
Optimizing Software Transactional Memory
Replication via Speculation

João Fernandes
joao.fernandes@ist.utl.pt

Instituto Superior Técnico
(Advisor: Professor Lúıs Rodrigues)

Abstract. Software Transactional Memories (STMs) are emerging as
a potentially disruptive programming paradigm. Due to scalability and
fault-tolerance requirements, Distributed STMs (DSTMs) are receiving
more attention. Database management systems and STMs share the
same key abstraction: atomic transactions. However, database and mem-
ory transactions have very distinct characteristics. Database replication
protocols do not provide proper performance when applied to STMs.
This work studies existing techniques to maintain the consistency of
the STM replicated data, identifies limitations on those techniques, and
proposes the architecture for building a novel replication protocol for
STMs, that aims to overcome the limitations of current techniques by
taking advantage of available computational resources to perform specu-
lative operations. We end with an evaluation methodology for the future
protocol implementation.

1 Introduction

Moore’s law [1] has driven a steady increase in single processor performance in
the past decades. Because of that, it has been possible to increase the complexity
of sequential programs while maintaining or even improving their perceived per-
formance. Unfortunately, the performance of a single core processor has reached
a plateau. On the other hand, the number of cores available in a single chip is
now increasing. Therefore, in order to keep providing acceptable performance,
while adding functionality to programs, we need to use parallel programming
techniques. In this scenario, Transactional Memory (TM) can become a key ab-
straction, as it aims to simplify concurrent programming.

When using a Software Transactional Memory (STM), the programmer is
freed from having to explicitly deal with concurrency control mechanisms. In-
stead, the programmer only has to identify the regions of code that need to access
or modify shared data in an atomic fashion. Given that low level concurrency
control mechanisms such as locks are known to be extremely error prone [2], the
use of STMs has the potential to increase the reliability of code and shorten the
software development cycle.

Although STMs were first proposed for cache-coherent shared memory archi-
tectures, the need to increase the scalability and fault-tolerance of STM-based

1



systems motivated the development of STMs for distributed memory architec-
tures and replication protocols to employ on them. Replication protocols are
responsible for coordinating the replicas in a way that ensures the consistency
of the transactional memory at all nodes.

Committing a transaction on a replicated Distributed Software Transactional
Memory (DSTM) system is a relatively slow operation when compared to the
execution time of the transaction. Since the replication protocol has to guarantee
the consistency of the transactional memory on all replicas, it has to handle
the synchronization problems that arise from concurrent modifications made to
the transactional memory by transactions that run on different replicas. One
way to tackle this problem is to use a global agreement protocol to establish a
global serialization order that becomes the order for processing transactions at
all replicas. The establishment of a global serialization order is a procedure that
takes a non-negligible amount of time to conclude. Therefore, such an amount
of time may be used to perform ahead computation that can be rolled back,
like memory transactions, and may or may not become useful, depending of the
fate of the ongoing commit procedure of previous transactions. This procedure
is called speculative execution.

In this report we propose the development of a novel replication scheme for
STMs that takes advantage of speculative execution of memory transactions in
order to boost performance. Consider a sequential program that is composed
of two memory transactions, Ta and Tb that are executed one after the other,
respectively. With current replication protocols, when Ta concludes its execu-
tion and tries to commit, the execution flow stalls. Therefore, Tb has to wait for
the conclusion of Ta’s commit phase to be able to start its execution. However,
since transactions can be rolled back, we propose starting the execution of Tb

speculatively, based on a state that includes the expected outcome of Ta. If Ta

eventually aborts, then Tb has also to abort. However, on the best case scenario,
Ta commits and therefore, Tb’s execution phase and Ta’s commit phase overlap.
To the best of our knowledge, no existing DSTM system employs the described
speculative process. This work studies the state-of-the-art in replication pro-
tocols for software transactional memories, their roots, and how to boost the
performance of DSTM systems.

The rest of the report is organized as follows. Section 2 briefly summarizes
the goals and expected results of our work. In Section 3 we present all the
background related with our work. Section 4 describes the proposed architecture
to be implemented and Section 5 describes how we plan to evaluate our results.
Finally, Section 6 presents the schedule of future work and Section 7 concludes
the report.

2 Goals

This work addresses the problem of optimizing the performance of replicated
software transactional memory systems. Namely:

2



Goals: This work aims at analyzing, designing, and implementing a
replication protocol for software transactional memories that operates
efficiently under heavy and heterogeneous workloads.

For many benchmarks and workloads, the time that takes to commit a mem-
ory transaction in a distributed software transactional memory is typically much
longer than the time that takes to execute the transaction [3]. We propose the
use of a replication protocol that commits transactions in a speculative fashion.
The speculative procedure will allow the application to continue its execution
while the global commit phase is still ongoing in background, which results in an
effective overlap between transaction processing and communication. The STM
replication manager is responsible for ensuring that the application-level never
sees an inconsistent state outside the transactional code.

We will develop an implementation of the proposed protocol for the Fénix
framework [4]. The implementation will be evaluated with well established bench-
marks for transactional systems.

Expected results: The work will produce (i) a specification of the
protocol; (ii) an implementation for the Fénix framework; (iii) an exper-
imental evaluation using well established benchmarks for transactional
systems.

3 Related Work

In order to understand the underlying problems that this project poses, we
need to review the fundamentals of various areas in distributed systems. Section
3.1 presents a review on replication techniques and mechanisms. It addresses
basic concepts, such as passive and active replication, but goes beyond that, cov-
ering fundamental group communication primitives and database replication, as
they share the same key abstraction with TM: atomic transactions. Section 3.2
addresses software transactional memory. It describes the motivations, proper-
ties and concepts of transactional memory systems, compare the pros and cons of
hardware assisted, pure software and hybrid approaches, discuss implementation
decisions and concludes with STM proposals. Finally, in Section 3.3 we address
distributed software transactional memory. We describe the motivations, requi-
sites and challenges for STM replication, and conclude with DSTM proposals.

3.1 Replication Techniques and Mechanisms

3.1.1 Basic Concepts

Replication is one of the main techniques to build highly available, fault-
tolerant systems. There are two main models to ensure consistency among repli-
cas: passive and active replication.

Passive replication, also known as master-slave replication or primary-backup,
is characterized by the existence of a replica, known as the master, that processes

3



all requests and transfers the state updates to the remaining replicas, known as
the slaves or backups. In most cases, slaves can also process read-only transac-
tions. Passive replication often assumes the fail-stop model. When the master
fails one of the slaves is elected to replace it, becoming the new master. One of the
problems of this technique is that in write intensive workloads the master may
become a bottleneck in the system, as it is responsible for all the computation,
since the slaves do not share any workload.

Active replication is characterized by having all replicas processing the same
sequence of requests, exactly by the same order. In order to ensure replica’s con-
sistency, active replication requires operations to be deterministic, i.e., the state
of a replica should depend exclusively on the initial state and on the sequence
of operations executed. To ensure that all replicas process the same requests in
the same order, a total order reliable broadcast primitive, also called Atomic
Broadcast (AB) [5], is typically used. This group communication primitive is
typically provided by a Group Communication System (GCS), such as the Ap-
pia framework [6], that includes membership and communication services. One
of the limitations of the approach is that AB is an expensive communication
primitive, as it requires consensus to be reached among replicas. Also, since all
replicas execute all update requests, it does not provide scalability for update
requests. Like primary-backup replication, read-only requests can be executed
in parallel at different replicas.

Other replication schemes combine aspects of the two previous techniques.
An important example is certification-based replication, a scheme that is com-
monly employed on transactional systems and relies on group communication
to validate state changes across replicas. An example of a certification-based
protocol is described in Section 3.1.3.

3.1.2 Group Communication

Group communication [7, 8] is a powerful paradigm for performing multi-
point to multipoint communication by organizing processes in groups. Typi-
cally, a system that implements this paradigm is called a Group Communication
System (GCS) and offers membership and reliable broadcast services with dif-
ferent ordering guarantees. GCSs allows programmers to concentrate on what to
communicate rather than on how to communicate. Our focus will be on view-
synchronous GCSs [9].

View-synchronous GCSs model the system as a group of n processes
∏

=
{p1, ..., pn}. The group-membership service exports join(S) and leave(S) primi-
tives (where S is set of processes such that S ⊂ P ) and runs a failure detector
to discover faulty processes. It outputs a sequence of group membership sets
called views. Every view V ⊆ P is delivered through a v-change(vid, V ), where
vid ∈ N denotes a monotonically increasing view identifier. When this occurs,
we say that the process installs the new view V .

Apart from handling explicit join and leave operations, a membership service
also plays the role of failure detector: it excludes crashed processes from the group
membership and detects the “stable” components of the system, i.e., the set of

4



processes that are correct and that can reliably communicate with each-other. A
stable component is defined as a set of processes that is eventually permanently
connected.

Reliable broadcast services can provide various types of ordering disciplines,
such as FIFO, Causal and Total Order. FIFO ordering guarantees that messages
from the same sender are delivered in the order in which they were sent at
every process that receives them. Causal ordering extends FIFO ordering and
guarantees that if message m′ is causally related to message m (according to
Lamport’s “happened-before” relation [10]), then m is delivered before m′ to
every process that receives them. Total ordering guarantees that all messages
are delivered in the same order to every receiver. We will now cover in more
detail the properties of Atomic Broadcast.

Atomic Broadcast Atomic Broadcast (AB) is a reliable broadcast that ensures
that every participant receives all messages by the same order. It can be defined
by two primitives:

– AB-cast(m) broadcasts the message m to all sites in the system.

– AB-deliver(m) delivers message m definitively to the application. The se-
quence of AB-delivered messages is called the definitive order and is the
same at all sites.

There are two types of AB: regular and uniform. Uniform AB ensures the
following properties:

– Validity: if a correct process AB-broadcasts a message m, then it eventually
AB-delivers m.

– Uniform Agreement: if a process AB-delivers m, then all correct processes
eventually AB-deliver m.

– Uniform Integrity: for any message m, every process AB-delivers m at
most once, and only if m was previously AB-broadcast by its sender.

– Uniform Total Order: if processes p and q both AB-deliver messages m
and m′, then p AB-delivers m before m′ only if q AB-delivers m before m′.

Validity and agreement properties are liveness properties, i.e., they ensure
that something “good” eventually happens. In turn, integrity and total order
properties are security properties, i.e., they ensure that nothing “bad” happens.

Regular AB has the same validity and integrity properties as uniform AB,
but has the following non-uniform properties:

– (Regular) Agreement: if a correct process AB-delivers a message m, then
all correct processes eventually AB-deliver m.

– (Regular) Total Order: if two correct processes p and q both AB-deliver
messages m and m′, then p AB-delivers m before m′ if and only if q AB-
delivers m before m′.

5



Uniform properties make life easier for application developers, as they apply
to both correct and faulty processes. However, enforcing uniformity often has a
cost and for this reason it is important to consider whether uniformity is strictly
necessary. Non-uniform properties can lead to inconsistencies at the application
level if they are not considered properly and, therefore, applications that rely on
them should be prepared to take the necessary corrective actions during failure
recovery.

Optimistic Atomic Broadcast Optimistic Atomic Broadcast (OAB), is de-
fined by all the primitives of AB plus one more:

– OAB-deliver(m) delivers a message m optimistically to the application.
OAB-deliver does not guarantee total order. The sequence of OAB-delivered
messages is called the tentative order.

OAB is a very important building block for high-performance distributed
systems. The OAB-deliver primitive enables applications to overlap computa-
tion with communication: messages are OAB-delivered as soon as they arrive
and when their final order is known, they are AB-delivered. Between these two
events, applications can perform optimistic, possibly useful computation. When
a message is AB-delivered, one of two possible scenarios occur: either the mes-
sage’s final order matches the tentative order or it does not. In face of the first
scenario, the optimistic computation performed was useful and so its modifica-
tions to the application’s state can be applied safely. However, in face of the
second scenario, the optimistic computation performed was useless and, there-
fore, all its modifications should be rolled back.

OAB has all the properties of AB plus one more:

– Optimistic Order: if a process p AB-delivers message m, then p has pre-
viously OAB-delivered m.

Aborting and rolling back modifications has also a cost, so the use of OAB is
suitable for network environments where the percentage of out-of-order messages
is low [11].

3.1.3 Database Replication

Database management systems (DBMS) are a key component of many infor-
mation systems. As with other applications, replication is supported in a DBMS
system to provide increased fault-tolerance and scalability (namely of read-only
requests). We shall begin with the description of a number of concepts related
to transactional systems:

– Read-set: the set of data items that are read by a transaction.
– Write-set: the set of data items that are written by an update transaction.
– Data-set: the union of the read-set and write-set of a transaction.

6



– Commit: the transaction finishes successfully, therefore its modifications
are made visible.

– Abort: the transaction was unable to finish successfully, therefore are not
made visible or undone if necessary.

– Conflict: two concurrent transactions conflict if the write-set of one overlaps
with the data-set of the other.

Database transactions satisfy atomicity, isolation, consistency and durability
properties. These are commonly referred to as ACID properties [12] and feature
the following characteristics:

– Atomicity ensures that modifications must follow an “all or nothing” rule,
i.e., either all the modifications made by a committed transaction are made
visible or none is.

– Consistency ensures that each transaction transform the database from
one consistent state to another consistent state.

– Isolation ensures that individual memory updates within a memory trans-
action are hidden from concurrent transactions.

– Durability ensures that once a transaction is committed, its updates will
survive any subsequent malfunctions.

During its life-cycle, a transaction can pass through four distinct, well-defined
states: executing, committing, committed and aborted. Both the executing and
committing states are transitory, while both the aborted and committed states
are final.

– Executing: the transaction’s operations are executing.
– Committing: the transaction has completed the execution of its operations,

and therefore, the client requested the transaction’s commit.
– Committed: the transaction was committed.
– Aborted: the transaction was aborted.

In the next paragraphs we describe one of the most relevant database repli-
cation protocols ever proposed.

The Database State Machine Approach In [13], Pedone et al. propose a
replication scheme that is designed to synchronize a cluster of database servers,
in a multi-master environment. This scheme is based on the state machine ap-
proach [14]. However, unlike classical state machine replication, a transaction is
not executed at all replicas. Instead, a transaction is executed at a single node
and, upon commit, its data-set is atomically broadcast to all replicas, starting
the certification phase of the transaction. Certifying a transaction consists on
detecting conflicts and checking that its commit does not violate one-copy se-
rializability [15]. It decides to abort a transaction if the transaction’s commit
would lead the database to an inconsistent state (i.e., non-serializable). This step
is executed by all replicas in a deterministic manner, i.e., it produces the same

7



decision at all replicas. This technique reduces the cost of inter-replica coordi-
nation, by executing a single interaction when the transaction commits. It also
simplifies recovery as intermediate results of a transaction are never propagated
and, therefore, there is no need for implementing distributed rollback schemes.
The main drawback of this technique is that the lack of synchronization during
transaction execution may lead to a large transaction abort rate in face of work-
loads with many conflicting transactions. For this reason, the authors propose
an optimization technique called reordering certification test. The optimization
is based on the observation that the serial order in which transactions are com-
mitted does not need to be the same order in which transactions are delivered
to be certified. Therefore, in order to reduce the abort rate, once a transaction
Ta passes to the committed state it acquires the needed locks over the items
it will update but does not perform those updates immediately. Instead, the
transaction Ta is placed in a buffer called the reorder list, that has a defined
size called the reorder factor, in a position p such that any given transaction Tb

at position pos(tb) < p precedes or is commutable with Ta and any transaction
Tb at position pos(Tb) ≥ p does not read from any location that is updated by
Ta and, neither precedes Ta nor updates any location that is read by Ta. When
the reordering factor is reached, the leftmost transaction Ta in the reorder list is
removed, its updates are applied to the database, and its write locks are released.

The size of the reorder list has to be configured with carefully. Since all
transactions in the list already have their locks granted, data contention rises
considering that the items stay locked for a longer period of time, which can
lead to an increase on the abort rate that is greater than the reduction obtained
with its use.

3.2 Software Transactional Memory Systems

Concurrent programs make use of multiple threads of control (named threads
or processes) to execute multiple sequences of instructions in parallel. Concurrent
access and modifications of shared data by these threads can cause inconsisten-
cies that may lead to incorrect states. For this reason, access to shared data has
to be subject to some sort of concurrency control mechanism. Classic concur-
rency control mechanisms, such as locks, can ensure mutually exclusive access
on data. Unfortunately, locks are hard to use in a correct manner as a single
misplaced or missing lock can easily create an error. Indeed, locks comprise so
much complexity that even when placed in a way that ensures mutual exclusion,
they can still lead to undesired effects, such as: deadlock, priority inversion, poor
performance in face of preemption and page faults, lock convoying or incorrect
behaviors (e.g., infinite loops). To avoid these problems, the programmer needs
to have a deep knowledge of low-level properties of the execution environment
and a complete knowledge of all the concurrent execution flows in the applica-
tion, which can be cumbersome.

Transactional memories support the transaction abstraction, as a high-level
concurrency control mechanism. Transactions release the programmer from ex-
plicitly dealing with the low-level details of concurrency control. When using a

8



TM system, the programmer only has to identify the regions of code that need to
access or modify data in an atomic fashion. TM allows programmers to express
what should be executed atomically, rather than requiring them to specify how
to achieve such atomicity. This translates into what is argued to be the main
advantage of TM: composability [16]. Unlike locks, TM enables software com-
position, i.e., correctly-implemented concurrency abstractions can be composed
together to form larger abstractions.

3.2.1 Concepts and Properties

Memory transactions have many similarities with database transactions [12].
The concepts of read-set, write-set, data-set, commit, abort and conflict, as well
as the transaction’s life-cycle, all described in Section 3.1.3, hold for memory
transactions. Although similar, memory transactions and database transactions
are not equal. Memory transactions satisfy only both atomicity and isolation
properties (also described in Section 3.1.3).

Data Version Management By ensuring a strong consistency model like
serializability, a transactional memory system requires that data version man-
agement, in STM systems often called update strategy or update policy, is imple-
mented. It is necessary so that the system can maintain both old values of data
items (i.e., valid when the transaction starts) that are needed if the transaction
aborts, and new values of data items (i.e., uncommitted values written during
the execution of a transaction) that are needed when the transaction commits.

There are two basic approaches: lazy and eager data versioning. Lazy data
versioning, also called deferred update, works by performing all writes in a trans-
action in a private buffer until the transaction commits, after which they are ap-
plied. Eager data versioning, also called direct update, performs all writes within
a transaction directly in memory, while the old values of the data items are
stored in an undo log that is needed if the transaction aborts. Where eager data
versioning is optimistic and favors fast commits at the price of slower aborts,
lazy data versioning is pessimistic and favors fast aborts at the price of slower
commits.

Concurrency Control A transactional memory system must also implement
concurrency control, i.e., conflict detection and resolution, in order to detect
and handle conflicts between concurrent transactions accessing (and at least one
updates) the same data item(s).

Similarly to data versioning, there are two basic approaches: lazy (i.e., late)
and eager (i.e., early) conflict detection and resolution. Lazy conflict detection
and resolution detects conflits at commit time, i.e., the conflict itself and its
detection occur at different points in time. Upon commit, the write-set of the
committing transaction is compared to the read and write-sets of other trans-
actions. In case of a conflict, the committing transaction succeed (i.e., commit)
and the other transactions abort. Eager conflict detection and resolution checks
for conflicts upon each load/store operation, i.e., the conflict is detected as soon

9



as it occurs. In software, this is typically done by using locks and/or version
numbers. Where eager conflict detection is pessimistic and favors the execution
of less useless operations at the cost of slower read and write operations (plus
data contention), lazy conflict detection is optimistic and favors execution speed
at the cost of performing more useless computation (plus longer undo work).

The granularity of conflict detection is a key design decision in a TM system,
since the read and write-sets are maintained for the data items at the conflict
detection granularity. On STM systems, conflict detection is usually done at the
word granularity or object granularity, although other granularity may be chosen.
Tracking read and write-sets at the word granularity ensures that no false sharing
occurs, i.e., no false conflicts occur because they are detected upon concurrent
access to the same memory addresses. However, this approach introduces higher
overhead in terms of time and space (state information). Tracking read and
write-sets at the object granularity matches the programmer’s reasoning, has
low overhead in terms of time and space and is suitable for software and hybrid
TM implementations. However, there is a risk of false sharing on large objects,
which may lead to unnecessary aborts.

Nested Transactions A nested transaction is a transaction that has one or sev-
eral transactions inside of it. There are two types of support for nested transac-
tions: closed or open nested transactions [17]. Closed nested transactions extend
atomicity and isolation of an inner transaction until the outermost (top-level)
transaction commits, whereas open nested transactions allow a committing in-
ner transaction to release isolation immediately, which will potentially result in
higher parallelism at the cost of more complex hardware and/or software.

Strong and Weak Atomicity Weak atomicity [18] is when non-transactional
code can read non-committed updates, while strong atomicity [18] is when non-
committed updates cannot be read from the outside of a transaction. Although
strong atomicity provides a simple and intuitive model to the programmer, it
may be difficult to implement efficiently. It is also important to note that applica-
tions that assume and execute correctly under weak atomicity do not necessarily
execute correctly under strong atomicity as shown by Martin et al. in [18].

Opacity Opacity [19] can be viewed as an extension of the classical database
serializability property, with the additional requisite that even non-committed
transactions are prevented from accessing inconsistent states (DBMSs only guar-
antee that committed transactions do not see inconsistent states). It is an impor-
tant safety property because memory transactions may be coded in a wide range
of programming languages and might not be executed on a sandboxed environ-
ment. The lack of this property can lead to exceptions or incorrect behaviors on
otherwise correct code (e.g., infinite loops).

3.2.2 Hardware vs Software vs Hybrid Transactional Memory

Currently, there are several proposals for hardware transactional memory
(HTM) [20–24], purely software based ones, i.e. software transactional memory

10



[25–29], and hybrid transactional memory (HyTM) schemes that combine both
hardware and software [30–32].

Regardless of the layer where the implementation is made, most TM im-
plementations support unbounded and dynamic transactions [33]. Supporting
unbounded transactions (as opposed to bounded transactions [33]) means that
there is no limit on how many items a transaction can read or modify. Supporting
dynamic transactions (as opposed to static transactions [33]) means that there
is no need to known the transaction’s data-set a-priori, since it is determined at
runtime.

Some HTMs, such as the one proposed by Herlihy et al. in [22], only sup-
port bounded, static transactions. This forces the programmer to be aware of
HTM limitations and to write the code in a way that circumvents these limi-
tations, something that contradicts the goal of simplifying the programming of
concurrent programs, as promised by the TM paradigm. Providing large scale
transactions in hardware tends to introduce large degrees of complexity into the
design. Because of this, unbounded and dynamic HTMs, like the one proposed
by Ananian et al. in [20], are unlikely to be adopted by mainstream commercial
processors in the near future.

STMs have fewer limitations, when compared to HTMs. Since STMs make no
hardware support assumptions, they can be implemented on commodity hard-
ware, a factor that increases their usability. Further, software is more flexible
and easier to evolve than hardware. However, one of the most troublesome draw-
backs of STMs is performance. Although STM performance has improved over
the years, it is still significantly slower than traditional lock-based and HTM
solutions. The design of STM systems is subject to many choices, and each one
carries advantages and shortcomings [34, 33, 35, 36, 27].

Hybrid TM aim at combining the best of both approaches. The main idea is to
use hardware support to boost performance and fallback to software when facing
hardware limitations (or when the hardware support is simply not available). As
shown by Dice et al. in [33], hardware support for read-set validation, as opposed
to full blown HTM, may deliver significant performance benefits.

This work focus on STM.

3.2.3 Implementation

Metadata structures are necessary in a software transactional memory system
in order to manage the state of the ongoing transactions. For example, conflict
detection is done by executing software routines. To track the relation between
a transaction and a shared object, the system can either record the objects read
or updated by a certain transaction (i.e., track the transaction’s read and write-
set) or record the transactions that have read or updated a certain object in a
reader set and a writer set, respectively.

Some software transactional memory systems perform invisible reads, i.e.,
transactional reads of shared objects are hidden from concurrent transactions.
Thus, such systems cannot detect read-write conflicts. In order to handle pos-
sible inconsistencies, three approaches exist: (i) validation, i.e., the transaction

11



validates that no other transaction has modified any of the objects in its read-set,
(ii) invalidation, i.e., track which transactions read an object and abort them
when a transaction performs an update operation, and (iii) tolerate inconsis-
tency, i.e., allow the transactions to execute with an inconsistent state, which in
some situations can be tolerable but violates the opacity property.

One issue when implementing concurrency control in software transactional
memory systems is how to handle synchronization and forward progress. There
are two basic approaches: blocking and non-blocking [37]. Programs written using
blocking synchronization cannot guarantee the forward progress of the system,
since they can incur in deadlocks and priority inversion. A software transac-
tional memory implementation using non-blocking synchronization can support
three levels of forward progress guarantee: (i) wait-freedom, (ii) lock-freedom,
and (iii) obstruction-freedom [37]. Wait-freedom is the strongest of the three
and guarantees that all threads that contend for a set of shared objects make
forward progress in a finite amount of time, i.e., forward progress is guaran-
teed. Lock-freedom only guarantees that at least one thread of those contending
for a set of shared objects makes forward progress in a finite amount of time.
Finally, obstruction-freedom, which is the weakest of the three, only guaran-
tees that if only one thread is contending for a set of shared values, that thread
makes forward progress in a finite amount of time. Unlike wait and lock-freedom,
obstruction-freedom does not guarantee starvation-freedom.

In order to resolve conflicts between concurrent transactions we often need to
abort one of the conflicting transactions. A contention manager typically imple-
ments one or several contention policies in order to decide which transaction(s)
to abort. An example of a contention policy can be to always abort the “newest”
transaction(s).

3.2.4 Proposals

STM The Software Transactional Memory (STM) transactional engine was pro-
posed by Shavit and Touitou in [25]. It is the first implementation of a software
transactional memory system. At the start of a transaction, it identifies and tries
to obtain the ownership of all the memory words used in the transaction. If this
process fails, the transaction aborts and releases the ownership of all the memory
locations it already has acquired. By acquiring the ownership of memory words
in an increasing order, deadlocks are avoided. Ownership information is stored
in a separate metadata structure besides the actual data.

It detects conflicts at the word level, performs early conflict detection, and
uses a direct update strategy since it can complete the transaction when it
has acquired the ownership of all memory locations in its write-set. It only
supports static transactions and uses non-blocking synchronization that ensures
lock-freedom.

JVSTM The JVSTM [27] transactional engine is a pure Java software transac-
tional memory library.

12



It introduces the concept of versioned boxes, which are containers that keep
the history of values of an object, each of these corresponding to a change made
by a committed transaction. The usage of versioned boxes ensures that read-only
transactions always have access to a consistent snapshot. Therefore, they are
abort and wait-free. This favors applications with high read/write transaction
ratio, which is the more common case.

It detects conflicts at the object level, performs lazy conflict detection, uses
a deferred update strategy, supports dynamic and nested transactions (nested
transactions follow the linear nesting [38] model), provides strong atomicity and
employs non-blocking synchronization that ensure wait-freedom for read-only
transactions, and obstruction-freedom for update transactions.

3.3 Distributed Software Transactional Memory Systems

STMs were initially developed for cache-coherent shared memory architec-
tures. DSTMs only recently began to raise attention, mainly due to scalability
and fault-tolerance concerns, but also because distributed memory and non-
cache-coherent architectures are receiving more attention. As a remark, Intel
dumped cache-coherency on their latest many-core research prototype proces-
sor, the “Single-chip Cloud Computer”.

Systems for distributed shared memory architectures typically communicate
through a network, using a message-passing interface. The most popular com-
puter networking technology – Ethernet – features much lower bandwidth and
higher latency (due to the distance and the propagation speed of the medium)
than the bus of a computer, and does not provide any type of ordering guarantee.
Because of these differences, STM systems initially designed for shared memory
architectures have to be adapted to work on distributed memory architectures.

The main motivations behind distributing a software transactional memory
are scalability and reliability. Regarding scalability, it is much cheaper to build
a commodity cluster than to buy a supercomputer. However, it is also typically
more difficult to scale systems horizontally than vertically, due to the inter-
node communication cost. Regarding reliability, high-availability requisites are
very common in real world applications. However, highly-availability must be
achieved with the minimum possible cost. Replication protocols should be both
effective and efficient. The concepts and properties of STM systems, described
in Section 3.2.1, are applicable to DSTM systems.

In the next paragraphs, we describe the following DSTM systems: DMV [39],
Cluster-STM [40], DiSTM [41], D2STM [42] and AGGRO [43].

3.3.1 Implementation

A DSTM system requires the use of a distributed concurrency control algo-
rithm in order to guarantee the coherence of the transactional memory. A dis-
tributed concurrency control algorithm synchronizes nodes at some point. There
are two basic approaches: eager and lazy synchronization. Eager synchronization

13



ensures that the transaction can commit. This can be be done with the acquisi-
tion of a cluster-wide unique token/lease. Lazy synchronization propagates the
updates made by a transaction upon its commit. This commit is optimistic, be-
cause, depending of the global serialization order, the modifications made by a
concurrent transaction that executed at a different node may have to be applied
before. Where eager distributed concurrency control is pessimistic and favors
the execution of less useless operations at the cost of higher data contention
and diminished concurrency, lazy conflict detection is optimistic and favors con-
currency at the cost of performing more useless computation (plus longer undo
operations).

3.3.2 STM Replication

Challenges Software transactional memories and databases share the key ab-
straction concept of atomic transaction. However, memory and database trans-
actions have very different characteristics. Memory transactions are typically
several orders of magnitude shorter than their database counterparts [3], as
DBMSs have to deal with SQL parsing and data loading from high latency sec-
ondary storage such as hard disk drives.

Since memory transactions tend to be small small, their replication cost is
amplified when compared to database transactions. For example, plugging OAB
is a successful technique in database replication that has limited success in STM
replication [44] because, since memory transactions are so small, their execution
overlaps with only a very small fraction of the time that the group communica-
tion service takes to establish the global serialization order.

In order to overcome these challenges, replication protocols for software trans-
actional memories should develop techniques to reduce the time taken by the
commit phase or to overlap more useful computation with the global commit
phase.

Taxonomy Replicated software transactional memories that communicate through
AB can be classified by a set of protocols.

When a node receives a request for processing a transaction it can either
broadcast the request or it can process the request and then broadcast to all
nodes the transaction’s data-set upon the transaction’s commit request. In the
former case, the approach is an active replication scheme, like described in
Section 3.1.1. If the latter approach is taken, it is commonly referred to as
certification-based replication, in which a transaction is globally validated after
its commit is requested. The validation is done based on the transaction’s read
and write-set. Certification-based replication can be further classified into voting
and non-voting schemes. Voting schemes need to broadcast only the transaction’s
write-set but incur into an additional broadcast along the critical path of the
commit phase, whereas non-voting schemes need to broadcast the transaction’s
read-set and write-set only once, but since the read-set is typically large, the
message to broadcast is also larger.

14



3.3.3 Distributed Multiversioning

Distributed Multiversioning (DMV) [39] is a page-level distributed concur-
rency control algorithm that exploits the presence and easy maintenance of dif-
ferent versions of the transactional data-set across the nodes. Like local mul-
tiversioning schemes, DMV allows read-only transactions to execute in parallel
with conflicting update transactions. This is done by ensuring that read-only
transactions can always access to a consistent snapshot, i.e., a snapshot that
represents the “newest” committed version of the transactional memory before
the read-only transaction. However, in DMV each node maintains a single copy
of each transactional item. Therefore, the system delays applying (local or re-
mote) updates to the transactional items in order to maximize the probability of
not having to invalidate the snapshot of any active transaction, and thus forcing
them to abort. Updates are only applied when it is strictly necessary.

DMV is proposed on two cluster configurations: (i) a completely decentral-
ized, update-anywhere configuration, with no scheduler support and (ii) a cen-
tralized, master-update configuration, with scheduler support. In the following
paragraphs, we briefly describe how data consistency and conflict resolution are
handled in both approaches.

Update-Anywhere The update-anywhere replication protocol works on to-
tally decentralized configurations, on which read-only transactions are executed
locally and update transactions perform modifications that are applied cluster-
wide.

In order to maintain data consistency, at commit time, an update transac-
tion (i) creates a new cluster-wide version for the transactional memory, (ii)
it broadcasts to all other nodes the modifications made in the form of a diff,
which is tagged with a unique system-wide (monotonically increasing) identifier
that represents the version of the newly created transactional memory version
(this process is called diff flush) and finally, (iii) it waits for the acknowledg-
ments from all other nodes before committing the transaction locally. In order
to enforce a consistent serialization order of update transactions, each update
transaction obtains a unique system-wide token during commit, so that only one
transaction can perform a diff flush at any given time. All nodes receiving a diff
flush store it, immediately acknowledge its reception in order to minimize the
delay of the committing transaction, but delay the application of the received
modifications. These modifications are applied later, on-demand (lazily), upon
access to a stalled page. A page is considered stalled and needs to be updated
if its version number is lower than the locally maintained version number of the
last commit seen by the node.

Read-only transactions iteratively create a snapshot of the data they read
that reflects the state of the transactional memory at their beginning. This way,
no read-only transactions are affected by incoming diff flushes during their exe-
cution, as modifications are not applied until all ongoing conflicting transactions
are successfully committed.

15



Conflicts between two remote update transactions are detected when an in-
coming diff flush for a page accessed locally is received while an update trans-
action is executing at the local node. In this case, if any of the pages included
in diff flush were either written to or read by the local node, the local update
transaction is aborted and restarted. All transactions begin marked as being
read-only and are reclassified during execution, upon trying to modify a page.
The reclassification of a transaction implies a validation phase, in which the run-
time system checks if the transaction being validated has already ignored a diff
flush when reading a page, by not applying all the stored diffs to that page. If
this occurred, the transaction is restarted as an update transaction. Otherwise,
the transaction is reclassified and can safely continue its execution as an update
transaction.

Master-Update The master-update replication protocol supports conflict wait
avoidance. This scheme is composed by three components: a scheduler, a master
node and a set of slave nodes. The scheduler is aware of the type of transactions
and the versions that they are supposed to read. Based on this knowledge, it
schedules the execution of update transactions only on the master node and
distributes conflicting read-only transactions across the set of slave replicas.

As only the master node processes update transactions, it decides the global
serialization order. At commit time, an update transaction (i) creates a new
cluster-wide version for the transactional memory by generating a unique system-
wide (monotonically increasing) identifier for it, (ii) the master node broadcasts
to all slave nodes the modifications made in the form of a diff, which are tagged
with a previously generated unique identifier (i.e., it performs a diff flush) and
finally, (iii) it waits for the acknowledgments from all slave nodes before com-
mitting the transaction locally. As in the update-anywhere protocol, slaves ac-
knowledge incoming diff flushes immediately after receiving them and delay the
application of the received modifications, thus not delaying any longer the com-
mitting master node in order to favor scalability. When committing the update
transaction, the master node communicates the unique identifier of the trans-
action to the scheduler. The scheduler tags each read-only transaction with the
“newest” identifier that it knows and schedules it for execution on a slave. As in
the update-anywhere protocol, the slave that processes the read-only transaction
applies stored diffs when it recognizes stalled pages, based on the transaction’s
identifier.

Since the master node is responsible for processing all update transactions,
there are no conflicts between distributed update transactions (as there are no
distributed update transactions). However, read-only transactions that execute
at the same node in parallel, have non-disjoint read-sets and need different ver-
sions of the same data items, can incur in local conflicts, because one transaction
may update a page to a version that is “newer” than the version needed by other
executing transactions.

Discussion Distributed multiversioning presents a good cost-benefit relation.
Unlike classic local multiversioning, DMV does not impose the overhead of main-

16



taining multiple copies of the same item. However, local multiversioning is capa-
ble of providing wait and conflict-free read-only transactions, while in DMV the
success of a read-only transaction is dependent on the timing of the concurrent
accesses to data by conflicting transactions.

The pessimistic approach used in the update-anywhere protocol for the seri-
alization enforcement (i.e., distributed mutual exclusion) can seriously hamper
the system performance, considering that only one node commits at any time,
and that consequently, all other nodes can be blocked waiting for the token and,
thus, are not performing useful computation.

In the master-update scheme, the master node can become the performance
bottleneck, since it is responsible for the execution of all update transactions.

3.3.4 Cluster-STM

Cluster-STM [40] is a DSTM designed for high performance on large-scale
non-cache-coherent distributed systems such as commodity clusters. It addresses
the problem of performing an efficient distribution of the transactional memory
across the nodes. This is done by assigning a home node for each data item (a
scalar or an array element) which maintains an authoritative version of the item
and its metadata. Home nodes are also responsible for synchronizing the access
of conflicting remote transactions to the items they shelter.

Cluster-STM does not allow dynamic creation of execution contexts. The
system is bootstrapped with a fixed number of tasks, which cannot be greater
than the number of processors available, and no other tasks are created or de-
stroyed during the life of the program. Cluster-STM does not provide any local
concurrency control scheme and, therefore, each task can only execute one trans-
action at a time. However, tasks can request the execution of transactional code
on other processor in order to explore data locality, thus avoiding slow data
transfers.

Processors are treated as a flat set, i.e., there is no distinction between pro-
cessors within a node and processors across nodes. Cluster-STM does not feature
any replication scheme nor does it provide a coherent cache of transactional re-
mote items. Programmers in need of such features have to implement their own
schemes at the application-level.

Discussion By treating processes as a flat set, Cluster-STM discards the op-
portunity to take advantage of shared memory among processes within the same
node and thus avoid the overhead imposed by message passing communication.
This problem could have been minimized by exploring local concurrency, which
is unfortunately not supported. The non-exploitation of multiversioning can lead
to a significant amount of aborts of read-only transactions. Leaving replication
and caching mechanisms for programmers is heavy burden for those that develop
applications which demand any of these features.

17



3.3.5 DiSTM

DiSTM [41] is a DSTM built of two core components: a transactional execu-
tion engine, an extended version of the DSTM2 [45] and a remote communication
system that is based on the ProActive framework [46]. The implementation relies
on a central master node, which is responsible for coordinating the execution of
the cluster.

Being based on DSTM2, DiSTM executes all transactions optimistically.
When a transaction updates an object, instead of directly modifying the ac-
tual object, a cloned version of the object is used, which is kept private until the
transaction commits.

The commit phase is preceded by a validation phase where conflicts are
detected and resolved. The validation phase also has to guarantee the transac-
tional coherence of the cluster. If a transaction passes the validation phase, it can
commit safely, making its changes public. Each node of the cluster maintains a
cached version of the transactional data-set that is used by its local transactions.
DiSTM is responsible for keeping each cached data-sets coherent.

The key concept of the ProActive framework is the notion of active object.
Each active object has its own execution context and can be distributed over
the network, supporting both mobility and remote method invocation. Nodes
communicate among themselves through calls to active objects.

In the next paragraphs we briefly describe three distributed transactional
memory coherence protocols: a decentralized one called Transactional Coherence
and Consistency (TCC) [21] and two centralized, based on the concept of leases.

Transactional Coherence and Consistency TCC works in decentralized
configurations, where each node proposes transactions to the cluster.

When a transaction wishes to commit, (i) it broadcasts to all other nodes
its read-set and write-set which goes tagged with a previously acquired unique
system-wide (monotonically increasing) identifier from the master node, that
represents the order of the transaction within the global serialization order (this
phase is called pre-commit), (ii) it waits for the result of the remote validation
that occurs in all other nodes and finally, (iii) based on the result of the remote
validation phase, it either commits or aborts and is rescheduled. Upon remote
validation, the transaction’s read and write-sets are compared against the read
and write-sets of the transactions executed on a remote node (local transactions),
resulting in one of three possible scenarios:

1. There is no conflict: No transaction is aborted. The remote node reports
to the committing node that, from its side, the transaction can commit safely.

2. There is a conflict with a “younger” local transaction: As valida-
tion is done in a serial fashion against all local transactions in execution, the
identifier of the “younger” conflicting transaction, i.e., one that has a greater
global serialization number, is saved in a list and the validation phase contin-
ues. If later the validation phase of the remote transaction detects a conflict
with an “older” local transaction then, (i) its validation immediately fails,

18



(ii) the failure is reported to the committing node and finally, (iii) the conflict
list is discarded and all the “younger” transactions in it can proceed safely.
Otherwise, if the remote transaction does not conflict with any “older” local
transaction then, (i) its validation succeeds, (ii) the success is reported to the
committing node and finally, (iii) all the “younger” transactions present in
the conflict list are aborted and rescheduled. This scheme avoids unnecessary
aborts of younger transactions.

3. There is a conflict with an “older” local transaction: (i) The remote
transaction’s validation immediately fails, (ii) the conflict list is discarded
and the committing node is informed of the failure.

A transaction that has passed the validation phase successfully must make
its changes visible cluster-wide. TM coherence is assured by a master-centric,
eager approach. After making its changes visible locally, the transaction updates
the global data-set that is kept at the master node. In turn, the master eagerly
updates all the changed data-sets on the rest of the nodes of the cluster. Upon
updating the cached data-sets, a new validation phase occurs, which discovers
and aborts the transactions that have not read the most up-to-date values from
the cached data-set.

Serialization Lease The role of the lease is to serialize the transactions’ com-
mits in the cluster and, therefore, to avoid the expensive broadcast of transac-
tions’ read and write-sets for validation purposes. Each transaction that passes
the local validation phase requests the unique cluster-wide lease from the master
node and blocks until getting it. If no other transaction possesses the lease, the
master node gives it to the requesting transaction, otherwise it places the request
in a queue. When the transaction of the lease owner commits, it (i) updates the
global data-set kept at the master node, which eagerly updates all the changed
data-sets on the rest of the nodes of the cluster, and (ii) releases the lease. Upon
updating the cached data-sets, a validation phase occurs, which discovers and
aborts the transactions that have not read the most up-to-date values from the
cached data-set. After the lease is effectively released, the master node gives it
to the next, non-aborted transaction that is waiting in the queue.

Multiple Leases Unlike the previous scheme, in this multiple leases are assigned
for transactions that attempt to commit, so multiple transactions may commit
in parallel, but only if they do not conflict with each-other. Every transaction
that passes the local validation phase requests a lease from the master node,
which will validate the committing transaction locally (i.e., at the master node),
against all other transactions that own a lease at the given time. If a conflict is
discovered, the transaction aborts and restarts, otherwise a lease is conceded to
the transaction. When a transaction that owns a lease commits, it (i) updates the
global data-set kept at the master node, which eagerly updates all the changed
data-sets on the rest of the nodes of the cluster, and (ii) releases the lease. Upon
updating the cached data-sets, a validation phase occurs, which discovers and
aborts the transactions that have not read the most up-to-date values from the
cached data-set.

19



Discussion As DiSTM does not exploit multiversioning, the abort rate for
read-only transactions, which typically dominate realistic workloads, can be sig-
nificant. The lack of fault-tolerance guarantees represents additional complex-
ity for programmers that develop applications which demand them. All three
distributed TM coherence protocols have scalability issues. The TCC proto-
col imposes two broadcasts along the critical path of the commit phase, which
translates in long commit phases. The serialization lease protocol minimizes the
number of broadcasts needed in the TCC protocol, but forces transactions to
acquire a unique cluster-wide lease from the master node, making it the bottle-
neck for acquiring and releasing the lease. Furthermore, committing transactions
have to block until they acquire the lease and the master node may attempt to
assign it to a transaction that has aborted due to a conflict with the last com-
mitting transaction. The multiple leases protocol effectively reduces the time
that a transaction takes to acquire a lease, but since every transaction has to
be validated by the master node, it again becomes the bottleneck. Moreover, in
the presence of conflict intensive workloads, the benefits of the multiple leases
scheme diminishes, since fewer transactions are allowed to commit in parallel.

3.3.6 D2STM

Distributed Dependable Software Transactional Memory (D2STM) [42] ad-
dresses the problems of how to boost performance and enhance fault-tolerance
on DSTMs. It is built on top of the JVSTM [27] transactional engine. D2STM
includes a replication manager that relies on the properties of the AB primitive
for group communication. All nodes in the cluster maintain a full copy of the
transactional memory.

D2STM provides a conventional STM interface that transparently ensures
non-blocking and strong consistency guarantees (i.e., one-copy serializability)
even in the presence of failures. It provides all the properties of the JVSTM
(described in Section 3.2.4).

The replica synchronization scheme employed, called Bloom Filter Certifica-
tion (BFC), can be classified as a non-voting certification scheme that exploits
a bloom filter based encoding [47] of the transactions’ read-set. In the following
paragraphs we briefly describe how BFC works.

Bloom Filter Certification A bloom filter is a probabilistic data structure
with a tunable size that is used to test whether an element is member of a set.
Queries to the bloom filter can result in false positives (i.e., a query for a certain
item may indicate that it is member of the set when it is not), but never in false
negatives. The more elements that are added to a set, the larger the probability
of false positives. Conversely, the greater the size of the bloom filter, the lower
the probability of false positives occur for the same number of elements.

A committing transaction with a non-empty write-set is first locally vali-
dated by the JVSTM. If it passes the local validation phase it is submitted
for distributed certification. The replication manager begins by encoding the
transaction’s read-set in a bloom filter. After that, it AB-casts the transaction’s

20



write-set (which is not encoded in a bloom filter) and read-set (encoded as a
bloom filter) to all other nodes in the cluster. Upon the AB-delivery, the trans-
action is validated at all nodes. This cluster-wide validation phase consists in
checking if the items in the write-sets of all the transactions that were committed
after the committing transaction has started, are in the committing transaction’s
read-set. If no match is found, the transaction can commit safely. Otherwise the
committing transaction is aborted and restarted.

Given that the validation phase requires the availability of the write-sets
of all concurrent transactions previously committed that may invalidate any
of the active transactions, the replication manager maintains a set containing
those transactions. The set of transactions required is known because each node
broadcasts (as a piggyback to the AB-cast transaction validation message) the
identifier of the lowest version of the transactional memory that is still being
used by a locally active update transaction.

Discussion By providing full replication of the transactional set, D2STM
presents itself as a suitable platform for the development of systems with strong
consistency and high availability requisites.

Bloom filter based encoding effectively help to reduce the amount of infor-
mation that is broadcast in the cluster. This is a determinant factor for the
performance of the AB primitive and leads to a significant reduction of the over-
head associated with the transaction certification phase. Providing abort and
wait-free read-only transactions is a very important feature, since most realis-
tic transaction-processing workloads are read-dominated. However, D2STM does
not overlap communication and processing phases, as it does not exploit early
indications provided by an OAB primitive. Another weakness is that the write-
sets are applied in a serial fashion, which can result in unused computational
resources.

The architectural design of D2STM is clean and simple. Its major bottle-
necks are the AB-cast service and the validation phase, as they both represent
a significant overhead.

3.3.7 AGGRO

AGGRO [43] is an active replication protocol that aims at maximizing the
overlap between communication and processing through an AGGRessively Op-
timistic concurrency control scheme.

The key idea underlying AGGRO is to propagate modifications across un-
committed transactions, according to a serialization order that is compliant with
the optimistic message delivery order provided by an OAB primitive, through
which replicas exchange information. While most concurrency control schemes
that make use of optimistic deliveries block conflicting transactions until their
final order is known, AGGRO propagates the updates of yet uncommitted (but
complete) transactions to the succeeding transactions. This optimistic scheme
allows the processing of any transaction while its final order is yet unknown and
is being defined in background.

21



AGGRO supports dynamic transactions, performs early conflict detection
and uses a deferred update strategy. It assumes that the transactions are snap-
shot deterministic [48], i.e., when a given transaction is re-executed (due to a
previous abort) over a given version of the transactional memory, and there-
fore always reads the same values, then it behaves deterministically by always
executing the same set of read and write operations.

The Protocol A transaction can be in one of four possible states: active (i.e.,
executing), complete (i.e., committing), committed or aborted. The definition of
these states made in Section 3.1.3 holds for the AGGRO protocol.

Each transactional item X maintained by the transaction manager is associ-
ated with a set of versions {X1, ..., Xn}. Only a single version of a transactional
item is committed at any time. However, a version that has been written by an
uncommitted transaction can be in one of two possible states: work-in-progress
(WIP) or complete.

– WIP: the version was created by a currently active transaction. Its value is
only visible for the transaction that has created it.

– Complete: the version was created by a transaction that is in the complete
state. Its value is available for the transactions that succeed the transaction
that wrote it.

When the transaction manager receives a request from the overlying appli-
cation requesting the execution of a transaction, it OAB-casts the transaction
itself and blocks until the message containing the transaction is OAB-delivered.
Upon the OAB-delivery, the transaction is activated.

All read and write operations to transactional items are trapped by the trans-
action manager, in order to perform a controlled propagation of complete ver-
sions across transactions and also do conflict detection.

When the transaction is AB-delivered, the transactional manager waits until
the transaction completes. After that, it checks if there exist any conflicts due to
a mismatch between the OAB-delivery order and the AB-delivery order. In case
the AB-delivered transaction has read a value written by a transaction that does
not precede it, the AB-delivered transaction has to abort. Aborting a transaction
clears all its uncommitted versions and spawns a new thread to re-execute it.

Discussion Being a pure active replication protocol, AGGRO leads to a great
amount of redundant computation. By sticking to the OAB-delivery order for the
optimistic serialization order, AGGRO may not perform as well with conflict-
intensive workloads in a network environment with a very high percentage of
out-of-order messages, since it will not be able to effectively overlap computation
with communication. Moreover, it will impose a greater computational overhead
due to the execution of cascading rollbacks.

22



Fig. 1. Components of the typical architecture of a DSTM-based application

4 Architecture

4.1 Overview

Figure 1 illustrates the typical architecture that we want to target with our
speculative replication protocol. Each application-server of the cluster is com-
posed by the following components:

– Application: represents the logic implemented by the programmer. It re-
quests the execution of transactional code to the software transactional mem-
ory.

– Software Transactional Memory: responsible for the processing of the
incoming requests from the application-logic.

– Replication Manager: responsible for replicating and maintaining the
transactional data-set consistent across the cluster.

– Group Communication Service: responsible for the group communica-
tion support and for ensuring the atomic broadcast properties.

Although this is a generic architecture, we will consider the concrete case
where we are targeting the Fénix framework [4]. Therefore, the software trans-
actional memory is the JVSTM [27], the STM replication manager is under
development at the Distributed Systems Group and the Software Engineering
Group of INESC-ID, and the group communication service is the Appia frame-
work [6].

A transaction is started whenever the application requests it to the STM.
When the application requests the commit of a transaction, the STM replication
manager has to do it globally. The replication manager is responsible for ensuring

23



the consistency of the transactional memory among all replicas, which is achieved
through a certification protocol. The transaction is first submitted to a local
validation process and if it succeeds, the transaction’s write-set or data-set is
broadcast, depending on whether the certification protocol is a voting or a non-
voting scheme, respectively. The transaction is then validated at all replicas, in
a deterministic process that outputs the decision of either to abort or commit
the transaction. Although both voting and non-voting schemes can be used, in
this report we assume the use of a non-voting scheme.

We want to provide the ability to perform the global commit of a transaction
in background, allowing the application to continue its execution. For this, we
propose the use of a speculative replication protocol that ensures the consistency
of the transactional memory in the presence of speculative modifications, i.e.,
although the transactions may execute over an inconsistent state, the transaction
manager ensures that invalid changes are never seen outside the system. The
implementation of this strategy faces at least three big challenges, as we discuss
next.

4.2 Challenges

Firstly, this scheme is only effective in presence of sequences of transactions,
i.e., a execution flow that is composed by a series of transactions, which does
not represent the majority of the code written by programmers for applications.
Typically, an STM-based application is composed by transactional code inter-
leaved with non-transactional code. To tackle this problem we will transactify
non-transactional code in an automatic fashion. This can be done at either the
source code level, or the byte-code level. A possible way is to adapt the work
of Anjo in [49] to our needs, i.e., we only want to transactify portions of non-
transactional code that reside in the middle of already existent transactions
and not the whole application, nor we need automatic parallelization. Although
transactional code executes slower than its non-transactional counterpart, we
expect that, in the long run, the cost will be compensated.

A transaction that results from the automatic transactification process may,
or may not update the replicated transactional state. If it does not, then there
is nothing to commit globally, so the transaction is strictly local. However, if it
does, it must be committed globally. Therefore, the replication manager has to
be able to distinguish between items of the replicated transactional data-set and
items from the local transactional data-set.

The second challenge is the need to propagate the modifications made by yet
uncommitted transactions to its succeeding transactions. This will be done in a
process similar to what is employed in AGGRO (described in Section 3.3.7).

We assume that transactions are snapshot deterministic (described in Section
3.3.7) since otherwise, i.e., if the writes made by a transaction do not uniquely
depend on the values that it reads, then we cannot consider legal the writes
made by transactions that, although were successfully validated globally, may
have been executed over an inconsistent state. This happens because we cannot

24



guarantee that a transaction will produce the same result if it is re-executed over
a state that is guaranteed to be consistent.

Transactions can be in one of four possible states: active (i.e., executing),
complete (i.e., committing), committed or aborted. The definition of these states
presented in Section 3.1.3 holds for our protocol. Uncommitted versions of trans-
actional data items can be in one of two possible states: work-in-progress (WIP)
or complete. The definition of these states is presented in Section 3.3.7.

When a transaction starts at its local node, it is placed in a set of transactions
in the active state. Immediately upon an active transaction modifies an item, it
creates/modifies a version for that item. This version is marked as WIP and can
only be accessed by the transaction that created it. When a transaction reads
from an item and accesses a version in the complete state, the read operation
establishes a dependency between the reading transaction and the transaction
that wrote the uncommitted value. After the application requests that the trans-
action be committed, it is first locally validated. If the local validation fails, the
transaction has to be aborted. Otherwise, if the local validation succeeds, the
transaction is removed from the set of active transactions, is placed in a set for
transactions in the complete state and all the versions in its write-set change
from WIP to the complete state. Subsequently, the certification phase begins,
leading to the broadcast of the transaction’s data for global validation.

If the global validation succeeds, the transaction may commit at all nodes.
Beyond applying the transaction’s updates, the node that executed the trans-
action has to perform further actions. It removes the transaction from the set
of completed transactions, all the items in the transaction’s write-set change
from the complete state to the Committed state, and all speculative depen-
dencies among the committed transaction and other transactions are removed.
After that, the replication manager tries to globally commit the next completed
transaction that has no speculative read dependency.

If the global validation fails, the transaction has to be aborted. This leads to
a cascading rollback process, because the transaction manager has to abort all
the transactions that have read from versions created by the aborted transaction,
in order to ensure the consistency of the transactional memory.

The third challenge is related with the second. A transaction in the complete
state may have been executed over an inconsistent state, since it may have read
from versions created by other transactions in the complete state. Therefore,
without further work, its global commit cannot be requested until all the versions
in its read-set are in the committed state. Besides this, the commit order has
to respect the serial execution order. A solution for this problem may include
an immediate commit of each transaction after its execution completes, and
plugging additional information to its validation message that tells from which
transactions it depends. We will be looking for more ways to overcome this
problem.

25



5 Evaluation

The performance of the proposed replication protocol will be assessed with
well established benchmark suites for transactional systems, such as:

– TPC-W: [50] is a transactional web benchmark. The workload is performed
in a controlled internet commerce environment that simulates the activities
of a business oriented transactional web server. The workload exercises a
breadth of system components associated with multiple environments.

– Lee-TM: [51] is a non-trivial benchmark suite for TM systems based on the
well known Lee’s routing algorithm used in circuit routing. Lee’s routing al-
gorithm has many of the desirable properties of a non-trivial TM benchmark
such as large amounts of parallelism, complex contention characteristics, and
a wide range of transaction durations and lengths.

– STMBench7: [52] consists of a set of graphs and indexes intended to be
suggestive of many complex applications, e.g., CAD/CAM. A collection of
operations is supported to model a wide range of workloads and concurrency
patterns.

These benchmarks will have to be adapted for the JVSTM programming
model. We will use an already developed implementation of a protocol with sim-
ilar characteristics (i.e., certification-based, non-voting) that does not perform
any speculative execution. Its results will serve as base to assess the efficiency
of our speculative replication protocol.

The performance metrics that will be analyzed are:

– Throughput (transactions per second)
– Response time (microseconds)
– Transactions’ abort rate (percentage)

These metrics will allow us to evaluate the protocol scalability and its be-
havior under various workloads with distinct characteristics.

6 Scheduling of Future Work

Future work is scheduled as follows:

– January 7 - March 29, 2011: Detailed design and implementation of the
proposed architecture, including preliminary tests.

– March 30 - May 3, 2011: Perform the complete experimental evaluation of
the results.

– May 4 - May 23, 2011: Write a paper describing the project.
– May 24 - June 14, 2011: Finish the writing of the dissertation.
– June 14, 2011: Deliver the MSc dissertation.

26



7 Conclusions

In this report we surveyed a number of subjects related to software trans-
actional memory replication. We started with the description of fundamental
knowledge of replication, such as models, group communication and database
replication. We proceeded to STM concepts, properties, and briefly described
two proposals. The survey ends with the description of challenges for efficient
STM replication and DSTM proposals.

The survey of the related work and the resulting analysis motivated the
proposal of the architecture here presented, for a novel replication protocol for
transactional systems that employs a speculative scheme, in order to boost the
system performance. We identified some challenges in the implementation of the
proposed architecture.

The report concludes with a description of the evaluation methodology to be
applied to our solution and a scheduling for the future work.

Acknowledgments

I am grateful to my advisor, professor Lúıs Rodrigues, to all the Distributed
Systems Group team, namely to Nuno Carvalho, Paolo Romano, Maria Cou-
ceiro, Pedro Ruivo, Xavier Vilaça, Nuno Machado and João Paiva, and also
to the Software Engineering Group team, namely to Ivo Anjo, for the fruitful
discussions, comments and support during the preparation of this report. This
work was partially supported by project “ARISTOS”, under the FCT grant
(PTDC/EIA-EIA/102496/2008).

References

1. Moore, G.E.: Cramming More Components Onto Integrated Circuits. Proceedings
of the IEEE 86(1) (1998) 82–85

2. Cachopo, J.: Development of Rich Domain Models with Atomic Actions. PhD
thesis, Technical University of Lisbon (2007)

3. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software trans-
actional memory systems. In: Proceedings of the Workshop on Large-Scale Dis-
tributed Systems and Middleware (LADIS 2008), Watson Research Labs, Yorktown
Heights (NY), USA (September 2008) (invited paper).

4. IST: The Fénix Framework website. https://fenix-ashes.ist.utl.pt/trac/fenix-
framework

5. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
Taxonomy and survey. ACM Comput. Surv. 36 (December 2004) 372–421

6. Miranda, H., Pinto, A., Rodrigues, L.: Appia: A flexible protocol kernel support-
ing multiple coordinated channels. Distributed Computing Systems, International
Conference on 0 (2001) 707–710

7. Vitenberg, R., Keidar, I., Chockler, G.V., Dolev, D.: Group communication spec-
ifications: A comprehensive study. ACM Computing Surveys 33 (1999) 2001

8. Powell, D.: Group communication. Commun. ACM 39 (April 1996) 50–53

27



9. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. 5 (January 1987) 47–76

10. Lamport, L.: Ti clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21 (July 1978) 558–565

11. Kemme, B., Pedone, F., Alonso, G., Schiper, A., Wiesmann, M.: Using optimistic
atomic broadcast in transaction processing systems. Knowledge and Data Engi-
neering, IEEE Transactions on 15(4) (jul. 2003) 1018 – 1032

12. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15 (December 1983) 287–317

13. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distrib. Parallel Databases 14(1) (2003) 71–98

14. Schneider, F.B., Schneider, F.B.: Implementing fault-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys 22 (1990) 299–319

15. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery
in Database Systems. Addison-Wesley (1987)

16. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming. PPoPP ’05, New York, NY, USA, ACM
(2005) 48–60

17. Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift, M.M.,
Wood, D.A.: Supporting nested transactional memory in logTM. SIGOPS Oper.
Syst. Rev. 40 (October 2006) 359–370

18. Martin, M., Blundell, C., Lewis, E.: Subtleties of transactional memory atomicity
semantics. IEEE Comput. Archit. Lett. 5 (July 2006) 17–

19. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming. PPoPP ’08, New York, NY, USA, ACM (2008) 175–184

20. Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Unbounded
transactional memory. In: Proceedings of the Eleventh International Symposium
on High-Performance Computer Architecture. (Feb 2005) 316–327

21. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg, B.,
Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. SIGARCH Comput. Archit. News 32 (March 2004)
102–

22. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture. (May 1993) 289–300

23. Tomic, S., Perfumo, C., Kulkarni, C., Armejach, A., Cristal, A., Unsal, O., Harris,
T., Valero, M.: EazyHTM: Eager-lazy hardware transactional memory. In: MI-
CRO ’09: Proceedings of the 2009 42nd IEEE/ACM International Symposium on
Microarchitecture. (2009)

24. Bobba, J., Goyal, N., Hill, M.D., Swift, M.M., Wood, D.A.: TokenTM: Efficient
execution of large transactions with hardware transactional memory. In: Proceed-
ings of the 35th Annual International Symposium on Computer Architecture. (Jun
2008)

25. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the 14th
ACM Symposium on Principles of Distributed Computing. (Aug 1995) 204–213

26. Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Cao Minh, C., Hertzberg, B.: McRT-
STM: a high performance software transactional memory system for a multi-core
runtime. In: Proc. 11th ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPoPP ’06). (Mar 2006) 187–197

28



27. Cachopo, J., Rito-Silva, A.: Versioned boxes as the basis for memory transactions.
Sci. Comput. Program. 63(2) (2006) 172–185

28. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Object-
Oriented Programming, Systems, Languages, and Applications. (Oct 2003) 388–
402

29. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: DISC ’06: Proc.
20th International Symposium on Distributed Computing. (Sep 2006) 194–208
Springer-Verlag Lecture Notes in Computer Science volume 4167.

30. Tabba, F., Wang, C., Goodman, J.R., Moir, M.: NZTM: Nonblocking, zero-
indirection transactional memory. In: Workshop on Transactional Computing
(TRANSACT). (2007)

31. Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.: Hy-
brid transactional memory. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). (2006) 336–346

32. Kumar, S., Chu, M., J. Hughes, C., Kundu, P., Nguyen, A.: Hybrid transactional
memory. In: Proceedings of Symposium on Principles and Practice of Parallel
Programming. (Mar 2006)

33. Dice, D., Shavit, N.: Understanding tradeoffs in software transactional memory.
In: CGO ’07: Proceedings of the International Symposium on Code Generation
and Optimization. (mar 2007) 21–33

34. Ennals, R.: Software transactional memory should not be obstruction-free. Tech-
nical Report IRC-TR-06-052, Intel Research Cambridge Tech Report (Jan 2006)

35. Marathe, V.J., Iii, W.N.S., Scott, M.L.: Design tradeoffs in modern software trans-
actional memory systems. In: In Proceedings of the 7th Workshop on Languages,
Compilers, and Run-time Support for Scalable Systems, ACM Press (2004) 1–7

36. Marathe, V.J., Iii, W.N.S., Scott, M.L.: Adaptive software transactional memory.
In: In Proc. of the 19th Intl. Symp. on Distributed Computing. (2005) 354–368

37. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

38. Moss, J.E.B., Hosking, A.L.: Nested transactional memory: model and architecture
sketches. Sci. Comput. Program. 63 (December 2006) 186–201

39. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: Proceedings of the eleventh ACM
SIGPLAN symposium on Principles and practice of parallel programming. PPoPP
’06, New York, NY, USA, ACM (2006) 198–208

40. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory
for large scale clusters. In: Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming. PPoPP ’08, New York, NY,
USA, ACM (2008) 247–258

41. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: Distm:
A software transactional memory framework for clusters. In: Proceedings of the
2008 37th International Conference on Parallel Processing. ICPP ’08, Washington,
DC, USA, IEEE Computer Society (2008) 51–58

42. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2stm: Dependable dis-
tributed software transactional memory. Pacific Rim International Symposium on
Dependable Computing, IEEE 0 (2009) 307–313

43. Palmieri, R., Quaglia, F., Romano, P.: AGGRO: Boosting STM replication via
aggressively optimistic transaction processing. Network Computing and Applica-
tions, IEEE International Symposium on 0 (2010) 20–27

29



44. Palmieri, R., Quaglia, F., Romano, P., Carvalho, N.: Evaluating database-oriented
replication schemes in software transactional memory systems. In: Parallel Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE Interna-
tional Symposium on. (april 2010) 1 –8

45. Herlihy, M., Luchangco, V., Moir, M.: A flexible framework for implementing
software transactional memory. SIGPLAN Not. 41 (October 2006) 253–262

46. Baduel, L., Baude, F., Caromel, D., Contes, A., Huet, F., Morel, M., Quilici, R.:
Programming, Composing, Deploying for the Grid. In Cunha, Jose C.; Rana, O.F.,
ed.: Grid Computing: Software Environments and Tools. Springer (2006) 205 –
229

47. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13 (July 1970) 422–426

48. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: Brief announce-
ment: on speculative replication of transactional systems. In: Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures. SPAA ’10,
New York, NY, USA, ACM (2010) 69–71

49. Anjo, I.F.S.D.: JaSPEx: Speculative Parallelization on the Java Platform (novem-
ber 2009)

50. Garćıa, D.F., Garćıa, J.: TPC-W E-Commerce Benchmark Evaluation. Computer
36 (February 2003) 42–48

51. Ansari, M., Kotselidis, C., Watson, I., Kirkham, C., Luján, M., Jarvis, K.: Lee-tm:
A non-trivial benchmark suite for transactional memory. In: Proceedings of the 8th
international conference on Algorithms and Architectures for Parallel Processing.
ICA3PP ’08, Berlin, Heidelberg, Springer-Verlag (2008) 196–207

52. Guerraoui, R., Kapalka, M., Vitek, J.: Stmbench7: a benchmark for software trans-
actional memory. SIGOPS Oper. Syst. Rev. 41 (March 2007) 315–324

30


