to
maintain large lists of resources, which may be cumbersome
for nodes responsible for common keywords.

Given the limitation of structured overlays to support non-
exact queries, it becomes attractive to rely on unstructured
P2P overlays, given that these overlays have a maintenance
cost that is significantly lower. The most straightforward
technique to implement resource location on top of un-
structured overlays is through the use of flooding with
limited horizon[11]. However, flooding is very expensive
and, despite its large cost, may be ineffective when it
comes to finding rare/unpopular resources that may exist
in only a few peers (and, therefore, may not be located
in the vicinity of the query source). Queries may also be
propagated using random-walks[12], or guided-walks[13],
which are less costly but exhibit a higher latency and
have a lower recall. Query efficiency may be improved
using techniques such as biasing the overlay network to
approximate a small-world network, replicating all indexes
in the one-hop neighborhood, and routing queries to high
degree nodes. GIA[14] is a well known example of a system
that combines these techniques, however such solutions not
only have the overhead of maintaining additional state,
as typically lead configurations where queries are only
effectively processed by a small fraction of participants.
Additionally, such solutions are not tailored to deal with
queries that target rare resources.

As a way to avoid the cost of blind search, some unstruc-

tured systems use attenuated bloom filters as a strategy to
embed information in the topology that can be used to bias
the routing of random walks, increasing the probability of
queries reaching relevant nodes. In some sense, our approach
also use a similar strategy however, contrary to our approach
in which a self-organizing strategy is employed to bias the
topology of the overlay, solutions based on bloom filters
cannot ensure the proximity of nodes that own similar
resources. Therefore, the usefulness of attenuated bloom
filters depends on the distribution of resources in the system
whereas our approach strives to approximate nodes with
similar content allowing queries to be routed with increased
precision.

To overcome the scalability issues of unstructured sys-
tems, some systems propose the use of super-peers|[15],
such that nodes organize themselves in a two level hierarchy.
Super-peers at the top level maintain consolidated indexes
for the resources maintained by the group of regular peers
that connect to them. Super-peers form an unstructured
overlay of their own, which is used to disseminate queries.
Unfortunately, in these systems super-peers process most of
the queries. Additionally the maintenance costs of replicated
indexes may easily become prohibitively high in face of
system dynamics. Our approach also relies in an two level
hierarchy topology. However, in Curiata, all participants
actively contribute to the dissemination and processing of
queries. Additionally, our approach does not require consol-
idated indexes to be mantained for neighbors, only generic
information concerning the categories of their resources.

VI. CONCLUSIONS

In this thesis a new solution was proposed to support effi-
cient search in large-scale peer-to-peer systems. Our solution
combines the usage of systems based on both unstructured
and structured overlay networks for a more efficient and
flexible resource location solution. Our architecture was
named Curiata, and aims at supporting flexible querying,
like most unstructured solutions, while retaining the speed
and efficiency provided by structured (DHT-based) solutions.

The architecture was applied to two different case-studies:
a generic file sharing system and a resource discovery
and allocation system for the cloud. The performance of
the resulting systems has been extensively evaluated using
simulations. The results have highlighted the benefits of our
approach, namely: i) Quick and efficient resource location
in rare categories which typically represents a challenging
subject in P2P resource location systems; ii) Effectively
approximates nodes that share resources belonging to the
same categories and use this network organization to quickly
find additional results; iii) Achieving high recall and success
rates even when using reduced values of TTL in queries.

And also its limitations: i) The additional overhead intro-
duced by the structured layer when searching for resources
in very common categories; ii) Under scenarios with very

10

high category heterogeneity, some objects may be unreach-
able through efficient routing.

Future plans include employing the Cubit[16] DHT in
Curiata to develop a decentralized tracking and torrent
search infrastructure that can cope with user errors when
describing and tagging torrents and content.

Acknowledgments This work was partially supported by
project “Redico” (PTDC/EIA/71752/2006) and by FCT (INESC-
ID multiannual funding) through the PIDDAC Program funds.
Parts of this work have been performed in collaboration with other
members of the Distributed Systems Group at INESC-ID, namely,
Jodo Leitdo and Jodo Paiva.

REFERENCES

[1] S. Flanning, “Napster,” 1999, http://www.napster.com.

[2] D. Tsoumakos and N. Roussopoulos, “Analysis and compar-
ison of p2p search methods,” in InfoScale '06: Proceedings
of the Ist international conference on Scalable information
systems. New York, NY, USA: ACM, 2006, p. 25.

B. Cohen, “Bittorrent,” 2003.

E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and
M. Leboisky, “Seti@home-massively distributed computing
for seti,” Computing in Science and Engineering, vol. 3, no. 1,
pp- 78-83, Jan/Feb 2001.

J. C. A. Leitao, J. P. S. F. M. Marques, J. O. R. N. Pereira,
and L. E. T. Rodrigues, “X-bot: A protocol for resilient opti-
mization of unstructured overlays,” in SRDS’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 236-245.

S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inex-
pensive membership management for unstructured p2p over-
lays,” Journal of Network and Systems Management, vol. 13,
no. 2, pp. 197-217, June 2005.

M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “The
Peersim simulator,” 2009, http://peersim.sf.net.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in SIGCOMM ’01. New York, NY,
USA: ACM, 2001, pp. 149-160.

A. Andrzejak and Z. Xu, “Scalable, efficient range queries
for grid information services,” in In Proc. of the 2nd P2P’02.
Washington, DC, USA: IEEE Comp. Society, 2002, p. 33.
P. Reynolds and A. Vahdat, “Efficient peer-to-peer keyword
searching,” in (Unpublished Manuscript), 2002, pp. 21-40.
D. Tsoumakos and N. Roussopoulos, “Analysis and compar-
ison of p2p search methods,” in InfoScale 06. New York,
NY, USA: ACM, 2006, p. 25.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
replication in unstructured peer-to-peer networks,” in ICS’ 02.
New York, NY, USA: ACM, 2002, pp. 84-95.

A. Crespo and H. Garcia-Molina, “Routing indices for peer-
to-peer systems,” in ICDCS’02, 2002, pp. 23-32.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making gnutella-like p2p systems scalable,” in
SIGCOMM °03. New York, NY, USA: ACM, 2003, pp.
407-418.

B. Yang and H. Garcia-Molina, “Designing a super-peer
network,” ICDE, vol. 0, p. 49, 2003.

B. Wong, A. Slivkins, and E. G. Sirer, “Approximate matching
for p2p overlays with cubit,” Computing and Information
Science Technical Report, Cornell University, Tech. Rep.,
Dec. 2008.

(3]
(4]

(5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

