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Abstract—This paper describes and evaluates SPECULA,
a distributed and replicated software transactional memory
system based on a certification scheme. This system tackles
the negative effects of network latency, through the optimistic
execution of code. Transactions are executed on a single node,
in an uncoordinated fashion, and the result of their local
validation is used as a prediction of the result of the final vali-
dation. The results of speculatively executed transactions (i.e.,
the modifications to the transactional state) are made visible to
future transactions in an optimistic fashion. This speculative
process repeats itself, creating a chain of speculatively executed
transactions. If the final validation of a speculatively committed
transaction allows it to commit system-wide, its result is made
definitive; otherwise, a cascading abort takes place and the
system restarts its execution in the state that preceded the mis-
speculation. This speculative behavior is fully transparent for
both the application and the programmer. The proposed design
was evaluated using STMBench7, a well known benchmark
that exercise very different scenarios.

I. INTRODUCTION

The mainstream adoption of multiprocessor systems has
brought parallel programming to the center of the main
stage. For a very long time, application developers relied
on the free lunch offered by the increase in single processor
performance, and were able to avoid the pains of parallel
programming. That time has come to an end.

Software Transactional Memory (STM) is an abstraction
that eases the life of programmers dealing with concurrent
data access. When using a STM, the programmer is freed
from having to explicitly deal with concurrency control
mechanisms. Instead, he only has to identify the sequences
of operations that need to access shared data in an atomic
fashion (i.e., transactions). Given that the use of low-
level concurrency control mechanisms such as locks and
semaphores is known to be extremely error prone [1], the use
of STM has the potential to increase the code’s reliability,
and to shorten the software development cycles.

Although STM was first proposed for cache-coherent
shared memory architectures, the need to increase the scal-
ability and fault-tolerance of STM-based systems has mo-
tivated the development of distributed and replicated STM
implementations.

This work addresses the problem of building efficient

Distributed Software Transactional Memory (DSTM) im-
plementations that are fully replicated by presenting SPEC-
ULA, a system that explores the notion of possibly useful
(speculative) computation to tackle the negative impact of
network latency on the throughput Distributed and Repli-
cated Software Transactional Memory (DRSTM) systems.

The remainder of the paper is organized as follows. In
Section II we introduce state-of-art DSTMs. In Section III
we present SPECULA, the system that aims to solve the
problem we identify. Section V contains the evaluation of
the prototype that we developed for the JVM platform.
Finally, in Section VI we conclude this paper with some
final remarks.

II. RELATED WORK

There exist some replication schemes specifically tailored
for DRSTMs, namely BFC [2], AGGRO [3] and SCert [4].
BFC (Bloom Filter Certification) is a certification-based
replication protocol that has as its main characteristic the
encoding of read-sets into Bloom filters [5], a probabilistic
data structure, as way of reducing the size of the messages
exchanged among nodes, and consequently, the duration of
inter-node communication.

AGGRO (AGGRessively Optimistic) is an active replica-
tion protocol that explores early indications from the net-
work layer to execute transactions in a speculative fashion.
It leverages on the fact that in LAN environments, the natural
message delivery order typically matches the delivery order
defined by Atomic Broadcast (AB) protocols. Speculatively
executed transactions propagate their write-sets to future
transactions, creating a chain of speculative dependencies.
In case of mismatch, i.e., the the optimistic delivery order
and the AB delivery order are not equivalent, the system
performs a cascading rollback, aborting all invalid transac-
tions.

SCert (Speculative Certification) works similarly to AG-
GRO, but it is a certification-based replication scheme.
By propagating the write-sets of speculatively committed
transactions to future ones, SCert effectively reduces the
abort rate of transactions, as more of them fed with non-
stalled data.
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III. SPECULA
A. The Problem

The main motivations behind the creation of DRSTMs
are scalability and reliability. Regarding scalability, a com-
modity cluster is much cheaper than a supercomputer, but
it is also typically much more difficult to scale systems
horizontally than vertically, due to the cost of inter-node
communication. Regarding reliability, high-availability req-
uisites are very common in real world applications. However,
high-availability must be achieved at the minimum possible
cost, thus replication protocols should be simultaneously
effective and efficient.

Most replicated systems communicate through some sort
of computer network. Due to distance and medium propaga-
tion speed, computer networks feature much higher latency
and lower bandwidth than the bus of a computer. This
means that if a computer stops executing to communicate
with another node, it is wasting the possibility to execute
millions of instructions, as it is just sending or receiving data.
Therefore, programmers struggle to minimize the effect of
the communication latency, either by reducing the number of
communication steps or the amount of data to exchange, or
by overlapping communication with useful computation. In
this context, the cost of the communication can be measured
by the number of instructions that could be executed while
the process is waiting for the communication exchange to
terminate.

Certification-based replication schemes have shown to
offer good performance on multi-master database environ-
ments. In those settings, there are several sources of de-
lay. First, transaction processing is subject to pre-execution
stages like parsing and query optimization. Second, database
transactions are required to access stable storage syn-
chronously. These effects dilute the costs induced by com-
munication. It is worth noticing that in certification-based
replication most communication costs are associated with
the execution of an atomic broadcast primitive, that can take
two or more communication steps and requires the exchange
of multiple messages [6].

In a DRSTM, many of the costs above are not present.
This amplifies the relative cost of communication. Therefore,
naive ports of DBMSs protocols to the DRSTMs may
offer poor performance [8]. Figure 1 depicts the transaction
execution times observed in two benchmarks, STMBench7
and TPC-W, being the former for STMs and the later
for DBMSs. As we can see, almost 80% of all memory
transactions executed in the STMBench7 benchmark took
less than 1 ms to finish, while a similar percentage of
database transactions executed in the TPC-W benchmark
needed almost 10 ms.

There are several approaches to mitigate the performance
loss due to costs involved in inter-replica coordinations:

• One approach consists in reducing the amount infor-
mation exchanged in the messages, to speed up the
message exchange. This can be achieved using some
encoding techniques, such as Bloom filters. This is the
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Figure 1: Execution time of database and memory transac-
tions [7].

approach used by D2STM, and experimental results
show that it is an effective solution [2].

• Another approach would be to start a speculative com-
mit when the transaction begins, in an attempt to run
most of the coordination in parallel with the compu-
tation of the transaction. This approach has several
limitations. First it requires the read and write set
of the transaction to be accurately estimated, which
is generally hard (unless the system is restricted to
use static transaction). Another disadvantage is that
coordination is still much slower than computation, so
the process would be required to wait in any case. The
experimental results in [8] show communication taking
around 6 to 26 times more time than execution when
considering an AB-delivery time of 2 ms. To put these
results in a different perspective, conducting the same
tests over the same network environment, but with 10
times faster machines, will result in a speedup varying
between around 1.03 and 1.14, which truly reflects
the amount of computational power that is wasted by
standard solutions.

• A third alternative consists in using speculation in the
coordination protocol to start the certification of the
transaction earlier, and proceed with the (speculative)
execution of other transactions before the final outcome
of the coordination is known. On LAN networks,
experimental results show that the OAB-delivery order
matches the AB-deliver order around 85% of the time
[9]. This property establishes an upper bound on the
amount of mis-speculations that can occur. SCert [4]
uses this approach.

In this work we propose a novel approach, that builds on
the strategies listed above but aims at exploring in higher
degree the idea of executing transactions speculatively.
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(a) Normal execution of a thread.

(b) Execution of a thread in SPECULA.

Figure 2: Comparison between SPECULA and the normal
execution of a thread.

B. The Solution

Certification-based replication is an optimistic scheme. A
transaction tx is locally executed assuming that there will
be no conflicts with other transactions, and that, therefore,
tx will commit. Only when the transaction terminates, will
coordination with other nodes be established. On systems
using standard certification-based replication schemes, while
tx is being certified, the thread that is committing it stays
blocked. The system that we propose here, named SPEC-
ULA, avoids blocking by letting the thread run based on a
speculative snapshot of the system state (this snapshot may
be invalidated when coordination is completed).

SPECULA integrates with a certification-based replication
protocol and extends its default level of optimism. Figure 2b
depicts the optimistic process, and we can compare it to a
classic execution depicted in Figure 2a. In SPECULA, if
transaction tx is locally valid, it is speculatively committed
before the results of its global validation are known. This
allows the committing thread to unblock and execute code
while slow inter-node communication is taking place in
background. New transactions can be executed in the same
thread while tx is being certified. This creates a flow
dependency among transactions. Both those transactions and
concurrent ones gain access to the snapshot created upon
the speculative commit of tx, so they can also depend on
previous speculations, by reading speculatively committed
data.

The trade-off of being more optimistic is having to undo
more modifications when mis-speculations occur, i.e., when
the global validation of a speculatively committed transac-
tions fails. SPECULA has the ability to undo changes made
to both the transactional and the non-transactional data of
the application. Moreover, it resumes execution where the
wrong speculation was initially performed.

Ideally, all speculation should be transparent for both the
programmer and the application. It is also crucial that it
guarantees the correct execution of the application, which
means that the application should present the exact same
behavior as if it was running over a non-speculative envi-
ronment. As it will become clear later in the text, SPECULA
achieves these goals, by controlling both the memory and the
execution flow of the application.

IV. SYSTEM ARCHITECTURE

Class Loader

JVM Continuations

Replication Manager

Group Communication Service

STM Speculative 
Extensions

Distributed STM Interface

Application

Speculation 
Manager

Figure 3: The system’s architecture.

The architecture of each SPECULA replica is depicted in
Figure 3, in which the components that are either new or
that we have modified are highlighted in bold. These new
and modified components add the following functionality to
the system:

• The transactional engine was modified to support the
notion of speculative state. SPECULA propagates the
write-sets of speculatively executed transactions to their
following transactions, while ensuring the correctness
properties described in Section IV-A.

• The SPECULA approach requires that, in case of
mis-speculation, it is possible to rollback the state of
the application. This means undoing writes made to
both transactional and non-transactional shared state,
as well as rolling back the execution flow of threads
that executed the aborted transactions, all in a way
that preserves the system’s correctness. To do this, we
use a modified JVM that has support for capturing
and resuming continuations [10], and developed Class
Loader that makes modifications to classes prior to
loading them. The STM was also enhanced with the
ability to rollback changes made to the transactional
state.

• The replication protocol was modified to be aware
of the existence of speculative transactions, as their
presence requires the execution of preventive measures,
in order to preserve the correctness of the system.

It is possible to rely on a set of different technologies
to implement all the functionalities described above. For
our prototype, we decided to use the following software
components: the JVM is a modified version1 of the Open-
JDK2 that offers support for capturing continuations; the
STM is the JVSTM, as it features Multiversion Concurrency

1http://wikis.sun.com/display/mlvm/StackContinuations
2http://openjdk.java.net
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Control (MVCC), which makes it easier to add support for
speculative state; the GCS is the Appia toolkit [11].

The Class Loader uses the ASM bytecode manipulation
framework [12] to perform modifications to the applica-
tion. These modifications intend to facilitate the life of
the programmer, by injecting code that will automatically
add support to each thread for capturing continuations and
create all the data structures that the Speculative Manager
(SM) requires. In turn, the SM will control the state of the
application. This is represented in Figure 3, by the connector
between the SM and the Application.

A. System Properties
SPECULA was designed to hold most of the properties

of its underlying system. The Replication Manager ensures
one-copy serializability (1SR). According to what Bernstein
et al. wrote in [13], 1SR determines that the interleaved
execution of clients’ transactions must be equivalent to a
serial execution of those transactions on a single replica. 1SR
is more than a consistency model, and is the most common
correctness criterion among transactional replication proto-
cols.

SPECULA also maintains properties of the underlying
STM, such as opacity and strong progressiveness. For the
latter we should only consider transactions that do not
depend on any speculation.

However, SPECULA does not guarantee that read-only
transactions are abort-free, thus it is not multiversion permis-
sive [14]. This limitation derives from the fact that read-only
transactions can depend on speculations.

B. Operation
Although our prototype was implemented over a specific

set of software components, the algorithms we developed
are technology agnostic. Nevertheless, we assume that the
underlying transactional engine features MVCC.

We shall start with the disambiguation of some concepts.
A transaction is speculatively committed if, upon its commit
request, it successfully passes on its local validation. The
write-set of a speculatively committed transaction is applied
locally, making it visible for future local transactions. The
thread that executed the transaction proceeds normally, as
the commit procedure returns. The system is, therefore,
optimistic about the outcome of the transaction’s global
validation. The write-set of a speculatively committed trans-
action becomes available as speculative state.

We call speculative transaction to a transaction that de-
pends on any speculation, i.e., one that has read speculative
state or was executed over the coordination phase of a
previously speculatively committed transaction.

A speculation ends up being either right or wrong. When
the result of the global validation of a transaction is known,
the node that executed the transactions has to act accord-
ingly. If the speculation reveals itself correct, the transaction
is finally committed, which leads to the system-wide apply of
its write-set as final state. Otherwise, the system has to hide
the transaction’s write-set, which was made (locally) public

during its speculative commit, and abort all transactions that
depend directly or indirectly on the wrong speculation.

During its life, a transaction is always in one of the
following states:

• Executing: the transaction is performing operations.
• Committing: the client has requested the commit of the

transaction, and the the global validation procedure is
taking place. In SPECULA, a transaction in this state
is speculatively committed.

• Committed: the transaction was (final) committed.
• Aborted: the transaction was aborted.
1) Speculative Execution Support: In order to support the

safe execution of both transactional and non-transactional
code over speculative state, it is required to keep track of
some data. Therefore, per thread, we maintain the following
state:

• A FIFO queue containing all transactions that are in
state committing.

• The oldest speculatively committed transaction that has
been aborted since the last synchronization (described
ahead).

Upon its start, a thread t gets associated with a
ThreadContext, and vice-versa, in a one-to-one relation-
ship between both. The ThreadContext data structure
that holds information regarding the thread to which it is
associated, namely, the state described above.

When a thread terminates, a synchronization is forced.
Synchronizing consists in waiting until all transactions exe-
cuted by the thread leave the state committing. If no trans-
actions is aborted, the thread proceeds normally. Otherwise,
the thread is rolled-back, i.e., all the modifications made to
shared state performed on the thread since the speculative
commit of the aborted transaction are undone, and the thread
resumes its execution on the commit request of the oldest
aborted transaction, from where the application is informed
of the inability to commit that transaction.

Thread termination is not the only event that requires a
synchronization point to be forced. All non-transactional
operations, like for instance, the output of data to the
screen, have to be preceded by a synchronization point. Each
thread should also periodically check if any speculatively
committed transaction was aborted. If that is the case, the
thread should synchronize as soon as possible, as it is
doomed to be rolled-back.

Continuations are essential for our speculative execution
support. A continuation reifies the program’s control state.
A common analogy used to explain the concept is that con-
tinuations are the dynamic version of the GOTO statement,
although much more powerful. From the perspective of our
work, they can be seen as a snapshot of a thread, which saves
the content of all its local variables and the program counter.
Continuations allow us to, in case of mis-speculation, resume
the execution at the precise moment where it should be
resumed.

2) Modifications to the STM: Existing STMs have not
been designed to take speculative state into account. We
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propose a scheme that enables STMs to provide transactions
with speculative values, while ensuring the whole system’s
correctness, namely the opacity property [15].

The modifications to the STM extend to the transaction
initialization, read, validation, abort and commit procedures.
Upon the initialization of a transaction, it it given a snapshot
timestamp. During its life, a transaction always reads from
the same consistent snapshots, based on the timestamp that
it holds. A snapshot may or may not contain speculatively
committed data.

Upon the commit request of a transaction, it is locally
validated. If the transaction passes on its local validation, it is
speculatively committed, which makes its write-set publicly
available (locally). In standard MVCC, a transaction cannot
commit if it conflicts (read–write conflict) with a concurrent
but already committed transaction. This is the only reason
why a transaction cannot commit.

In SPECULA, there are two additional reasons that may
force a transaction to abort:

• If a transaction has read from the write-set of a spec-
ulatively committed transaction that was aborted – we
call this a speculative data dependency;

• If a transaction was executed on a thread that has to
be rolled-back and resumed at a point prior to the
transaction’s commit request – we call this a speculative
flow dependency.

Locally valid transactions are announced to the network
and subject to a global validation phase. A transaction that
passes on its global validation is final committed, which
leads to the system-wide availability of its write-set as
final state. On the node where the transaction was executed
and thus, speculatively committed, the final commit hides
the equivalent speculative commit from future transactions.
Reading from a speculatively committed version or from its
equivalent final committed version is the same with regard
to the validation procedure.

The abort of an executing transaction is delegated to
the underlying STM, and thus follows standard procedures.
Aborting a speculatively committed transactions requires
hiding its speculatively committed write-set from future
transactions and invalidating it, so that other transactions
that have read from it also fail to commit (this is what we
described as speculative data dependencies). Moreover, the
corresponding ThreadContext has to be notified, since
all transactions that were executed after, and on the same
thread as the aborting transaction, also have to be aborted
(what we described as speculative flow dependencies).

3) Speculative Execution Control: High conflict scenarios
are not favorable for a speculative scheme like the one we
propose. Mis-speculations introduce unwanted load on the
system. The overhead created by SPECULA only pays off
if a large faction of all speculatively committed transactions
are final committed. Notice that in Section III-A, we stated
that experimental results have shown that communication
time dominates execution time in DRSTM environments.
This means that a thread can execute a high number of

transactions in the time required to by a single broadcast.
We decided to implement a scheme that limits the amount

of speculations per thread. The algorithm derives from
the additive increase/multiplicative decrease algorithm used
in TCP [16]. Its key heuristic is that successful specu-
lations should allow more speculations to occur, while,
conversely, mis-speculations should decrease the maximum
number of speculations allowed. At any given time, the
number of transactions executed by a thread that are in
state committing is never smaller than the value of the
MIN COMMITING TXS variable and never greater
than the value of the MAX COMMITTING TXS vari-
able.

This scheme enables the system to better adapt to its
surrounding environment.

4) Restoring Non-transactional State: Few application
are fully transactional. Most make use of transactions
to access shared state, but perform heavy computations
and system calls outside of them. Changes made to
non-transactional state have be undone in case of mis-
speculation, just like the changes made to transactional
state. In order to restore the state of the non-transactional
shared memory, at the point where execution is resumed, we
propose the construction of undo logs. Since we are using
continuations to snapshot the execution flow of a thread, and
continuations save the state of the thread’s stack, we only
need to deal with writes made to non-transactional shared
state.

To build an undo log, all writes to non-transactional shared
state have be intercepted. When an instruction executed on
thread t tries to modify non-transactional shared state, we
save the value that is in target address before it is overwritten
with the new value. An undo log keeps just one value per
memory address: the oldest. Each saved value is kept in
the undo log that is associated with the last speculatively
committed transaction that was executed on t. If later, a
synchronization procedure has to resume the execution of
t using a continuation, it applies all undo logs required to
restore the state that was available when the continuation
that is going to be resumed was captured.

5) Correctness Arguments: We now provide some infor-
mal arguments to show that our algorithm is correct.

All replicas start with the same state and final commit
the same transactions, by the same order. Therefore, the
final state is always kept coherent among all nodes. This
guarantees 1SR, as it is easy to see that, if all replicas
go from snapshot si to snapshot si+1, then the interleaved
execution of transactions among all nodes produces a seri-
alization order that matches the one produced by a serial
execution, i.e., both executions would end up producing the
same snapshot sn.

The key to guarantee opacity is ensuring that every
transaction always reads from the same consistent snap-
shot. SPECULA’s read procedure ensures this by forcing
transactions to read from the newest snapshot that was
available when they began. Moreover, since no snapshot is
ever modified after its creation, and the apply of the write-
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sets of remote transactions is preceded by a clean-up of the
speculative state, temporary inconsistent states never exist.
This suffices to guarantee opacity.

Notice that local validation ensures that all speculative
commits create potentially serializable snapshots. If a trans-
action always reads from the same consistent snapshot, its
commit produces a new guaranteed consistent snapshot. It is
not even possible for a transaction to build an inconsistent
write-set.

Finally, as we assume that the program’s correctness does
not depend on any kind of synchronized access to non-
transactional shared state, we are free to undo all modifi-
cations made to it.

C. Strengths and Weaknesses

SPECULA makes a trade-off between the latency required
to commit a transaction and the amount of memory con-
sumed by the middleware. With SPECULA, transactions
can (speculatively) commit based on local information, and
transaction processing can continue with no further delays.
This is achieved at the cost of having to continuously create
snapshots of the system. Therefore, SPECULA consumes
more memory than other non-speculative transactional mem-
ory systems. However, the increase in memory usage occurs
for a limited amount of time, and one that is expected
to be short, as the final commit of a transaction hides
its speculative commit from new transactions, and most
memory transactions are themselves very short, as stated in
Section III-A. SPECULA has also the drawback of requiring
the write-set of a transaction to be applied twice: once
when the transaction commits locally and again, when the
transaction is applied system-wide. We expect this cost to be
paid off by the overlap of communication with computation.

On the other hand, new transaction are always provided
with a consistent snapshot of the system, and are shielded
from the concurrent execution of other transactions. Thus
SPECULA preserves the programming model that makes
software transactional memory appealing. Furthermore, in
face of low-conflict workloads, cascading aborts due to
speculation rarely occur, enabling SPECULA to effectively
hide network delays.

V. EVALUATION

A. Experimental Environment and Settings

All the experiments presented here were performed in a
cluster of eight nodes, each one equipped with two Intel
Xeon E5506 at 2.13GHz and 8 GB of RAM, running
GNU/Linux 2.6.32 – 64 bits. The nodes are interconnected
via a private Gigabit Ethernet switch.

The JVM is a development snapshot of version 1.7.0 of
the OpenJDK. The AB service provided by the Appia GCS
toolkit [11] uses a a sequencer-based algorithm to order
messages on top of a multicast layer that relies on point-
to-point TCP links [17], [18]. It also implements batching
of the sequencer messages. We have set the batching value
either to the same value of MAX COMMITING TXS,

or to one (i.e., no batching) on the baseline system. The
batching timeout is set to 250 ms.

Unless stated otherwise, all runs were executed with a sin-
gle thread per node producing transactions. The coordination
among replicas is achieved using a non-voting certification-
based replication protocol. We compare our prototype with
that of a system using the same configuration but with the
speculative extension turned off.

We assume a that the environment is stable, in which no
nodes crash/stop or deviate from their normal behavior.

B. Evaluation Criteria
The two main evaluation criteria for our system are

speedup, and the average time required to execute and com-
mit a transaction. We also consider, although as secondary
criteria, the abort rate, the number of speculatively executed
transactions that were committed, the overhead in the local
execution of transactions and the amount of time that worker
threads were halted by the execution control algorithm.
These criteria allow us to measure the efficiency and the
effectiveness of our system. Ideally, a system should achieve
high throughput and low latency. However, in most practical
system, there is a trade-off between these two aspects. In
this evaluation we aim at assessing if SPECULA achieves a
reasonable compromise between these two criteria.

The number of speculatively executed transactions that
were committed and the overhead in the local execution of
transactions allows us to assess the the effectiveness and the
benefits of being speculative.

C. STMBench7 Benchmark
Description: The STMBench7 benchmark was introduced

by Guerraoui et al. in [19] as a complex benchmark that
generates realistic workloads, by mimicking the opera-
tions present in large object-oriented applications, such as
CAD/CAM applications. Operations vary significantly in
complexity, containing both short and trivial transactions that
read a few items, and highly read/write intensive ones, which
perform not only deep structural modifications to an object
graph with millions of vertices, but also do long transversals
on the same graph, resulting in transactions with huge data-
sets.

The configuration parameters of this benchmark allow
the selection of one of three different workloads: one read-
dominated, one with a balanced mix of read-only and update
transactions, and one write-dominated. It is also possible to
enable/disable the execution of both long transversals and
deep structural modifications.

Configuration: We analyze the results of both write
and read-dominated workloads. Long transversals and deep
structural modifications were disabled, otherwise the number
of conflicts becomes unbearable.

The operation ratios (in percentage) of the write-
dominated workload are depicted in Table I, and of the read-
dominated workload in Table II.

Results: All the results here presented are relative to a 60
seconds run of the benchmark.
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Figure 4: STMBench7 – Write-dominated workload.

TRAVERSAL: 0.00
TRAVERSAL RO: 0.00
SHORT TRAVERSAL: 0.00
SHORT TRAVERSAL RO: 47.06
OPERATION: 47.65
OPERATION RO: 5.29
STRUCTURAL MODIFICATION: 0.00

Table I: STMBench7 – Write-dominated workload – Oper-
ation ratios.

TRAVERSAL: 0.00
TRAVERSAL RO: 0.00
SHORT TRAVERSAL: 0.00
SHORT TRAVERSAL RO: 47.06
OPERATION: 5.29
OPERATION RO: 47.65
STRUCTURAL MODIFICATION: 0.00

Table II: STMBench7 – Read-dominated workload – Oper-
ation ratios.

Write-dominated Worload: Figure 4a depicts the
speedup achieved in this configuration. For values of
MAX COMMITTING TXS > 4 we always observed
positive speedups, with a maximum gain of 1.66 times when
MAX COMMITTING TXS = 64.

The abort rate depicted in Figure 4b indicates that this
configuration suffers from a big unbalance in the abort
rate distribution among nodes. The abort decrease as we
increased the value of MAX COMMITTING TXS
because one node of the group starts committing most
of its transactions while the remaining nodes keep seeing
their transactions being aborted. As the node that keeps
committing becomes more speculative, it starts committing
even more transactions, which leads to the decrease in the
abort rate.

Figure 4d depicts the local execution time of transactions.
The maximum overhead registered was 257%. In MVCC,
the longer a transaction is, the more expensive is for it to
read, as it has to iterate over the versions of newer snapshots
to find the version of its snapshot. Also, the longer the
transaction, the higher the probability that there were in fact
other transactions committing during its execution. Besides
this, in SPECULA, writes to non-transactional shared state
are logged in undo logs, and it represented 15% off the
total time of execution (however, using the undo logs to
restore non-transactional shared state accounted for less
than 0.01%), because STMBench7 has a rich application
logic. Moreover, although the configuration we evaluated
was the so called write-dominated, it has a ratio of read-only
transactions over 50%, and read-only transactions incur into
a meaning performance penalty in SPECULA, as they their
read-sets have to be tracked and validated.

Figure 4e depicts the network latency values that were
observed. It was abnormally high for a LAN environment,
even for the baseline system.

The percentage of speculatively executed transactions that
were final committed is very significant. For instance, with
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Figure 4: STMBench7 – Write-dominated workload.

eight machines and MAX COMMITTING TXS =
256, more than 99% of all committed transactions had a
speculative dependency. Unfortunately, for the same sce-
nario, the execution control algorithm kept the worker
threads blocked for an average of 46 s.

With MAX COMMITTING TXS = 64 the system
achieved a significant speedup and a consistent response la-
tency, therefore, based on these results it is a adequate value
for high contention scenarios with not so short transactions.

Read-dominated Workload: Figure 5a depicts the
speedup achieved in this configuration. As expected, it is
negative, since as already stated, read-only transactions incur
into a significant overhead that comes from the need of
tracking and validating their read-sets. Furthermore, the
application logic in this configuration is even richer than
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Figure 5: STMBench7 – Read-dominated workload.
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Figure 5: STMBench7 – Read-dominated workload.

in the write-dominated workload, and so building undo logs
accounted for 20% of the whole execution. Using them to
restore non-transactional shared state accounted for less than
0.01%.

Figure 5b depicts the abort rate observed. Again, as
expected, it was significantly higher than the one veri-
fied in the baseline system, which is totally normal as
it ensures that read-only transactions are abort-free and
SPECULA does not. For instance, with eight machines and
MAX COMMITTING TXS = 256, from all the 1222
aborted transactions, 909 were read-only.

Figure 5d depicts the local execution duration of transac-
tions that was observed. The explanation for these results is
similar to the one present in the write-dominated configura-
tion.

Figure 5c depicts the total execution time of transactions.
The graphic is however misleading, because we have to
associate read-only transactions with update transactions, in
order to validate them according to a global serialization
order. Therefore, the average total execution time of read-
only transactions is similar to the total execution time of
update transactions, although they are executed in a totally
uncoordinated fashion.

Figure 5e depicts the network latency observed. Since
this workload is composed by few update transactions, the
network latency represents a minor issue in this case.

Unfortunately, all nodes remained blocked by the execu-
tion control algorithm for most of the run: 48 s with eight
machines and MAX COMMITTING TXS = 256.
This was not due to the network latency but to the high
abort rate, which caused the execution control algorithm
to reduce the level of optimism, allowing less transactions
to be speculatively committed. However, for in the same
scenario there was also a high amount of speculatively
executed transactions were final committed: almost 99% of
all committed transactions had a speculative dependency.

VI. CONCLUSIONS

DRSTMs allows programmers to develop highly concur-
rent and dependable systems with minimal effort. Unfortu-
nately, the implementation of this powerful abstraction with
good performance is still an open challenge.

To this end, this paper presents SPECULA, a novel
system that can speculatively execute transactional and non-
transactional code in a safe manner, by being able to rollback
all changes made to memory if a mis-speculation is detected.
SPECULA relies on a certification-based replication scheme
to enable the speculative commit of memory transactions.
This allows transaction processing to proceed while the
global serial order of (speculatively) committed transactions
is defined in background. For this purpose, SPECULA man-
ages access to speculatively committed data and performs
modifications to the application at the bytecode level that
enables it to undo writes made to non-transactional shared
state, and also to rollback the execution flow of threads, all
in a fully transparent fashion for both the application and
the programmer.

Experimental results show that SPECULA achieves sig-
nificant speedups in low contention scenarios and can be
also useful in high contention scenarios. By extending the
level of optimism of standard certification-based replication
solutions, SPECULA promotes a better use of the computa-
tional resources available in the system.

SPECULA does not address the problem of optimizing
network usage, a topic that is orthogonal to the focus of
this work. Therefore, as other certification-based approaches,
the costs of inter-replica synchronization can saturate the
underlying group communications system, with the resulting
penalties in the resulting coordination latency. This fact con-
strained the system’s throughput in low contention scenarios
and made its responsiveness significantly lower as the level
of optimism increased.
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As future work the system would benefit from better
execution control mechanisms, feedback and auto-tuning
schemes, in order maximize its throughput without affecting
its responsiveness. Static analysis of the application’s code
can also help to reduce the overhead of building undo logs,
by identifying write operations that never need to be undone.
A reevaluation of the system in a low network latency
environment should also be performed to further validate this
work. To this end, the performance of the system should be
assessed with various AB protocols (e.g., token based) and
GCSs (e.g., JGroups).
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