
A Distributed and Hierarchical Architecture for Deferred
Validation of Transactions in Key-Value Stores

João Bernardo Sena Amaro

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Luı́s Eduardo Teixeira Rodrigues

Examination Committee

Chairperson: Prof. Daniel Jorge Viegas Gonçalves
Supervisor: Prof. Luı́s Eduardo Teixeira Rodrigues

Member of the Committee: Prof. João Carlos Antunes Leitão

October 2018

Acknowledgements

I would like to acknowledge my dissertation supervisor Prof. Luı́s Rodrigues for giving me the oppor-

tunity to work on this thesis under his supervision. His insights, support and sharing of knowledge were

fundamental to produce this thesis.

Moreover I would like to thank Manuel Bravo, Miguel Matos, and Paolo Romano for the fruitful dis-

cussions and comments during the preparation of this work.

I would also like to thank my parents for their friendship, encouragement and caring over all these

years, for always being there for me through thick and thin and without whom this project would not be

possible.

Last but not least, to all my friends and colleagues that helped me grow as a person and were always

there for me during the good and bad times in my life.

To each and every one of you, thank you.

Abstract

Key-value stores are today a fundamental component for building large-scale distributed systems. Early

key-value stores did not offer any support for running transactions but, with time, it became obvious that

such support could simplify the application design and development. The key challenge in this context is

to support transactional semantics while preserving the scalability properties of key-value stores. In this

thesis we propose an architecture to perform transaction validation in a distributed and scalable manner.

The architecture exploits the fact that in the current key-value stores, data is partitioned across multiple

servers and that correlated data can be stored in the same server if the appropriate partitioning function

is used. In this context, transactions that access correlated data in the same partition (local transactions)

can be validated and committed concurrently, by different servers. Transactions that access multiple

partitions (distributed transactions) can take longer to be validated and committed, but do not interfere

with local transactions. The architecture is based on a tree of transaction validators, where the leaf

nodes are responsible for single partitions, offering higher throughput and lower latency, while non-leaf

nodes are responsible for several partitions. We have performed an extensive experimental validation of

the proposed architecture that highlights its advantages and limitations. The evaluation shows that, in

some scenarios, the proposed architecture can offer improvements up to 23% when compared to other

validation and commit strategies, such as distributed two-phase commit.

Keywords

Distributed Systems; Transactions; Key-value Stores;

iii

Resumo

Os sistemas de armazenamento chave-valor são hoje um componente central dos sistemas distribuı́dos

de grande escala. Os primeiros sistemas deste tipo não ofereciam suporte para transações, mas com

a sua evolução tornou-se relevante oferecer este tipo de garantias. O desafio que se coloca é como

oferecer suporte transacional sem comprometer o elevado débito que caracteriza os sistemas chave-

valor. Nesta tese propomos uma nova arquitetura para realizar a validação das transações, de forma

distribuı́da. A arquitetura tira partido to facto dos dados guardados nos sistemas de armazenamento

chave-valor atuais estarem particionados em vários servidores e de que dados correlacionados podem

ser guardados no mesmo servidor desde que seja usada uma função de particionamento adequada.

Neste contexto, transações que acedam a dados correlacionados da mesma partição (transações lo-

cais) podem ser validadas e confirmadas de forma concorrente, por diferentes servidores. Transações

que acedam a múltiplas partições (transações distribuı́das) podem demorar mais a ser validadas e con-

firmadas, mas sem atrasarem o processamento das primeiras. A arquitetura recorre a uma hierarquia

em árvore de validadores, em que os nós folha são responsáveis por uma só partição, oferecendo

maior débito e menor latência, enquanto que os nós que não são folha são responsáveis por múltiplas

partições. Apresenta-se uma extensa avaliação experimental da arquitetura proposta que permite aferir

as suas vantagens e limitações. Esta avaliação mostra que, nalguns cenários, a arquitetura proposta

consegue melhorias até 23% em relação a outras estratégias alternativas para fazer a validação das

transações, tal com a confirmação distribuı́da em duas fases.

Palavras Chave

Sistemas Distribuı́dos; Transacções; Armazenamento Chave-Valor;

iv

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Organisation of the Document . 4

2 Related Work 5

2.1 Key-Value Stores . 6

2.2 Transactions . 6

2.2.1 ACID Properties . 7

2.3 Guaranteeing Atomicity . 7

2.3.1 Two-Phase Commit . 8

2.4 Guaranteeing Isolation . 10

2.4.1 Isolation Levels . 10

2.4.2 Race Conditions and Anomalies . 11

2.4.3 Concurrency Control Mechanisms . 11

2.4.3.A Pessimistic Concurrency Control . 11

2.4.3.B Optimistic Concurrency Control . 12

2.5 Transaction Validation . 12

2.6 Event Ordering Algorithms . 13

2.6.1 Fixed Sequencer Algorithms . 13

2.6.2 Rotative Sequencer Algorithms . 13

2.6.3 Distributed Sequencers With Coordination In Line 13

2.6.4 Distributed Sequencers With Deferred Stabilisation 14

2.7 Systems That Rely On Event Ordering . 14

2.7.1 CORFU . 14

2.7.2 Tango + CORFU . 15

2.7.3 vCorfu . 16

v

2.7.4 Megastore . 17

2.7.5 Chariots . 18

2.7.6 Kafka . 20

2.7.7 Eunomia . 21

2.7.8 FLACS . 22

3 Hierarchical Architecture for Deferred Validation of Transactions 24

3.1 Architecture . 25

3.2 Execution of Transactions . 26

3.2.1 Starting a Transaction . 27

3.2.2 Reading Objects . 27

3.2.3 Writing Objects . 28

3.2.4 Committing a Transaction . 28

3.2.5 Validating a Transaction . 28

3.2.5.A Local Transactions . 28

3.2.5.B Distributed Transactions . 29

A – Using The Lock Based Concurrency Control Mechanism 29

B – Using The Timestamp Based Concurrency Control Mechanism . 30

3.3 Timestamp Generation . 31

3.3.1 Lock Based Concurrency Control . 31

3.3.2 Timestamp Based Concurrency Control . 31

3.4 Batching . 32

3.5 Network Analysis . 32

3.5.1 Example . 33

3.6 Implementation . 34

3.6.1 Riak KV . 34

3.6.1.A Changes and Extensions . 35

3.6.1.B Base of Comparison . 36

3.6.2 Basho Bench . 36

4 Evaluation 38

4.1 Experimental Setup . 39

4.1.1 Hardware Configuration . 39

4.1.2 Benchmark Configuration . 39

4.1.3 Systems Under Test . 39

4.2 Network Load Experiments . 40

4.2.1 Throughput and Latency . 40

vi

4.2.2 Batching vs Latency Trade-off . 42

4.3 Concurrency Control Experiments . 43

4.3.1 Experiments With Profiling . 45

4.4 Discussion . 48

5 Conclusions and Future Work 51

A Pseudocode of the Proposed Architecture With a Lock Based Concurrency Control Mech-
anism 56

A.1 Client Pseudocode . 56

A.2 Partition Pseudocode . 58

A.3 Validation Pseudocode . 59

B Pseudocode of the Proposed Architecture With a Timestamp Based Concurrency Control
Mechanism 62

B.1 Client Pseudocode . 62

B.2 Partition Pseudocode . 64

B.3 Validation Pseudocode . 65

C Pseudocode of the Transactional System Used as a Base for Comparison 69

C.1 Client Pseudocode . 69

C.2 Partition Pseudocode . 71

vii

List of Figures

3.1 Proposed architecture. Key-value pairs are stored in the data nodes. Each leaf validation

node is co-located with the corresponding data node. 25

4.1 Throughput variation as the number of clients increases, with concurrency control logic

disabled . 41

4.2 Sub graph of Figure 4.1, highlighting the throughput variation as the number of clients

increases for systems that use no batching or a batching of 10 42

4.3 Sub graph of Figure 4.1, highlighting the throughput variation as the number of clients

increases for systems that use a batching of 50 . 43

4.4 Latency variation as the number of clients increases, with concurrency control logic disabled 44

4.5 Sub graph of Figure 4.4, highlighting the latency variation as the number of clients in-

creases for systems that use no batching or a batching of 10 45

4.6 Sub graph of Figure 4.4, highlighting the latency variation as the number of clients in-

creases for systems that use a batching of 50 . 46

4.7 Latency variation as the batch size increases . 47

4.8 Throughput variation as the number of clients increases, with concurrency control logic

enabled . 48

4.9 Latency variation as the number of clients increases, with concurrency control logic enabled 49

viii

List of Tables

4.1 Abbreviations used to describe each system and its variations 40

4.2 Average request processing times across experiments. Results are presented in millisec-

onds. 46

4.3 Average waiting time between requests. Results are presented in milliseconds. 46

ix

Acronyms

API Application Programming Interface

RDBMS Relational Database Management Systems

ACID Atomicity Consistency Isolation Durability

2PC Two-Phase Commit

PCC Pessimistic Concurrency Control

OCC Optimistic Concurrency Control

I/O Input/Output

1

1
Introduction

Contents

1.1 Motivation . 3

1.2 Contributions . 4

1.3 Results . 4

1.4 Organisation of the Document . 4

2

Key-value storage systems have today a crucial role in large scale distributed systems due to their

scalability and ability of supporting high access rates. An example of a system of this kind is Cassan-

dra [1], which is able to store terabytes of information while supporting hundreds of thousands of ac-

cesses per second. Unfortunately, in order to achieve good performance, these systems do not support

strong consistency models and do not implement concurrency control, which makes the development of

applications that use key-values stores harder and prone to errors [2], when compared with application

that use traditional databases. As such, there has been a growing interest in developing mechanisms

that allow to strengthen the guarantees offered by these systems without strongly penalising their per-

formance.

This thesis addresses the problem of supporting transactions in key-value storage systems. In partic-

ular, the focus of this work is on developing mechanisms that allow the process of validating transactions

to scale.

1.1 Motivation

A transaction is an abstraction that allows to execute a sequence of operations as if it was an indivisible

single operation that is executed atomically. This intuitive notion can be described more precisely by a

set o properties known as the Atomicity Consistency Isolation Durability (ACID) properties [3].

Key to the implementation of transactions is a concurrency control mechanism, whose purpose is to

ensure that the interleaving of the operations executed by concurrent transactions produces a result that

is consistent. One of the strongest isolation levels is serialisability. Serialisability states that the execution

of concurrent transactions should be equivalent to some sequential execution of the same transactions.

Although there are many different techniques to implement concurrency control, any concurrency control

algorithm must be able to totally order transactions that access the same objects. The need for totally

ordering transactions represents a fundamental impairment for the scalability of a transactional system.

Therefore, in this thesis we look for techniques that can mitigate the bottlenecks that may result from

the need for totally ordering transactions. In particular, we are inspired by the work of [4], that uses an

hierarchical network of transaction validators, to validate transactions that access disjoint sets of objects

in parallel. Concretely, the goal of this thesis is to combine the hierarchical communication pattern used

in [4] with message batching techniques to build a novel transactional system that is able to support a

larger number of clients and higher throughput.

3

1.2 Contributions

This thesis proposes, implements, and evaluates a novel approach to execute the certification phase

of optimistic concurrency control when implementing transaction in distributed key-value stores. The

contributions of this dissertation are the following:

• An hierarchical architecture for deferred validation of transactions.

• An identification of the benefits and limitations of the proposed architecture.

1.3 Results

This work has produced the following results:

• A detailed description of the proposed architecture and its implementation.

• An implementation of the proposed architecture over an industry used key-value store named Riak

KV [5].

• An experimental evaluation of the prototype and a comparison of its performance against other

approaches such as distributed two-phase commit.

A paper describing parts of this work was accepted as a communication and presented at INForum

2018 [6].

1.4 Organisation of the Document

The remaining of this document is organised as follows. Chapter 2 briefly describes the concepts and

systems related with this work. Chapter 3 describes the proposed architecture, how transactions are

executed over it and how it was implemented over Riak KV [5]. Chapter 4 presents the results of the

experimental evaluation. Finally, Chapter 5 concludes the dissertation.

4

2
Related Work

Contents

2.1 Key-Value Stores . 6

2.2 Transactions . 6

2.3 Guaranteeing Atomicity . 7

2.4 Guaranteeing Isolation . 10

2.5 Transaction Validation . 12

2.6 Event Ordering Algorithms . 13

2.7 Systems That Rely On Event Ordering . 14

5

This chapter surveys the main concepts and systems that are relevant for our work. We start by

briefly describing the operation of key-value stores. Then we introduce the concept of a transaction and

how it can be implemented. Then we present the main classes of concurrency control mechanisms that

exist and the importance of total order in this context. Finally we present systems that use total order

protocols and that are relevant for the work we have developed.

2.1 Key-Value Stores

Key-value stores are a category of storage systems that were born out of the necessity of increasing

the scalability and performance of traditional Relational Database Management Systems (RDBMS).

Traditional RDBMS were unable to provide the performance required by large internet applications, that

need to store large volumes of data that was concurrently accessed by millions of users.

RDBMS use a structured data model that allows very complex data manipulation and query oper-

ations, but the support for such functionality is computationally expensive. Also, many RDBMS were

not build with distribution in mind, which makes them very difficult to scale. Key-value stores, on the

other hand, use a much less structured data model where data is stored as key-value pairs. The value

captures the state of an object of some kind and the key uniquely identifies that object. Accessing data

in this model is a lot simpler when compared to the relational model, clients can do two basic operations:

(1) get, which is a simple way to fetch an object by key; (2) put, that allows the client to write an object

associated to a given key.

Due to the simplified data model used by key-value stores and given the limited set of operations

they support, key-value stores are much easier to scale and can provide better performance, when

compared to previous RDBMS. A fundamental strategy to support scale consists in storing different

objects on different servers, using a simple hashing function to assign keys to nodes; this avoids the

need for a directory service to locate objects in a cluster of many nodes. In essence these systems

traded functionality and consistency guarantees for performance. For instance, most key-value stores

lack support for transactions offering the ACID properties.

2.2 Transactions

A transaction is a sequence of read and write operations that are executed as if they were just a single

operation executed atomically. The transaction either succeeds (commits) or not (aborts, rolls back).

If it aborts, the transaction can be safely retried, since no intermediate results from the aborted run

took effect. This abstraction simplifies error handling, because the application does not have to worry

about partial failures. Also, transactions shield the programmers from dealing explicitly with concurrency

6

control, given that the final outcome is guaranteed to be the same as if the transaction was executed in

serial order with regard to other transactions.

2.2.1 ACID Properties

The acronym ACID was first introduced in [3] and it describes the safety guarantees provided by trans-

actions. It stands for Atomicity, Consistency, Isolation, and Durability, which can be defined as follows:

Atomicity: states that a transaction is indivisible, and therefore, it is not possible to observe partial

results. In other words, either all operation that execute a transaction take effect (if the transaction

commits) or none of the operations take effect (if the transaction aborts).

Consistency: refers to the application specific notion of consistency. Every application has its own

notion of consistency, often translated into what is called the application invariants (statements about

the application data that must always be true). A transaction is said to be consistent if it keeps the

application invariants true after it has been executed. Each application has its own invariants, thus

the responsibility of ensuring that transactions are consistent, belongs to the application developers

and not to the database. Although, some databases provide developers with mechanisms to make

this easier, and in this case databases have a partial role in keeping data consistency.

Isolation: means that two concurrent transactions are isolated from each other. The classic notion

of isolation was formalised as serialisability [7], which states that the outcome of running multiple

transactions concurrently is guaranteed to be the same as if these transactions had run serially.

Therefore, the programmer does not need to worry about concurrency control and can program “as

if” the transaction was going to run alone in the system.

Durability: refers to the promise that once a transaction is committed successfully, any data that

was written by it will be stored durably (will not be forgotten), even if there is an error or fault of some

kind. In not replicated databases it usually means that once a transaction is committed all its writes

were stored in non volatile storage. In replicated databases it means that the data was replicated to

a certain number of nodes.

In this dissertation we are mainly interested on how atomicity and isolation can be guaranteed.

2.3 Guaranteeing Atomicity

The challenge of guaranteeing atomicity is to ensure that in the presence of partial failures, all outcomes

of a transaction either persist or none do. Partial failures can have many forms: in a transaction that

has several reads and writes a partial failure can be one that happens midway through the execution

of the transaction, and only half of the operations have executed; another example is a single write

7

transaction, and a power failure happens while the transaction was writing to disk. Guaranteeing an

all or nothing result in these cases requires a recovery algorithm, like the ARIES [8] algorithm, that is

capable of recovering a partially executed transaction to a clean state.

The ARIES algorithm uses write-ahead logging: before any update is performed in the database,

a redo/undo entry is appended to a persistent log. This way the log has enough information to redo

or undo the effect of any update. If a failure occurs while an update is being executed, there is no

problem, because the corresponding log entry is already persisted and can be used to redo the update.

Recovery works in two phases. The first phase replays all the operations in the log, to bring the system

to the state it was before the crash (this includes the effects of transactions that have committed but

also of transaction that were still executing when the failure occurs). Then, in the second phase all the

operations of transactions that did not committed are undone.

Guaranteeing atomicity in distributed scenarios is even harder, because transactions can fail in some

nodes but succeed on others. In order to guarantee atomicity all nodes must agree on the outcome of

the transaction, i.e, the transaction either commits or aborts at all nodes. This problem is related to the

consensus problem and can be solved with the help of a consensus algorithm, like Paxos [9]. However,

many commercial database systems use a simpler Two-Phase Commit (2PC) Protocol [10], that can

be implemented more efficiently than a fault-tolerant consensus protocol, but may block in some faulty

scenarios. The next subsection describes two-phase commit in detail.

Regardless of the consensus protocol used, a recovery algorithm is still necessary at each node. In

fact both protocols should work with each other to recover form possible faults.

2.3.1 Two-Phase Commit

2PC is a protocol used to atomically commit transactions across several nodes, i.e. to make sure that

either all nodes commit or all nodes abort. The protocol works in two phases (hence the name): prepare

and commit/abort.

Prepare Phase: is the first phase of the protocol. Once a transaction has finished executing and is

ready to commit, the coordinator (which is the process responsible for coordinating the distributed

procedure) starts the prepare phase by sending a prepare request to all the data nodes involved

in the transaction asking them if they are able to commit. Then each data node verifies if it can

or not commit the transaction and communicates that information to the coordinator, in the form of

a prepare response. The coordinator keeps track of the responses it receives from the nodes and

compiles them into a final prepare result. The outcome of the prepare phase is a decision to commit

the transaction if all the nodes replied with a ”yes” (i.e., if they can commit the transaction), or a

decision to abort the transaction otherwise.

Commit/Abort Phase: starts right after the coordinator computes the outcome of the transaction. If

8

the outcome is a decision to commit, it means that all data nodes agreed to commit the transaction,

so the coordinator starts the second phase by sending a commit message to all the data nodes. If

the outcome is a decision to abort, at least one of the data nodes could not commit the transaction,

so all nodes must abort it. To do so, the coordinator sends an abort message to all the data nodes.

On receiving the message with the outcome from the coordinator, data nodes commit or abort the

transaction accordingly.

Note that if a transaction involves a single node, the two phases above can be collapsed. In fact, the

(single) participant has all the information required to decide the outcome of the transaction at the end

of the prepare phase, and can immediately proceed to commit or abort the transaction accordingly.

There are two crucial points in this protocol that make sure it guarantees atomicity. The first is when

data nodes respond to a prepare message, if they reply with a ”yes”, they are making a promise that no

matter what they will commit the transaction. The second crucial point is also around promises, and is

when the coordinator calculates the final prepare result, if it decides to commit or abort the transaction,

it can not go back on that decision. In order for these nodes to keep their promises they have to durably

store them in some way, such that, if an error, crash, or fault occurs, they can recover their past decisions

back and not break the promise.

Keeping these promises can have some implications, specially in terms of performance. An example

of this is the following, considering a scenario where two coordinators try to commit one transaction

each, and transactions from both coordinators have object A in common. If the data node responsible

for object A responds first to coordinator one, and promises to commit the value it has, coordinator two

has to wait to commit its value of object A. If in this process coordinator one crashes, coordinator two

remains blocked until coordinator one recovers, which can be a long time.

The network costs of this protocol can be described in number of communication steps (latency) and

total number of messages exchanged (bandwidth) as follows:

N = number of data nodes involved in the transaction (2.1)

communication steps =

{
2 N = 1

4 N > 1
(2.2)

total messages =

{
2 N = 1

4×N N > 1
(2.3)

If one data node is involved in the transaction the protocol requires 1 prepare message from the client

to the data node and 1 prepare result message from the data node to the client, to commit a transaction,

thus it takes 2 communication steps and uses 2 network messages in total. On the other hand, if the

transaction involves more than one data node, the protocol require 4 communication steps in total that

9

correspond to the 4 messages exchange between the client and the data nodes involved (1 prepare, 1

prepare result, 1 commit/abort, 1 commit/abort result), and requires a total o 4 messages per data node.

2.4 Guaranteeing Isolation

When it comes to the problem of guaranteeing isolation among concurrent transactions, the first question

to ask is which isolation level do we want to guarantee. In fact, several different isolation levels have been

proposed and implemented by database researchers and vendors. The next subsection will explore the

main isolation levels available in today’s databases.

2.4.1 Isolation Levels

As described in Section 2.2.1 the classic notion of isolation was formalised as serialisability [7], which

means that the execution of transactions can occur concurrently but the outcome is equivalent to a serial

execution.

Unfortunately, in practice, using serialisability as an isolation level may be expensive and may lead

to poor performance. As an alternative, weaker isolation levels were proposed. These weaker isolation

levels sacrifice on accuracy for performance. In practice this translated into what are called concurrency

anomalies or race conditions. Below we present the several isolation levels that have been proposed

and the next subsection will discuss some of the anomalies that may be observed when serialisability is

not used:

Read Uncommitted: is the weakest isolation level that can be used, and the one that provides the

best performance. With this isolation level dirty reads, non-repeatable reads and phantom reads are

possible.

Read Committed: this isolation level guarantees that no dirty reads are possible. Non-repeatable

reads and the phantom reads are still possible.

Repeatable Read: is a step up the read committed isolation level, guaranteeing everything Read

Committed guarantees plus the lack of non-repeatable reads, i.e. repeatable reads of the same

object will always return the same value.

Snapshot Isolation: as the name implies guarantees that any reads done by a transaction will be

done as if the transaction is accessing a snapshot of the entire database. This isolation level guaran-

tees that dirty reads, non-repeatable reads and phantom reads are not possible. With this isolation

level the write skew anomaly is possible.

10

2.4.2 Race Conditions and Anomalies

The concurrent transactions of transactions may create race conditions that may result in the following

anomalies:

Dirty read: this anomaly happens when one transaction writes a value to the database, but does

not commit or abort, and other concurrent transaction reads the value that the first transaction wrote

but did not yet commit.

Non-repeatable reads: happen when during the execution of a transaction the same object is read

more than once and the value of it is different between reads.

Dirty write: this anomaly happens when two concurrent transactions write on the same object, and

one of them overwrites the changes of the other before they are committed.

Phantom read: happens when a write in one transaction changes the result of a search query in

another transaction.

Write skew: happens when two concurrent transactions read the same objects, and then update

some of those objects (different transactions may update different objects).

2.4.3 Concurrency Control Mechanisms

Regardless of the isolation level used, a concurrency control mechanism is always needed to enforce

it. There are two main classes of concurrency control mechanisms: pessimistic and optimistic [11]. The

next two subsections will going into each one separately.

2.4.3.A Pessimistic Concurrency Control

Pessimistic Concurrency Control (PCC) mechanisms work, as the name implies, based on a pessimistic

assumption that conflicts among concurrent transaction will happen frequently. Therefore, for every op-

eration executed by a transaction, the PCC mechanism checks for conflicts and, if needed, the operation

is blocked until it can run without violating the desired consistency level. Note that a conflict occurs if

two concurrent transactions access the same data item and at least one of the operations is an update.

Conflict detection and resolution is usually performed using locks.

One disadvantage of this approach is the extra cost added to every operation. This, in a scenario

where conflicts are rare, may reduce the overall system performance. On the up side, if conflicts are

common, resolving conflicts as soon as possible can improve the system performance, since it prevents

transactions from making progress that needs later to be aborted.

11

2.4.3.B Optimistic Concurrency Control

In contrast with PCC mechanisms, the Optimistic Concurrency Control (OCC) mechanisms assume that

conflicts among concurrent transactions are rare. Therefore OCC mechanisms do not check for conflicts

until a transaction is finished. When a transaction finishes, the concurrency control mechanism will

check if any conflicts occurred during the execution of the transaction and commit/abort the transaction

accordingly. This process is known as transaction validation.

An advantage of OCC mechanisms when compared to PCC mechanisms is the fact that they do

not add any overhead to the execution of transactions; instead, they add an extra validation step at

commit time. A downside of this approach is if conflicts are common, a transaction may waste resources

executing operations that are doomed to abort. Also, because no early conflict resolution is performed,

OCC may exhibit higher abort rates when compared to a PCC mechanism.

In essence, the choice of the concurrency control mechanism to use is highly dependent on the

expected workload. In general, PCC mechanisms are better in scenarios where conflicts among con-

current transactions are common, while OCC mechanisms are better in scenarios where conflicts are

rare.

In this work our focus is on OCC mechanisms due to their potential of achieving an higher throughput

in scenarios where conflicts among concurrent transactions are rare.

2.5 Transaction Validation

Data storage systems that use OCC mechanisms execute transactions in four steps:

1. Begin: the client starts the transaction and records a timestamp marking a (logical) point in time

when the transaction started.

2. Modify: the transaction read and write operations are executed. Writes are executed as tentative.

3. Validation: check whether the transaction has conflicts with other already committed transactions.

4. Commit/Rollback: according to the result of the validation, the tentative writes of the transaction

are committed or rolled back.

The way the validation of transactions is done, depends on the isolation level used. When enforcing

serialisability, the validation of transactions is done by checking if previously committed transactions

have modified data that was read and/or written by the transaction being validated. In such case, the

transaction must be aborted. In practice, this means that tentative writes are discarded and not applied

to the database.

12

The validation procedure described above assumes that transactions can be validated in serial order.

Most of the systems we have studied rely on total ordering algorithms to achieve this.

2.6 Event Ordering Algorithms

In the literature we have identified four categories of ordering protocols that are used in the context

of transactional systems, they are: fixed sequencers, rotative sequencers, distributed sequencers with

coordination in line, and distributed sequencers with deferred stabilisation.

2.6.1 Fixed Sequencer Algorithms

The fixed sequencer algorithms work, as the name implies, based on the existence of fixed sequencer

node, that has the role of assigning sequence numbers to events. The remaining nodes interact with the

sequencer node whenever they want to order an event.

A downside of this class of algorithms is that the fixed sequencer can become a bottleneck pretty

fast as all clients must contact it to order events. Examples of systems that use this class of algorithms

are CORFU [12], Tango [13], vCorfu [14] and Megastore [15].

2.6.2 Rotative Sequencer Algorithms

Algorithms based on a rotative sequencer algorithms work by shifting the role of being a sequencer from

node to node. This is done by passing a token from node to node in a logical ring. The node that has

the token plays the sequencer role, and can order events without coordination with other nodes. A node

that has events to order need to wait until it receives the token; only then it has exclusive access to

assign sequence numbers to the events. This class of algorithms has been used in the past in message

ordering protocols [16], but it can easily become a bottleneck in large scale systems due to the latency

associated with passing the token from node to node.

2.6.3 Distributed Sequencers With Coordination In Line

This class of algorithms is a variant of an algorithm by Dale Skeen originally proposed in [17]. Each node

involved in the ordering process proposes a sequence number, then a coordinating process uses all the

proposes and assigns a final sequence number (usually the maximum of all the proposed sequencer

numbers). An example of a system that uses this principle is Spanner [18]. A downside of this class of

algorithms is the fact that the ordering of events is blocked by the distributed coordination process, that

requires at least two communication steps.

13

2.6.4 Distributed Sequencers With Deferred Stabilisation

Distributed sequencers with deferred stabilisation also use a coordination process that gathers propos-

als, but instead of running in the critical path of nodes it happens in a deferred manner. Each participant

gathers several events to order and sends them as a batch to the coordinating processes. These pro-

cesses wait from proposals from all the participants, and based on them, order all the events received

in a total order, consistent with the order seen by each participant. By allowing batching when ordering

events, the system throughput can be increased at the cost of an higher latency. Examples of systems

that use this class of algorithms are Chariots [19], Eunomia [20] and Calvin [21].

2.7 Systems That Rely On Event Ordering

2.7.1 CORFU

CORFU [12] is a totally ordered log abstraction built over a cluster of flash storage units. CORFU’s

architecture is composed by a sequencer and an array of flash units. Flash units are treated as passive

storage devices that are accessed over the network and the sequencer is used as a pre-assignment

technique, that is responsible for ordering log records. In CORFU the ordering of records is decou-

pled from their persistence, allowing parallelism when appending to the flash units. The functionality of

CORFU is all made available to clients in the form of a client library. It works by implementing three

fundamental functions:

• Mapping function: responsible for mapping logical log positions to flash pages in the cluster of

flash units.

• Tail finding mechanism: for finding the next available logical position in the log.

• Replication protocol: to persist log records in several flash pages in the flash unit cluster.

The mapping function works by having each client maintain a local read-only copy of a structure

called a projection. The projection structure splits the log into disjoint ranges, and each range is mapped

to a list of extents within the address space of individual flash units. In essence, a projection is a mapping

of logical addresses space to flash pages. When a flash unit fails or the log grows past the maximum

available position in the projection a reconfiguration mechanism takes place to install a new projection

in all the clients. To treat the address space as an appendable log, clients must be able to find the tail of

the log and write to it. CORFU implements two tail finding mechanisms:

• Contention mechanism: relies on the flash unit write-once semantics that CORFU requires. Clients

that wish to append records to the log try to concurrently write to the first position. One client wins,

14

while the rest fails. The client that wins successfully appends to the log while the others have to

try again in in the next position.

• Sequencer: is used in CORFU as an optimization over the contention mechanism. The sequencer

is responsible for assigning empty log positions to clients. A client that wants to append a record

to the log, first contacts the sequencer to get a log position, once he receives the position from the

sequencer, he uses his local projection to find the flash unit responsible for storing that log position

and persists the record there without contention from other clients.

When writing to a log position, CORFU clients use a chain replication protocol. It works in two steps:

(1) clients use their local projections to map a single log position to a set of flash pages, and (2) write

to this set of flash pages in a deterministic order waiting for each flash unit to respond before moving to

the next one. The write is successfully completed when the last flash unit in the chain is updated. As a

result, if two clients attempt to concurrently update the same replica set of flash pages, one of them will

arrive second at the first unit of the chain and receive an overwritten error.

CORFU’s design ensures that the log throughput is not a function of the I/O bandwidth of any single

flash unit, instead clients can append records as fast as the sequencer can assign positions.

2.7.2 Tango + CORFU

Tango + CORFU [13] is a log based object store intended to be used as a building block of highly

available metadata services. Objects stored in Tango are replicated, in-memory data structures that

have their state durably stored in a log. Tango uses CORFU as a log, taking advantage of all the

properties that it provides.

The state of a Tango object exists in two forms, a history, which is an ordered sequence of updates

stored durably in the CORFU log, and several views, that are full or partial copies of an object stored

in the memory of the clients. Because the state of Tango objects is stored as an ordered sequence of

updates in the log, application developers can roll back to any point in the history of an object simply by

creating a new instance and syncing it with the appropriate prefix of the log.

The implementation of a Tango object requires three main components. The first is a view of the

object, which is an in memory representation of the object’s state. The second is an apply() function,

responsible for updating the object’s view when there are new updates in the log. And the third is

the object’s public interface with mutator and accessor methods. Mutator methods do not change the

object’s view directly, instead they append the mutation to the log. When accessor methods are called,

they first get the latest mutations from the log, update the object’s view using the apply() function and

only then execute the accessing logic.

15

The log based design of Tango allows strongly consistent operations across objects to be achieved

trivially, by just using reads and appends on the log. But the authors of Tango went a step further

and implemented an optimistic concurrency control system over the log, that allows applications to run

transactions across objects. It works by appending a speculative commit record to the log that ensures

atomicity of the transaction. It marks a point in the total ordering of updates at which the changes of the

transaction can be made visible. Each commit record includes a read set, a list of object read during

the transaction, that is used to ensure transaction isolation. A transaction succeeds if the objects in the

read set have not been changed since they were read.

Having all the object’s state in the same log is important to offer strongly consistent operations and

transactions, however it might introduce the playback bottleneck problem. If clients just want to host

views of certain objects, consuming updates from all the objects can be wasteful. To overcome this

problem Tango implements objects streams over a single log, allowing clients to selectively consume

the log updates corresponding to certain objects. This means that clients will host a layered partition of

the log with all the same strongly consistent and transactional semantics of the full log.

To allow clients to consume the log via a streaming interface the authors proposed a modification to

the underlying CORFU design, a stream header that is present in every log record. This stream header

includes the stream ID as well as back pointers to the last k records of that stream, allowing clients to

construct a linked list of records from the same stream. Reading and appending to streams work as

before, the only difference is in the appends that require the client to build the stream header before

appending a record.

2.7.3 vCorfu

vCorfu [14] is a strongly consistent cloud-scale object store built over a log just like Tango + CORFU, that

uses a stream materialisation technique to overcome the playback bottleneck problem that logs have.

Stream materialisation is a technique that enables the design of systems that store large quantities

of state in the form of a log without introducing the playback bottleneck problem to clients. Stream

materialisation is a step ahead of Tango’s streams, which are implemented as simple tags on the log,

materialised streams are as the name says a materialisation of the streams, which means that streams

are stored as independent logs that support random and bulk reads just like a normal log. vCorfu uses

a materialised stream for each object it stores.

Log appends to a materialised stream are stored in two replicas, the log replicas and the stream

replicas. These two replicas store the same data, but unlike Tango + CORFU the data is indexed in

different ways. Log replicas index the log records according to their position on a global log, while

stream replicas store log records indexed by their position in the stream log. This replication scheme,

16

inspired in the idea of Replex [22] of using different replicas to store the same data indexed in different

ways, allows clients to directly read the latest version of an object by simply contacting the corresponding

stream replica.

Materialised streams can be seen as independent logs. Appending to them is very similar to appends

in Tango, the difference introduced is in the client-sequencer communication. Clients that contact the

sequencer receive two log positions instead of one. One corresponding to the global log and one

corresponding to the stream log. Using the two log positions clients persist the record in both replicas

using a chain replication protocol. Because appends to these stream logs have a corresponding append

in the global log, there is a total order over all appends from all the streams, enabling vCorfu to support

atomic appends across streams (objects).

As Tango, vCorfu went a step further the atomic updates and implemented a transactional system

that enables application to run transactions across objects. Transactions are implemented by combining

the atomic update capabilities with the optimistic concurrency control techniques used in Tango. The

sequencer is exploited as a lightweight transaction manager, but unlike Tango it only issues log positions

to commit a transaction if the transaction has no conflicts, an important optimisation that frees clients

from the transaction validation logic every time they playback the log.

The vCorfu system can be seen as a new version of Tango, a version with all the same functional-

ity but with a better implementation and performance. On the other hand this also means that vCorfu

suffers from the same problem that Tango does, the sequencer I/O bottleneck. Chariots and Kafka are

examples of systems that avoid this problem by not using a sequencer, an overview of how they do it

lies ahead in the report.

2.7.4 Megastore

Megastore [15] is a log based storage system that blends the scalability of NoSQL data stores with the

convenience of a traditional RDBMS, providing both high availability and strong consistency guarantees.

The interface and data model provided by Megastore is very similar to the one provided by a relational

database, applications can create schemas, tables and indexes, that can later be queried using a SQL

like language. An addition that Megastore introduced over the conventional relational databases is the

ability to partitioned the data in what the authors call entity groups. Entity groups are an a priori grouping

of related data for fast operations that can be seen as small databases with ACID semantics.

Each entity group has its own write-ahead log, where all the updates that happen inside it are

recorded. The log is independently and synchronously replicated over a wide area, and is stored in

Bigtable [23], leveraging its scalability and fault-tolerance capabilities. Updates inside entity groups are

done as single phase ACID transactions, while updates across entity groups require expensive two

17

phase-commit protocols or Megastore’s asynchronous messaging system.

When it comes to transactions inside an entity group, their life cycle is the following. First the client

obtains the timestamp of the latest committed transaction from the log, then reads from a consistent

snapshot using the timestamp gathered in the first step and writes into a log record. Finally, in order to

commit the transaction the client appends the log record with all the writes to the end of the log using the

Paxos algorithm. After the record is appended to the log the updates are applied to the data in Bigtable.

To allow clients to read from a consistent snapshot, Megastore relies on Bigtable’s capability of

storing multiple values for the same row/column pair. This makes the implementation of multi version

concurrency control trivial: updates within a transaction are written with the timestamp of the transaction

while concurrent reads that use lower timestamps never see partial updates. In other words reads are

isolated from the writes.

Appending to the log is done by running an independent instance of the Paxos algorithm for each log

position, so when a client wants to append a record to the log, he has to propose the record he wants to

append as the one to be placed at the tail of the log, and has to block until he gets an answer from the

majority of the replicas. If another client takes the position first, he has to abort and start again in the

next log position. Because Paxos is responsible for assigning log positions to clients it can be seen as

the log sequencer.

Transactions across entity groups are also possible, using Megastore’s asynchronous messaging

system. Entity groups can communicate between them in an RPC style, each entity group has an inbox

to where other entity groups can send messages. A client that wants to update several entity groups,

runs a transaction to atomically send updates to several entity group’s inboxes. Each entity group will

then process the updates they receive as an isolated transaction.

2.7.5 Chariots

Chariots [19] is a highly available, geo-replicated, causally-ordered log that overcomes I/O bottlenecks

of existing sequencer based log designs.

The Chariots paper includes two main contributions:

• FLStore: sequencer free log store.

• Chariots: multi stage log replication pipeline.

FLStore or Fractal Log Store is a log store that uses a post-assignment technique to assign log

positions to clients. It consists of two groups of servers, the log maintainers and the indexers. Log

maintainers are responsible for disjoint ranges of the log, for each range they store log records, they

18

serve read requests and they assign log positions. Indexers are responsible for indexing log record’s

tags.

The post assignment technique works based on the fact that log maintainers are responsible for

distinct ranges of the log, which means that a log position can only be assigned, written and stored by

a single log maintainer. Appending to the log works by sending a record to a log maintainer at random,

the log maintainer will assign it the next available position in the range that he is responsible for and

the record is persisted in that position. This capability of assigning log positions without coordinating

with others is a big improvement over CORFU, because the append throughput is now a function of

the aggregate I/O bandwidth of all log maintainers and not a function of the I/O bandwidth of a single

machine.

On the other hand, allowing clients to contact any log maintainer at random introduces a couple of

new problems. The first is the existence of holes at the tail of the log, which may delay the visibility

of certain records. This happens because reading a certain log position is only allowed when all the

previous log positions are filled up. Consider the case of an append to position 15 of the range 10-19,

if the range 0-9 is empty or is not yet full, the record appended to position 15 will not be available for

reading. The second problem introduced by this design is the lack of explicit order between records

appended by the same client. For example, when a client appends two records sequentially, he can not

know the order between them in the log, even though they were added sequentially. When it comes to

solving these problems, no solutions exist for the first problem, and for the second one two solutions

are described in the paper but they all have some drawbacks that might impact the client or the system

performance.

Chariots, the second main contribution of the paper, is a log replication pipeline designed to replicate

a log to new geographic locations, but its ideas can also be applied to local replication. It runs over

FLStore and is responsible for processing all append requests. FLStore is used as the persistence layer

in the pipeline. Chariots’ design favours availability of the log by relaxing the log consistency, providing

applications with a causally ordered log.

The Chariots pipeline works as follows. When a client wants to append a record to the log, it sends

a request with the record to be appended to Chariots. The record enters the pipeline, is tagged with its

causal dependencies and is moved into a queue where it is assigned a position in the log. After having a

position assigned, the record is sent to FLStore, more precisely to the log maintainer responsible for the

position that it was assigned. Finally after being persisted in FLStore, the senders from Chariots catch it

and send it to other Chariots instances for them to incorporate it.

Appends received from remote data centres, go through the pipeline as a local append would, the

main difference is in the queue stage, where their causal dependencies are verified. If they are met, the

record can be inserted in the local log, if they are not met the record is kept in the queue until they are.

19

2.7.6 Kafka

Kafka [24] is a log based messaging system that was developed for collecting and delivering high vol-

umes of data with low latency. It combines the benefits of log aggregators and messaging systems to

build a system that allows applications to consume data in real time.

As every messaging system, Kafka’s interface and data model is around messages. The smallest

data storage unit in Kafka is called a message, messages are stored in topics, which are aggregations

of messages of a certain type. Topics are used later to retrieve messages according to their type. The

Application Programming Interface (API) provided to applications is very similar to a publish subscribe

system, clients can publish messages to topics and can later subscribe to them to read the messages.

When it comes to the storage of messages, they are stored in brokers. Inside each broker they

are stored per topic, as a log on disk. In order to sustain high volumes of messages, topics can be

partitioned. At the storage level this corresponds to the creation of independent logs for the same

topic. Having independent logs means that no order exists between them, a limiting factor for some

applications. All this behaviour makes brokers very similar to log maintainers in Chariots, with the small

difference that brokers are responsible for completely independent logs and not ranges of a single one.

Publishing a message in Kafka is very simple, a client randomly chooses one of the partitions of the

topic where he wishes to publish a message, finds which broker is holding the partition and sends the

message to that broker. The broker receives the message and simply appends it to the corresponding

log. Just like in Chariots brokers can assign log positions from the logs they are responsible for without

entering in any coordination with other brokers, which makes each broker a sequencer of the logs they

hold.

In order to read messages from a given topic, clients have to join what is called in Kafka a consumer

group. A consumer group is a group of one or more consumers that jointly consume a set of subscribed

topics. To avoid locking mechanisms and state management Kafka makes the partition of a topic the

smallest unit of parallelism, i.e. at any given time all the messages of a partition are only consumed by

a single consumer within a group. Messages from a partition are always consumed sequentially.

As described before, Kafka does not require any coordination for publishing messages, however,

consuming messages requires some level of coordination between consumers in a consumer group.

For this, Kafka does not rely in a central node, consumers coordinate among themselves in a decen-

tralised fashion. To facilitate the coordination a consensus service called Zookeeper [25] is used for

detecting the addition and the removal of brokers and consumers, triggering a re-balance process in

each consumer when necessary, maintaining the consumption relationship between partitions and con-

sumer, and keeping track of the consumed offset of each partition.

20

Even though Kafka has some similarities with Chariots, its design is optimised for delivering mes-

sages, which results in a log based storage system that provides applications with a partitioned log with

a total order per partition.

2.7.7 Eunomia

Eunomia [20] is an event ordering service that produces an causally ordered log of events.

In the paper, Eunomia is presented as a building block of a key-value store called EunomiaKV, where

it is used as an update serialiser. It works in the background serialising all the updates occurring in the

store. The result of the serialisation is a causally ordered log of updates that is used to replicate the

updates to new geographic locations. In our description of the system we will ignore the geographic

replication capabilities of EunomiaKV, instead we will focus on the log building techniques used.

The EunomiaKV architecture is composed by partitions and the Eunomia service. Partitions are

responsible for storing ranges of key-value pairs and serving read and update requests on the them. The

Eunomia service receives all the updates that each partition handles and orders them before sending

them to new geographic locations.

Read requests handled by the partitions, correspond to simple key-value fetches on the underlying

storage layer, returning to the client the value of the key requested and the timestamp it is tagged with.

The client uses the timestamp returned by the partition to update its local clock, which is responsible for

keeping track of his causal dependencies. Update requests are tagged with timestamps, representing

the causal dependencies of both the client and the partition, are applied locally and are sent to Eunomia

to be serialised.

At Eunomia, updates received from the partitions are placed in a non-stable updates queue. Regu-

larly Eunomia runs a process stable routine that finds a set of stable updates in the non-stable updates

queue, removes them and orders them in timestamp order, producing a causally ordered log of updates.

We should note that the log produced by Eunomia has a significant difference when compared to the log

produced by all the systems presented. It is a log composed only by ids, this means that the log does not

include the content of the updates. This happens because the only thing that partitions send to Eunomia

are the update id and its timestamp. A significant difference that avoids overloading the network.

Allowing partitions to serve read and update requests without entering in synchronous coordination

with any other component in the system, is a fundamental characteristic of the Eunomia design. It

does not limit the system throughput like sequencer based designs do, because the load is distributed

across all the partitions, and the latency of operations is decreased, because partitions can reply to

client without having to wait from a response from other component. On the other hand, this design

introduces one main trade-off when compared to sequencer based designs, an increase of the visibility

21

latencies of the log, i.e. the log takes longer to be available for reading.

2.7.8 FLACS

FLACS [4], or Flexible Location-Aware Consistency, is a method proposed to manage transactions on

replicated data while providing low latency and scalability.

In the paper, FLACS is proposed based on the premise that in cloud systems, transactions accessing

the same data (same partition) usually originate in the same area, and as such FLACS organises parti-

tions in a tree structure that allows transactions to be validated and committed as close to their origin as

possible. The tree structure allows transactions to be ordered incrementally, which in turn allows them

to be validated without having a full view of concurrent transactions.

The FLACS system is presented as a system composed by several processes organised in a tree

structure. Each process is responsible for: replicating a partition of data, ordering transactions and

validating transactions. These processes interact with each other to validate and commit transactions.

According to the FLACS protocol transactions are executed by a set of these processes in the four steps

that follow.

1. Execution: a transaction starts by executing all its operations at a processes known by transac-

tion’s initiator. This process executes operations but does not commit them. Operations are only

committed once the validation result is known.

2. Ordering: the transaction is ordered against other conflicting transactions by a set of processes

known by transaction observers. The transaction observers are determined according to the write

set of the transaction, and the idea is to choose observers that are near the client. Each observer

keeps a strict local order of the update transactions seen so far, in which any two transactions that

might be in conflict are ordered against each other. To order a new transaction, each observer

inserts the new transaction in his local order and propagates that order to its parent process.

The idea then is to combine the local order of every observer of a given transaction and have an

order in which the transaction is ordered against all other conflicting transactions. Eventually, all

transactions will be totally ordered at the root of the hierarchy, but the validation of a transaction

may take place as soon as a transaction is ordered against all other conflicting transactions.

3. Validation: once the transaction is ordered against all the conflicting transactions, it is validated.

The validating process is the lowest process in the tree which its decedents include at least one

observer of each item read by the transaction and include all the observers of all the item written

by the transaction. Then it informs all the processes replicating the data written by the transaction

if the validation was successful or broadcasts an abort message to all the participating processes.

22

4. Commit: finally, if the transaction was validated with success the updates of the transaction are

committed at the initiator process and applied at all the processes replicating the data written by

the transaction (in the same order they were seen by the validator).

The key idea behind this system is that the higher the locality of a transaction, this is, the lower

the number of observers involved in the process of validating a transaction is, the lower the latency of

committing a transaction will be, because the validation process will be in a lower level of the tree. On

the other hand, transactions that have lower locality will take longer to be committed but are guaranteed

to be consistent with all the other. The tree structure also allows an high level of parallelism, because

transactions that involve completely independent sets of observers can be validated and committed in

parallel without interfering with each other.

Summary

In this chapter we have introduced the main challenges that emerge when designing and implementing

distributed transactional stores and we have surveyed several systems that implement different tech-

niques to overcome those challenges.

23

3
Hierarchical Architecture for Deferred

Validation of Transactions

Contents

3.1 Architecture . 25

3.2 Execution of Transactions . 26

3.3 Timestamp Generation . 31

3.4 Batching . 32

3.5 Network Analysis . 32

3.6 Implementation . 34

24

This chapter describes the main contribution of this work. It starts in Section 3.1 by describing

the proposed architecture. Section 3.2 describes how the proposed architecture integrates with existing

storage systems and how transactions are executed, validated and committed. Section 3.3 explains how

the timestamps used to order transactions are generated. Section 3.4 explains how message batching

works and how it is applied to the validation nodes. Section 3.5 does a theoretical analysis of the network

usage of the proposed architecture and compares it with the network usage of 2PC. Finally, Section 3.6

ends with a detailed description of how this architecture was implemented over Riak KV.

3.1 Architecture

Figure 3.1 illustrates the architecture we are proposing.

Figure 3.1: Proposed architecture. Key-value pairs are stored in the data nodes. Each leaf validation node is
co-located with the corresponding data node.

The proposed architecture is intended to work over a distributed key-value storage system. It as-

25

sumes a key-value storage system that is partitioned over a set of data nodes. These data nodes are

complemented by a set of validation nodes. The validation nodes are organised in a tree hierarchy in

which there is a root node with two or more children. Each children node also has two or more children.

This organisation is repeated until the leaf nodes. Each leaf node is co-located with one of the data

nodes from the key-value store.

This architecture is based on the premised that network communication in distributed systems is

often the bottleneck to be able to scale and achieve better performance. With this in mind our objective

with this work has always been to try to minimise the amount of network Input/Output (I/O) used in the

process of validating and committing transactions.

Today’s distributed databases that use optimistic concurrency control mechanisms spend a consid-

erable part of their network I/O in validating and committing transactions. The standard protocol used

for this purpose is 2PC, and as described in Section 2.3.1, 2PC is an expensive protocol in terms of

network I/O.

One of the common ways to optimise network usage is to use message batching. However, in

order for batching to be possible, network communication has to have some sort of structure. 2PC is

a protocol that uses a non-structured communication model, where each client communicates directly

with the partitions they want, independently of other clients. This communication model makes it very

difficult, or impossible, to use batching. The architecture proposed in this section on the other hand, has

a very structured communication model, that in turn allows the use of batching.

The architecture we are proposing does not enforce a specific concurrency control mechanism. We

have studied two variants of it, one that uses a lock based concurrency control mechanism and one that

uses a timestamp based concurrency control mechanism. Section 3.2 describes how this architecture

integrates with existing key-value storage systems to execute transactions, in this description we will

highlight the differences between the two concurrency control mechanisms when appropriate.

The description of the architecture that follows in the next sections, will assume a serialisable isolation

level. We should note that no replication and no fault tolerance mechanisms were considered, as we

believe these are subjects mostly orthogonal to this work.

3.2 Execution of Transactions

This section will give a detailed description of how the proposed architecture integrates with existing key

value stores. It describes in detail each step involved in the execution of transactions.

26

3.2.1 Starting a Transaction

A client initiates a transaction by issuing a begin transaction call. This call is local and does not involve

communication with data nodes. As a result of this call, a transactional context is created on the client

proxy.

3.2.2 Reading Objects

Once in the context of a transaction clients interact directly with data nodes to read the objects they want,

as they would normally do with a key-value store. But because they are in the context of a transactions

there are some differences.

Our architecture assumes a key-value storage system that has support to store multiple versions per

object. Each version is identified by a logical timestamp that corresponds to the logical time when the

transaction that wrote that version was committed. In order to read an object in this setting the correct

version must be chosen.

Reads done in the context of a transaction are done over a global snapshot of the whole system.

This global snapshot is identified by a logical timestamp that is set on the first read the client does. So,

in the context of a transaction when a client reads an object for the first time and no snapshot is set, he

reads the latest version of that object and sets the transaction snapshot equal to that object’s version. If

the transaction does not do any reads the transaction snapshot is equal to the maximum snapshot that

the client has ever seen.

Reads that follow return the object version that is consistent with the transaction snapshot, this is,

the biggest version of an object which is smaller or equal than the transaction snapshot. If this version

is marked as tentative (more on tentative versions in Section 3.2.4), the client blocks until that version

becomes final or is discarded. On the other hand if the latest version of the object that the client wants to

read is bigger than the transaction snapshot, the transaction can abort immediately, because this means

that the transaction is not serialisable. There is a special case that occurs when a transaction is marked

as read-only: in this case the transaction does not need to be aborted and can proceed, being serialised

in the past.

Data nodes are responsible to return a version that is compatible with the transaction snapshot to

the clients and to notify the client if the transaction needs to be aborted (if a conflict is detected). Clients

contact data nodes directly to read an object and send the transaction snapshot along, the nodes return

the corresponding version according to the description above. Reads of the same object that happen

more than once in the same transaction take advantage of a local client cache, avoiding contacting the

data nodes. Also, if a transaction attempts to read an item that has been written by that transaction, the

value is returned from the local cache.

27

3.2.3 Writing Objects

All writes in the context of a transaction are cached locally until the transaction is ready to commit.

This means that any write done while in a transaction, is not communicated to the data nodes until the

transaction is ready to commit. Only then the clients send the writes to the data nodes.

3.2.4 Committing a Transaction

Committing a transaction is done by sending a commit request to every data node that was involved in

the transaction. This is the set of data nodes that result from the intersection of data nodes that host all

the objects read and written during the transaction. The commit request sent to each one of these data

nodes is specific to each one, it includes the keys of the objects read on that node and the new objects

that were written on that node during the transaction.

Upon receiving a commit request, data nodes integrate with the local validation node to validate the

transaction. We have experimented with different strategies to implement transaction validation, that use

slightly different concurrency control mechanisms and that use different communication patterns.

Regardless of the concurrency control mechanism used, each data node on receiving a commit

request saves the new objects written by that transaction as tentative, with a tentative version equal to

the transaction snapshot plus one and sends the commit request information to the local validation node

in order for the transaction to be validated and committed.

The tentative versions of the objects are kept until the transaction is fully validated. If the validation

results shows that the transaction can be committed, the tentative versions are committed with a version

equal to the transaction commit timestamp, otherwise the tentative versions are discarded.

The client remains blocked until he receives the validation result from one of the validation nodes.

3.2.5 Validating a Transaction

The way a transaction is validated by the validation nodes depends on whether it accesses a single data

node (local transaction) or several data nodes (distributed transaction).

3.2.5.A Local Transactions

A transaction that only accesses a single data node is considered a local transaction. Local transactions,

as the name implies, are local to a single node, which allows them to be validated locally with no

coordination with other nodes. The validation is done by the local validation node that is co-located

with the data node.

Regardless of the concurrency control mechanism used (lock based or timestamp based) the vali-

dation process starts with the validation node assigning a commit timestamp to the transaction. This

28

commit timestamp is generated the way it is described in Section 3.3. Then, for every object read and

written by the transaction, the validation node verifies if there was an update to that object between

the transaction snapshot and the commit timestamp. This is done by comparing the latest version of

an object with the transaction snapshot, if the latest version of the object is bigger than the transaction

snapshot there was a new update, otherwise there was not.

If for every object no new updates have happened since the transaction snapshot, the serilisability

rules are respected and the transaction can be committed, otherwise it must be aborted. When the

validation is finished the validation node informs both the client and the local data node of the result.

If the system is using the lock based concurrency control mechanism, locks for all objects read and

written by the transaction must be acquired before starting the validation process. If a lock conflict is

detected it means that a concurrent transaction is already trying to commit a new version of that object,

so the validation node automatically releases all locks acquired (if any) and sends an unsuccessful

validation result to the data node. If locks are acquired successfully the validation process is started as

described before.

3.2.5.B Distributed Transactions

A transaction that accesses multiple data nodes is said to be a distributed transaction. As these trans-

actions run across several data nodes they can not be validated locally. Instead each leaf validation

node partially validates the transaction and sends the partial validation to the validation node above him

in the hierarchy. This process repeats itself until a validation node is able to do a full validation of the

transaction.

Depending on the concurrency control mechanism used (lock based or timestamp based) the way

distributed transactions are validated is significantly different, so we will present them separately.

Even though they are different, the validation process starts in an identical manner for both. Like a

local transaction, the validation process of distributed transactions starts with the data nodes sending

the transaction to the local validation nodes, that do exactly what is described in the previous section,

with one exception, instead of sending the validation result directly to the client and the data nodes, the

validation nodes send the transaction information, its commit timestamp and its partial validation result

to the validation node above in the hierarchy.

A – Using The Lock Based Concurrency Control Mechanism

In the current version, when using the lock based concurrency control mechanism, the hierarchy of

validation nodes is composed only by two levels, the first with several leaf nodes and the second by a

single root node. As such, when leaf nodes propagate information up in the hierarchy they are sending

29

it all to the root node, that waits for the validation results from its children.

When it has received all the validation results corresponding to one transaction, it calculates a new

commit timestamp and a final validation result. The final commit timestamp corresponds to the maximum

commit timestamp received from its children, and the final validation result is successful if all its children

successfully validated the transaction, and unsuccessful if at least one children did not validate the

transaction with success. The final commit timestamp and validation result is then communicated to the

data nodes and the client.

Data nodes on receiving the final validation result of a transaction, commit or discard the tentative

versions, depending on whether the result was successful or not, and release the locks acquired when

the commit was requested. The local validation node clock, used to generate timestamps, is moved

forward if it is behind the transaction commit timestamp.

B – Using The Timestamp Based Concurrency Control Mechanism

When using the timestamp based concurrency control mechanism the hierarchy of validation nodes

may have more than two levels. In this case, a validation node that is not a leaf node waits for the

validation results from its children.

When it has received all the validation results corresponding to one transaction it calculates a new

commit timestamp, which corresponds to the maximum commit timestamp received from its children,

and validates the transaction again with this new commit timestamp. If the decedents of this validation

node cover all the data nodes involved in the transaction, it can commit the transaction by sending the

validation result to both the client and the data nodes directly (does not need to go through all the nodes

in the hierarchy). Otherwise it propagates the new commit timestamp and new validation result to the

validation node above him, like the leaf nodes did. If in this process, a violation of the serialisability rules

is found the client and the data nodes can be informed immediately.

As the number of data nodes touched by one transaction increases, the higher in the tree will be

the validation node capable of doing a final transaction validation. Ultimately, the transaction will be

validated by the root validation node. Crucial to this architecture is the hypothesis that the majority of

transactions will have an high locality degree, so that the number of transactions that has to be validated

in higher levels of the tree is small.

We should note that when validation nodes validate distributed transactions they do not know the final

validation result, because this is only computed by the validation above him in the hierarchy. Nonethe-

less, in order not to block transaction validation, the validation nodes assume that transactions that were

successfully validated locally will be successfully validated in the levels above. In practice this means

that if a transaction aborts in an higher level validation node, other concurrent transactions might be

30

aborted as well, when they could have been committed. This behaviour is conservative and, as such,

it will never violate correctness; it only impacts the system performance by increasing the abort rate of

transaction. Nevertheless, since we assume that distributed transactions are a small fraction of the over-

all transactions executed in the system, we believe that the impact of this decision should be minimal.

3.3 Timestamp Generation

This section explains how the logical timestamps used for ordering transactions relatively to one another

are generated. The way they are generated depends on which concurrency control mechanism is used,

so we present them separately in the next two sections.

3.3.1 Lock Based Concurrency Control

When using the lock based concurrency control mechanism, validation nodes generate commit times-

tamps by finding the smallest timestamp that is bigger than their local clock and bigger than the transac-

tion snapshot. The local clock of a validation node tracks the biggest timestamp ever generated by that

node.

Crucial to the correctness of this generation is moving the local clock forward every time a node

receives the final commit timestamp of a transaction from a node above him in the tree.

3.3.2 Timestamp Based Concurrency Control

When using the timestamp based concurrency control mechanism each leaf validation node has a set

of pre-assigned timestamps that it can use. These pre-assigned timestamps are distributed among the

validation nodes in a round robin manner. Assuming a scenario where there are 8 leaf validation nodes,

the first node will be responsible for timestamps 1, 9, 17, etc, the second node will be responsible for 2,

10, 18, etc, and so on.

To generate a tentative commit timestamp, each leaf validation node needs to pick the smallest

unused timestamp (from the subset of timestamps assigned to it) that is larger than its local clock and

that is larger than the transaction snapshot. The local clock of a validation node tracks the largest

timestamp ever generated by that node. Assuming the same scenario of 8 validation nodes, a transaction

with snapshot 3 that is locally validated in the second node, and this node has not yet committed any

transaction (its local clock is 0), will have a tentative commit timestamp of 10.

31

3.4 Batching

Crucial to the design of the architecture we propose in this dissertation is the use of message batching,

when exchanging messages between nodes in the validation hierarchy. As discussed in the section that

follows, message batching can have a large impact on the network cost of validating and committing

transactions. This section will explain how message batching works and where it is used in the proposed

architecture.

Message batching is a technique used to reduce network and CPU usage. It works by packing

multiple application-level messages in one single network-level message, resulting in a reduction of the

number of messages that have to be sent through the network and processed by both the sender and

the receiver. The key idea is that batching amortises fixed costs such has network protocol headers,

interrupt processing, etc, over multiple application-level messages.

Batching is done by caching messages at the sender until a configurable batch size is reached, once

it is, the batch is sent to its destination. If the batch does not fill up in a certain time, called the batch

timeout, the batch is sent anyway.

In the proposed architecture message batching is used in two distinct message paths: (1) validation

node to validation node and (2) validation node to data node. The first corresponds to the messages

sent from a lower level validation node to an higher level validation node, in order to validate and commit

transactions. The second corresponds to the messages sent by the validation nodes to the data nodes

to commit or abort transactions.

3.5 Network Analysis

In order to understand the impact of the structured communication pattern and the usage of batching on

the network costs of the proposed architecture, we did a theoretical analysis of its network cost based

on the number of communication steps (latency) and total number of messages exchanged (bandwidth)

used to commit a transaction.

The network costs of validating and committing a transaction in the proposed architecture can be

calculated as follows (note that these values are highly dependent on the structure of the hierarchy and

the nodes involved in the transaction, the following formulas capture the worst case cost):

H = level of the validation node in the hierarchy that validates and commits the transaction (3.1)

B = size of the batch used (3.2)

32

communication steps =

{
2 N = 1

2 + H
B N > 1

(3.3)

total messages =

{
2 N = 1

N + (H×N)+N
B + 1 N > 1

(3.4)

If one data node is involved in a transaction, the protocol requires 1 message from the client to the

data node and 1 message from the data node to the client, to commit it. As such, it takes 2 communica-

tion steps and uses 2 network messages in total.

On the other hand, if a transaction involves more than one data node, the protocol require 2 commu-

nication steps (1 message from the client to the data node and 1 message from the validation node to

the client); plus H messages from a lower level validation node to an higher level validation node until it

reaches the validation node that validates and commits the transaction, divided by B because messages

are batched. And requires a total of N messages from the clients to the data nodes; plus H messages

from a lower level validation node to an higher level validation node until it reaches the validation node

that validates and commits the transaction, times N because these messages are sent from all the data

nodes involved, all divided by B because messages are batched; plus N messages from the validation

node that validates and commits the transaction to each data node involved, divided by B because mes-

sages are batched; plus 1 message from the validation node that validates and commits the transaction

to the client.

3.5.1 Example

Considering a concrete example with 8 data nodes, a hierarchy of validation nodes with 3 levels and 100

transactions that access 4 data nodes and are validated by a validation node in the first level.

The network cost of 2PC is:

communication steps per transaction = 4 (3.5)

total messages per transaction = 4× 4 = 16 messages (3.6)

total communication steps = 4× 100 = 400 messages (3.7)

total messages = 16× 100 = 1600 messages (3.8)

The network cost of the proposed architecture without any batching is:

communication steps per transaction = 2 +
1

1
= 3 (3.9)

33

total messages per transaction = 4 +
(1× 4) + 4

1
+ 1 = 13 messages (3.10)

total communication steps = 3× 100 = 300 messages (3.11)

total messages = 13× 100 = 1300 messages (3.12)

The network cost of the proposed architecture with a batching size of 50 is:

communications steps per transaction = 2 +
1

50
≈ 2.02 messages (3.13)

total messages per transaction = 4 +
(1× 4) + 4

50
+ 1 ≈ 5.16 messages (3.14)

communications steps = 2.02× 100 = 202 messages (3.15)

total messages = 5.16× 100 = 516 messages (3.16)

The results above show that the proposed architectures without any batching reduces the commu-

nication steps by 25% and reduces the total number of messages by 18%. With batching the reduction

goes even further, reducing the total communication steps by 49% and reducing the total number of

messages by 67%.

3.6 Implementation

In order to evaluate the proposed architecture in a realistic way we implemented it over a key-value

storage system used in the industry [26], Riak KV [5]. We have implemented two versions of this

architecture, one that uses lock based concurrency control and another that uses timestamp based

concurrency control, as described in Section 3.2. As a base of comparison, we implemented another

transactional system over Riak KV, using a lock based concurrency control mechanism and 2PC. Finally,

we implemented a custom version of Basho Bench [27] that allowed us to measure the performance of

these prototypes.

3.6.1 Riak KV

Riak KV is a distributed key-value storage system built with the objective of providing high availability

to its clients. Riak’s architecture, similar to the one proposed by Amazon Dynamo [28], is based on the

usage of virtual nodes (vnodes) that are organised in a logic ring and are deployed in a set (usually

smaller) of physical machines.

Each virtual node is responsible for storing independent fragments of data according to an hash

function. Clients interact directly with the virtual nodes, using a client library, to execute reads and writes

34

on the data.

In order to provide high availability, Riak by default replicates data across several virtual nodes, so

that if a virtual node goes down, the others can still access the data. By default Riak provides eventual

consistency across replicas of the same data, but it also allows quorum reads and writes to provide

strong consistency.

3.6.1.A Changes and Extensions

In order to implement the proposed architecture over Riak KV, we had to introduce several changes and

add several new modules to its code base. Riak KV’s code base is very extensive, and is distributed

across several code repositories. The one which we had to interact with to introduce changes was

riak kv [29], which has close to 50k lines of code.

The first set of changes we have introduced in the code base were to Riak’s base configuration.

With the objective of simplifying the system as much as possible we disable data replication and set

the number of virtual nodes equal to the number of physical machines. As the focus of our work is on

concurrency control and commit mechanisms, having data replication and several data partitions per

physical node would introduce a lot of complexity and noise, so we disable them.

The second set of changes we have introduced were in the virtual node module. First we added

an interface to read objects in the context of a transaction. This interface is responsible for receiving

read requests accompanied by a transaction snapshot and returning the correct version of the object,

that the client is requesting, according to the transaction snapshot. Then an interface to validate and

commit a transaction was also added. This is the interface that receives commit requests from clients

and redirects them to the local validation node. Finally, an interface to commit or discard the tentative

writes of transactions was added. This interface is used by the validation nodes to commit or abort a

transaction once the validation result is known.

When it comes to extensions to the system, the first one was the introduction of what we call the

transactional client. The transactional client as the name implies is a client capable of executing trans-

actions. This client was developed as a separate client from the original Riak client so that backward

compatibility with older versions of Riak were kept, this is, the original Riak client keeps working with

original virtual node interfaces to read and write objects and the new one works with the newly intro-

duced interfaces to execute transactions. The transactional client is also responsible for keeping state

about the transactions that he executed or is executing.

The second extension was the addition of the transactions validation module. This is the module that

has all the validation logic described in Section 3.2 and is deployed in independent validation nodes. For

the two distinct versions that we developed this is the module that has the majority of the differences.

Finally the last addition to the code base was the message batching module. This is the module

35

that is responsible for batching messages and sending them when a batch is full or the batch timeout

was reached. Both the batch size and the batch timeout parameters were added to the Riak KV’s

configuration.

Pseudocode of both versions of the proposed architecture are available in Appendix A and Ap-

pendix B.

3.6.1.B Base of Comparison

In order to evaluate the performance of the proposed architecture we implemented another transactional

system over Riak KV that we used as a base of comparison. This system uses a lock based concurrency

control mechanism and 2PC to validate and commit transactions. The way it works is similar to the way

the proposed architecture works when it uses the lock based concurrency control mechanism, the main

difference is that instead of using the hierarchy to validate and commit the transactions it uses 2PC.

Committing a distributed transaction starts with the client sending prepare messages to all the data

nodes involved in the transaction. On receiving a prepare message each data node assumes the re-

sponsibility of a leaf validation node and locally validates the transaction using the same method as

the proposed architecture with the lock based concurrency control mechanism. The main difference to

the proposed architecture is at this point, instead of sending the validation result, to the validation node

above him in the hierarchy it sends it to the client, that acts as the transaction coordinator.

The client receives validation results from all the data nodes and compiles them into a final validation

result, like the root validation node would do. Then, according to the final validation result, a commit or

an abort message is sent back to the data nodes. Data nodes, on receiving the final validation result,

do the exact same thing as they would do in the proposed architecture. Local transactions are validated

and committed in the exact same way as in the proposed architecture.

When it comes to the implementation of this version, because it is very similar to the proposed

architecture with the lock based concurrency control mechanism a lot of code was reused from that

version. Although, two major changes were made to it. First the transactional client had to be changed

to incorporate the logic of the root validation node, of receiving several validation results and producing a

final validation result. And secondly the virtual nodes module had to be changed to incorporate the leaf

validation logic changed to send the validation result to the client and not to the validation node above

him in the hierarchy.

Pseudocode of this version is available in Appendix C.

3.6.2 Basho Bench

Basho Bench is a load generator and benchmarking tool created by the authors of Riak KV to conduct

performance tests against Riak KV itself. Even though it was created to benchmark Riak KV, its modular

36

design allows it to benchmark any other system. All the user needs to do is to develop a custom driver

for that system.

In order to be able to use Basho Bench to benchmark the prototypes of the architecture we propose,

we had to introduce several changes to the Basho Bench code base [30], which has close to 8k lines of

code.

The first change was the addition of the transactional client driver. This is a Basho Bench driver

that is able to execute transactions using the newly added transactional client. This driver allowed us

to configure the type of transactions it executed (local or distributed) and which operations (get, put,

update) each transaction executed.

The second change was the creation of a custom key generation module. Basho Bench, like it does

with drivers, allows the user to create custom key generation modules. These modules are the ones

responsible for generating keys during a benchmark. The one we have developed provides a very fine

control over the keys it generates. In particular, using our generator, we can control the key itself, the

node in which the key is stored, and also control if other clients are going to also access that key (and,

in this way, control the degree of contention in the workload).

Summary

In this chapter we have introduced a novel architecture to implement distributed key-value stores. The ar-

chitecture facilitates the use of message batching, to save network and processing resources. We have

also discussed the technologies that have been used to build a prototype of the proposed architecture.

37

4
Evaluation

Contents

4.1 Experimental Setup . 39

4.2 Network Load Experiments . 40

4.3 Concurrency Control Experiments . 43

4.4 Discussion . 48

38

This chapter presents the experimental results obtained while evaluating the prototype of the pro-

posed architecture. The main goal of the evaluation is to understand if, and in which scenarios, the

proposed architecture is able to achieve better throughput and support larger numbers of clients than

existing solutions. Therefore, our evaluation compares the proposed architecture with the standard pro-

tocol used to commit distributed transaction, 2PC. We recall that one of the main disadvantages of

this protocol is its high network I/O overhead. Therefore, we aim to show that the proposed architec-

ture has lower network I/O overhead and as a result is able to achieve better throughput and support

larger numbers of clients. Conversely, a disadvantage of the proposed architecture is increasing the

latency of executing a transaction. Thus, we also aim to show that the impact on the latency of executing

transactions is not significant.

4.1 Experimental Setup

4.1.1 Hardware Configuration

All the experiments presented in this chapter were executed in Google Cloud [31]. All the virtual ma-

chines used were configured to run Ubuntu 14.04. Different hardware configurations were used for

nodes executing different roles in the experiment. Each data node, responsible for hosting the Riak KV

virtual nodes and the leaf validation nodes, ran in a virtual machine with 2 cores, 7.5GB of memory and

10GB of disk. Non-leaf validation nodes ran in virtual machines with 4 cores, 15GB of memory and

10GB of disk.

In order to benchmark the proposed architecture we used a modified version of Basho Bench [27].

The modifications we have introduced were the minimum necessary to make it work with the new trans-

actional client. A more detailed list of changes is described in Section 3.6.2. Basho Bench was deployed

in virtual machines, each with 8 cores, 30GB of memory and 10GB of disk.

4.1.2 Benchmark Configuration

Unless specified, the experiments presented in this chapter have the following characteristics. A total of

800k objects are used. These objects are populated before running the experiment. Keys are generated

using an uniform distribution. Each object value is a fixed binary of 1000 bytes. The experiments run for

10 minutes, from which the first and the last minutes are discarded.

4.1.3 Systems Under Test

The evaluation presented in this chapter compares the performance of the proposed architecture in two

variations against a system that uses a lock-based concurrency control mechanism and 2PC to commit

39

the transactions. This system is used as a baseline of comparison. The two variations of the proposed

architecture are the one that uses a lock-based concurrency control mechanism and the one that uses

a timestamp-based concurrency control mechanism.

Abbreviation System Description

2PC+Locking Baseline of comparison

Hierarchy+Locking The proposed architecture using a lock based concurrency control mechanism

Hierarchy+Timestamps The proposed architecture using a timestamp based concurrency control mechanism

Table 4.1: Abbreviations used to describe each system and its variations

For the sake of brevity and in order to make it easy to identify each system, we will refer to these

systems and their variations as follows: 2PC+Locking refers to the baseline of comparison, Hierar-

chy+Locking refers to the proposed architecture with a lock based concurrency control mechanism and

Hierarchy+Timestamps refers to the proposed architecture with a timestamp based concurrency control

mechanism. These abbreviations are summarised in Table 4.1.

To make the comparison between these systems as fair as possible all of them were tested in a

scenario with 8 data nodes. For the Hierarchy+Locking and the Hierarchy+Timestamps versions, the

same hierarchy of validation nodes, composed by 8 leaf nodes and 1 non-leaf validation node, was

used.

4.2 Network Load Experiments

As shown in Section 3.5, the proposed architecture is able to reduce the network traffic required to

validate and commit a transaction when compared to 2PC. In order to better understand the impact of

this reduction on the system performance, we ran multiple experiments with the transaction validation

logic disabled. This allowed network communication to be evaluated in isolation. With the transaction

validation logic disabled, all transactions were committed successfully.

4.2.1 Throughput and Latency

In order to understand the performance of the proposed architecture we ran multiple experiments with

an increasing number of clients. We ran experiments against seven different systems/variants: (1) the

2PC+Locking version as a baseline of comparison, (2) the Hierarchy+Locking version with no batching,

(3) the Hierarchy+Locking version with a batch size of 10, (4) the Hierarchy+Locking version with a

batch size of 50, (5) the Hierarchy+Timestamps version with no batching, (6) the Hierarchy+Timestamps

version with a batch size of 10 and (7) the Hierarchy+Timestamps version with a batch size of 50.

40

Figure 4.1: Throughput variation as the number of clients increases, with concurrency control logic disabled

The graphs presented in Figure 4.1 and Figure 4.4 show the results of these experiences. The graph

in Figure 4.1 shows how the throughput of each system varies as the number of clients increases, and

the graph in Figure 4.4 shows how the average latency to execute a transaction varies as the number

of clients increases. The experiments presented use a workload with 100% of distributed transactions.

Each transaction executes 8 updates operations (read followed by a write on the same object), each

in a different data node. Because all the logic except the network logic is disabled all transactions are

committed successfully. Due to the density of the graphs in Figure 4.1 and Figure 4.4, Figure 4.2,

Figure 4.3, Figure 4.5 and Figure 4.6 contain sub graphs of the first two, highlighting the results obtained

for a subset of the systems.

As the results in Figure 4.2 and Figure 4.3 show, the systems that do not use batching or use a

batching of 10 reach their saturation point (i.e. the point when the system is processing the maximum

number of messages it can per unit of time) when 180 clients are used. While systems that use a batch

size of 50 reach their saturation point when 240 clients are used. This is confirmed by the results in

Figure 4.5 and Figure 4.6, which show that the latency of executing transactions in systems that do not

use batching or use a batching of 10 starts to spike when 180 clients, meaning that the system is not

able to process all the messages that are arriving and thus the system takes on average more time per

message. Systems that use a batching of 50, have an higher latency from the beginning due to the time

it takes to fill the bigger batch, but are able to keep that latency while supporting approximately 30%

more clients than the others.

The fact that the systems that use a batching of size 50 can support higher numbers of clients without

41

Figure 4.2: Sub graph of Figure 4.1, highlighting the throughput variation as the number of clients increases for
systems that use no batching or a batching of 10

saturating, results in an increase in throughput. The results show that the Hierarchy+Timestamps version

is able to achieve approximately 15% more throughput than the baseline, while the Hierarchy+Locking

version is able to achieve approximately 23% more throughput than the baseline. The difference in

throughput between these two systems is due to the concurrency control mechanisms used by each

one. The Hierarchy+Timestamps versions uses more network bandwidth, which in other words means

that it uses bigger network messages. Bigger messages take more time to process and as such the

throughput is lower.

4.2.2 Batching vs Latency Trade-off

As we have stated before, and as the graphs in Figure 4.1 and Figure 4.4 show, batching can have

significant impact on the system performance. Message batching reduces the amount of network I/O

used by nodes, that in turn results in a network bandwidth and CPU reduction. We could imagine that,

if we kept increasing the batch size used, the bigger these reductions would be. However, as the batch

size increases, the amount of work required to process a bigger batch and the time it takes to fill up a

batch also increases. We can say that there is a trade-off here, between the batch size used and the

latency increase we get as a result.

In order to understand the impact the batch size has on the latency observed by the clients, due

to the longer validation phase, we ran multiple experiments where we gradually increased the batch

size. The results of these experiments are depicted in Figure 4.7. The graph in this figure shows the

42

Figure 4.3: Sub graph of Figure 4.1, highlighting the throughput variation as the number of clients increases for
systems that use a batching of 50

average latency of executing a transaction in three different systems with different batching sizes. The

same workload of 100% of distributed transactions, each executing 8 updates operations in different

data nodes was used. For all these experiments we used 100 clients, a number of clients that did not

saturate the system.

As results show, the average latency of executing a transaction in the 2PC+Locking version is 33ms,

while in the Hierarchy+Locking version and the Hierarchy+Timestamps version without any batching is

around 29ms. Increasing the batch size to 10 seems to have a negligible impact on the latency, with the

systems presenting a average latency of 31ms. Increasing the batch size further to 25, increases the

average latency to a value closer to the latency presented by 2PC+Locking version, 35ms.

When using batching with sizes larger 25, it is possible to start observing a more significant impact

on the latency. For a batch size of 50, the average latency of the Hierarchy+Locking version and the

Hierarchy+Timestamps version increases to 40ms and 45ms respectively, values that represents an

increase of approximately 50% over the base latency of the system without any batching. Using a batch

size of 75 the increases the latency approximately 75%, and using a batch size of 100 increases the

latency approximately 150%.

4.3 Concurrency Control Experiments

In order to understand if the performance gains shown by the results of Section 4.2.1 were kept if the

transaction validation logic was enabled, we ran a very similar set of experiences as the ones presented

43

Figure 4.4: Latency variation as the number of clients increases, with concurrency control logic disabled

in that section, but with all the logic enabled.

The graphs presented in Figure 4.8 and Figure 4.9 show the results of these experiences. The graph

in Figure 4.8 shows how the throughput of each system varies as the number of clients increases, and

the graph in Figure 4.9 shows how the average latency to execute a transaction varies and the number of

clients increases. The experiments presented use the same workload as the one used in Section 4.2.1.

In this workload the contention between transactions is non existent, so all transactions are committed

successfully.

As results show, the performance gains obtained in Section 4.2.1 were not kept when the validation

logic is enabled. Although, the results still show some improvement, namely, the solution that uses batch-

ing is able to support 25% more clients before saturating. This is visible in Figure 4.8, the 2PC+Locking

version saturates when 80 clients are used while the solution with batching saturates when 100 clients

are used.

Even though it saturates with a larger number of clients its throughput is not larger than the system

without batching. We believe this is justified by the results in Figure 4.9, that shows that the average

latency of executing one transaction keeps increasing as the number of clients increases. This happens

because transactions are validated serially (one after the other) at each node, so as more clients are

added, more transactions need to be validated, and more transactions will be waiting to be validated, so,

the average latency per transactions increases. This increase still happened when the validation logic

was disabled, even though the results in Section 4.2.1 do not show it clearly. In these experiences it

became more clear because the validation logic is enabled and the time it takes to validate a transaction

44

Figure 4.5: Sub graph of Figure 4.4, highlighting the latency variation as the number of clients increases for systems
that use no batching or a batching of 10

is much higher.

As these experiments run in a closed loop model the latency of operations directly affects the through-

put of the system, if the latency goes down the throughput increases and vice versa. When batching is

used, it is expected that the latency of operations will increase due to the time it takes o fill up the batch,

but at the same time less network I/O and CPU are used because less network messages are sent.

To overcome the latency increase introduced by batching the solution is to add more clients. If more

clients are added it is expected that the throughput goes up to match the throughput of a system where

no batching is used. Eventually the network I/O and CPU savings obtained by using batching are big

enough that allow the system to support a big enough number of clients, that the throughput surpasses

the base throughput of the system without any batching. This is what the results in Section 4.2.1 show.

However, in this case this does not happen, because as more clients are added the average latency

of executing a transaction goes up, and as a result the throughput goes down, which is the exact op-

posite of what is expected by adding more clients. The reason for this is the fact that transactions are

processed serially, which results in transactions waiting for other transactions to be validated.

4.3.1 Experiments With Profiling

To validate the conclusions obtained from the results presented in Figure 4.8 and Figure 4.9 we ran

an extra set of experiments where we used a profiling tool while varying the number of clients and the

batch size. These experiments include three different scenarios: scenario one uses 100 clients and a

batch size of 1, scenario two uses 100 clients and a batch size of 50, and scenario 3 uses 200 clients

45

Figure 4.6: Sub graph of Figure 4.4, highlighting the latency variation as the number of clients increases for systems
that use a batching of 50

and a batch size of 50. All the experiments use the same workload as the experiments presented in

Section 4.3.

The results from these experiments are presented in Table 4.2 and in Table 4.3. Table 4.2 shows the

average request processing time for each scenario. Table 4.3 shows the average waiting time between

requests for each scenario.

Request description Scenario 1 Scenario 2 Scenario 3

Get request 0.20 0.24 0.21

Commit request 0.06 0.07 0.07

Validation request 0.56 0.52 0.50

Table 4.2: Average request processing times across experiments. Results are presented in milliseconds.

Scenario Average time

Scenario 1 0.04

Scenario 2 0.26

Scenario 3 0.10

Table 4.3: Average waiting time between requests. Results are presented in milliseconds.

The results in Table 4.2 show that across experiments the time it takes to process any of the requests

is constant. These results are consistent with what was expected. As the number of clients and the batch

46

Figure 4.7: Latency variation as the batch size increases

size varies the time it takes for each node to process any of these requests should be the same, and

these results show exactly that.

When it comes to the results in Table 4.2, they show the time each node spends waiting for and

processing network messages (network I/O). As results shows, the time between each request varies

from scenario to scenario. The difference between the first and second scenarios can be justified by

the added latency that batching introduces, as clients wait more time for a response, due to batching,

they will send less requests per unit of time, and as a consequence the time between requests is longer.

From the second to the third scenario, as the number of clients increases, the number of requests sent

by them is also going to be bigger, and as such the time between requests decreases because nodes

spend less time waiting for messages. Finally the difference in time between the first and the second

scenario can be justified by the message sizes, messages in the third scenario are much larger, due to

batching, and as a consequence they take more time to be processed.

During these experiments we also measured CPU usage and compared it with the CPU usage of the

experiments presented in Section 4.2.1. In these experiments CPU usage did not go above 75%, while

in the experiments with the validation logic disabled, CPU usage went up to 100%. The major difference

between the two experiments that could have caused this difference is disk I/O, the version where all

the validation logic is disabled never accesses the disk, either to read or to write data, while the version

evaluated in this section does. This combined with the fact that the server is single threaded results in

47

Figure 4.8: Throughput variation as the number of clients increases, with concurrency control logic enabled

this poor utilisation of CPU resources, where the CPU is not used for anything else while it is waiting for

disk I/O.

As we are not using the CPU to its maximum potential, the addition of batching will not produce

tangible benefits. Instead if we were using the CPU to its maximum potential, the usage of batching

could indeed improve the system performance, as it is shown by the results in Section 4.2.1.

4.4 Discussion

The experimental results presented in Section 4.2.1 show that, in a scenario where the main bottleneck

lies in the network and in the overheads induced by the exchange of individual messages, the proposed

architecture has the potential to support up to 45% more clients and achieve 23% more throughput

when compared to a system that uses the 2PC protocol. However, the results in Section 4.3 show

that the current implementation of the proposed architecture are not able to achieve the performance

improvement that the results in Section 4.2.1 suggest.

Our understanding of these results, as explained in Section 4.3, is that the prototypes of the proposed

architecture have a limitation in their implementation that limits the usage of the CPU to its maximum

potential. This limitation is in the way requests are processed, which is serially. More precisely, data

48

Figure 4.9: Latency variation as the number of clients increases, with concurrency control logic enabled

nodes are single threaded and process every request one at the time. By processing requests serially,

as more requests need to be processed the bigger their processing latency will be. The system is

implemented this way, because transactions need to be certified in total order, and using a single thread

ensures that no re-orderings may be caused by scheduler during the validation procedure. However,

not all code that is executed by the data nodes, when committing or aborting a transactions needs to

be serialised. We believe that by increasing the degree of concurrency in the data nodes, some of the

observed limitations may be eliminated.

When it comes to the batching vs latency trade-off presented in Section 4.2.2, our conclusions are

the following. If latency is a priority, using a batch size up to 25 is ok, as the increase in latency is

almost negligible. On the other hand, if latency is not a critical requirement, bigger batch sizes can be

considered if the increase in latency is on par with the latency expectations.

Summary

In this chapter we have presented the experimental evaluation of our architecture. The results show

that the architecture has the potential to offer performance benefits. However, we have not been able to

achieve the impressive results we were expecting. The section has also discussed some limitations of

49

the current implementation that may justify the observed results.

50

5
Conclusions and Future Work

51

In this work we presented an hierarchical architecture for deferred validation of transactions. This archi-

tecture allows transactions with an high locality degree to be validated and committed concurrently and

with low latency, while transactions that have a low locality degree have a slightly higher latency. The

architecture also takes advantage of message batching techniques to be able to support higher numbers

of clients and achieve higher throughput.

We have performed an extensive experimental evaluation of the proposed architecture. Experimental

results show that the communication pattern, used by the proposed architecture to validate and commit

transaction, allied with message batching, may allow the system to support up to 45% more clients and

achieve 23% more throughput when compared to a system that uses the 2PC communication pattern.

However, the results have also unveiled limitations in the implementation of the proposed architecture.

These limitations prevent the current prototypes from achieving the performance improvements they are

expected to.

As future work, we believe that the direction should be into further testing the proposed architec-

ture, to better understand its benefits and limitations. We believe that the first priority should be to

overcome the limitations of the current prototypes. Then, we believe that more testing should be done

around different hierarchies, with different levels, and different branching degrees, to understand how

these can impact the performance of the system. Finally we believe that the scalability of the system

should be evaluated, more specifically, understanding if and when the root validation node, that receives

information about all the transactions that execute in the system, can become a bottleneck or not.

52

Bibliography

[1] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,” ACM SIGOPS

Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Feral concurrency

control: An empirical investigation of modern application integrity,” ser. SIGMOD, 2015.

[3] T. Haerder and A. Reuter, “Principles of transaction-oriented database recovery,” ACM

Comput. Surv., vol. 15, no. 4, pp. 287–317, Dec. 1983. [Online]. Available: http:

//doi.acm.org/10.1145/289.291

[4] J. Grov and P. Ölveczky, “Scalable and fully consistent transactions in the cloud through hierarchical

validation,” in Data Management in Cloud, Grid and P2P Systems, A. Hameurlain, W. Rahayu, and

D. Taniar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 26–38.

[5] “Riak KV,” http://basho.com/products/riak-kv/, accessed 28th September 2018.

[6] “INForum 2018,” http://inforum.org.pt/INForum2018, accessed 5th September 2018.

[7] C. H. Papadimitriou, “The serializability of concurrent database updates,” J. ACM, vol. 26, no. 4, pp.

631–653, Oct. 1979.

[8] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: a transaction recovery

method supporting fine-granularity locking and partial rollbacks using write-ahead logging,” ACM

Transactions on Database Systems (TODS), vol. 17, no. 1, pp. 94–162, 1992.

[9] L. Lamport, “The part-time parliament,” ACM TOCS, vol. 16, no. 2, pp. 133–169, 1998.

[10] B. Lampson and H. E. Sturgis, “Crash recovery in a distributed data storage sys-

tem,” January 1979. [Online]. Available: https://www.microsoft.com/en-us/research/publication/

crash-recovery-in-a-distributed-data-storage-system/

[11] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database

Systems. Addison-Wesley, 1987.

53

http://doi.acm.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://basho.com/products/riak-kv/
http://inforum.org.pt/INForum2018
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/
https://www.microsoft.com/en-us/research/publication/crash-recovery-in-a-distributed-data-storage-system/

[12] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. D. Davis, “Corfu: A shared

log design for flash clusters.” in NSDI, 2012, pp. 1–14.

[13] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D. Davis, S. Rao, T. Zou,

and A. Zuck, “Tango: Distributed data structures over a shared log,” in Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles. ACM, 2013, pp. 325–340.

[14] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Munshed, M. Dhawan, J. Stabile, U. Wieder,

S. Fritchie, S. Swanson et al., “vcorfu: A cloud-scale object store on a shared log.” in NSDI, 2017,

pp. 35–49.

[15] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and

V. Yushprakh, “Megastore: Providing scalable, highly available storage for interactive services.” in

CIDR, vol. 11, 2011, pp. 223–234.

[16] J. Chang and N. Maxemchuck, “Reliable broadcast protocols,” ACM, Transactions on Computer

Systems, vol. 2, no. 3, Aug. 1984.

[17] K. Birman and T. Joseph, “Reliable Communication in the Presence of Failures,” ACM, Transactions

on Computer Systems, vol. 5, no. 1, Feb. 1987.

[18] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat, A. Gubarev,

C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,

D. Nagle, S. Quinlan, R. Rao, L. Rolig, D. Woodford, Y. Saito, C. Taylor, M. Szymaniak, and R. Wang,

“Spanner: Google’s globally-distributed database,” in OSDI, 2012.

[19] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi, “Chariots: A scalable shared log for data man-

agement in multi-datacenter cloud environments.” in EDBT, 2015, pp. 13–24.

[20] C. Gunawardhana, M. Bravo, and L. Rodrigues, “Unobtrusive deferred update stabilization

for efficient geo-replication,” in 2017 USENIX Annual Technical Conference (USENIX

ATC 17). Santa Clara, CA: USENIX Association, 2017, pp. 83–95. [Online]. Available:

https://www.usenix.org/conference/atc17/technical-sessions/presentation/gunawardhana

[21] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi, “Calvin: Fast distributed

transactions for partitioned database systems,” in Proceedings of the 2012 ACM SIGMOD Interna-

tional Conference on Management of Data, ser. SIGMOD ’12, Scottsdale (AZ), USA, 2012.

[22] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi, “Replex: A scalable, highly available

multi-index data store.” in USENIX Annual Technical Conference, 2016, pp. 337–350.

54

https://www.usenix.org/conference/atc17/technical-sessions/presentation/gunawardhana

[23] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes,

and R. E. Gruber, “Bigtable: A distributed storage system for structured data,” ACM Transactions

on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[24] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging system for log processing,” in

Proceedings of the NetDB, 2011, pp. 1–7.

[25] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination for internet-

scale systems.” in USENIX annual technical conference, vol. 8. Boston, MA, USA, 2010, p. 9.

[26] “Riak KV Customers,” http://basho.com/about/customers/, accessed 28th September 2018.

[27] “Basho Bench,” https://github.com/basho/basho bench, accessed 3rd October 2018.

[28] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubrama-

nian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly available key-value store,” in ACM

SIGOPS operating systems review, vol. 41, no. 6. ACM, 2007, pp. 205–220.

[29] “Riak KV Code Repository,” https://github.com/basho/riak kv, accessed 30th September 2018.

[30] “Basho Bench Code Repository,” https://github.com/basho/basho bench/, accessed 30th Septem-

ber 2018.

[31] “Google Cloud,” https://cloud.google.com/, accessed 3rd October 2018.

55

http://basho.com/about/customers/
https://github.com/basho/basho_bench
https://github.com/basho/riak_kv
https://github.com/basho/basho_bench/
https://cloud.google.com/

A
Pseudocode of the Proposed

Architecture With a Lock Based

Concurrency Control Mechanism

This chapter presents a pseudocode version of the proposed architecture using the lock based concur-

rency control mechanism, like it is described in Chapter 3.

A.1 Client Pseudocode

1 # TX i s an ob jec t t h a t keeps the t r a n s a c t i o n s ta te
2 #
3 # CLOCK v a r i a b l e t h a t keeps t r ack o f the h ighes t timestamp ever seen
4 # by the c l i e n t
5
6 def begin ()
7 TX = Transact ion . new ()

56

8 end
9

10 def get (key)
11 p a r t i t i o n = p a r t i t i o n f o r k e y (key)
12 ob jec t = p a r t i t i o n . t r a n s a c t i o n a l g e t (key , TX . snapshot | | CLOCK)
13
14 i f ob jec t == n i l
15 return : not found
16 else
17 i f TX. snapshot == n i l
18 TX. snapshot = ob jec t . ve rs ion
19 end
20
21 return ob jec t
22 end
23 end
24
25 def abor t ()
26 TX = n i l
27 return : aborted
28 end
29
30 def put (key , value)
31 t e n t a t i v e v e r s i o n = TX. snapshot | | CLOCK
32 ob jec t = Object . new(key , value , t e n t a t i v e v e r s i o n + 1)
33 TX . puts . i n s e r t (ob jec t)
34 end
35
36 def commit ()
37 p a r t i t i o n g e t s = g r o u p g e t s p e r p a r t i t i o n (TX . gets)
38 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (TX . puts)
39 p a r t i t i o n s = p a r t i t i o n g e t s . keys + p a r t i t i o n p u t s . keys
40
41 for p a r t i t i o n in p a r t i t i o n s
42 gets = p a r t i t i o n g e t s . get (p a r t i t i o n)
43 puts = p a r t i t i o n p u t s . get (p a r t i t i o n)
44 p a r t i t i o n . va l i da te and commi t t r ansac t i on (TX . id ,
45 TX . snapshot ,
46 gets ,
47 puts)
48 end
49 end
50
51 def o n t r a n s a c t i o n v a l i d a t i o n r e s u l t (c o n f l i c t s , commit t imestamp)
52 CLOCK = commit timestamp
53 TX = n i l
54 return c o n f l i c t s == fa lse
55 end

57

A.2 Partition Pseudocode

1 # KV i s v a r i a b l e t h a t holds a re ference to the key value storage backend
2 #
3 # VALIDATOR i s a v a r i a b l e t h a t holds a re ference to the l o c a l v a l i d a t i o n
4 # node
5
6 def o n c l i e n t t r a n s a c t i o n a l g e t r e q u e s t (key , snapshot)
7 t e n t a t i v e o b j e c t v e r s i o n s = KV. g e t t e n t a t i v e v e r s i o n s (key)
8 commi t ted ob jec t ve rs ions = KV. get commi t ted vers ions (key)
9

10 snapsho t cons i s ten t ve rs ion =
11 s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
12 t e n t a t i v e o b j e c t v e r s i o n s ,
13 commi t ted ob jec t ve rs ions)
14
15 return snapsho t cons i s ten t ve rs ion
16 end
17
18 def on c l i en t va l i da te and commi t r eques t (t x i d ,
19 snapshot ,
20 gets ,
21 puts ,
22 c l i e n t)
23 KV. s t o r e a s t e n t a t i v e (t x i d , puts)
24 VALIDATOR. l e a f v a l i d a t e (t x i d , snapshot , gets , puts , c l i e n t)
25 end
26
27 def o n t r a n s a c t i o n v a l i d a t i o n r e s u l t (t x i d ,
28 gets ,
29 puts ,
30 c o n f l i c t s ,
31 commit t imestamp)
32 i f c o n f l i c t s
33 KV. d e l e t e t e n t a t i v e v e r s i o n s (t x i d , puts)
34 else
35 KV. commi t t en ta t i ve ve rs i ons (t x i d , puts , commit t imestamp)
36 end
37
38 VALIDATOR. leaf commi t (gets ++ puts , commit t imestamp)
39 end
40
41 # This f u n c t i o n assumes t h a t both t e n t a t i v e o b j e c t v e r s i o n s and
42 # commi t ted ob jec t ve rs ions are ar rays o f ob jec t vers ions sor ted
43 # i n desceding order
44 def s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
45 t e n t a t i v e o b j e c t v e r s i o n s ,
46 commi t ted ob jec t ve rs ions)
47 for o b j e c t v e r s i o n in t e n t a t i v e o b j e c t v e r s i o n s
48 i f o b j e c t v e r s i o n . vers ion <= snapshot
49 w a i t u n t i l v e r i o n i s c o m m i t t e d ()
50 return o b j e c t v e r s i o n

58

51 end
52 end
53
54 for o b j e c t v e r s i o n in o b j e c t v e r s i o n s
55 i f o b j e c t v e r s i o n . vers ion <= snapshot
56 return o b j e c t v e r s i o n
57 end
58 end
59
60 return n i l
61 end

A.3 Validation Pseudocode

1 # PARENT VALIDATION NODE holds a re ference to the v a l i d a t i o n node above
2 # i n the h ie ra rchy
3 #
4 # CLOCK i s a v a r a i b l e t h a t holds the b igges t timestamp ever used by the
5 # v a l i d a t i o n node
6 #
7 # RUNNING TRANSACTIONS i s a map of t r a n s a c t i o n ids to t r a n s a c t i o n ob jec ts
8 # t h a t keep s ta te about the t r ansac t i ons t h a t have not yet been committed
9 #

10 # LATEST OBJECT VERSIONS i s map used to s to re the l a t e s t ob jec t vers ions
11 # seen
12
13 def l e a f v a l i d a t e (t x i d , snapshot , gets , puts , c l i e n t)
14 commit t imestamp = generate commit t imestamp (snapshot)
15
16 locks acqu i red = acqu i re locks (gets ++ puts)
17
18 i f l ocks acqu i red
19 c o n f l i c t s = check con f i c t s (gets ++ puts , snapshot)
20 else
21 c o n f l i c t s = true
22 end
23
24 i f enough in format ion to commi t
25 commi t t ransac t ion (t x . t x i d ,
26 t x . gets ,
27 t x . puts ,
28 t x . c l i e n t ,
29 t x . c o n f l i c t s ,
30 t x . commit t imestamp)
31 else
32 PARENT VALIDATION NODE . non lea f va l i da te and commi t (t x i d ,
33 gets ,
34 puts ,
35 c l i e n t ,
36 commit timestamp ,

59

37 c o n f l i c t s)
38 end
39
40 CLOCK += 1
41 end
42
43 def l ea f commi t (puts , commit t imestamp)
44 unless c o n f l i c t s
45 u p d a t e l a t e s t o b j e c t v e r s i o n s (puts , commit t imestamp)
46 end
47
48 re lease locks (puts)
49 end
50
51 def non lea f va l i da te and commi t (t x i d ,
52 gets ,
53 puts ,
54 c l i e n t ,
55 commit timestamp ,
56 c o n f l i c t s)
57 t x = RUNNING TRANSACTIONS. get (t x i d)
58 t x . gets += gets
59 t x . puts += puts
60 t x . c l i e n t = c l i e n t
61 t x . commit t imestamp = max(t x . commit timestamp , commit t imestamp)
62 t x . c o n f l i c t s = t x . c o n f l i c t s or c o n f l i c t s
63
64 i f enough in format ion to commi t
65 commi t t ransac t ion (t x . t x i d ,
66 t x . gets ,
67 t x . puts ,
68 t x . c l i e n t ,
69 t x . c o n f l i c t s ,
70 t x . commit t imestamp)
71
72 RUNNING TRANSACTIONS. de le te (t x i d)
73 else
74 RUNNING TRANSACTIONS. put (t x i d , t x)
75 end
76 end
77
78 def generate commit t imestamp (snapshot)
79 i f CLOCK <= snapshot
80 CLOCK = snapshot + 1
81 end
82 return CLOCK
83 end
84
85 def check con f i c t s (ob jec ts , snapshot)
86 for ob jec t in ob jec ts
87 i f LATEST OBJECT VERSIONS . get (ob jec t . key) > snapshot
88 return true
89 end

60

90 end
91 return fa lse
92 end
93
94 def u p d a t e l a t e s t o b j e c t v e r s i o n s (ob jec ts , vers ion)
95 for ob jec t in ob jec ts
96 LATEST OBJECT VERSIONS . put (ob jec t . key , vers ion)
97 end
98 end
99

100 def commi t t ransac t ion (t x i d ,
101 gets ,
102 puts ,
103 c l i e n t ,
104 c o n f l i c t s ,
105 commit t imestamp)
106 c l i e n t . s e n d v a l i d a t i o n r e s u l t (c o n f l i c t s , commit t imestamp)
107
108 p a r t i t i o n g e t s = g r o u p g e t s p e r p a r t i t i o n (gets)
109 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (puts)
110 p a r t i t i o n s = p a r t i t i o n g e t s . keys + p a r t i t i o n p u t s . keys
111
112 for p a r t i t i o n in p a r t i t i o n s
113 getss = p a r t i t i o n g e t s . get (p a r t i t i o n)
114 putss = p a r t i t i o n p u t s . get (p a r t i t i o n)
115 p a r t i t i o n . s e n d v a l i d a t i o n r e s u l t (t x i d ,
116 getss ,
117 putss ,
118 c o n f l i c t s ,
119 commit t imestamp)
120 end
121 end

61

B
Pseudocode of the Proposed

Architecture With a Timestamp Based

Concurrency Control Mechanism

This chapter presents a pseudocode version of the proposed architecture using the timestamp based

concurrency control mechanism, like it is described in Chapter 3.

B.1 Client Pseudocode

1 # TX i s an ob jec t t h a t keeps the t r a n s a c t i o n s ta te
2 #
3 # CLOCK v a r i a b l e t h a t keeps t r ack o f the h ighes t timestamp ever seen
4 # by the c l i e n t
5
6 def begin ()
7 TX = Transact ion . new ()

62

8 end
9

10 def get (key)
11 p a r t i t i o n = p a r t i t i o n f o r k e y (key)
12 ob jec t = p a r t i t i o n . t r a n s a c t i o n a l g e t (key , TX . snapshot | | CLOCK)
13
14 i f ob jec t == n i l
15 return : not found
16 else
17 i f TX. snapshot == n i l
18 TX. snapshot = ob jec t . ve rs ion
19 end
20
21 return ob jec t
22 end
23 end
24
25 def abor t ()
26 TX = n i l
27 return : aborted
28 end
29
30 def put (key , value)
31 t e n t a t i v e v e r s i o n = TX. snapshot | | CLOCK
32 ob jec t = Object . new(key , value , t e n t a t i v e v e r s i o n + 1)
33 TX . puts . i n s e r t (ob jec t)
34 end
35
36 def commit ()
37 p a r t i t i o n g e t s = g r o u p g e t s p e r p a r t i t i o n (TX . gets)
38 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (TX . puts)
39 p a r t i t i o n s = p a r t i t i o n g e t s . keys + p a r t i t i o n p u t s . keys
40
41 for p a r t i t i o n in p a r t i t i o n s
42 gets = p a r t i t i o n g e t s . get (p a r t i t i o n)
43 puts = p a r t i t i o n p u t s . get (p a r t i t i o n)
44 p a r t i t i o n . va l i da te and commi t t r ansac t i on (TX . id ,
45 TX . snapshot ,
46 gets ,
47 puts)
48 end
49 end
50
51 def o n t r a n s a c t i o n v a l i d a t i o n r e s u l t (c o n f l i c t s , commit t imestamp)
52 CLOCK = commit timestamp
53 TX = n i l
54 return c o n f l i c t s == fa lse
55 end

63

B.2 Partition Pseudocode

1 # KV i s v a r i a b l e t h a t holds a re ference to the key value storage backend
2 #
3 # VALIDATOR i s a v a r i a b l e t h a t holds a re ference to the l o c a l v a l i d a t i o n
4 # node
5
6 def o n c l i e n t t r a n s a c t i o n a l g e t r e q u e s t (key , snapshot)
7 t e n t a t i v e o b j e c t v e r s i o n s = KV. g e t t e n t a t i v e v e r s i o n s (key)
8 commi t ted ob jec t ve rs ions = KV. get commi t ted vers ions (key)
9

10 snapsho t cons i s ten t ve rs ion =
11 s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
12 t e n t a t i v e o b j e c t v e r s i o n s ,
13 commi t ted ob jec t ve rs ions)
14
15 return snapsho t cons i s ten t ve rs ion
16 end
17
18 def on c l i en t va l i da te and commi t r eques t (t x i d ,
19 snapshot ,
20 gets ,
21 puts ,
22 c l i e n t)
23 KV. s t o r e a s t e n t a t i v e (t x i d , puts)
24 VALIDATOR. lea f va l i da te and commi t (t x i d , snapshot , gets , puts , c l i e n t)
25 end
26
27 def o n t r a n s a c t i o n v a l i d a t i o n r e s u l t (t x i d ,
28 puts ,
29 c o n f l i c t s ,
30 commit t imestamp)
31 i f c o n f l i c t s
32 KV. d e l e t e t e n t a t i v e v e r s i o n s (t x i d , puts)
33 else
34 KV. commi t t en ta t i ve ve rs i ons (t x i d , puts , commit t imestamp)
35 end
36 end
37
38 # This f u n c t i o n assumes t h a t both t e n t a t i v e o b j e c t v e r s i o n s and
39 # commi t ted ob jec t ve rs ions are ar rays o f ob jec t vers ions sor ted
40 # i n desceding order
41 def s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
42 t e n t a t i v e o b j e c t v e r s i o n s ,
43 commi t ted ob jec t ve rs ions)
44 for o b j e c t v e r s i o n in t e n t a t i v e o b j e c t v e r s i o n s
45 i f o b j e c t v e r s i o n . vers ion <= snapshot
46 w a i t u n t i l v e r i o n i s c o m m i t t e d ()
47 return o b j e c t v e r s i o n
48 end
49 end
50

64

51 for o b j e c t v e r s i o n in o b j e c t v e r s i o n s
52 i f o b j e c t v e r s i o n . vers ion <= snapshot
53 return o b j e c t v e r s i o n
54 end
55 end
56
57 return n i l
58 end

B.3 Validation Pseudocode

1 # PARENT VALIDATION NODE holds a re ference to the v a l i d a t i o n node above
2 # i n the h ie ra rchy
3 #
4 # NODE ID hold the node i d e n t i f i e r
5 #
6 # CLOCK i s a v a r a i b l e t h a t holds the b igges t timestamp ever used by the
7 # v a l i d a t i o n node
8 #
9 # N LEAF COMMITTERS i s a constant t h a t holds the number o f l e a f v a l i d a t i o n

10 # nodes
11 #
12 # RUNNING TRANSACTIONS i s a map of t r a n s a c t i o n ids to t r a n s a c t i o n ob jec ts
13 # t h a t keep s ta te about the t r ansac t i ons t h a t have not yet been committed
14 #
15 # N CHILDS i s a constant t h a t holds the number o f c h i l d nodes
16 #
17 # PENDING COMMIT i s a p r i o r i t y queue of t r an sac t i o ns t h a t are wa i t i ng to be
18 # committed , t r ansac t i ons are ordered i n ascending order by t h e i r commit
19 # timestamps
20 #
21 # LATEST OBJECT VERSIONS i s map used to s to re the l a t e s t ob jec t vers ions
22 # seen
23 #
24 # STABLE TIMESTAMPS i s map of c h i l d ids to the bigges timestamp ever
25 # rece ived by t h a t c h i l d
26
27 def l ea f va l i da te and commi t (t x i d , snapshot , gets , puts , c l i e n t)
28 commit t imestamp = generate commit t imestamp (snapshot)
29
30 c o n f l i c t s = check con f i c t s (gets ++ puts , snapshot)
31
32 unless c o n f l i c t s
33 u p d a t e l a t e s t o b j e c t v e r s i o n s (puts , commit t imestamp)
34 end
35
36 i f enough in format ion to commi t
37 commi t t ransac t ion (t x i d , puts , c l i e n t , c o n f l i c t s , commit t imestamp)
38 else
39 i f c o n f l i c t s

65

40 c l i e n t . s e n d v a l i d a t i o n r e s u l t (c o n f l i c t s , commit t imestamp)
41 end
42
43 PARENT VALIDATION NODE . non lea f va l i da te and commi t (t x i d ,
44 snapshot ,
45 gets ,
46 puts ,
47 c l i e n t ,
48 commit timestamp ,
49 c o n f l i c t s ,
50 NODE ID)
51 end
52
53 CLOCK += N LEAF COMMITTERS
54 end
55
56 def non lea f va l i da te and commi t (t x i d ,
57 snapshot ,
58 gets ,
59 puts ,
60 c l i e n t ,
61 commit timestamp ,
62 c o n f l i c t s ,
63 c h i l d i d)
64 update stab le t imestamp (c h i l d i d , commit t imestamp)
65
66 t x = RUNNING TRANSACTIONS. get (t x i d)
67 t x . gets += gets
68 t x . puts += puts
69 t x . c l i e n t = c l i e n t
70 t x . commit t imestamp = max(t x . commit timestamp , commit t imestamp)
71 t x . c o n f l i c t s = t x . c o n f l i c t s or c o n f l i c t s
72 t x . n v a l i d a t i o n s r e c e i v e d += 1
73
74 i f t x . n v a l i d a t i o n s r e c e i v e d == N CHILDS
75 unless t x . c o n f l i c t s
76 t x . c o n f l i c t s = check con f i c t s (t x . gets ++ t x . puts , t x . snapshot)
77 end
78
79 unless t x . c o n f l i c t s
80 u p d a t e l a t e s t o b j e c t v e r s i o n s (t x . puts , t x . commit t imestamp)
81 end
82
83 i f enough in format ion to commi t
84 i f t x . commit t imestamp < ca l cu la te s tab le t imes tamp ()
85 commi t t ransac t ion (t x . t x i d ,
86 t x . puts ,
87 t x . c l i e n t ,
88 t x . c o n f l i c t s ,
89 t x . commit t imestamp)
90 else
91 PENDING COMMIT. add (t x)
92 end

66

93 else
94 i f c o n f l i c t s
95 c l i e n t . s e n d v a l i d a t i o n r e s u l t (t x . c o n f l i c t s , t x . commit t imestamp)
96 end
97
98 PARENT VALIDATION NODE . va l ida te and commi t (t x . t x i d ,
99 t x . snapshot ,

100 t x . gets ,
101 t x . puts ,
102 t x . c l i e n t ,
103 t x . commit timestamp ,
104 t x . c o n f l i c t s ,
105 NODE ID)
106 end
107
108 RUNNING TRANSACTIONS. de le te (t x i d)
109 else
110 RUNNING TRANSACTIONS. put (t x i d , t x)
111 end
112 end
113
114 def generate commit t imestamp (snapshot)
115 while CLOCK <= snapshot
116 CLOCK += N LEAF COMMITTERS
117 end
118 return CLOCK
119 end
120
121 def check con f i c t s (ob jec ts , snapshot)
122 for ob jec t in ob jec ts
123 i f LATEST OBJECT VERSIONS . get (ob jec t . key) > snapshot
124 return true
125 end
126 end
127 return fa lse
128 end
129
130 def u p d a t e l a t e s t o b j e c t v e r s i o n s (ob jec ts , vers ion)
131 for ob jec t in ob jec ts
132 LATEST OBJECT VERSIONS . put (ob jec t . key , vers ion)
133 end
134 end
135
136 def commi t t ransac t ion (t x i d , puts , c l i e n t , c o n f l i c t s , commit t imestamp)
137 c l i e n t . s e n d v a l i d a t i o n r e s u l t (c o n f l i c t s , commit t imestamp)
138
139 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (puts)
140 for (p a r t i t i o n , putss) in p a r t i t i o n p u t s
141 p a r t i t i o n . s e n d v a l i d a t i o n r e s u l t (t x i d ,
142 putss ,
143 c o n f l i c t s ,
144 commit t imestamp)
145 end

67

146 end
147
148 def update stab le t imestamp (c h i l d i d , timestamp)
149 STABLE TIMESTAMPS. put (c h i l d i d , timestamp)
150
151 stab le t imestamp = ca l cu la te s tab le t imes tamp ()
152
153 while PENDING COMMIT. peak () . commit t imestamp < stab le t imestamp
154 t x = PENDING COMMIT. remove ()
155 commi t t ransac t ion (t x . t x i d ,
156 t x . puts ,
157 t x . c l i e n t ,
158 t x . c o n f l i c t s ,
159 t x . commit t imestamp)
160 end
161 end
162
163 def ca l cu la te s tab le t imes tamp ()
164 stab le t imestamp = n i l
165 for (key , value) in STABLE TIMESTAMPS
166 i f stab le t imestamp == n i l
167 stab le t imestamp = value
168 else
169 stab le t imestamp = min (stable t imestamp , value)
170 end
171 end
172 return stab le t imestamp
173 end

68

C
Pseudocode of the Transactional

System Used as a Base for

Comparison

This chapter presents a pseudocode version of the system used as a base of comparison in Chapter 4.

C.1 Client Pseudocode

1 # TX i s an ob jec t t h a t keeps the t r a n s a c t i o n s ta te
2 #
3 # CLOCK v a r i a b l e t h a t keeps t r ack o f the h ighes t timestamp ever seen
4 # by the c l i e n t
5
6 def begin ()
7 TX = Transact ion . new ()
8 end

69

9
10 def get (key)
11 p a r t i t i o n = p a r t i t i o n f o r k e y (key)
12 ob jec t = p a r t i t i o n . t r a n s a c t i o n a l g e t (key , TX . snapshot | | CLOCK)
13
14 i f ob jec t == n i l
15 return : not found
16 else
17 i f TX. snapshot == n i l
18 TX. snapshot = ob jec t . ve rs ion
19 end
20
21 return ob jec t
22 end
23 end
24
25 def abor t ()
26 TX = n i l
27 return : aborted
28 end
29
30 def put (key , value)
31 t e n t a t i v e v e r s i o n = TX. snapshot | | CLOCK
32 ob jec t = Object . new(key , value , t e n t a t i v e v e r s i o n + 1)
33 TX . puts . i n s e r t (ob jec t)
34 end
35
36 def commit ()
37 p a r t i t i o n g e t s = g r o u p g e t s p e r p a r t i t i o n (TX . gets)
38 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (TX . puts)
39 p a r t i t i o n s = p a r t i t i o n g e t s . keys + p a r t i t i o n p u t s . keys
40
41 for p a r t i t i o n in p a r t i t i o n s
42 gets = p a r t i t i o n g e t s . get (p a r t i t i o n)
43 puts = p a r t i t i o n p u t s . get (p a r t i t i o n)
44
45 p a r t i t i o n . prepare (TX . id , TX . snapshot , gets , puts)
46 end
47 end
48
49 def on p repa re resu l t (c o n f l i c t s , commit t imestamp)
50 TX . commit t imestamp = max(TX . commit timestamp , commit t imestamp)
51 TX . c o n f l i c t s = TX . c o n f l i c t s or c o n f l i c t s
52
53 i f enough in format ion to commi t
54 p a r t i t i o n g e t s = g r o u p g e t s p e r p a r t i t i o n (TX . gets)
55 p a r t i t i o n p u t s = g r o u p p u t s p e r p a r t i t i o n (TX . puts)
56 p a r t i t i o n s = p a r t i t i o n g e t s . keys + p a r t i t i o n p u t s . keys
57
58 for (p a r t i t i o n , puts) in p a r t i t i o n p u t s
59 gets = p a r t i t i o n g e t s . get (p a r t i t i o n)
60 puts = p a r t i t i o n p u t s . get (p a r t i t i o n)
61

70

62 p a r t i t i o n . commit (TX . id , gets , puts , TX . c o n f l i c t s , TX . commit t imestamp)
63 end
64 end
65 end
66
67 def on commi t resu l t ()
68 CLOCK = TX. commit t imestamp
69 r e s u l t = TX . c o n f l i c t s == fa lse
70 TX = n i l
71 return r e s u l t
72 end

C.2 Partition Pseudocode

1 # KV i s v a r i a b l e t h a t holds a re ference to the key value storage backend
2 #
3 # CLOCK i s a v a r a i b l e t h a t holds the b igges t timestamp ever used by the
4 # v a l i d a t i o n node
5 #
6 # LATEST OBJECT VERSIONS i s map used to s to re the l a t e s t ob jec t vers ions
7 # seen
8
9 def o n c l i e n t t r a n s a c t i o n a l g e t r e q u e s t (key , snapshot)

10 t e n t a t i v e o b j e c t v e r s i o n s = KV. g e t t e n t a t i v e v e r s i o n s (key)
11 commi t ted ob jec t ve rs ions = KV. get commi t ted vers ions (key)
12
13 snapsho t cons i s ten t ve rs ion =
14 s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
15 t e n t a t i v e o b j e c t v e r s i o n s ,
16 commi t ted ob jec t ve rs ions)
17
18 return snapsho t cons i s ten t ve rs ion
19 end
20
21 def on prepare request (t x i d , snapshot , gets , puts , c l i e n t)
22 commit t imestamp = generate commit t imestamp (snapshot)
23
24 locks acqu i red = acqu i re locks (gets ++ puts)
25
26 i f l ocks acqu i red
27 c o n f l i c t s = check con f i c t s (gets ++ puts , snapshot)
28 else
29 c o n f l i c t s = true
30 end
31
32 unless c o n f l i c t s
33 KV. s t o r e a s t e n t a t i v e (t x i d , puts)
34 end
35
36 c l i e n t . send prepare resu l t (c o n f l i c t s , commit t imestamp)

71

37
38 CLOCK += 1
39 end
40
41 def on commit request (t x i d ,
42 gets ,
43 puts ,
44 c o n f l i c t s ,
45 commit timestamp ,
46 c l i e n t)
47 i f CLOCK < commit t imestamp
48 CLOCK = commit timestamp + 1
49 end
50
51 i f c o n f l i c t s
52 KV. d e l e t e t e n t a t i v e v e r s i o n s (t x i d , puts)
53 else
54 KV. commi t t en ta t i ve ve rs i ons (t x i d , puts , commit t imestamp)
55
56 u p d a t e l a t e s t o b j e c t v e r s i o n s (puts , commit t imestamp)
57 end
58
59 re lease locks (puts)
60
61 c l i e n t . send commi t resu l t ()
62 end
63
64 # This f u n c t i o n assumes t h a t both t e n t a t i v e o b j e c t v e r s i o n s and
65 # commi t ted ob jec t ve rs ions are ar rays o f ob jec t vers ions sor ted
66 # i n desceding order
67 def s e l e c t s n a p s h o t c o n s i s t e n t v e r s i o n (snapshot ,
68 t e n t a t i v e o b j e c t v e r s i o n s ,
69 commi t ted ob jec t ve rs ions)
70 for o b j e c t v e r s i o n in t e n t a t i v e o b j e c t v e r s i o n s
71 i f o b j e c t v e r s i o n . vers ion <= snapshot
72 w a i t u n t i l v e r i o n i s c o m m i t t e d ()
73 return o b j e c t v e r s i o n
74 end
75 end
76
77 for o b j e c t v e r s i o n in o b j e c t v e r s i o n s
78 i f o b j e c t v e r s i o n . vers ion <= snapshot
79 return o b j e c t v e r s i o n
80 end
81 end
82
83 return n i l
84 end
85
86 def generate commit t imestamp (snapshot)
87 i f CLOCK <= snapshot
88 CLOCK = snapshot + 1
89 end

72

90 return CLOCK
91 end
92
93 def check con f i c t s (ob jec ts , snapshot)
94 for ob jec t in ob jec ts
95 i f LATEST OBJECT VERSIONS . get (ob jec t . key) > snapshot
96 return true
97 end
98 end
99 return fa lse

100 end
101
102 def u p d a t e l a t e s t o b j e c t v e r s i o n s (ob jec ts , vers ion)
103 for ob jec t in ob jec ts
104 LATEST OBJECT VERSIONS . put (ob jec t . key , vers ion)
105 end
106 end

73

	Cover
	Acknowledgements
	Abstract
	Abstract
	Resumo
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Results
	1.4 Organisation of the Document

	2 Related Work
	2.1 Key-Value Stores
	2.2 Transactions
	2.2.1 ACID Properties

	2.3 Guaranteeing Atomicity
	2.3.1 Two-Phase Commit

	2.4 Guaranteeing Isolation
	2.4.1 Isolation Levels
	2.4.2 Race Conditions and Anomalies
	2.4.3 Concurrency Control Mechanisms
	2.4.3.A Pessimistic Concurrency Control
	2.4.3.B Optimistic Concurrency Control

	2.5 Transaction Validation
	2.6 Event Ordering Algorithms
	2.6.1 Fixed Sequencer Algorithms
	2.6.2 Rotative Sequencer Algorithms
	2.6.3 Distributed Sequencers With Coordination In Line
	2.6.4 Distributed Sequencers With Deferred Stabilisation

	2.7 Systems That Rely On Event Ordering
	2.7.1 CORFU
	2.7.2 Tango + CORFU
	2.7.3 vCorfu
	2.7.4 Megastore
	2.7.5 Chariots
	2.7.6 Kafka
	2.7.7 Eunomia
	2.7.8 FLACS

	3 Hierarchical Architecture for Deferred Validation of Transactions
	3.1 Architecture
	3.2 Execution of Transactions
	3.2.1 Starting a Transaction
	3.2.2 Reading Objects
	3.2.3 Writing Objects
	3.2.4 Committing a Transaction
	3.2.5 Validating a Transaction
	3.2.5.A Local Transactions
	3.2.5.B Distributed Transactions
	A – Using The Lock Based Concurrency Control Mechanism
	B – Using The Timestamp Based Concurrency Control Mechanism

	3.3 Timestamp Generation
	3.3.1 Lock Based Concurrency Control
	3.3.2 Timestamp Based Concurrency Control

	3.4 Batching
	3.5 Network Analysis
	3.5.1 Example

	3.6 Implementation
	3.6.1 Riak KV
	3.6.1.A Changes and Extensions
	3.6.1.B Base of Comparison

	3.6.2 Basho Bench

	4 Evaluation
	4.1 Experimental Setup
	4.1.1 Hardware Configuration
	4.1.2 Benchmark Configuration
	4.1.3 Systems Under Test

	4.2 Network Load Experiments
	4.2.1 Throughput and Latency
	4.2.2 Batching vs Latency Trade-off

	4.3 Concurrency Control Experiments
	4.3.1 Experiments With Profiling

	4.4 Discussion

	5 Conclusions and Future Work
	Bibliography
	Appendix A

	A Pseudocode of the Proposed Architecture With a Lock Based Concurrency Control Mechanism
	A.1 Client Pseudocode
	A.2 Partition Pseudocode
	A.3 Validation Pseudocode
	Appendix B

	B Pseudocode of the Proposed Architecture With a Timestamp Based Concurrency Control Mechanism
	B.1 Client Pseudocode
	B.2 Partition Pseudocode
	B.3 Validation Pseudocode
	Appendix C

	C Pseudocode of the Transactional System Used as a Base for Comparison
	C.1 Client Pseudocode
	C.2 Partition Pseudocode

