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(Advisor: Professor Lúıs Rodrigues)

Abstract. A key-values store is a fundamental building block in to-
day’s applications. It allows to persistently store and retrieve data that
is indexed by a primary key. Key-values stores have been widely used
to support internet applications given that its interface allows for highly
decentralized implementations, that can scale to millions of users. Early
key-value stores offered weak consistency guarantees and no support for
multi-key operations, such as transactions. However, there is a growing
interest in using key-value stores that offer a richer set of properties.
Among the different alternatives to build such key-value stores, the con-
struction of a key-value stored over a shared log as been recently explored
and a viable alternative. The focus of this report is on log based key-
value storage systems, more specifically on the problem of scaling them
while providing strong semantics to applications. We identify two main
design to build such systems, namely sequencer based architectures and
sequencer free architectures, and we propose to explore the possibility
of merging the benefits of both, to increase the system scalability while
preserving strong semantics.

1 Introduction

Most computer applications require the access to some form of persistent
storage service. Many persistent stores exist, from simple file systems to complex
databases. Key-value stores have emerged as a sweet-spot between functionality
and ease of implementation, and have become the technology of choice for ap-
plication that need to scale to millions of users. Typically, key-value stores do
not offer transactional support for operations that require reading and updating
multiple keys. However, such functionality is often needed by applications, and
this raised the interest of extending key-value stores with transactional support.

Among the different designs that can be used to extend key-value stores with
transactional support, log-based key-values stores emerged recently as a viable
alternative. Such designs have been made possible due to the emergence of sev-
eral highly-efficient shared log systems, such as CORFU [1]. In this work we
address log based key-value storage systems, more specifically we focus on the
problem of scaling them while providing strong semantics to applications. We
identify two main design to build such systems, namely synchronous sequencer
based architectures and asynchronous sequencer free architectures. Synchronous
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systems tend to provide stronger semantics but are harder to scale while asyn-
chronous systems provide weaker semantics but should offer better scalability.
We propose to explore the possibility of merging the benefits of both, to increase
the system scalability while preserving strong semantics.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present relevant
work that has been done in the area of log based storage systems. Section 4
describes the proposed solution and Section 5 describes how we plan to evaluate
it. Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

This work addresses the problem of building scalable log based key-value
storage systems that provide strong semantics to applications. More precisely,
we aim at:

Goals: Designing and implementing a novel log based key-values stor-
age system that provides causal consistency and support for ACID trans-
actions.

As will be described further ahead in the report our system will try to merge
the benefits of two distinct architectures, the strong semantics of synchronous
systems with the scalability benefits of asynchronous systems. We will focus on
the performance and scalability of the proposed system and will assess its suit-
ability for the existing applications by performing an experimental evaluation.

The project will produce the following expected results.

Expected results: The work will produce i) a specification of the sys-
tem; ii) an implementation of a prototype of the system, and iii) an
extensive experimental evaluation of the performance and scalability of
the system using real world workloads.

3 Related Work

This section surveys relevant work that has been produced in the area of
log based storage systems and is organised as follows. Section 3.1 introduces the
concept of a shared log. Section 3.2 starts by addressing log based storage systems
and their properties. Then Section 3.2.1 and Section 3.2.2 present examples of
these systems. Finally, Section 3.3 discusses and compares the systems described
in the previous sections.
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3.1 Shared Log

A log is an append-only, totally-ordered, sequence of immutable records or-
dered by time. A shared log can be accessed by multiple clients, that can read
and write to it concurrently. Writing to the log is done by appending a record
to the end of the log, and reading from it can be performed in two ways, by
scanning a range of log records, for example all the records from left to right
in Figure 1, or by reading specific log records by their position in the log, like
reading log record number 3 directly.

Fig. 1: Log

The two fundamental properties of a log are the persistence of data records,
and the fact that these data records are totally ordered. Many high-level tasks
in distributed systems require operations to be totally ordered, for instance,
transactional systems require concurrent transactions to be serialized, and state-
machine replication, a fundamental technique to achieve fault-tolerance in dis-
tributed systems, requires commands to be totally-ordered. Therefore, a shared
log implements some of the key ingredients for several distributed applications
and has the potential to simplify the implementation of transactional key-value
stores.

The implementation of a shared log requires a solution to two fundamental
problems:

1. Contention Problem: created at the tail of the log by clients that want to
append a record at the same time. Clients all want to append a record to
the tail, but only one will win.

2. Playback Bottleneck Problem: due to the append-only nature of the shared
log, its size keeps growing as new records are appended. If no mechanism is
used to mitigate this problem, clients that need to playback the log from the
beginning will face a playback bottleneck problem, because they will not be
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able to keep up with the rate of new appends and thus consume the whole
log.

The first problem can be summarized as a position assignment problem,
where logs have to assign positions to records. In order to solve this problem,
the log design that exist today have diverged into two different solutions:

– Pre-assignment: is a technique used by some log designs, that assigns log
positions to records before they have been sent to the persistence layer. This
means that clients know the log position where their record is going to be
persisted before they sent it to the persistence layer. This technique usually
requires a sequencer that is responsible for log positions to clients before
they append a record.

– Post-assignment: is a technique used by some log designs, that assigns log
positions to records after they have been sent to the persistence layer. This
means that clients do not know the log position where their record is going
to be persisted before they sent it to the persistence layer. This technique
usually requires a serialization procedure to be run regularly to serialize all
the appended records.

When it comes to the second problem, there are very different solutions
available, but as in the contention problem there are two distinct trends to solve
it. The first trend is to ignore the problem and rely on a regular garbage collection
of the log to keep it in a consumable size. And the second trend is to index log
records, allowing applications to consume only a subset of the records in the log.

It is worth noting that, although the total order of log entries is a charac-
teristic of most long implementations, a few systems relax this property, imple-
menting only a causally ordered sequence of log entries, as a means to reduce
the contention that may exist when multiple clients try to append updates to
the shared log concurrently. When appropriate, we also discuss these alternative
designs.

For simplicity reasons, from this point on in the report, we will refer to a
shared log as a log.

3.2 Log Based Storage Systems

Log based storage systems are as the name implies storage systems built over
a log. These systems exploit the consistency guarantees and scalability of logs
to build equally consistent and scalable storage systems.

These systems can be classified according to the functional requirements they
provide to applications, using the following criteria:

– Synchrony: distinguishes systems by how they update the log. Synchronous
systems make client operations visible in the log right when they run, while
asynchronous systems update the log with the client operations after they
run.
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– Log Order: as stated in Section 3.1 a log is a totally-ordered sequence of
records, but achieving a total order is expensive and not always needed.
Some systems opt to relax the log order to a causal order or a total order
per shard to be able to scale better.

– Support for Transactions: this criterion distinguishes systems that have sup-
port for ACID read-write transactions from systems that do not.

– Log Indexing: this criterion distinguishes systems that index log records from
those that do not. And for those that implement some kind of indexing this
criterion specifies how the indexing is done.

When it comes to the non functional requirements, log based storage systems
can be classified according the following criteria:

– Replication: is the ability of a system to create more than one independent
copy (replica) of the data it stores. A storage system can either be replicated
or not.

– Sharding: is the ability of a system to store data in more than one machine
per replica. A storage system can either be sharded or not.

In Section 3.2.1 and Section 3.2.2 we will use the synchrony criterion as the
main one to differentiate the systems that are going to be presented, because it
is tightly related with their implementation and design.

3.2.1 Synchronous Systems

CORFU [1] is a totally ordered log abstraction built over a cluster of flash
storage units.

CORFU’s architecture is composed by a sequencer and an array of flash
units. Flash units are treated as passive storage devices that are accessed over
the network and the sequencer is used as a pre-assignment technique, that is
responsible ordering log records. In CORFU the ordering of records is decoupled
from their persistence, allowing parallelism when appending to the flash units.

The functionality of CORFU is all made available to clients in the form of a
client library. It works by implementing three fundamental functions:

– Mapping function: responsible for mapping logical log positions to flash pages
in the cluster of flash units.

– Tail finding mechanism: for finding the next available logical position in the
log.

– Replication protocol: to persist log records in several flash pages in the flash
unit cluster.

The mapping function works by having each client maintain a local read-only
copy of a structure called a projection. The projection structure splits the log into
disjoint ranges, and each range is mapped to a list of extents within the address
space of individual flash units. In essence, a projection is a mapping of logical
addresses space to flash pages. When a flash unit fails or the log grows past the
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maximum available position in the projection a reconfiguration mechanism takes
place to install a new projection in all the clients.

To treat the address space as an appendable log, clients must be able to
find the tail of the log and write to it. CORFU implements two tail finding
mechanisms:

– Contention mechanism: relies on the flash unit write-once semantics that
CORFU requires. Clients that wish to append records to the log try to
concurrently write to the first position. One client wins, while the rest fails.
The client that wins successfully appends to the log while the others have
to try again in in the next position.

– Sequencer: is used in CORFU as an optimization over the contention mech-
anism. The sequencer is responsible for assigning empty log positions to
clients. A client that wants to append a record to the log, first contacts the
sequencer to get a log position, once he receives the position from the se-
quencer, he uses his local projection to find the flash unit responsible for
storing that log position and persists the record there without contention
from other clients.

When writing to a log position, CORFU clients use a chain replication pro-
tocol. It works in two steps: (1) clients use their local projections to map a single
log position to a set of flash pages, and (2) write to this set of flash pages in
a deterministic order waiting for each flash unit to respond before moving to
the next one. The write is successfully completed when the last flash unit in the
chain is updated. As a result, if two clients attempt to concurrently update the
same replica set of flash pages, one of them will arrive second at the first unit of
the chain and receive an overwritten error.

CORFU’s design ensures that the log throughput is not a function of the I/O
bandwidth of any single flash unit, instead clients can append records as fast as
the sequencer can assign positions.

Tango + CORFU [2] is a log based object store intended to be used as
a building block of highly available metadata services. Objects stored in Tango
are replicated, in-memory data structures that have their state durably stored
in a log. Tango uses CORFU as a log, taking advantage of all the properties that
it provides.

The state of a Tango object exists in two forms, a history, which is an ordered
sequence of updates stored durably in the CORFU log, and several views, that are
full or partial copies of an object stored in the memory of the clients. Because the
state of Tango objects is stored as an ordered sequence of updates, application
developers can roll back to any point in the history of an object simply by
creating a new instance and syncing it with the appropriate updated of the log.

The implementation of a Tango object requires three three main components.
The first is a view of the object, which is an in memory representation of the
object’s state. The second is an apply() function, responsible for updating the
object’s view when there are new updates in the log. And the third is the object’s
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public interface with mutator and accessor methods. Mutator methods do not
change the object’s view directly, instead they append the mutation to the log.
When accessor methods are called, they first get the latest mutations from the
log, update the object’s view using the apply() function and only then apply the
accessing logic.

The log based design of Tango allows strongly consistent operations across
objects to be achieved trivially, by just using reads and appends on the log.
But the authors of Tango went a step further and implemented an optimistic
concurrency control system over the log, that allows applications to run trans-
actions across objects. It works by appending a speculative commit record to
the log that ensures atomicity of the transaction. It marks a point in the total
ordering of updates at which the changes of the transaction can be made visible.
Each commit record includes a read set, a list of object read during the trans-
action, that is is used to ensure transaction isolation. A transaction succeeds if
the objects in the read set have not been changed since they were read.

Having all the object’s state in the same log is important to offer strongly
consistent operations and transactions, however it might introduce the playback
bottleneck problem. If client just want to host views of certain objects, consuming
updates from all the objects can be wasteful. To overcome this problem Tango
implements objects streams over a single log, allowing clients to selectively con-
sume the log updates corresponding to certain objects. This means that clients
will host a layered partition of the log with all the same strongly consistent and
transactional semantics of the full log.

To allow clients to consume the log via a streaming interface the authors
proposed a modification to the underlying CORFU design, a stream header that
is present in every log record. This stream header includes the stream ID as well
as backpointers to the last k records of that stream, allowing clients to construct
a linked list of records from the same stream. Reading and appending to streams
work as before, the only difference is in the appends that require the client to
build the stream header before appending a record.

vCorfu [3] is a strongly consistent cloud-scale object store built over a log
just like Tango + CORFU, that uses a stream materialization technique to over-
come the playback bottleneck problem that logs have.

Stream materialization is a technique that enables the design of systems
that store large quantities of state in the form of a log without introducing the
playback bottleneck problem to clients. Stream materialization is a step ahead
Tango’s streams, which are implemented as simple tags on the log, material-
ized streams are a first class abstraction which support random and bulk reads.
vCorfu uses a materialized stream per object it stores.

Log appends to a materialized stream are stored in two replicas, the log
replicas and the stream replicas. These two replicas store the same data, but
unlike Tango + CORFU the data is indexed in different ways. Log replicas index
the log records according to their position on a global log, while stream replicas
store log records indexed by their position in the stream log. This replication
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scheme, inspired in the idea of Replex [4] of using different replicas to store the
same data indexed in different ways, allows clients to directly read the latest
version of an object by simply contacting the corresponding stream replica.

Materialized streams can be seen as independent logs. Appending to them
is very similar to appends in Tango, the difference introduced is in the client-
sequencer communication. Clients that contact the sequencer receive two log
positions instead of one. One corresponding to the global log and one corre-
sponding to the stream log. Using the two log positions clients persist the record
in both replicas using a chain replication protocol. Because appends to these
stream logs have a corresponding append in the global log, there is a total or-
der over all appends from all the streams, enabling vCorfu to support atomic
appends across streams (objects).

As Tango, vCorfu went a step further the atomic updates and implemented a
transactional system that enables application to run transactions across objects.
Transactions are implemented by combining the atomic update capabilities with
the optimistic concurrency control techniques used in Tango. The sequencer is
exploited as a lightweight transaction manager, but unlike Tango it only issues
log positions to commit a transaction if the transaction has no conflicts, an
important optimization that frees clients from the transaction validation logic
every time they playback the log.

The vCorfu system can be seen as a new version of Tango, a version with all
the same functionality but with a better implementation and performance. On
the other hand this also means that vCorfu suffers from the same problem that
Tango does, the sequencer I/O bottleneck. Chariots and Kafka are examples of
systems that avoid this problem by not using a sequencer, an overview of how
they do it is ahead in the report.

Megastore [5] is a log based storage system that blends the scalability of
NoSQL data stores with the convenience of a traditional RDBMS, providing
both high availability and strong consistency guarantees.

The interface and data model provided by Megastore is very similar to the one
provided by a relational database, applications can create schemas, tables and
indexes, that can later be queried using a SQL like language. An addition that
Megastore introduced over the conventional relational databases is the ability to
partitioned the data in what the authors call entity groups. Entity groups are
an a priori grouping of related data for fast operations that can be seen as small
databases with ACID semantics.

Each entity group has its own write-ahead log, where all the updates that
happen inside it are recorded. The log is independently and synchronously repli-
cated over a wide area, and is stored in Bigtable [6], leveraging its scalability
and fault-tolerance capabilities. Updates inside entity groups are done as single
phase ACID transactions, while updates across entity groups require expensive
two phase-commit protocols or Megastore’s asynchronous messaging system.

When it comes to transactions inside an entity group, their life cycle is the
following. First the client obtains the timestamp of the latest committed trans-
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action from the log, then reads from a consistent snapshot using the timestamp
gathered in the first step and writes into a log record. Finally, in order to commit
the transaction the client appends the log record with all the writes to the end
of the log using the Paxos algorithm. After the record is appended to the log the
updates are applied to the data in Bigtable.

To allow clients to read from a consistent snapshot, Megastore relies on
Bigtable’s capability of storing multiple values for the same row/column pair.
This makes the implementation of multi version concurrency control trivial: up-
dates within a transaction are written with the timestamp of the transaction
while concurrent reads that use lower timestamps never see partial updates. In
other words reads are isolated from the writes.

Appending to the log is done by running an independent instance of the
Paxos algorithm for each log position, so when a client wants to append a record
to the log, he has to propose the record he wants to append as the one to be
placed at the tail of the log, and has to block until he gets an answer from
the majority of the replicas. If another client takes the position first, he has to
abort and start again in the next log position. Because Paxos is responsible for
assigning log positions to clients it can be seen as the log sequencer.

Transactions across entity groups are also possible, using Megastore’s asyn-
chronous messaging system. Entity groups can communicate between them in
an RPC style, each entity group has an inbox to where other entity groups
can send messages. A client that wants to update several entity groups, runs a
transaction to atomically send updates to several entity group’s inboxes. Each
entity group will then process the updates they receive as an isolated transaction.

3.2.2 Asynchronous Systems

Chariots [7] is a highly available, geo-replicated, causally-ordered log that
overcomes I/O bottlenecks of existing sequencer based log designs.

The Chariots paper includes two main contributions:

– FLStore: sequencer free log store.
– Chariots: multi stage log replication pipeline.

FLStore or Fractal Log Store is a log store that uses a post-assignment tech-
nique to assign log positions to clients. It consists of two groups of servers, the
log maintainers and the indexers. Log maintainers are responsible for disjoint
ranges of the log, for each range they store log records, they serve read requests
and they assign log positions. Indexers are responsible for indexing log record’s
tags.

The post assignment technique works based on the fact that log maintainers
are responsible for distinct ranges of the log, which means that a log position can
only be assigned, written and stored by a single log maintainer. Appending to the
log works by sending a record to a log maintainer at random, the log maintainer
will assign it the next available position in the range that he is responsible for and
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the record is persisted in that position. This capability of assigning log positions
without coordinating with others is a big improvement over CORFU, because
the append throughput is now a function of the aggregate I/O bandwidth of all
log maintainers and not a function of the I/O bandwidth of a single machine.

On the other hand, allowing clients to contact any log maintainer at random
introduces a couple of new problems. The first is the existence of holes at the
tail of the log, which may delay the visibility of certain records. This happens
because reading a certain log position is only allowed when all the previous log
positions are filled up. Consider the case of an append to position 15 of the
range 10-19, if the range 0-9 is empty or is not yet full, the record appended
to position 15 will not be available for reading. The second problem introduced
by this design is the lack of explicit order between records appended by the
same client. For example, when a client appends two records sequentially, he
can not know the order between them in the log, even though they were added
sequentially. When it comes to solving these problems, no solutions exist for the
first problem, and for the second one two solutions are described in the paper
but they all have some drawbacks that might impact the client or the system
performance.

Chariots, the second main contribution of the paper, is a log replication
pipeline designed to replicate a log to new geographic locations, but its ideas
can also be applied to local replication. It runs over FLStore and is responsible
for processing all append requests. FLStore is used as the persistence layer in
the pipeline. Chariots’ design favours availability of the log by relaxing the log
consistency, providing applications with a causally ordered log.

The Chariots pipeline works as follows. When a client wants to append a
record to the log, sends a request with the record to append to Chariots. The
record enters the pipeline, is tagged with its causal dependencies and is moved
into a queue where it is assigned a position in the log. After having a position
assigned, the record is sent to FLStore, more precisely to the log maintainer
responsible for the position that it was assigned. Finally after being persisted
in FLStore, the senders from Chariots catch it and send it to other Chariots
instances for them to incorporate it.

Appends received from remote data centres, remote appends, go through the
pipeline as a local append would, the main difference is in the queue stage, where
their causal dependencies are verified. If they are met, the record can be inserted
in the local log, if they are not met the record is kept in the queue until they are.

Kafka [8] is a log based messaging system that was developed for collecting
and delivering high volumes of data with low latency. It combines the benefits of
log aggregators and messaging systems to build a system that allows applications
to consume data in real time.

As every messaging system, Kafka’s interface and data model is around mes-
sages. The smallest data storage unit in Kafka is called a message, messages are
stored in topics, which are aggregations of messages of a certain type. Topics
are used later to retrieve messages according to their type. The API provided
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to applications is very similar to a publish subscribe system, clients can publish
messages to topics and can later subscribe to them to read the messages.

When it comes to the storage of messages, they are stored in brokers. In-
side each broker they are stored per topic, as a log on disk. In order to sustain
high volumes of messages, topics can be partitioned. At the storage level this
corresponds to the creation of independent logs for the same topic. Having inde-
pendent logs means that no order exists between them, a limiting factor for some
applications. All this behaviour makes brokers very similar to log maintainers in
Chariots, with the small difference that brokers are responsible for completely
independent logs and not ranges of a single one.

Publishing a message in Kafka is very simple, a client randomly chooses one
of the partitions of the topic where he wishes to publish a message, finds which
broker is holding the partition and sends the message to that broker. The broker
receives the message and simply appends it to the corresponding log. Just like
in Chariots brokers can assign log positions from the logs they are responsible
for without entering in any coordination with other brokers, which makes each
broker a sequencer of the logs they hold.

In order to read messages from a given topic, clients have to join what is
called in Kafka a consumer group. A consumer group is a group of one or more
consumers that jointly consume a set of subscribed topics. To avoid locking mech-
anisms and state management Kafka makes the partition of a topic the smallest
unit of parallelism, i.e. at any given time all the messages of a partition are only
consumed by a single consumer within a group. Messages from a partition are
always consumed sequentially.

As described before, Kafka does not require any coordination for publish-
ing messages, however, consuming messages requires some level of coordination
between consumers in a consumer group. For this, Kafka does not rely in a cen-
tral node, consumers coordinate among themselves in a decentralised fashion.
To facilitate the coordination a consensus service called Zookeeper [9] is used
for de detecting the addition and the removal of brokers and consumers, trig-
gering a rebalance process in each consumer when necessary, maintaining the
consumption relationship between partitions and consumer, and keeping track
of the consumed offset of each partition.

Even though Kafka has some similarities with Chariots, its design is opti-
mized for delivering messages, which results in a log based storage system that
provides applications with a partitioned log with a total order per partition.

Eunomia [10] is an event ordering service that produces an causally ordered
log of events.

In the paper, Eunomia is presented as a building block of a key value store
called EunomiaKV, where it is used as an update serializer. It works in the
background serializing all the updates occurring in the store. The result of the
serialization is a causally ordered log of updates that is used to replicate the
updates to new geographic locations. In our description of the system we will

11



ignore the geographic replication capabilities of EunomiaKV, instead we will
focus on the log building techniques used.

The EunomiaKV architecture is composed by partitions and the Eunomia
service. Partitions are responsible for storing ranges of key value pairs and serving
read and update requests on the them. The Eunomia service receives all the
updates that each partition handles and orders them before sending them to
new geographic locations.

Read requests handled by the partitions, correspond to simple key value
fetches on the underlying storage layer, returning to the client the value of they
key requested and the timestamp it is tagged with. The client uses the timestamp
returned partition to update its local clock, which is responsible for keeping
track of his causal dependencies. Update requests are tagged with timestamps,
representing the causal dependencies of both the client and the partition, are
applied locally and are sent to Eunomia to be serialized.

At Eunomia, updates received from the partitions are placed in a non-stable
updates queue. Regularly Eunomia runs a process stable routine that finds a set
of stable updates in the non-stable updates queue, removes them and orders them
in timestamp order, producing a causally ordered log of updates. We should note
that the log produced by Eunomia has a significant difference when compared to
the log produced by all the systems presented. It is a log composed only by ids,
this means that the log does not include the content of the updates. This happens
because the only thing that partitions send to Eunomia are the update id and
its timestamp. A significant difference that avoids overloading the network.

Allowing partitions to serve read and update requests without entering in syn-
chronous coordination with any other component in the system, is a fundamental
characteristic of the Eunomia design. It does not limit the system throughput
like sequencer based designs do, because the load is distributed across all the
partitions, and the latency of operations is decreased, because partitions can
reply to client without having to wait from a response from other component.
On the other hand, this design introduces one main trade-off when compared to
sequencer based designs, an increase of the visibility latencies of the log, i.e. the
log takes longer to be available for reading.

3.3 Systems Comparison

Table 1 summarizes the log based storage systems presented.
Section 3.2.1 and Section 3.2.2 presented two distinct types of log based

storage systems, synchronous and asynchronous. As shown in Table 1, all the
systems tend to agree on the importance of data replication and sharding, the
main difference between them is in the Sequencer column, synchronous systems
have a sequencer, while asynchronous systems do not.

Synchronous systems (CORFU, Tango, vCorfu and Megastore) have the ad-
vantage of being easier to implement and reason about. The centralized sequencer
makes it easy to provide a total order across the log, synchrony when appending
records and operations with strong semantics, like atomic updates and trans-
actions. However, because the sequencer is on the critical path of clients it has
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System Synchrony Sequencer Log Order Transactions Log Indexing Replication Sharding

CORFU Synchronous Yes Total No No Local Yes

Tango Synchronous Yes Total Yes Backpointers Local Yes

vCorfu Synchronous Yes Total Yes Materialized Local Yes

Megastore Synchronous Yes Total per partition Yes No Both Yes

Chariots Asynchronous No Causal No Tags Geo Yes

Kafka Asynchronous No Total per partition No No No Yes

Eunomia Asynchronous No Causal No No Geo Yes

Table 1: Systems comparison table

some trade-offs: it can be seen as a single point of failure, it may limit the system
throughput if its I/O bandwidth becomes saturated and may limit the ability to
scale the system to different geographic locations.

On the other hand, asynchronous systems (Chariots, Kafka and Eunomia)
offer different trade-offs: they do not suffer from any of the problems that a
centralised sequencer introduces, which in theory should allow them to scale
better, at the cost of offering slightly relaxed semantics like a causal log order,
asynchronous appends and lack of strong operations.

4 Proposed Solution

From the comparison in Section 3.3, we believe that there is an interesting
opportunity to explore in the area of asynchronous systems: in theory, these
systems are able to scale better when compared to synchronous systems, but
often provide weak semantics that are not developer-friendly. The system we
intend to implement will try to merge the benefits of both.

We will use the Eunomia system as a starting point when describing our
system, and we will introduce the necessary modifications as we go along.

4.1 Overview

As stated in Section 2 our goal is to build a log based key value store that
offers causal consistency and has support for ACID transactions.

Figure 2 shows a simplified view of the architecture of the system we intend
to build. It will have four main components: the client, the partitions, the Euno-
mia service and the transaction committers. Client, partitions and the Eunomia
service will have the same functionality that they have in Eunomia: clients are re-
sponsible for making requests to the partitions, the partitions will be responsible
for storing the key value pairs and respond to client requests, and the Eunomia
service will be responsible for producing a causally ordered log of all the events
that happen in the system. The transaction committer will consume the log that
Eunomia produces and use it to commit the transactions in it.
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Fig. 2: System architecture of the proposed solution

Our system will ensure causal consistency by relying on the Eunomia func-
tionality, and the support for ACID transactions will be implemented by com-
bining the Eunomia functionality with the transaction committers. The isolation
level that our transactional system will support is going to be snapshot isolation.

4.2 Transactions

In this section we will describe in detail how we are planning to implement the
transactional system over the architecture we presented in the previous section.
We will start by the modifications that have to be made to the Eunomia system,
then we will go through the events that take part in the execution of a transaction
and will finish with an example of how a transaction will work.

Architecturally the only modification that has to be made is the introduction
of the transaction committer component. When it comes to metadata changes,
key value pairs stored in the partitions will be tagged with what we call a ver-
sion, that corresponds to the position in the log of the record that contains the
update that sets that key’s value, and in order to support long running read-only
transactions, partitions will have to store not only one but several version for
each key value pair.

We will now describe the events that take part in the execution of a trans-
action:
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1. Transaction Begin: In order to start a transaction, clients will update their
state to indicate that they are in the context of a transaction.

2. Reads: Reads made in the context of a transaction will be done from a
consistent snapshot and will be recorded in the transaction read set. In
order to read from a consistent snapshot the client will also keep in its state
a snapshot version that will be used in every read request. The first time
a client reads in the context of a transaction no snapshot version will be
set, so in the first read the client will read the latest value of a certain key
and will set the snapshot version equal to the version of the value he read.
Subsequent reads will have the snapshot version attached and the partitions
will return consistent values with that version. The snapshot version of the
transaction also sets a point in time where the transaction begins.

3. Updates: Updates done in the context of a transaction will not be sent to
the corresponding partitions. Instead they will be recorded in a buffer that
will be used when the clients tries to commit the transaction.

4. Commit Request: In order to commit a transaction, clients will have to
create a commit record and send it to one of the partitions. Partitions will
then assign a timestamp to the record and will send it to Eunomia to be
inserted in the log. The commit record will include the transaction snapshot,
the transaction read set and the buffer with all the updates.

5. Log Generation: The generation of a log with all the commit records will
be done using the same techniques used in Eunomia. When new commit
records are received in Eunomia, they are placed in a queue of pending
records, regularly Eunomia will calculate the stable timestamp and generate
a log with all the records that have a stable timestamp. The generated log
will then be consumed by the transaction committer.

6. Commit/Abort Decision: Deciding if a transaction should commit or
abort is the task of the transaction committer. To do so, the transaction
committer will go through every commit record in the log that is generated
by Eunomia, and will check if transactions have conflicts. This will done by
comparing each transaction’s read set with the records in the log, from the
point when the transaction started until the latest record. If a conflict is
detected the transaction aborts, otherwise the transaction commits.

7. Commit/Abort Propagation: After deciding if a transaction commits or
aborts the transaction committer will use a two-phase commit protocol to
atomically commit the updates in the partitions.

Example

Consider a scenario where there are two accounts in the system, account A
with its value equal to 100 and account B with its value equal to 0, and the owner
of account A wants to pay the owner of account B 50 for a service. To guarantee
the integrity of the operation the client will use a transaction. Figure 3 shows
the inter-component communication that has to happen for this transaction to
be successful.
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Fig. 3: Inter-component communication between components during a transac-
tion

The client starts the operation by entering in a transaction context (1). Sends
a read request to partition 1 to read the value of account A (2), to make sure
account A has enough funds. Partition 1 returns the value of account A along
with its version (3), that will be used as the snapshot of the transaction. Then
the client makes the transfer by updating the value of account A to 50 (4)
and the value of account B to 50 (5). Both updates are recorded into a buffer.
Commits the transaction by sending a commit record to partition 2 (6). Partition
2 assigns the record a timestamp and sends it to Eunomia (7). Eunomia runs
the stabilisation procedure and generates a log with the commit record (8).
The log is propagated to the transaction committer (9) and the transaction
committer commits the transaction using a two-phase commit protocol (10). For
simplification reasons the two-phase commit protocol is represented in Figure 3
by a single message per partition. Finally when partition 2 receives the commit
result, applies the updates of the transaction if the transaction can commit and
informs the client about it (11).

4.3 Future Work

When it comes to the propagation of updates to the partitions our approach
will be to use a deferred replication protocol, which means that we will only
send the updates to all the partitions when the transaction commits. But there
is another option that we would like to explore, which is to eagerly send the
updates to the corresponding partitions and have them stay there as pending
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until the transaction commits or aborts, this would improve our commit time but
could potentially waste network bandwidth. In this case there are a lot of options
to explore when it comes to reading the value of a key: clients read the latest
committed position even if there are pending updates, read the latest pending
update value optimistically, blocking until the pending updates are committed,
abort the read if there are pending updates or move the transaction snapshot
forward re-evaluating past reads. We will stick with the first update replication
method because it is the one that is simpler to reason about, but as future work
we will consider the second one by running experiments on them.

Due to the nature of transactions and their expensive cost in terms of com-
munication we do not plan to support geo-replication. Instead we plan to support
local replication of data. As a starting point our approach to replication is to
delegate it to the underlying key value store used, but we plan to look further
into this topic and possibly consider storing the log that Eunomia outputs as a
form of data replication, like vCorfu does.

The transaction committer, just like the Eunomia service can be seen as a
single point of failure. Our system will use the same techniques that Eunomia
used to overcome this problem, but we plan to look further into these tech-
niques and see if there are other alternatives that can produce better results.
We also plan to investigate further the transaction committing algorithm, more
specifically if there is any possibility of committing transactions in parallel by
having several transaction committers consuming the Eunomia log where each
one commits a subset of the transactions in the log.

5 Evaluation

As described in previous sections, our goal is to improve the scalability of
log based storage systems that provide strong semantics like transactions to
applications. To evaluate the validity of the proposed solution we intend to build
a prototype and evaluate its implementation against real world workloads and
existing systems. The evaluation will be focused on following:

– Throughput of read, write and transactional operations.
– Latency of read, write and transactional operations.
– Visibility latencies of transactional updates.
– System scalability by analysing the throughput of read, write and transac-

tional operations as the number of clients and partitions scales.

Furthermore, we want to show the trade-offs of implementing transactions
over a sequencer based architecture versus a sequencer free architecture. Ad-
ditionally, if time allows, we intend to port an existing application to use our
prototype and analyse the benefits of this change.

6 Scheduling of Future Work

Future work is scheduled as follows:
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– January 8 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15: Deliver the MSc dissertation.

7 Conclusions

Storage systems are a fundamental building block of today’s applications.
This report is focused on a subclass of storage systems, the ones built over a log.
We started by addressing the concept of a shared log and how it can be used as
a building block of storage systems. We then surveyed the most relevant work
done in the area of log based storage systems. Proposed a design of log based
storage system that aims to join the benefits of an sequencer free architecture
with the interfaces provided by systems that use sequencer based architectures,
more specifically transactions. And concluded the report with a description of
the methods and metrics we plan to use to evaluate the proposed architecture.
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