
A Distributed and Hierarchical Architecture for
Deferred Validation of Transactions in Key-Value Stores

(extended abstract of the MSc dissertation)

João Bernardo Sena Amaro
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Prof. Luı́s Eduardo Teixeira Rodrigues

Abstract—Key-value stores are today a fundamental com-
ponent for building large-scale distributed systems. Early key-
value stores did not offer any support for running transactions
but, with time, it became obvious that such support could
simplify the application design and development. The key
challenge in this context is to support transactional seman-
tics while preserving the scalability properties of key-value
stores. In this work we propose an architecture to perform
transaction validation in a distributed and scalable manner.
The architecture is based on a tree of transaction validators,
where the leaf nodes are responsible for single partitions,
offering higher throughput and lower latency, while non-leaf
nodes are responsible for several partitions. We have performed
an experimental validation of the proposed architecture that
highlights its advantages and limitations. The evaluation shows
that, in some scenarios, the proposed architecture can offer
improvements up to 23% when compared to other validation
and commit strategies, such as distributed two-phase commit.

I. INTRODUCTION

Key-value storage systems have today a crucial role in
large scale distributed systems due to their scalability and
ability of supporting high access rates. An example of a
system of this kind is Cassandra [1], which is able to
store terabytes of information while supporting hundreds of
thousands of accesses per second. Unfortunately, in order
to achieve good performance, these systems do not have
support for running transactions, which makes the devel-
opment of applications that use key-values stores harder
and prone to errors [2]. As such, there has been a growing
interest in developing mechanisms that allow the execution
of transaction in these systems without strongly penalising
their performance.

A transaction is an abstraction that allows to execute a
sequence of operations as if it was an indivisible single
operation that is executed atomically. This intuitive notion
can be described more precisely by a set o properties known
as the ACID properties [3], namely Atomicity, Consistency,
Isolation and Durability.

Key to the implementation of transactions is a concur-
rency control mechanism, whose purpose is to ensure that
the interleaving of the operations executed by concurrent
transactions produces a result that is consistent. Although
there are many different techniques to implement con-

currency control, any concurrency control algorithm must
be able to totally order transactions that access the same
objects. The need for totally ordering transactions represents
a fundamental impairment for the scalability.

Therefore, in this work we look for techniques that can
mitigate the bottlenecks that may result from the need for
totally ordering transactions. In particular, we are inspired
by the work of [4], that uses an hierarchical network of
transaction validators, to validate transactions that access
disjoint sets of objects in parallel. Concretely, the goal of this
work is to combine the hierarchical communication pattern
used in [4] with message batching techniques to build a
novel transactional system that is able to support a larger
number of clients and higher throughput.

II. RELATED WORK

A. Transactions
A transaction is a sequence of read and write operations

that are executed as if they were just a single operation
executed atomically. The transaction either succeeds (com-
mits) or not (aborts, rolls back). If it aborts, the transaction
can be safely retried, since no intermediate results from the
aborted run took effect. This abstraction simplifies error han-
dling, because the application does not have to worry about
partial failures. Also, transactions shield the programmers
from dealing explicitly with concurrency control, given that
the final outcome is guaranteed to be the same as if the
transaction was executed in serial order with regard to other
transactions.

Formally the concept of a transaction was first described
by a set o properties known as the ACID properties [3]. It
stands for Atomicity, Consistency, Isolation and Durability.
In this work our focus is in the atomicity and isolation
properties, and these can defined as follows:

• Atomicity: states that a transaction is indivisible, and
therefore, it is not possible to observe partial results.
In other words, either all operation that execute a
transaction take effect (if the transaction commits) or
none of the operations take effect (if the transaction
aborts).

• Isolation: means that two concurrent transactions are
isolated from each other. The classic notion of isolation

1



was formalised as serialisability [5], which states that
the outcome of running multiple transactions concur-
rently is guaranteed to be the same as if these transac-
tions had run serially.

B. Guaranteeing Atomicity
The challenge of guaranteeing atomicity is to ensure

that in the presence of partial failures, all outcomes of a
transaction either persist or none do. Partial failures are
failures that happen midway through the execution of a
transaction and leave the state incomplete. Guaranteeing
an all or nothing result in these cases requires a recovery
algorithm, like the AIRES [6] algorithm, that is capable of
recovering a partially executed transaction to a clean state.

Guaranteeing atomicity in distributed scenarios is even
harder, because transactions can fail in some nodes but
succeed on others. In order to guarantee atomicity all nodes
must agree on the outcome of the transaction, it either
commits or aborts. This problem is related to the consensus
problem and can be solved with the help of a consensus algo-
rithm, like Paxos [7]. However, many commercial database
systems use a simpler Two-Phase Commit Protocol [8], that
can be implemented more efficiently than a fault-tolerant
consensus protocol, but may block in some faulty scenarios.

Two-Phase Commit (2PC) is a protocol used to atomically
commit transactions across several nodes, i.e. to make sure
that either all nodes commit or all nodes abort. The pro-
tocol works in two phases (hence the name): prepare and
commit/abort.

1) Prepare Phase: is the first phase of the protocol. Once
a transaction has finished executing and is ready to
commit, the coordinator (which is the process respon-
sible for coordinating the distributed procedure) starts
the prepare phase by sending a prepare request to
all the data nodes involved in the transaction asking
them if if they are able to commit. Then each data
node verifies if it can or not commit the transaction
and communicates that information to the coordinator,
in the form of a prepare response. The coordinator
keeps track of the responses it receives from the nodes
and compiles them into a final prepare result. The
outcome of the prepare phase is a decision to commit
the transaction if all the nodes replied with a ”yes”
(i.e., if they can commit the transaction), or a decision
to abort the transaction otherwise.

2) Commit/Abort Phase: starts right after the coordi-
nator computes the outcome of the transaction. If
the outcome is a decision to commit, it means that
all data nodes agreed to commit the transaction, so
the coordinator starts the second phase by sending a
commit message to all the data nodes. If the outcome is
a decision to abort, at least one of the data nodes could
not commit the transaction, so all nodes must abort it.
To do so, the coordinator sends an abort message to
all the data nodes. On receiving the message with the
outcome from the coordinator, data nodes commit or
abort the transaction accordingly.

Note that if a transaction involves a single node, the two
phases above can be collapsed. In fact, the (single) partici-
pant has all the information required to decide the outcome
of the transaction at the end of the prepare phase, and
can immediately proceed to commit or abort the transaction
accordingly.

There are two crucial points in this protocol that make
sure it guarantees atomicity. The first is when data nodes
respond to a prepare message, if they reply with a ”yes”,
they are making a promise that no matter what they will
commit the transaction. The second crucial point is also
around promises, and is when the coordinator calculates the
final prepare result, if it decides to commit or abort the
transaction, it can not go back on that decision. In order
for these nodes to keep their promises they have to durably
store them in some way, such that, if an error, crash, or fault
occurs, they can recover their past decisions back and not
break the promise.

The network costs of this protocol can be described in
number of communication steps (latency) and total number
of messages exchanged (bandwidth) as follows:

N = number of data nodes involved

in the transaction
(1)

communication steps =

{
2 N = 1

4 N > 1
(2)

total messages =

{
2 N = 1

4×N N > 1
(3)

If one data node is involved in the transaction the protocol
requires 1 prepare message from the client to the data node
and 1 prepare result message from the data node to the client,
to commit a transaction, thus it takes 2 communication
steps and uses 2 network messages in total. On the other
hand, if the transaction involves more than one data node,
the protocol require 4 communication steps in total that
correspond to the 4 messages exchange between the client
and the data nodes involved (1 prepare, 1 prepare result, 1
commit/abort, 1 commit/abort result), and requires a total o
4 messages per data node.

C. Guaranteeing Isolation
When it comes to the problem of guaranteeing isolation

among concurrent transactions, the first question to ask is
which isolation level do we want to guarantee. As described
in Section II-A the classic notion of isolation was formalised
as serialisability [5], which means that the execution of
transactions can occur concurrently but the outcome is
equivalent to a serial execution. Unfortunately, in practice,
using serialisability as an isolation level may be expensive
and may lead to poor performance. As result several other
isolation levels have been proposed and implemented by
database researchers and vendors.

Regardless of the isolation level used, a concurrency
control mechanism is always needed to enforce it. There
are two main classes of concurrency control mechanisms:

2



pessimistic (PCC) and optimistic (OCC) [9]. The choice
of which one to use comes down the expected workload.
In general, PCC mechanisms are better in scenarios where
conflicts among concurrent transactions are common, while
OCC mechanisms are better in scenarios where conflicts are
rare. In this work our focus is on OCC mechanisms due to
their potential of achieving an higher throughput in scenarios
where conflicts among concurrent transactions are rare.

Systems that use OCC mechanisms execute transactions
optimistically and rely on a validation procedure at the end
of a transaction to verify if any conflicts occurred during its
execution. The way the validation of transactions is done,
depends on the isolation level used. When enforcing serial-
isability, the validation of transactions is done by checking
if previously committed transactions have modified data that
was read and/or written by the transaction being validated.
This procedure assumes that transactions can be validated
in serial order. Most of the systems we have studied rely on
total ordering algorithms to achieve this.

D. Event Ordering Algorithms
In the literature we have identified four categories of or-

dering protocols that are used in the context of transactional
systems, they are: fixed sequencers, rotative sequencers, dis-
tributed sequencers with coordination in line, and distributed
sequencers with deferred stabilisation.

1) Fixed Sequencer Algorithms: The fixed sequencer
algorithms work, as the name implies, based on the existence
of fixed sequencer node, that has the role of assigning
sequence numbers to events. The remaining nodes interact
with the sequencer node whenever they want to order an
event.

A downside of this class of algorithms is that the fixed
sequencer can become a bottleneck pretty fast as all clients
must contact it to order events. Examples of systems that
use this class of algorithms are Tango [10], vCorfu [11].

2) Rotative Sequencer Algorithms: Algorithms based on
a rotative sequencer algorithms work by shifting the role
of being a sequencer from node to node. This is done by
passing a token from node to node in a logical ring. The
node that has the token plays the sequencer role, and can
order events without coordination with other nodes. A node
that has events to order need to wait until it receives the
token; only then it has exclusive access to assign sequence
numbers to the events. This class of algorithms has been
used in the past in message ordering protocols [12], but it
can easily become a bottleneck in large scale systems due
to the latency associated with passing the token from node
to node.

3) Distributed Sequencers With Coordination In Line:
This class of algorithms is a variant of an algorithm by
Dale Skeen originally proposed in [13]. Each node involved
in the ordering process proposes a sequence number, then
a coordinating process uses all the proposes and assigns
a final sequence number (usually the maximum of all the
proposed sequencer numbers). An example of a system that
uses this principle is Spanner [14]. A downside of this class

of algorithms is the fact that the ordering of events is blocked
by the distributed coordination process, that requires at least
two communication steps.

4) Distributed Sequencers With Deferred Stabilisation:
Distributed sequencers with deferred stabilisation also use
a coordination process that gathers proposals, but instead
of running in the critical path of nodes it happens in a
deferred manner. Each participant gathers several events
to order and sends them as a batch to the coordinating
processes. These processes wait from proposals from all the
participants, and based on them, order all the events received
in a total order, consistent with the order seen by each
participant. By allowing batching when ordering events, the
system throughput can be increased at the cost of an higher
latency. several events to be order in batches. Examples of
systems that use this class of algorithms are Eunomia [15]
and FLACS [4].

III. HIERARCHICAL ARCHITECTURE FOR DEFERRED
VALIDATION OF TRANSACTIONS

A. Architecture

Figure 1. Proposed architecture. Key-value pairs are stored in the data
nodes. Each leaf validatio node is co-located with the corresponding data
node.

Figure 1 illustrates the architecture we are proposing.
The proposed architecture is intend to work over a dis-

tributed key-value storage system. It assumes that the key-
value storage system is partitioned over a set of data nodes.
These data nodes are complemented by a set of validation
nodes. The validation nodes are organised in a tree hierarchy
in which there is a root node with two or more children.
Each children node also has two or more children. This
organisation is repeated until the leaf nodes. Each leaf node
is co-located with one of the data nodes from the key-value
store.

This architecture is based on the premised that network
communication in distributed systems is often the bottleneck
to be able to scale and achieve better performance. With this

3



in mind our objective with this work has always been to try
to minimise the amount of network I/O used in the process
of validating and committing transactions.

Today’s distributed databases that use optimistic concur-
rency control mechanisms spend a considerable part of their
network I/O in validating and committing transactions. The
standard protocol used for this purpose is 2PC, and as
described in Section II-B, 2PC is an expensive protocol in
terms of network I/O.

One of the common ways to optimise network usage is
to use message batching. However, in order for batching to
be possible, network communication has to have some sort
of structure. 2PC is a protocol that uses a non-structured
communication model, where each client communicates
directly with the partitions they want, independently of
other clients. This communication model makes it very
difficult or impossible to use batching. The architecture
proposed in this section on the other hand, has a very
structured communication model, that in turn allows the use
of batching.

The architecture we are proposing does not enforce a
specific concurrency control mechanism. We have studied
two variants of it, one that uses a lock based concurrency
control mechanism and one that uses a timestamp based
concurrency control mechanism. Section III-B describes how
this architecture integrates with existing key-value storage
systems to execute transactions, in this description we will
highlight the differences between the two concurrency con-
trol mechanisms when appropriate.

The description of the architecture that follows in the next
sections, will assume a serialisable isolation level. We should
note that no replication and no fault tolerance mechanisms
were considered, as we believe these are subjects orthogonal
to this work.

B. Execution of Transactions
1) Starting a Transaction: A client initiates a transaction

by issuing a begin transaction call. This call is local and
does not involve communication with data nodes. As a result
of this call, a transactional context is created on the client
proxy.

2) Reading Objects: Once in the context of a transaction
clients interact directly with data nodes to read the objects
they want, as they would normally do with the key-value
store. But because they are in the context of a transactions
there are some differences.

Our architecture assumes a key-value storage system that
has support to store multiple versions per object. Each
version is identified by a logical timestamp that corresponds
to the logical time when the transaction that wrote that
version was committed. In order to read an object in this
setting the correct version must be chosen.

Reads done in the context of a transaction are done over
a global snapshot of the whole system. This global snapshot
is identified by a logical timestamp that is set on the first
read the client does. So, in the context of a transaction when
a client reads an object for the first time and no snapshot

is set, he reads the latest version of that object and sets
the transaction snapshot equal to that object’s version. If the
transaction does not do any reads the transaction snapshot
is equal to the maximum snapshot that the client has ever
seen.

Reads that follow return the object version that is con-
sistent with the transaction snapshot, this is, the biggest
version of an object which is smaller or equal than the
transaction snapshot. If this version is marked as tentative
(more on tentative versions in Section III-B4), the client
blocks until that version becomes final or is discarded. On
the other hand if the latest version of the object that the
client wants to read is bigger than the transaction snapshot,
the transaction can abort immediately, because this means
that the transaction is not serialisable. There is a special
case that occurs when a transaction is marked as read-only:
in this case the transaction does not need to be aborted and
can proceed, being serialized in the past.

Data nodes are responsible to return a version that is
compatible with the transaction snapshot to the clients and
to notify the client if the transaction needs to be aborted (if
a conflict is detected). Clients contact data nodes directly
to read an object and send the transaction snapshot along,
the nodes return the corresponding version according to the
description above. Reads of the same object that happen
more than once in the same transaction take advantage of
a local client cache, avoiding contacting the data nodes.
Also, if a transaction attempts to read an item that has been
written by that transaction, the value is returned form the
local cache.

3) Writing Objects: All writes in the context of a trans-
action are cached locally until the transaction is ready
to commit. This means that any write done while in a
transaction, is not communicated to the data nodes until the
transaction is ready to commit. Only then the clients send
the writes to the data nodes.

4) Committing a Transaction: Committing a transaction
is done by sending a commit request to every data node
that was involved in the transaction. This is the set of data
nodes that result from the intersection of data nodes that
host all the objects read and written during the transaction.
The commit request sent to each one of these data nodes is
specific to each one, it includes the keys of the objects read
on that node and the new objects that were written on that
node during the transaction.

Upon receiving a commit request, data nodes integrate
with the local validation node to validate the transaction.
We have experimented with different strategies to implement
transaction validation, that use slightly different concurrency
control mechanisms and that use different communication
patterns.

Regardless of the concurrency control mechanism used,
each data node on receiving a commit request saves the
new objects written by that transaction as tentative, with
a tentative version equal to the transaction snapshot plus
one and sends the commit request information to the local
validation node in order for the transaction to be validated

4



and committed.
The tentative versions of the objects are kept until the

transaction is fully validated. If the validation results shows
that the transaction can be committed, the tentative versions
are committed with a version equal to the transaction commit
timestamp, otherwise the tentative versions are discarded.

The client remains blocked until he receives the validation
result from one of the validation nodes.

5) Validating a Transaction: The way a transaction is
validated by the validation nodes depends on whether it
accesses a single data node (local transaction) or several
data nodes (distributed transaction).

Local Transactions A transaction that only accesses a
single data node is considered a local transaction. Local
transactions as the name implies are local to a single
node, which allows them to be validated locally with no
coordination with other nodes. The validation is done by
the local validation node that is co-located with the data
node.

Regardless of the concurrency control mechanism used
(lock based or timestamp based) the validation process starts
with the validation node assigning a commit timestamp to
the transaction. This commit timestamp is generated in the
way that it described in Section III-C. Then, for every
object read and written by the transaction, the validation
node verifies if there was an update to that object between
the transaction snapshot and the commit timestamp. This
is done by comparing the latest version of an object with
the transaction snapshot, if the latest version of the object is
bigger than the transaction snapshot there was a new update,
otherwise there was not.

If for every object no new updates have happened since
the transaction snapshot, the serilisability rules are respected
and the transaction can be committed, otherwise it must be
aborted. When the validation is finished the validation node
informs both the client and the local data node of the result.

If the system is using the lock based concurrency control
mechanism, locks for all objects read and written by the
transaction must be acquired before starting the validation
process. If a lock conflict is detected it means that a
concurrent transaction is already trying to commit a new
version of that object, so the validation node automatically
releases all locks acquired (if any) and sends an unsuccessful
validation result to the data node. If locks are acquired
successfully the validation process is started as described
before.

Distributed Transactions A transaction that accesses mul-
tiple data nodes is said to a distributed transaction. As these
transactions run across several data nodes they can not be
validated locally. Instead each leaf validation node partially
validates the transaction and sends the partial validation to
the validation node above him in the hierarchy. This process
repeats itself until a validation node is able to do a full
validation of the transaction.

Depending on the concurrency control mechanism used
(lock based or timestamp based) the way distributed trans-
actions are validated is significantly different, so we will

present them separately.
Even though they are different, the validation process

starts in an identical manner for both. Like a local transac-
tion, the validation process of distributed transactions starts
with the data nodes sending the transaction to the local
validation nodes, that do exactly what is described in the
previous section, with one exception, instead of sending the
validation result directly to the client and the data nodes, the
validation nodes send the transaction information, its commit
timestamp and its partial validation result to the validation
node above in the hierarchy.

In the current version, when using the lock based concur-
rency control mechanism the hierarchy of validation nodes
is composed only by two levels, the first with several leaf
nodes and the second by a single root node. As such, when
leaf nodes propagate information up in the hierarchy they are
sending it all to the root node, that waits for the validation
results from its children.

When it has received all the validation results correspond-
ing to one transaction, it calculates a new commit timestamp
and a final validation result. The final commit timestamp
corresponds to the maximum commit timestamp received
from its children, and the final validation result is successful
if all its children successfully validated the transaction, and
unsuccessful if at least one children did not validate the
transaction with success. The final commit timestamp and
validation result is then communicated to the data nodes and
the client.

Data nodes on receiving the final validation result of a
transaction, release the locks acquired when the commit
was requested and depending on weather the result was
successful or not the tentative versions are committed or
discarded. The local validation node clock, used to generate
timestamps, is moved forward if it is behind the transaction
commit timestamp.

When using the timestamp based concurrency control
mechanism the hierarchy of validation nodes may have more
than two levels. In this case, a validation node that is not a
leaf node waits for the validation results from its children.

When it has received all the validation results corre-
sponding to one transaction it calculates a new commit
timestamp, which corresponds to the maximum commit
timestamp received from its children, and validates the
transaction again with this new commit timestamp. If the
decedents of this validation node cover all the data nodes
involved in the transaction, it can commit the transaction by
sending the validation result to both the client and the data
nodes. Otherwise it propagates the new commit timestamp
and new validation result to the validation node above him,
like the leaf nodes did. If in this process, a violation of the
serialisability rules is found the client and the data nodes
can be informed immediately.

As the number of data nodes touched by one transaction
increases, the higher in the tree will be the validation node
capable of doing a final transaction validation. Ultimately,
the transaction will be validated by the root validation node.
Crucial to this architecture is the hypothesis that the majority

5



of transactions will have an high locality degree, so that the
number of transactions that has to be validated in higher
levels of the tree is small.

We should note that when validation nodes validate dis-
tributed transactions they do not know the final validation
result, because this is only computed by the validation
above him in the hierarchy. Nonetheless, in order not to
block transaction validation, the validation nodes assume
that transactions that were successfully validated locally will
be successfully validated in the levels above. In practice
this means that if a transaction aborts in an higher level
validation node, other concurrent transactions might be
aborted as well, when in they could have been committed.
This behaviour is conservative and, as such, it will never
violate correctness; it only impacts the system performance
by increasing the abort rate of transaction. Nevertheless,
since we assume that distributed transactions are a small
fraction of the overall transactions executed in the system,
we believe that the impact of this decision is minimal.

C. Timestamp Generation

This section explains the how the logical timestamps
used for ordering transactions relatively to one another are
generated. The way they are generated depends on which
concurrency control mechanism is used, so we present them
separately in the next two sections.

1) Lock Based Concurrency Control: When using the
lock based concurrency control mechanism, validation nodes
generate commit timestamps by finding the smallest times-
tamp that is bigger than their local clock and bigger than the
transaction snapshot. The local clock of a validation nodes
tracks the biggest timestamp ever generated by that node.

Crucial to the correctness of this generation is moving
the local clock forward every time a node receives the final
commit timestamp of a transaction from a node above him
in the tree.

2) Timestamp Based Concurrency Control: When using
the timestamp based concurrency control mechanism each
leaf validation node has a set of pre-assigned timestamps
that it can use. These pre-assigned timestamps are distributed
among the validation nodes in a round robin manner. Assum-
ing a scenario where there are 8 leaf validation nodes, the
first node will be responsible for timestamps 1, 9, 17, etc,
the second node will be responsible for 2, 10, 18, etc, and
so on.

To generate a tentative commit timestamp, each leaf
validation node needs to pick the smallest unused timestamp
(from the subset of timestamps assigned to it) that is larger
than its local clock and that is larger than the transaction
snapshot. The local clock of a validation node tracks the
largest timestamp ever generated by that node. Assuming
the same scenario of 8 validation nodes, a transaction with
snapshot 3 that is locally validated in the second node, and
this node has not yet committed any transaction (its local
clock is 0), will have a tentative commit timestamp of 10.

D. Batching
Crucial to the design of the architecture we propose in

this work is the use of message batching, when exchanging
messages between nodes in the validation hierarchy. Mes-
sage batching is a technique used to reduce network and
CPU usage. It works by packing multiple application-level
messages in one single network-level message, resulting in
a reduction of the number of messages that have to be
sent through the network and processed by both the sender
and the receiver. The key idea is that batching amortises
fixed costs such has network protocol headers, interrupt
processing, etc, over multiple application-level messages.

In the proposed architecture message batching is used in
two distinct message paths: (1) validation node to validation
node and (2) validation node to data node. The first corre-
sponds to the messages sent from a lower level validation
node to an higher level validation node, in order to validate
and commit transactions. The second corresponds to the the
messages sent by the validation nodes to the data nodes to
commit or abort transactions.

E. Network Analysis
In order to understand the impact of that the structured

communication pattern and the usage of batching has on the
network costs of the proposed architecture, we did a theo-
retical analysis of its network cost based on the number of
communication steps (latency) and total number of messages
exchanged (bandwidth) used to commit a transaction.

The network costs of validating and committing a transac-
tion in the proposed architecture can be calculated as follows
(note that these values are highly dependent on the structure
of the hierarchy and the nodes involved in the transaction,
the following formulas capture the worst case cost):

H = level of the validation node in the

hierarchy that validates and

commits the transaction

(4)

B = size of the batch used (5)

communication steps =

{
2 N = 1

2 + H
B

N > 1
(6)

total messages =

{
2 N = 1

N +
(H×N)+N

B
+ 1 N > 1

(7)

If one data node is involved in a transaction, the protocol
requires 1 message from the client to the data node and 1
message from the data node to the client, to commit it. As
such, it takes 2 communication steps and uses 2 network
messages in total.

On the other hand, if a transaction involves more than
one data node, the protocol require 2 communication steps (1
message from the client to the data node and 1 message from
the validation node to the client); plus H messages from
a lower level validation node to an higher level validation
node until it reaches the validation node that validates and

6



commits the transaction, divided by B because messages
are batched. And requires a total of N messages from the
clients to the data nodes; plus H messages from a lower
level validation node to an higher level validation node until
it reaches the validation node that validates and commits
the transaction, times N because these messages are sent
from all the data nodes involved, all divided by B because
messages are batched; plus N messages from the validation
node that validates and commits the transaction to each data
node involved, divided by B because messages are batched;
plus 1 message from the validation node that validates and
commits the transaction to the client.

Applying the formulas presented in this section and the
formulas presented in Section II-B, to a scenario with 8 data
nodes, a hierarchy of validation nodes with 3 levels and 100
transactions that access 4 data nodes and are validated by
a validation node in the first level, we can verify that the
proposed architectures without any batching reduces the total
turn around messages by 25% and reduces the total number
of messages by 18%. With batching the reduction goes even
further, reducing the total turn around messages by 49% and
reducing the total number of messages by 67%.

F. Implementation

In order to evaluate the proposed architecture in a realistic
way we implemented it over a key-value storage system
used in the industry, Riak KV [16]. We have implemented
two versions of this architecture, one that uses lock based
concurrency control and another that uses timestamp based
concurrency control, as described in Section III-B. As a
base of comparison, we implemented another transactional
system over Riak KV, using a lock based concurrency
control mechanism and 2PC. Finally, we implemented a
custom version of Basho Bench [17] that allowed us measure
the performance of these prototypes.

IV. EVALUATION

A. Experimental Setup

1) Hardware Configuration: All the experiments pre-
sented in this chapter were executed in Google Cloud [18].
All the virtual machines used were configured to run Ubuntu
14.04. Each data node, responsible for hosting the Riak KV
virtual nodes and the leaf validation nodes, ran in a virtual
machine with 2 cores, 7.5GB of memory and 10GB of disk.
Non-leaf validation nodes ran in virtual machines with 4
cores, 15GB of memory and 10GB of disk.

As a benchmarking tool we used a custom version of
Basho Bench [17], that was modified to support the execu-
tion of transactions. Basho Bench was deployed in virtual
machines, each with 8 cores, 30GB of memory and 10GB
of disk.

2) Benchmark Configuration: Unless specified, the exper-
iments presented in this chapter have the following charac-
teristics. A total of 800k objects are used. These objects are
populated before running the experiment. Keys are generated
using an uniform distribution. Each object value is a fixed

binary of 1000 bytes. The experiments run for 10 minutes,
from which the first and the last minutes are discarded.

3) Systems Under Test: The evaluation presented in this
chapter compares the performance of the proposed archi-
tecture in two variations against a system that uses a lock-
based concurrency control mechanism and 2PC to commit
the transactions. This system is used as a baseline of compar-
ison. The two variations of the proposed architecture are the
one that uses a lock-based concurrency control mechanism
and the one that uses a timestamp-based concurrency control
mechanism.

To make the comparison between these systems as fair
as possible all of them were tested in a scenario with
8 data nodes. For the Hierarchy+Locking and the Hierar-
chy+Timestamps versions, the same hierarchy of validation
nodes, composed by 8 leaf nodes and 1 non-leaf validation
node, was used.

B. Network Load Experiments
As shown in Section III-E, the proposed architecture is

able to reduce the network traffic required to validate and
commit transaction when compared to 2PC. In order to better
understand the impact of this reduction on the system per-
formance, we ran multiple experiments with all logic but the
network logic disabled, allowing network communication to
be evaluated in isolation.

Figure 2. Throughput variation as the number of clients increases, with
concurrency control logic disabled

Figure 3. Latency variation as the number of clients increases, with
concurrency control logic disabled

1) Throughput and Latency: In order to understand the
performance of the proposed architecture we ran multiple
experiments with an increasing number of clients. We ran
experiments against seven different systems/variants: (1)

7



the 2PC+Locking version as a baseline of comparison, (2)
the Hierarchy+Locking version with no batching, (3) the
Hierarchy+Locking version with a batch size of 10, (4) the
Hierarchy+Locking version with a batch size of 50, (5) the
Hierarchy+Timestamps version with no batching, (6) the
Hierarchy+Timestamps version with a batch size of 10 and
(7) the Hierarchy+Timestamps version with a batch size of
50.

The graphs presented in Figure 2 and Figure 3 show the
results of these experiences. The graph in Figure 2 shows
how the throughput of each system varies as the number
of clients increases, and the graph in Figure 3 shows how
the average latency to execute a transaction varies as the
number of clients increases. The experiments presented use
a workload with 100% of distributed transactions. Each
transaction executes 8 updates operations (read followed by
a write on the same object), each in a different data node.
Because all the logic except the network logic is disabled
all transactions are committed successfully.

As the results show, the systems that do not use batching
or use a batching of 10 reach their saturation point (i.e. the
point when the system is processing the maximum number
of messages it can per unit of time) when 180 clients are
used, while systems that use a batch size of 50 reach their
saturation point when 260 clients are used. This can be
observed by looking at the graph in Figure 3, the latency of
executing transactions in systems that do not use batching
or use a batching of 10 starts to spike when 180 clients,
meaning that the system is not able to process all the
messages that are arriving and thus the system takes on
average more time per message. Systems that use a batching
of 50, have an higher latency from the beginning due to the
time it takes to fill the bigger batch, but are able to keep that
latency while supporting approximately 30% more clients
than the others.

The fact that the systems that use a batching of size 50
can support higher numbers of clients without saturating,
results in an increase in throughput. The results show that the
Hierarchy+Timestamps version is able to achieve approxi-
mately 15% more throughput than the baseline, while the
Hierarchy+Locking version is able to achieve approximately
23% more throughput than the baseline. The difference in
throughput between these two systems is due to the con-
currency control mechanisms used by each one. The Hier-
archy+Timestamps versions uses more network bandwidth,
which in other words means that it uses bigger network
messages. Bigger messages take more time to process and
as such the throughput is lower.

2) Batching vs Latency Trade-off: As we have state
before, and as the graphs in Figure 2 and Figure 3 show,
batching can have significant impact on the system perfor-
mance. Message batching reduces the amount of network I/O
used by nodes, that in turn results in a network bandwidth
and CPU reduction. We could imagine that, if we kept
increasing the batch size used, the bigger these reductions
would be. However, as the batch size increases, the amount

Figure 4. Latency variation as the batch size increases

of work required to process a bigger batch and the time
it takes to fill up a batch also increases. We can say that
there is a trade-off here, between the batch size used and
the latency increase we get as a result.

In order to understand the impact the batch size has on the
latency observed by the clients, due to the longer validation
phase, we ran multiple experiments where we gradually
increased the batch size. The results of these experiments
are depicted in Figure 4. The graph in this figure shows the
average latency of executing a transaction in three different
systems with different batching sizes. The same workload of
100% of distributed transactions, each executing 8 updates
operations in different data nodes was used. For all these
experiments we used 100 clients, a number of clients that
did not saturate the system.

As results show, the average latency of executing a
transaction in the 2PC+Locking version is 33ms, while in the
Hierarchy+Locking version and the Hierarchy+Timestamps
version without any batching is around 29ms. Increasing the
batch size to 10 seems to have a negligible impact on the
latency, with the systems presenting a average latency of
31ms. Increasing the batch size further to 25, increases the
average latency to a value closer to the latency presented by
2PC+Locking version, 35ms.

When using batching with sizes larger 25, it is possi-
ble to start observing a more significant impact on the
latency. For a batch size of 50, the average latency of the
Hierarchy+Locking version and the Hierarchy+Timestamps
version increases to 40ms and 45ms respectively, values that
represents an increase of approximately 50% over the base
latency of the system without any batching. Using a batch
size of 75 the increases the latency approximately 75%, and
using a batch size of 100 increases the latency approximately
150%.

C. Concurrency Control Experiments

In order to understand if the performance gains shown
by the results of Section IV-B1 were kept if the transaction
validation logic was enabled, we ran a very similar set of
experiences as the ones presented in that section, but with
all the logic enabled.

8



Figure 5. Throughput variation as the number of clients increases, with
concurrency control logic enabled

Figure 6. Latency variation as the number of clients increases, with
concurrency control logic enabled

The graphs presented in Figure 5 and Figure 6 show the
results of these experiences. The graph in Figure 5 shows
how the throughput of each system varies as the number
of clients increases, and the graph in Figure 6 shows how
the average latency to execute a transaction varies and the
number of clients increases. The experiments presented use
the same workload as the one used in Section IV-B1. In
this workload the contention between transactions is non
existent, so all transactions are committed successfully.

As results show, the performance gains obtained in Sec-
tion IV-B1 were not kept when the validation logic is
enabled. Although, the results still show some improvement,
namely, the solution that uses batching is able to support
25% more clients before saturating. This is visible in Fig-
ure 5, the 2PC+Locking version saturates when 80 clients
are used while the solution with batching saturates when 100
clients are used.

Even though it saturates with a larger number of clients
its throughput is not larger than the system without batching.
We believe this is justified by the results in Figure 6, that
shows that the average latency of executing one transaction
keeps increasing as the number of clients increases. This
happens because transactions are validated serially (one after
the other) at each node, so as more clients are added, more

transactions need to be validated, and more transactions
will be waiting to be validated, so, the average latency per
transactions increases. This increase still happened when the
validation logic was disabled, even though the results in
Section IV-B1 do not show it clearly. In these experiences
it became more clear because the validation logic is enabled
and the time it takes to validate a transaction is much higher.

As these experiments run in a closed loop model the
latency of operations directly affects the throughput of the
system, if the latency goes down the throughput increases
and vice versa. When batching is used, it is expected that the
latency of operations will increase due to the time it takes
o fill up the batch, but at the same time less network I/O
and CPU are used because less network messages are sent.
To overcome the latency increase introduced by batching the
solution is to add more clients. If more clients are added it is
expected that the throughput goes up to match the throughput
of a system where no batching is used. Eventually the
network I/O and CPU savings obtained by using batching are
big enough that allow the system to support a big enough
number of clients, that the throughput surpasses the base
throughput of the system without any batching. This is what
the results in Section IV-B1 show. However, in this case
this does not happen, because as more clients are added the
average latency of executing a transaction goes up, and as a
result the throughput goes down, which is the exact opposite
of what is expected by adding more clients. The reason for
this is the fact that transactions are processed serially, which
results in transactions waiting for other transactions to be
validated.

D. Discussion

The experimental results presented in Section IV-B1 show
that the proposed architecture has the potential to support
up to 30% more clients and achieve 23% more throughput
when compared to a system that uses the 2PC protocol.
However, the results in Section IV-C show that the current
implementations of the proposed architecture are not able
to achieve the performance improvement that the results in
Section IV-B1 show.

Our understanding of these results, as explained in Sec-
tion IV-C, is that the prototypes of the proposed architecture
have a limitation in their implementation. This limitation is
in the way transactions are processed, which is serially. More
precisely, data nodes are single threaded and process every
request one at the time. By processing transactions serially,
as more transactions need to be processed the bigger their
processing latency will be. The system is implemented this
way, because transactions need to be certified in total order,
and using a single thread ensures that no re-orderings may be
caused by scheduler during the validation procedure. How-
ever, not all code that is executed by the data nodes, when
committing or aborting a transactions needs to be serialised.
We believe that by increasing the degree of concurrency in
the data nodes, some of the observed limitations may be
eliminated.

9



When it comes to the batching vs latency trade-off pre-
sented in Section IV-B2, our conclusions are the following.
If latency is a priority, using a batch size up to 25 is ok,
as the increase in latency is almost negligible. On the other
hand, if latency is not a critical requirement, bigger batch
sizes can be considered if the increase in latency is on par
with the latency expectations.

V. CONCLUSION AND FUTURE WORK

In this work we presented an hierarchical architecture for
deferred validation of transactions. This architecture allows
transactions with an high locality degree to be validated
and committed concurrently and with low latency, while
transactions that have a low locality degree have a slightly
higher latency. The architecture also takes advantage of
message batching techniques to be able to support higher
numbers of clients and achieve higher throughput.

We have performed an extensive experimental evaluation
of the proposed architecture. Experimental results show
that the communication pattern, used by the proposed ar-
chitecture to validate and commit transaction, allied with
message batching, may allow the system to support up to
30% more clients and achieve 23% more throughput when
compared to a system that uses the 2PC communication
pattern. However, the results have also unveiled limitations
in the implementation of the proposed architecture. These
limitations prevent the current prototypes from achieving the
performance improvements they are expected to.

As future work, we believe that the direction should
be into further testing the proposed architecture, to better
understand its benefits and limitations. We believe that the
first priority should be to overcome the limitations of the
current prototypes. Then, we believe that more testing should
be done around different hierarchies, with different levels,
and different branching degrees, to understand how these can
impact the performance of the system. Finally we believe
that the scalability of the system should be evaluated, more
specifically, understanding if and when the root validation
node, that receives information about all the transactions that
execute in the system, can become a bottleneck or not.

ACKNOWLEDGMENTS

Parts of this work have been performed in collaboration with other
members of the Distributed Systems Group at INESC-ID, namely, Manuel
Bravo, Miguel Matos and Paolo Romano.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system,” ACM SIGOPS Operating Systems
Review, vol. 44, no. 2, pp. 35–40, 2010.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Heller-
stein, and I. Stoica, “Feral concurrency control: An empirical
investigation of modern application integrity,” ser. SIGMOD,
2015.

[3] T. Haerder and A. Reuter, “Principles of transaction-
oriented database recovery,” ACM Comput. Surv., vol. 15,
no. 4, pp. 287–317, Dec. 1983. [Online]. Available:
http://doi.acm.org/10.1145/289.291

[4] J. Grov and P. Ölveczky, “Scalable and fully consistent
transactions in the cloud through hierarchical validation,”
in Data Management in Cloud, Grid and P2P Systems,
A. Hameurlain, W. Rahayu, and D. Taniar, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 26–38.

[5] C. H. Papadimitriou, “The serializability of concurrent
database updates,” J. ACM, vol. 26, no. 4, pp. 631–653, Oct.
1979.

[6] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz, “Aries: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-
ahead logging,” ACM Transactions on Database Systems
(TODS), vol. 17, no. 1, pp. 94–162, 1992.

[7] L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16,
no. 2, pp. 133–169, 1998.

[8] B. Lampson and H. E. Sturgis, “Crash recovery in a dis-
tributed data storage system,” January 1979. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
crash-recovery-in-a-distributed-data-storage-system/

[9] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
1987.

[10] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck,
“Tango: Distributed data structures over a shared log,” in Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 325–340.

[11] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Munshed,
M. Dhawan, J. Stabile, U. Wieder, S. Fritchie, S. Swanson
et al., “vcorfu: A cloud-scale object store on a shared log.”
in NSDI, 2017, pp. 35–49.

[12] J. Chang and N. Maxemchuck, “Reliable broadcast proto-
cols,” ACM, Transactions on Computer Systems, vol. 2, no. 3,
Aug. 1984.

[13] K. Birman and T. Joseph, “Reliable Communication in the
Presence of Failures,” ACM, Transactions on Computer Sys-
tems, vol. 5, no. 1, Feb. 1987.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Fur-
man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, D. Wood-
ford, Y. Saito, C. Taylor, M. Szymaniak, and R. Wang,
“Spanner: Google’s globally-distributed database,” in OSDI,
2012.

[15] M. B. Chathuri Gunawardhana and L. Rodrigues,
“Unobtrusive deferred update stabilization for ef-
ficient geo-replication,” in 2017 USENIX Annual
Technical Conference (USENIX ATC 17). Santa
Clara, CA: USENIX Association, 2017, pp. 83–95.
[Online]. Available: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/gunawardhana

[16] “Riak KV,” http://basho.com/products/riak-kv/.

[17] “Basho Bench,” https://github.com/basho/basho bench.

[18] “Google Cloud,” https://cloud.google.com/.

10


