
Replicação Preditiva para Memória Transaccional

por Software Distribúıda

João Carlos Moreira Fernandes

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática e de Computadores

Júri

Presidente: Professor Doutor Pedro Manuel Moreira Vaz Antunes de Sousa
Orientador: Professor Doutor Professor Lúıs Eduardo Teixeira Rodrigues
Vogais: Doutor Hervé Miguel Cordeiro Paulino

Outubro 2011

Agradecimentos

Começo por agradecer ao meu orientador, o Professor Lúıs Rodrigues, pela oportunidade,

confiança, força, vontade e gosto em ensinar.

Agradeço também a todos os membros do Grupo de Sistemas Distribúıdos que muito me

ajudaram na elaboração deste trabalho, em especial ao Paolo Romano por toda a atenção que

me despendeu.

Passando para a famı́lia, quero agradecer aos meus pais, Clarisse e Carlos, pelo amor in-

condicional; à minha irmã, Carla, por ser tão chata, bem como ao meu cunhado, Nuno, e à

minha sobrinha, Carlota; aos meus padrinhos de baptismo, Mavildia e João por serem segundos

pais; aos meus tios e primos, cujos nomes me fariam, felizmente, necessitar de mais páginas

para agradecer todo o amor que me dão; ao meu padrinho de crisma, Gonçalo, pela constante

presença e amizade; aos pais da minha namorada, Rosa e Fernando, que são já também um

bocadinho meus pais. E claro, obrigado Catarina por todo o amor, apoio e carinho.

E não posso esquecer os amigos. Obrigado Wokini : Rita, Ana, Vanessa, Irina, Lúıs, Ricardo,

e “respectivos”. Obrigado também Joana, Sónia, Pedro Ruivo, Pedro Ribeiro, Xavier, Ivo,

Nazar, João e Ivan por todos os momentos em que me deram forças para continuar. Obrigado

também aos meus catequizandos, pela vossa amizade e confiança.

E como os últimos são sempre os primeiros, obrigado Pai pelo dom da vida.

Este trabalho foi parcialmente suportado pela FCT através do projecto “ARISTOS”

(PTDC/EIA-EIA/102496/2008), pelo financiamento multianual do INESC-ID com fundos do

programa PIDDAC e pela União Europeia, através do programa “Cloud-TM” (257784).

Lisboa, Outubro de 2011

João Carlos Moreira Fernandes

Ouvistes que foi dito: Olho por olho, e dente por dente. Eu, porém, vos digo que não resistais ao mal; mas, se

qualquer te bater na face direita, oferece-lhe também a outra; E, ao que quiser pleitear contigo, e tirar-te a túnica,

larga-lhe também a capa; E, se qualquer te obrigar a caminhar uma milha, vai com ele duas. Dá a quem te pedir,

e não te desvies daquele que quiser que lhe emprestes. Ouvistes que foi dito: Amarás o teu próximo, e odiarás o

teu inimigo. Eu, porém, vos digo: Amai a vossos inimigos, bendizei os que vos maldizem, fazei bem aos que vos

odeiam, e orai pelos que vos maltratam e vos perseguem; para que sejais filhos do vosso Pai que está nos céus;

Porque faz que o seu sol se levante sobre maus e bons, e a chuva desça sobre justos e injustos. Pois, se amardes

os que vos amam, que galardão tereis? Não fazem os publicanos também o mesmo? E, se saudardes unicamente

os vossos irmãos, que fazeis de mais? Não fazem os publicanos também assim? Sede vós pois perfeitos, como é

perfeito o vosso Pai que está nos céus.

– Mateus 5, 38-48

Aos meus pais, irmã, sobrinha e namorada,

Clarisse, Carlos, Carla, Carlota e Catarina.

Resumo

Este trabalho descreve e avalia o SPECULA, um sistema de memória transaccional dis-

tribúıda e replicada, baseado num esquema de certificação. O objectivo do sistema é mitigar os

efeitos negativos da latência da rede, através da execução optimista de código. As transacções

são executadas num único nó, de forma não coordenada, sendo utilizado o resultado da validação

local das mesmas como predição do resultado da validação final. Os resultados das transacções

(i.e., as modificações ao estado transaccional) são tornado viśıveis de forma optimista e novas

transacções são iniciadas com base em estado preditivo. Este processo repete-se de forma en-

cadeada, podendo resultar numa sequência de transacções preditivas. Caso uma predição se

confirme, o resultado da transacção é tornado definitivo; caso contrário, a sequência preditiva é

cancelada e o estado do sistema aquando da predição é reposto. Este comportamento optimista

é totalmente transparente para a aplicação e para o programador. O sistema foi avaliado com

recurso a bancadas de teste padrão, nomeadamente a Bank Benchmark e a STMBench7, as

quais exercitam cenários bastante variados.

Abstract

This work describes and evaluates SPECULA, a distributed and replicated software transac-

tional memory system based on a certification scheme. This system tackles the negative effects

of network latency, through the optimistic execution of code. Transactions are executed on a

single node, in an uncoordinated fashion, and the result of their local validation is used as a

prediction of the result of the final validation. The results of speculatively executed transactions

(i.e., the modifications to the transactional state) are made visible to future transactions in an

optimistic fashion. This speculative process repeats itself, creating a chain of speculatively exe-

cuted transactions. If the final validation of a speculatively committed transaction allows it to

commit system-wide, its result is made definitive; otherwise, a cascading abort takes place and

the system restarts its execution in the state that preceded the mis-speculation. This speculative

behavior is fully transparent for both the application and the programmer. The proposed design

was evaluated using well known benchmarks that exercise very different scenarios, namely, Bank

Benchmark and STMBench7.

Palavras Chave

Keywords

Palavras Chave

Memória Transaccional em Software Distribúıda

Controlo de Concorrência Multi-versão

Replicação

Execução Preditiva

Keywords

Distributed Software Transactional Memory

Multiversion Concurrency Control

Replication

Speculative Execution

Table of Contents

1 Introduction 3

1.1 Motivation . 4

1.2 Contributions . 5

1.3 Results . 5

1.4 Research History . 5

1.5 Outline . 6

2 Related Work 7

2.1 Group Communication . 7

2.1.1 Atomic Broadcast . 8

2.1.2 Optimistic Atomic Broadcast . 9

2.2 Concepts of Transactional Systems . 10

2.3 Replication Techniques . 12

2.3.1 Foundations . 12

2.3.2 Certification-based Replication . 13

2.4 Software Transactional Memory . 14

2.4.1 Types of Transactional Memory . 15

2.4.2 Design Choices and Classification . 16

2.4.3 Opacity . 19

2.5 Distributed Software Transactional Memory . 20

i

2.5.1 Distributed Software Transactional Memory 20

2.5.2 Distributed Multiversioning . 21

2.5.3 Cluster-STM . 22

2.5.4 Distributed Dependable Software Transactional Memory 23

2.5.5 Aggressively Optimistic . 23

2.5.6 Speculative Certification . 24

3 SPECULA 27

3.1 The Problem . 27

3.2 The Solution . 30

3.3 Design Space . 31

3.4 System Model . 31

3.5 System Architecture . 33

3.6 System Properties . 35

3.7 Operation . 36

3.7.1 Speculative Execution Support . 37

3.7.2 Modifications to the STM . 40

3.7.3 Moving the Speculative Transactional Window 49

3.7.4 Integration with Replication Protocols . 49

3.7.4.1 Voting . 50

3.7.4.2 Non-voting . 51

3.7.5 Speculative Execution Control . 53

3.7.6 Restoring Non-transactional State . 54

3.7.7 Correctness Arguments . 54

3.8 Strengths and Weaknesses . 55

ii

3.9 Java Prototype Implementation . 56

3.9.1 Dealing with Non-transactional Operations 56

3.9.2 Bytecode Manipulation . 57

3.9.3 Mixed Issues . 58

4 Evaluation 61

4.1 Experimental Environment and Settings . 61

4.2 Evaluation Criteria . 62

4.3 Bank Benchmark . 62

4.3.1 Description . 62

4.3.2 Configuration . 63

4.3.2.1 Results . 63

4.4 STMBench7 Benchmark . 70

4.4.0.2 Description . 70

4.4.0.3 Configuration . 70

4.4.0.4 Results . 71

4.5 Discussion . 78

5 Conclusions and Future Work 81

Bibliography 88

iii

iv

List of Figures

2.1 The life of a transaction. 11

2.2 Non-voting certification-based replication. 13

2.3 Voting certification-based replication. 14

3.1 Execution time of database and memory transactions (Romano, Carvalho, &

Rodrigues 2008). 29

3.2 Comparison between SPECULA and the normal execution of a thread. 30

3.3 The system’s architecture. 34

3.4 Reading example number 1. 44

3.5 Reading example number 2. 46

4.1 Bank Benchmark – Configuration A. 64

4.2 Bank Benchmark – Configuration B. 67

4.2 Bank Benchmark – Configuration B. 69

4.3 STMBench7 – Write-dominated workload. 72

4.3 STMBench7 – Write-dominated workload. 74

4.4 STMBench7 – Read-dominated workload. 75

4.4 STMBench7 – Read-dominated workload. 77

v

vi

List of Tables

3.1 SPECULA in the design space. 32

4.1 Bank Benchmark – Configuration A (values per run). 65

4.2 Bank Benchmark – Configuration B (values per run). 68

4.3 STMBench7 – Write-dominated workload – Operation ratios. 70

4.4 STMBench7 – Read-dominated workload – Operation ratios. 71

4.5 STMBench7 – Write-dominated workload (values per run). 73

4.6 STMBench7 – Read-dominated workload (values per run). 76

vii

viii

Acronyms

AB Atomic Broadcast

DBMS Database Management System

DRSTM Distributed and Replicated Software Transactional Memory

DSTM Distributed Software Transactional Memory

GCS Group Communication Service

GSO Global Serialization Order

JVM Java Virtual Machine

MVCC Multiversion Concurrency Control

STM Software Transactional Memory

1

2

1Introduction
It’s mental static! I told you, if you HAVE to think, think in German!

– Asuka Langley Soryu, Neon Genesis Evangelion (TV Series)

The mainstream adoption of multiprocessor systems has brought parallel programming to

the center of the main stage. For a very long time, application developers relied on the free

lunch offered by the increase in single processor performance, and were able to avoid the pains

of parallel programming. That time has come to an end.

Software Transactional Memory (STM) is an abstraction that eases the life of programmers

dealing with concurrent data access. When using a STM, the programmer is freed from having

to explicitly deal with concurrency control mechanisms. Instead, he only has to identify the

sequences of operations that need to access shared data in an atomic fashion (i.e., transactions).

Given that the use of low-level concurrency control mechanisms such as locks and semaphores is

known to be extremely error prone (Cachopo 2007), the use of STM has the potential to increase

the code’s reliability, and to shorten the software development cycles.

Although STM was first proposed for cache-coherent shared memory architectures, the

need to increase the scalability and fault-tolerance of STM-based systems has motivated the

development of distributed and replicated STM implementations.

This work addresses the problem of building efficient Distributed Software Transactional

Memory (DSTM) implementations that are fully replicated, with emphasis on mechanisms that

explore the notion of possibly useful (speculative) computation to tackle the negative impact of

network latency on the throughput of these systems.

4 CHAPTER 1. INTRODUCTION

1.1 Motivation

One of the common building blocks of Distributed and Replicated Software Transactional

Memory (DRSTM) implementations is certification-based replication (Pedone, Guerraoui, &

Schiper 2003), a coordination scheme originally designed for multi-master database environ-

ments. Implementations of this technique typically rely on a totally-ordered messaging protocol

to build a Global Serialization Order (GSO) by which transactions are committed. These mes-

saging protocols solve the problem of serializing conflicting transactions, and enable nodes to

exchange control data with some delivery guarantees. Certification-based replication is an opti-

mistic technique, as it allows transactions to be executed locally, without any kind of inter-node

coordination.

The time needed to commit a transaction in a DRSTM is very long when compared with

the average execution time of a memory transaction (Palmieri, Quaglia, Romano, & Carvalho

2010). Memory transactions are, therefore, costly to replicate. This problem is not so significant

on DBMSs because database transactions are typically much longer than memory transactions,

as they frequently require access to high-latency I/O1 devices like hard-drives, and are subject

to pre-execution stages such as parsing and query optimization.

Normally, when a thread is committing a transaction in a DRSTM, it stays blocked during

the whole coordination phase. Moreover, concurrent transactions keep reading possibly stalled

data. Literature around this problem tries to tackle it with two fundamentally different ap-

proaches: i) reducing the overhead of the coordination phase (Couceiro, Romano, Carvalho, &

Rodrigues 2009), or ii) overlapping the coordination phase with possibly useful computation

(Palmieri, Quaglia, & Romano 2010; Carvalho, Romano, & Rodrigues 2011). The former ap-

proach will always be limited by the network latency, while the latter can incur in long cascading

abort procedures.

This work proposes a solution that follows the approach of overlapping the coordination

phase with speculative computation, in order to minimize the negative impact of network latency

on DRSTMs.

1Input/Output

1.2. CONTRIBUTIONS 5

1.2 Contributions

This work addresses the problem of optimizing the performance of DRSTMs. More pre-

cisely, the thesis analyzes, implements and evaluates techniques to maintain the consistency of

replicated transactional data. As a result, the thesis makes the following contribution:

• a novel system named SPECULA, that enables the safe speculative execution of both

transactional and non-transactional computation. SPECULA extends its operation to the

underlying STM, by making transactions commit in a optimistic fashion. This allows

threads to continue executing code while slow inter-node coordination takes place in back-

ground. Since more code is executed in the same time interval, the system’s performance

increases;

• the identification of workload scenarios that favor the use of SPECULA.

1.3 Results

The results produced by this thesis can be enumerated as follows:

• a prototype implementation of SPECULA for the Java Virtual Machine (JVM), that inte-

grates all the components required to enable the safe speculative execution of code, which

includes i) instrumenting applications at the Java bytecode level, ii) adding speculative

extensions to the underlying STM, and iii) extending certification-based replication in a

way that ensures the system’s correctness in the presence of speculative state;

• An experimental evaluation of the prototype implementation based on synthetic bench-

marks.

1.4 Research History

This work was performed in the context of the ARISTOS2 project (Autonomic ReplicatIon

of Software Transactional memorieS).

2http://aristos.gsd.inesc-id.pt

6 CHAPTER 1. INTRODUCTION

During my work, I benefited from the fruitful collaboration with the remaining members of

the GSD team working on ARISTOS, namely Paolo Romano, Lúıs Rodrigues and Pedro Ruivo.

I would also like to acknowledge the productive talks I had with members of the ESW group,

namely Ivo Anjo.

Parts of the work reported in this dissertation have been published in (Fernandes, Carvalho,

Romano, & Rodrigues 2011).

1.5 Outline

The remainder of this dissertation is organized as follows:

• Related Work. Chapter 2 presents a review of relevant work related to this dissertation.

• SPECULA. Chapter 3 introduces SPECULA, the solution to the problem that we propose

to solve. It starts by providing an in-depth motivation for this work and sums up the pros

and cons of existent DRSTMs, which is followed by an overview of the solution we propose;

it then moves on to the assumptions that were made about the execution environment,

and the properties that the system guarantees; it then describes, in detail, how the system

works; finally, it presents specific implementation details of our prototype, showing how

problems were solved and limitations of the executing environment were overcome.

• Evaluation. Chapter 4 presents the results of the experimental evaluation study.

• Conclusions and Future Work. Finally, Chapter 5 summarizes the work described in this

dissertation, the results achieved, and what are its main contributions, ending with the

proposal of possible directions to further improve the SPECULA system.

2Related Work
Uhhh... it’s not *our* fault...

– Ritsuko Akagi, Neon Genesis Evangelion (TV Series)

Fully understanding the problem addressed in this thesis requires knowing the fundamentals

of various areas in distributed systems. The following sections introduce important research work

related to this dissertation.

The chapter is organized as follows. Section 2.1 presents an overview of group communica-

tion systems and primitives. Section 2.2 presents fundamental concepts regarding transactional

systems. Section 2.3 describes replication techniques and indentifies their strenghts and weake-

nesses. Section 2.4 contains an insighful discription of software transactional memory systems,

including design choices and desired properties. Finally, Section 2.5 presents a set of selected

distributed software transactional memories.

2.1 Group Communication

Group Communication (Chockler, Keidar, & Vitenberg 2001; Powell 1996) is a powerful

paradigm for performing multipoint-to-multipoint communication by organizing processes in

groups. A system that implements this paradigm is commonly called a Group Communication

Service (GCS), and offers membership and reliable broadcast services with different message

delivery guarantees. GCSs allows programmers to concentrate on what to communicate rather

than on how to communicate. Our focus will be on view-synchronous services (Birman & Joseph

1987).

View-synchronous GCSs model the system as a group of n processes
∏

= {p1, ..., pn}. The

group-membership service exports both the join(S) and leave(S) primitives (where S is

set of processes such that S ⊂ P). It outputs a sequence of group membership sets called

8 CHAPTER 2. RELATED WORK

views. Every view V ⊆ P is delivered through the v-change(vid, V) primitive, where vid ∈ N

denotes a monotonically increasing view identifier. When this occurs, we say that the process

installs the new view V .

Apart from handling explicit join and leave requests, a membership service also plays the

role of a failure detector: it detects and excludes crashed processes from the group membership,

leaving just the stable components of the system, i.e., the set of processes that are correct

and that can reliably communicate with each-other. A stable component is defined as a set of

processes that is eventually permanently connected.

Reliable broadcast services can provide various types of ordering disciplines, such as FIFO1,

causal and total order. FIFO ordering guarantees that messages sent by a node are delivered

by the order they were sent at every process that receives them. Causal ordering extends FIFO,

and guarantees that if message m′ is causally related to message m (according to Lamport’s

happened-before relation (Lamport 1978)), then m is delivered before m′ on every process that

receives both of them. Total ordering guarantees that all messages are delivered by the same

order, in every receiver.

2.1.1 Atomic Broadcast

Atomic Broadcast (AB) is a reliable broadcast messaging protocol that ensures that all

delivered messages are totally-ordered. It exports the two following primitives:

• AB-broadcast(m) broadcasts message m to all the nodes in the current view.

• AB-deliver(m) delivers message m to the application, according to the GSO.

There are two types of AB: regular and uniform. Uniform AB ensures the following prop-

erties:

• Validity: if a correct process AB-broadcasts message m, then it eventually AB-delivers m.

• Uniform Agreement: if a process AB-delivers message m, then all correct processes even-

tually AB-deliver m.

1First-In, First-Out

2.1. GROUP COMMUNICATION 9

• Uniform Integrity: for any message m, every process AB-delivers m at most once, and

only if m was previously AB-broadcast by its sender.

• Uniform Total Order: if processes p and q both AB-deliver messages m and m′, then p

AB-delivers m before m′ only if q AB-delivers m before m′.

Validity and agreement properties are liveness properties, i.e., they ensure that something

good eventually happens, while integrity and total order properties are safety properties, i.e.,

they ensure that nothing bad happens.

Regular AB has the same validity and integrity properties as Uniform AB, but has the

following non-uniform properties:

• (Regular) Agreement: if a correct process AB-delivers a message m, then all correct pro-

cesses eventually AB-deliver m.

• (Regular) Total Order: if two correct processes p and q both AB-deliver messages m and

m′, then p AB-delivers m before m′ if and only if q AB-delivers m before m′.

Uniform properties make life easier for application developers, as they apply to both correct

and faulty processes. However, enforcing uniformity has often an associated cost. Therefore,

it is important to consider if uniformity is strictly necessary. Non-uniform properties can lead

to inconsistencies at the application level if they are not considered properly, and so applica-

tions subject to them should be prepared to take the necessary corrective actions during failure

recovery.

2.1.2 Optimistic Atomic Broadcast

Optimistic Atomic Broadcast (OAB) messaging protocol exports all the primitives of AB

plus one:

• OAB-deliver(m) delivers message m without any ordering guarantees.

OAB is a very important building block for high-performance distributed systems. The

OAB-deliver primitive enables applications to overlap computation with communication: mes-

sages are OAB-delivered as soon as they arrive from the network and, when their final order is

10 CHAPTER 2. RELATED WORK

known, they are AB-delivered. Between these two events, applications can perform optimistic,

possibly useful computation. Moreover, on LAN environments the optimistic delivery order typ-

ically matches the GSO, a property that is known as spontaneous total order (Kemme, Pedone,

Alonso, Schiper, & Wiesmann 2003) .

OAB features all the properties of AB plus one:

• Optimistic Order: if a process p AB-delivers message m, then p has previously OAB-

delivered m.

2.2 Concepts of Transactional Systems

DBMSs are a key component in many information systems. Like many other applications,

DBMSs feature replication to provide increased fault-tolerance and scalability. It is necessary to

introduce a number of concepts related with transactional systems, such as DMBSs and STMs,

before we proceed any further.

• Read-set: the set of data items from which a transaction has read.

• Write-set: the set of data items to which a transaction has written.

• Data-set: the union of the read-set and write-set of a transaction.

• Commit: the transaction terminated successfully, therefore its write-set was made visible.

• Abort: the transaction did not commit; its write-set is not made visible or its changes are

undone.

• Conflict: two concurrent transactions conflict if their data-sets overlap.

During its life, a transaction is always in one of the well-defined states of the state machine

depicted in Figure 2.1: executing, committing, committed and aborted. Both the executing and

the committing states are transitory, while the aborted and committed states are final. Their

description is the following:

• Executing: the transaction is performing operations.

2.2. CONCEPTS OF TRANSACTIONAL SYSTEMS 11

EXECUTING

ABORTED

COMMITTING COMMITTED

Figure 2.1: The life of a transaction.

• Committing: the client has requested the commit of the transaction, and the the global

validation procedure is taking place.

• Committed: the transaction was committed.

• Aborted: the transaction was aborted.

A transaction in either the executing or committing state is said to be active.

Regarding properties, database transactions satisfy atomicity, isolation, consistency and

durability. These are commonly referred to as ACID properties (Härder & Reuter 1983). Their

description is the following:

• Atomicity ensures that modifications must follow an “all or nothing” rule, i.e., either all

the modifications made by a committed transaction are made visible or none is.

• Consistency ensures that each transaction changes the database from one consistent state

to another consistent state.

• Isolation ensures that individual memory updates within a memory transaction are hidden

from concurrent transactions.

• Durability ensures that once a transaction is committed, its updates will survive any

subsequent malfunctions.

Memory transactions satisfy only atomicity, isolation and consistency properties, being the

consistency property different in databases and STMs. In STM, consistency generally encom-

passes the notion of serializability. Sometimes its meaning is extended to include the preserva-

12 CHAPTER 2. RELATED WORK

tion of integrity constraints, such as the ones captured by the property of opacity (Guerraoui &

Kapalka 2008b), which is discussed in more detail ahead, in Section 2.4.3 of this chapter.

It is also possible to argue that memory transactions satisfy the durability property, if we

do not make a strict association between durability and persistent/stable storage.

2.3 Replication Techniques

2.3.1 Foundations

Replication enables the construction of highly available, fault-tolerant systems. There are

two main families of replication techniques: passive and active.

Passive replication, also known as master-slave replication or primary-backup, is character-

ized by the existence of a replica, known as the master, that processes all updates requests and

transfers state updates to the remaining replicas, which are known as the slaves or backups. In

most cases, slaves can process read-only transactions in a totally uncoordinated fashion. Passive

replication often assumes the fail-stop model. When the master fails, one of the slaves is elected

to replace it, becoming the new master. One of the limitations of this technique is that the

master can quickly become the system’s bottleneck, since it is the only one that can process up-

date requests. However, most real-world applications are subject to read-dominated workloads,

which are balanceable with this technique.

Active replication is characterized by having all replicas processing the same sequence of

requests, by the exact same order. To ensure the consistency of the replicated data, active

replication requires all operations to be deterministic, otherwise the state of each replica could

diverge. Requests are processed according to the GSO, which is normally defined by the AB

protocol used to disseminate requests. One of the problems of this technique is that AB is a

relatively slow communication primitive, as it requires that consensus is reached among all nodes.

Moreover, since all replicas have to execute all update requests, the ability to process them does

not increase. On the contrary, it does in fact decrease, as the cost of group communication

increases with the number of peers. However, as happens with passive replication, read-only

requests can be processed in parallel at different replicas.

Other replication schemes combine aspects of the two previous techniques. An important

2.3. REPLICATION TECHNIQUES 13

example is certification-based replication, a scheme that is commonly employed on transactional

systems. It is described in Section 2.3.2.

2.3.2 Certification-based Replication

Node 1

Execution of
Transaction T

Time

Validation

Node 2

Node 3

Commit or abort of T

Atomic
Broadcast

Validation

Commit or abort of T

Figure 2.2: Non-voting certification-based replication.

Certification-based replication was first introduced in (Pedone, Guerraoui, & Schiper 2003)

by Pedone et al., as a scheme designed to synchronize a cluster of database servers in a multi-

master environment. It is based on the state machine approach (Schneider 1990).

In certification-based replication, a single node executes a transaction and, upon its commit

request, its data-set is AB-broadcast to all replicas, commencing the certification phase. The

certification of a transaction consists in checking for write–read data access conflicts, in order to

guarantee that its commit does not violate the one-copy serializability (Bernstein, Hadzilacos,

& Goodman 1987) correctness property. A transaction is aborted if its commit would lead the

database into an inconsistent state (i.e., one that is non-serializable). This step is executed

by all replicas, in a deterministic fashion. Certification-based replication reduces the cost of

14 CHAPTER 2. RELATED WORK

Node 1

Execution of
Transaction T

Atomic
Broadcast

Time

Validation

Node 2

Node 3

Enqueue

Uniform
Reliable

Broadcast

Commit or abort
of T

Commit or abort
of T

Figure 2.3: Voting certification-based replication.

inter-node coordination, by imposing a single cluster-wide interaction per commit request. It

also simplifies recovery, as the intermediate writes of a transaction are never propagated, which

means that there is no need to implement a distributed rollback scheme.

The above described scheme is also known as non-voting certification-based replication, and

is depicted in Figure 2.2. A small variation of it only AB-broadcasts the write-set of transactions.

Upon receiving a write-set, only the node that executed the transaction validates it, as it is the

only one that knows the transaction’s read-set. That node then broadcasts the validation result,

informing all remaining nodes if they should either commit or abort the transaction. This scheme

is known as voting certification-based replication, and is depicted in Figure 2.3.

2.4 Software Transactional Memory

Concurrent applications make use of multiple threads of control to execute multiple se-

quences of operations in parallel. Concurrent access to shared data by these threads can cause

inconsistencies that may lead the applications into incorrect states. For this reason, access to

2.4. SOFTWARE TRANSACTIONAL MEMORY 15

shared data has to be subject to some sort of concurrency control. Classic concurrency control

mechanisms, such as locks, can ensure mutually exclusive access on data. Unfortunately, locks

are hard to use in a correct manner, as a single misplaced or missing lock can easily create a

severe problem in the application. Indeed, locks comprise so much complexity that, even when

placed in a way that ensures mutual exclusion, they can still lead to undesired effects, such

as deadlock, priority inversion, poor performance in face of preemption and page faults, lock

convoying or incorrect behaviors (e.g., infinite loops). In order to avoid these problems, the pro-

grammer needs to have a deep knowledge of low-level properties of the execution environment,

and a complete insight as to how concurrent execution flows in the application.

STM support the transaction abstraction as an high-level concurrency control mechanism.

Transactions release the programmer from explicitly dealing with the low-level details of con-

currency control. When using an STM, the programmer only has to identify the sequences of

operations that need to access shared data in an atomic fashion. STM allows programmers

to express what should be executed atomically, rather than requiring them to specify how to

achieve such atomicity. This translates into what is argued to be the main advantage of STM:

composability (Harris, Marlow, Jones, & Herlihy 2005). Unlike locks, STM enables software

composition, i.e., correctly implemented concurrent abstractions can be composed together to

form larger abstractions.

2.4.1 Types of Transactional Memory

Currently, there are several proposals for hardware transactional memory(HTM) (Ana-

nian, Asanovic, Kuszmaul, Leiserson, & Lie 2005; Hammond, Wong, Chen, Carlstrom, Davis,

Hertzberg, Prabhu, Wijaya, Kozyrakis, & Olukotun 2004; Herlihy & Moss 1993; Tomic, Perfumo,

Kulkarni, Armejach, Cristal, Unsal, Harris, & Valero 2009; Bobba, Goyal, Hill, Swift, & Wood

2008), purely software based implementations, i.e. software transactional memory (Shavit &

Touitou 1995; Saha, Adl-Tabatabai, Hudson, Minh, & Hertzberg 2006; Cachopo & Silva 2006;

Harris & Fraser 2003; Dice, Shalev, & Shavit 2006), and hybrids that combine both hardware

and software components (Tabba, Moir, Goodman, Hay, & Wang 2009; Damron, Fedorova, Lev,

Luchangco, Moir, & Nussbaum 2006; Kumar, Chu, Hughes, Kundu, & Nguyen 2006).

Regardless of the layer where the implementation is made, most transactional memory

implementations support both unbounded and dynamic transactions (Dice & Shavit 2007).

16 CHAPTER 2. RELATED WORK

Supporting unbounded transactions (as opposed to bounded transactions (Dice & Shavit 2007))

means that there is no limit to how many items a transaction can read or modify. Supporting

dynamic transactions (as opposed to static transactions (Dice & Shavit 2007)) means that there

is no need to know the transaction’s data-set a-priori, since it is determined at runtime.

Some HTMs, such as the one proposed by Herlihy et al. in (Herlihy & Moss 1993), only

support bounded, static transactions. This forces the programmer to be aware of the limitations

of the transactional engine, and thus to write code in a way that circumvents them, a fact

that contradicts the transactional memory abstraction goal of simplifying the programming of

concurrent applications. Providing large scale transactions in hardware tends to introduce large

degrees of complexity into the design. Because of this, unbounded and dynamic HTMs, like the

one proposed by Ananian et al. in (Ananian, Asanovic, Kuszmaul, Leiserson, & Lie 2005), are

unlikely to be adopted by mainstream commercial processors in the near future.

STMs have fewer limitations when compared to HTMs. Since STMs make no exotic hard-

ware support assumptions, they can be implemented on commodity hardware, a factor that

increases their usability. Furthermore, software is more flexible and easier to evolve than hard-

ware. However, one of the most troublesome drawbacks of STMs is performance. Although the

performance of STMs has improved over the years, they are still significantly slower than tra-

ditional lock-based and HTM solutions. The design and implementation of STMs is subject to

many choices, and each one carries advantages and shortcomings (Ennals 2006; Dice & Shavit

2007; Marathe, Iii, & Scott 2004; Marathe, III, & Scott 2005; Cachopo & Silva 2006).

Hybrid solutions aim at combining the best of both approaches. The key idea is to use hard-

ware support to boost performance and fallback to software when facing hardware limitations

(or when hardware support is simply not available). As shown by Dice et al. in (Dice & Shavit

2007), hardware support for read-set validation, as opposed to full blown HTM, may deliver

significant performance benefits.

2.4.2 Design Choices and Classification

The design of STMs involves choices. These choices have a significant impact on their

properties and behavior. STMs are commonly classified using the following properties:

• Granularity. The view of the transactional memory and the unit of conflict detection. An

2.4. SOFTWARE TRANSACTIONAL MEMORY 17

STM can be word-based, page-based, field-based or other. The smaller the unit, the smaller

the probability of a conflict due to false sharing, i.e., conflicts caused by concurrent writes

to different parts of the same unit. However, smaller units require the maintenance of

more metadata, resulting in a higher memory overhead.

• Atomicity semantics.2 Can either be strong or weak. An STM that features strong atomic-

ity offers the guarantee that all access to transactional state is made inside a transactional

context. STMs featuring weak atomicity do not offer this guarantee.

• Update strategy. Can either be direct or deferred. STMs that use a direct strategy perform

writes in-place, and, therefore, have to revert modifications on rollback, while STMs that

use a deferred strategy, i.e., perform writes in an private write-set, have to write-back

values to memory at commit time.

• Concurrency control. Can either be optimistic or pessimistic. An STM that features

a pessimistic concurrency control scheme detects and resolves conflicts at the time they

occur. STMs that features an optimistic concurrency control scheme postpone conflict

detection and resolution, typically to commit time.

• Progress. There are three non-blocking guarantees of progress: wait-freedom, lock-freedom

and obstruction-freedom. Wait-freedom is the strongest of the three, and states that

all threads contending over a set of items make forward progress in a number of finite

steps, i.e., forward progress is guaranteed. Lock-freedom is a weaker guarantee than wait-

freedom, and ensures that a system as a whole moves forward regardless of anything, but

forward progress for each individual thread is not guaranteed, i.e., individual threads can

starve. Obstruction-freedom is the weakest of three guarantees, and ensures that a thread

makes forward progress only if it does not encounter data contention, i.e, two threads

can prevent each other’s progress and lead to a livelock. All three non-blocking progress

guarantees provide a guarantee of termination-safety, i.e., a terminated thread does not

prevent system-wide forward progress. Lock-based synchronization can also ensure forward

progress. In (Guerraoui & Kapalka 2009), Guerraoui et al. propose strong progressiveness

as the de facto progress property for lock-based STMs. Strong progressiveness ensures that

non-conflicting transactions are guaranteed to commit, and that at least one transaction

2Also commonly referred to as isolation semantics.

18 CHAPTER 2. RELATED WORK

among conflicting transactions is guaranteed to commit.

• Conflict detection. Can either be eager or lazy. An eager conflict detection scheme detects

a conflict when a transaction declares its intent of accessing an item. Lazy conflict detection

happens typically just once, before the commit of a transaction. Eager conflict detection

may abort transaction that could otherwise commit, while late conflict detection discards

more computation. There are many ways to perform conflict detection, being the two

primary ones validation and invalidation. Validation checks if the read-set of an active

transaction overlaps with the write-sets of concurrent but already committed transactions.

Validation should happen either by value or by version number (the latter avoids the ABA

problem). In case the validation procedure detects a conflict (also referred to as failed

validation) then the committing transaction has to be aborted, since the transaction with

which it overlaps is already committed. Invalidation checks if the write-set of an active

transaction overlaps with the read-sets of other active transactions. Since all transactions

involved are active, the STM can choose what transactions it should abort. Another

relevant property to conflict detection is disjoint access parallelism (Guerraoui & Kapalka

2008a), which states that operations on disconnected data should not interfere, i.e., the

data-sets of two concurrent transactions txa and txb intersect if they both access to the

same base object and at least one of the transactions has wrote in it.

• Conflict resolution. Resolving conflicts between concurrent transactions requires the abort

of one or more transactions. A contention manager typically implements one or several

contention policies in order to decide which transaction(s) to abort. An example of a

contention policy can be to always abort the newest transaction(s).

• Nesting. There are three types of nesting: closed, open and flattened. The definitions

of closed and open nesting are very complex. In practice, the abort of a closed nested

transaction does not cause any side-effect to its parent, whereas the abort of a flattened

nested transaction forces its parent to abort. An open nested transaction operates at a

different abstraction level from its parent. The commit of an open nested transaction

makes its write-set immediately public, which does not happen with closed or flattened

nested transactions.

2.4. SOFTWARE TRANSACTIONAL MEMORY 19

2.4.3 Opacity

In (Guerraoui & Kapalka 2008b), Guerraoui et al. state that properties such as lineariz-

ability (Herlihy & Wing 1990) and serializability (Papadimitriou 1979) are not sufficient for

transactional memories to ensure program correctness, while opacity (Guerraoui & Kapalka

2008b) is. Opacity can be viewed as an extension of the classical database serializability prop-

erty, with the additional requisite that even non-committed transactions are prevented from

accessing inconsistent states (most DBMSs only guarantee that committed transactions did not

see inconsistent states). It is an important correctness property because memory transactions

may be coded in a wide range of programming languages and might not be executed on a sand-

boxed environment. The lack of this property can lead to exceptions or incorrect behaviors on

otherwise correct code (e.g., infinite loops).

Listing 2.1: An opacity violation example.

1 // Invariant: (x + y >= 0) && (x + y < ARRAY_SIZE)
2 // Initially: x == y == 0
3

4 // Thread 1
5 void doA() {
6 // tx_a
7 Transaction.begin();
8 a = x; // a = 0
9 // Thread 2

10 void doB() {
11 // tx_b
12 Transaction.begin();
13 x = 1;
14 y = -1;
15 Transaction.commit();
16 }
17 b = y; // b = -1
18 arr[a + b] = 42; // a + b == -1 --> ERROR!
19 Transaction.commit();
20 }

Let us analyze the example depicted in Listing 2.1. We consider that there is a program

invariant where (x + y ≥ 0 ∧ x + y < ARRAY SIZE). As shown, transaction txa performs the

operation arr[a + b] = 1 where arr is an array of size ARRAY SIZE. If while txa is making

local copies of x and y, a concurrent transaction txb changes the values of both x and y to

respectively 1 and -1 and commits, then if later txa sees that changes, the assignment to arr

either fails and emits an exception (if on a supervised environment) or corrupts the system’s

20 CHAPTER 2. RELATED WORK

memory. Notice that no damage is made to the shared state, as the invariant holds true. Notice

also that if txb commits, then txa does not, as it conflicts with txb.

2.5 Distributed Software Transactional Memory

Much of the work around STM targets shared memory, cache-coherent architectures. The

construction of efficient STMs for non-shared memory and non-cache-coherent architectures is

a relatively new and unexplored topic.

In this section, we present a selection of relevant systems, including replicated and non-

replicated systems.

2.5.1 Distributed Software Transactional Memory

The Distributed Software Transactional Memory (DiSTM) (Kotselidis, Ansari, Jarvis,

Luján, Kirkham, & Watson 2008) is a system created to facilitate the prototyping of trans-

actional memory coherence protocols. It is built around two main components: an extended

version of the DSTM2 transactional engine (Herlihy, Luchangco, & Moir 2006), and a remote

communication system based on the ProActive framework (Laurent Baduel, Francoise Baude,

Denis Caromel, Arnaud Contes, Fabrice Huet, Matthieu Morel, & Romain Quilici 2006). The

system relies on the existence of a central master node, which is responsible for coordinating

the cluster. Each node maintains a cache that contains a subset of the shared transactional

data. A distributed transactional memory coherence protocol is responsible for ensuring the

strict consistency of each node’s cache.

Being based on DSTM2, DiSTM executes all transactions speculatively. When a transaction

updates an object, instead of directly modifying the actual object, a cloned version of the object

is generated, used, and kept private until the transaction commits. The commit phase is preceded

by a validation phase, where conflicts are detected and resolved. A transaction that passes the

validation phase with success can be safely committed.

The key concept of the ProActive framework is the notion of active object. Each active

object has its own execution context and can be distributed over the network, supporting both

2.5. DISTRIBUTED SOFTWARE TRANSACTIONAL MEMORY 21

mobility and remote method invocation. Nodes communicate among themselves through calls

to active objects.

DiSTM does not exploit multiversioning. Therefore, it does not guarantee that read-only

transactions are abort-free. Moreover, the lack of fault-tolerance guarantees represents addi-

tional complexity for programmers that develop applications which demand them.

All the three featured distributed transactional memory coherence protocols proposed face

scalability issues. The Transactional Coherence and Consistency (TCC) protocol imposes two

broadcasts along the critical path of the commit phase, which translates in long commit pro-

cedures. The serialization lease protocol minimizes the number of broadcasts needed by the

TCC protocol, but forces transactions to acquire a unique system-wide lease from the master

node, making it the bottleneck for acquiring and releasing the lease. Moreover, transactions stay

blocked in the commit phase until they acquire the lease, and the master node may attempt

to assign the lease to the commit request of a transaction that has aborted due to a conflict

with the last committing transaction. The multiple leases protocol effectively reduces the time

that a transaction takes to acquire a lease, but since every transaction has to be validated on

the master node, it again becomes the bottleneck. Is also important to consider that in face of

conflict intensive workloads, the benefits of the multiple leases scheme diminishes, because fewer

transactions are allowed to commit concurrently.

2.5.2 Distributed Multiversioning

Distributed Multiversioning (DMV) (Manassiev, Mihailescu, & Amza 2006) is a page-level

distributed concurrency control algorithm that exploits the presence, and easy maintenance, of

different versions of the transactional data-set across nodes. Like local multiversioning schemes,

DMV allows read-only transactions to execute in parallel with conflicting update transactions.

This is achieved by ensuring that read-only transactions always access a consistent snapshot.

However, each node maintains a single copy of each transactional item. Therefore, the system

delays applying (local or remote) updates to the transactional items, in order to maximize the

probability of not having to invalidate the snapshot of any active transaction and thus forcing

them to abort. For this reason, updates are only applied when it is strictly necessary.

The authors propose two cluster configurations: i) a completely decentralized, update-

22 CHAPTER 2. RELATED WORK

anywhere configuration, with no scheduler support, and ii) a centralized, master-update config-

uration with scheduler support.

This solution presents a good cost-benefit relation. Unlike classic local multiversioning,

DMV does not impose the overhead of having to maintain multiple copies of the same item.

However, DMV does not ensures that read-only transactions are abort-free, as their success is

dependent on the timing of concurrent access to data by conflicting transactions. The pessimistic

approach used in the update-anywhere protocol for the serialization enforcement (distributed

mutual exclusion) can seriously hamper the system’s performance, considering that only one

node commits at any time, and that consequently, all other nodes can be blocked, waiting for

the commit token. In the master-update scheme, the master node can become the performance

bottleneck, as it is responsible for the execution of all update transactions.

2.5.3 Cluster-STM

Cluster-STM (Jr., Adve, & Chamberlain 2008) is a distributed (non-replicated) STM that

was designed to achieve high performance on large-scale non-cache-coherent distributed systems,

such as commodity clusters. Performance boosts come from an efficient distribution of both

data and computation across the nodes of the cluster. An efficient distribution should require

minimum inter-node communication, by taking advantage of fast intra-node communication.

The system requires the assignment of a home node for each data item (a scalar or an array

element), which maintains an authoritative version of the item and its metadata. Home nodes

are also responsible for synchronizing the access of conflicting remote transactions to the items

they shelter. The distribution of both data and computation is not transparently managed by

Cluster-STM. It has to be managed independently, either by another system, or manually, by

the programmer.

The system does not support the dynamic creation of new execution contexts, thus it is

bootstrapped with a fixed number of tasks, and no task is created or destroyed during the life

of the program. Tasks can request the execution of transactional code on other tasks, in order

to avoid slow network data transfers, and through this benefit from data locality. Cluster-STM

does not feature any replication scheme, nor does it provide a coherent cache of transactional

remote items. Programmers in need of such features have to implement their own schemes, at

the application-level.

2.5. DISTRIBUTED SOFTWARE TRANSACTIONAL MEMORY 23

2.5.4 Distributed Dependable Software Transactional Memory

The Distributed Dependable Software Transactional Memory (D2STM) (Couceiro, Ro-

mano, Carvalho, & Rodrigues 2009) is built on top of the JVSTM transactional engine, and

the Appia (Miranda, Pinto, & Rodrigues 2001) GCS, in which the replication manager relies

to coordinate the cluster. All the nodes in the cluster maintain a full copy of the transactional

data. D2STM provides a conventional STM interface that transparently ensures non-blocking

and strong correctness guarantees (i.e., one-copy serializability) even in the presence of failures.

By using JVSTM, D2STM inherits opacity and strong atomicity guarantees.

The novel replica synchronization scheme employed is called Bloom Filter Certification

(BFC). It is a non-voting certification scheme that exploits a Bloom filter based encoding (Bloom

1970) of the transactions’ read-set, in order to reduce the overhead of the coordination phase.

A Bloom filter is a probabilistic data structure with a tunable size that is used to test whether

an element is member of a set. Queries to a Bloom filter can result in false positives (i.e., a

query for a certain item may indicate that it is a member of the set when in fact it is not), but

never in false negatives. The more elements that are added to a set, the larger the probability

of occurring false positives. Conversely, the greater the size of the Bloom filter, the lower the

probability of occurring false positives for the same number of elements.

By providing full replication of the transactional set, D2STM presents itself as a suitable

platform for the development of systems with strong consistency and high availability requi-

sites. Bloom filter based encoding effectively helps to reduce the amount of data exchanged

among replicas. This is a determinant factor for the performance of the AB service and leads

to a significant reduction of the overhead associated with the transaction certification phase.

Providing abort and wait-free read-only transactions is a very important feature, since most

realistic transaction-processing workloads are read-dominated.

2.5.5 Aggressively Optimistic

AGGRessively Optimistic (AGGRO) (Palmieri, Quaglia, & Romano 2010) is an active repli-

cation protocol that aims at maximizing the overlap between communication and computation,

through an optimistic concurrency control scheme.

The key idea underlying AGGRO is the propagation of the write-sets of yet uncommitted

24 CHAPTER 2. RELATED WORK

transactions to their following transactions, according to a serialization order that is compliant

with the message delivery order defined by an OAB service, through which the nodes of the

system exchange control data. This optimistic scheme takes advantage of the spontaneous

total order property, allowing the processing of any transaction while its GSO is still unknown.

When the optimistic serialization order and the GSO are not equivalent, the system triggers a

(cascading) abort event for all the transactions that have directly or indirectly read from the

write-set of an aborted transaction.

By being a pure active replication protocol, AGGRO creates a great amount of redundant

computation, and by serializing transactions against an optimistic message delivery order, AG-

GRO’s performance should decrease significantly when it is facing conflict-intensive workloads,

in a network environment with a high percentage of out-of-order message deliveries. In this

scenario, it is almost impossible to overlap communication with computation, so the overhead

created by the necessary execution of cascading rollbacks does not pay-off.

2.5.6 Speculative Certification

Speculative Certification (SCert) (Carvalho, Romano, & Rodrigues 2011) is a certification-

based replication protocol designed specifically for DRSTMs. It exploits optimistic deliveries

made by an OAB service to propagate, in a speculative fashion, the write-sets of transactions,

before their GSO is established. This scheme lowers the chances of accessing a stale snapshot,

thus minimizing the abort rate of transactions. It also features early conflict detection, thus

reducing the amount of computation and/or waiting time of transactions doomed to abort.

The optimistic nature of certification-based replication leads to very high abort rates when

in the presence of conflict intensive workloads. SCert relies on the spontaneous total order

property found in LAN environments. This property establishes an upper bound on the num-

ber of transactions that may have to abort due to mis-speculation. A transaction that reads

from a snapshot created by the speculative commit of another transaction can itself commit

speculatively, creating a chain of speculatively committed transactions. Therefore, in case of

mis-speculation, the system has to trigger a (cascading) abort event for all the transactions that

have directly or indirectly read from the write-set of an aborted transaction.

The downside of SCert is that, like in most speculative scheme, cascading aborts are ex-

2.5. DISTRIBUTED SOFTWARE TRANSACTIONAL MEMORY 25

pensive to perform. When mis-speculation occurs, the SCert algorithm inhibits the creation of

new transactions while the transactional state is being patched. This can seriously hamper local

concurrency when in massively multi-threaded environments.

Increases in the abort rate are typically followed by a significant performance degradation.

The effectiveness of SCert clearly depends on the probability that the optimistic message delivery

order matches the final order.

Another subtle problem of SCert is that it requires changes to already committed snapshots.

This may lead to temporary inconsistencies, as these changes may not be immediately visible

to concurrent threads. Programmers developing implementations of SCert must be fully aware

of the memory model of the target execution platform.

Summary

This chapter has introduced core concepts about group communication, replication tech-

niques and transactional systems. The construction of efficient DSTMs is a relatively new topic,

with a limited amount of literature around, although there is plenty of literature about the repli-

cation of systems that are similar to STMs, such as databases and distributed shared memories.

We analyzed both the limitations and strengths of current state-of-the-art solutions.

Next chapter introduces SPECULA, a system that can speculatively execute transactional

and non-transactional code in a safe manner, by being able to rollback all changes made to

memory if a mis-speculation is detected. It integrates with certification-based replication to

enable the speculative commit of memory transactions, while their GSO is being defined in

background.

26 CHAPTER 2. RELATED WORK

3SPECULA
I think... I am the third.

– Rei Ayanami, Neon Genesis Evangelion (TV Series)

This chapter describes SPECULA, a system that can speculatively execute transactional

and non-transactional code in a safe manner, by being able to rollback all changes made to

memory if a mis-speculation is detected. It is integrated with certification-based replication

to enable the speculative commit of memory transactions, while their GSO is being defined in

background.

The chapter is organized as follows. Sections 3.1 and 3.2 present, respectively, an in depth

description of the problem we identified and of how we intend to solve it. Section 3.3 identi-

fies work solution in the design space. Section 3.4 describes the target environment in which

SPECULA operates. Section 3.5 describes the architectural design of our system, and Section

3.6 describes the set of properties guaranteed by it. Section 3.7 focuses on the system operation,

providing a detailed overview of its internals. Section 3.8 discusses the strengths and weak-

nesses of SPECULA. Finally, Section 3.9 addresses details of the prototype developed for the

JVM platform.

3.1 The Problem

The main motivations behind the creation of DRSTMs are scalability and reliability. Re-

garding scalability, a commodity cluster is much cheaper than a supercomputer, but it is also

typically much more difficult to scale systems horizontally than vertically, due to the cost of

inter-node communication. Regarding reliability, high-availability requisites are very common

in real world applications. However, high-availability must be achieved at the minimum possible

cost, thus replication protocols should be simultaneously effective and efficient.

28 CHAPTER 3. SPECULA

Most replicated systems communicate through some sort of computer network. Due to

distance and medium propagation speed, computer networks feature much higher latency and

lower bandwidth than the bus of a computer. This means that if a computer stops executing

application’s code to communicate with another node, it is wasting the possibility to execute

millions of instructions, as it is just sending or receiving data. Therefore, programmers struggle

to minimize the effect of the communication latency, either by reducing the number of commu-

nication steps or the amount of data to exchange, or by overlapping communication with useful

computation. In this context, the cost of the communication can be measured by the number of

instructions that could be executed while the process is waiting for the communication exchange

to terminate.

Certification-based replication schemes have shown to offer good performance on multi-

master database environments. In those settings, there are several sources of delay. First,

transaction processing is subject to pre-execution stages like parsing and query optimization.

Second, database transactions are required to access stable storage synchronously. These effects

dilute the costs induced by communication. It is worth noticing that in certification-based

replication most communication costs are associated with the execution of an atomic broadcast

primitive, that can take two or more communication steps and requires the exchange of multiple

messages (Coulouris, Dollimore, & Kindberg 2002).

In a DRSTM, many of the costs above are not present. This amplifies the relative cost of

communication. Therefore, naive ports of DBMSs protocols to the DRSTMs may offer poor

performance (Palmieri, Quaglia, Romano, & Carvalho 2010). Figure 3.1 depicts the transaction

execution times observed in two benchmarks, STMBench7 and TPC-W, being the former for

STMs and the later for DBMSs. As we can see, almost 80% of all memory transactions executed

in the STMBench7 benchmark took less than 1 ms to finish, while a similar percentage of

database transactions executed in the TPC-W benchmark needed almost 10 ms.

There are several approaches to mitigate the performance loss due to costs involved in

inter-replica coordinations:

• One approach consists in reducing the amount information exchanged in the messages, to

speed up the message exchange. This can be achieved using some encoding techniques,

such as Bloom filters. This is the approach used by D2STM, and experimental results

show that it is an effective solution (Couceiro, Romano, Carvalho, & Rodrigues 2009).

3.1. THE PROBLEM 29

0.01

0.1

1

10

100

1000

10000

0 0.2 0.4 0.6 0.8 1

E
xe
cu
tio
n
Ti
m
e
(m
ill
is
ec
)

Cumulative Distribution Function

STMBench7 (write transactions)
TPC-W (write transactions)

Figure 3.1: Execution time of database and memory transactions (Romano, Carvalho, & Ro-
drigues 2008).

• Another approach would be to start a speculative commit when the transaction begins,

in an attempt to run most of the coordination in parallel with the computation of the

transaction. This approach has several limitations. First it requires the read and write

set of the transaction to be accurately estimated, which is generally hard (unless the

system is restricted to use static transaction). Another disadvantage is that coordination

is still much slower than computation, so the process would be required to wait in any

case. The experimental results in (Palmieri, Quaglia, Romano, & Carvalho 2010) show

communication taking around 6 to 26 times more time than execution when considering

an AB-delivery time of 2 ms. To put these results in a different perspective, conducting

the same tests over the same network environment, but with 10 times faster machines, will

result in a speedup varying between around 1.03 and 1.14, which truly reflects the amount

of computational power that is wasted by standard solutions.

• A third alternative consists in using speculation in the coordination protocol to start

the certification of the transaction earlier, and proceed with the (speculative) execution

of other transactions before the final outcome of the coordination is known. On LAN

networks, experimental results show that the OAB-delivery order matches the AB-deliver

30 CHAPTER 3. SPECULA

order around 85% of the time (Kemme, Pedone, Alonso, Schiper, & Wiesmann 2003). This

property establishes an upper bound on the amount of mis-speculations that can occur.

SCert (Carvalho, Romano, & Rodrigues 2011) uses this approach.

In this chapter we propose a novel approach, that builds on the strategies listed above but

aims at exploring in higher degree the idea of executing transactions speculatively.

3.2 The Solution

(a) Normal execution of a thread.

(b) Execution of a thread in SPECULA.

Figure 3.2: Comparison between SPECULA and the normal execution of a thread.

As we have already stated, certification-based replication is an optimistic scheme. A trans-

action tx is locally executed assuming that there will be no conflicts with other transactions, and

that, therefore, tx will commit. Only when the transaction terminates, will coordination with

other nodes be established. On systems using standard certification-based replication schemes,

while tx is being certified, the thread that is committing it stays blocked. The system that we

propose here, named SPECULA, avoids blocking by letting the thread run based on a spec-

ulative snapshot of the system state (this snapshot may be invalidated when coordination is

completed).

SPECULA integrates with a certification-based replication protocol and extends its default

level of optimism. Figure 3.2b depicts the optimistic process, and we can compare it to a

classic execution depicted in Figure 3.2a. In SPECULA, if transaction tx is locally valid, it is

speculatively committed before the results of its global validation are known. This allows the

3.3. DESIGN SPACE 31

committing thread to unblock and execute code while slow inter-node communication is taking

place in background. New transactions can be executed in the same thread while tx is being

certified. This creates a flow dependency among transactions. Both those transactions and

concurrent ones gain access to the snapshot created upon the speculative commit of tx, so they

can also depend on previous speculations, by reading speculatively committed data.

The trade-off of being more optimistic is having to undo more modifications when mis-

speculations occur, i.e., when the global validation of a speculatively committed transactions

fails. SPECULA has the ability to undo changes made to both the transactional and the

non-transactional data of the application. Moreover, it resumes execution where the wrong

speculation was initially performed.

Ideally, all speculation should be transparent for both the programmer and the application.

It is also crucial that the system guarantees the correct execution of the application, which

means that the application should present the exact same behavior as if it was running over

a non-speculative environment. As it will become clear later in the text, SPECULA achieves

these goals by controlling both the memory and the execution flow of the application.

3.3 Design Space

Now that we have given an overview of the SPECULA approach, it is possible to compare

it with the related schemes that we have listed previously. SPECULA fits into the set of

distributed and fully replicated software transactional memory systems that rely on certification-

based replication. It exploits the possibility of safely executing speculative computation to

overlap computation with slow inter-node computation, hence effectively minimizing the negative

impact of network latency. A comparison with other systems is depicted in Table 3.1.

3.4 System Model

We consider a system composed by a set of processes
∏

= {p1, ..., pn} that communicate

through a message passing interface. We assume that a majority of processes is correct and

that the remaining minority may fail according to the fail-stop (crash) model. Furthermore, we

assume that the system is asynchronous but augmented with an unreliable failure detector, so

32 CHAPTER 3. SPECULA

Replication Scheme
Optimization Techniques

Active Certification-based

D2STM
X

Bloom filter read-set encoding
(Non Voting)

AGGRO
Speculative value propagation

X +
Speculative execution (fully transactional)

SCERT
X

Speculative value propagation
(Non Voting)

SPECULA
Speculative value propagation

X +
(Voting and Non Voting) Speculative execution

Table 3.1: SPECULA in the design space.

that a primary partition view synchronous GCS (Birman & Joseph 1987) can be implemented.

We assume the use of a GCS ensuring the following properties on the delivered views:

• Self-inclusion: if process p delivers view vi, then p belongs to vi.

• Strong view-synchrony: messages are delivered in the same view in which they were sent.

• Primary component view: the sequences of views delivered are totally ordered and for any

two consecutive views vi, vi+1 there always exists a vi-correct process p that belongs to

both views.

• Non-Triviality: when a process fails or it is partitioned from the primary view, it will be

eventually excluded from the primary component view.

• Accuracy: a correct process is eventually included in every view delivered by the GCS.

The GCS has to provide provide an Uniform Atomic Broadcast communication service

and an Uniform Reliable Broadcast (URB) communication service. Uniform AB was formally

described in Section 2.1.1. The Uniform AB service also guarantees FIFO ordering on the

AB-delivered messages. FIFO ordering is formalized as following:

• FIFO Order: if a process p FIFO-broadcasts message m before message m′, then any

correct process FIFO-delivers m before m′.

3.5. SYSTEM ARCHITECTURE 33

The URB service exports communication primitives URB-broadcast(m) and

URB-deliver(m), analogous to those provided by the Uniform AB service. It features all

the guarantees of the Uniform AB service, with the exception of the Uniform Total Order prop-

erty.

Regarding transactions, we consider that they are dynamic and snapshot deterministic, i.e.,

their read-set is not known a-priori, and their execution over a given snapshot always produces

the same write-set, i.e., writes depend solely on reads.

3.5 System Architecture

The architecture of each SPECULA replica is depicted in Figure 3.3, in which the compo-

nents that are either new or that we have modified are highlighted in bold. These new and

modified components add the following functionality to the system:

• The transactional engine was modified to support the notion of speculative state. SPEC-

ULA propagates the write-sets of speculatively executed transactions to their following

transactions, while ensuring the correctness properties described in Section 3.6.

• The SPECULA approach requires that, in case of mis-speculation, it is possible to rollback

the state of the application. This means undoing writes made to both transactional and

non-transactional shared state, as well as rolling back the execution flow of threads that

executed the aborted transactions, all in a way that preserves the system’s correctness.

To do this, we use a modified JVM that has support for capturing and resuming con-

tinuations (Haynes, Friedman, & Wand 1984), and developed Class Loader that makes

modifications to classes prior to loading them. The STM was also enhanced with the

ability to rollback changes made to the transactional state.

• The replication protocol was modified to be aware of the existence of speculative transac-

tions, as their presence requires the execution of preventive measures, in order to preserve

the correctness of the system.

It is possible to rely on a set of different technologies to implement all the functionalities

described above. For our prototype, we decided to use the following software components: the

34 CHAPTER 3. SPECULA

Class Loader

JVM Continuations

Replication Manager

Group Communication Service

STM Speculative
Extensions

Distributed STM Interface

Application

Speculation
Manager

Figure 3.3: The system’s architecture.

3.6. SYSTEM PROPERTIES 35

JVM is a modified version1 of the OpenJDK2 that offers support for capturing continuations;

the STM is the JVSTM, as it features Multiversion Concurrency Control (MVCC), which makes

it easier to add support for speculative state; the GCS is the Appia toolkit (Miranda, Pinto, &

Rodrigues 2001).

The Class Loader uses the ASM bytecode manipulation framework (Bruneton, Lenglet,

& Coupaye 2002) to perform modifications to the application. These modifications intend to

facilitate the life of the programmer, by injecting code that will automatically add support to

each thread for capturing continuations and create all the data structures that the Speculative

Manager (SM) requires. In turn, the SM will control the state of the application. This is

represented in Figure 3.3, by the connector between the SM and the Application.

3.6 System Properties

SPECULA was designed to hold most of the properties of its underlying system. The

Replication Manager ensures one-copy serializability (1SR). According to what Bernstein et

al. wrote in (Bernstein, Hadzilacos, & Goodman 1987), 1SR determines that the interleaved

execution of clients’ transactions must be equivalent to a serial execution of those transactions

on a single replica. 1SR is more than a consistency model, and is the most common correctness

criterion among transactional replication protocols.

SPECULA also maintains properties of the underlying STM, such as opacity and strong

progressiveness. For the latter we should only consider transactions that do not depend on any

speculation.

However, SPECULA does not guarantee that read-only transactions are abort-free, thus it

is not multiversion permissive (Perelman, Fan, & Keidar 2010). This limitation derives from the

fact that read-only transactions can depend on speculations.

1http://wikis.sun.com/display/mlvm/StackContinuations
2http://openjdk.java.net

36 CHAPTER 3. SPECULA

3.7 Operation

In this section, we describe how SPECULA works. Although our prototype was implemented

over a specific set of software components, the algorithms presented here are technology agnostic.

Nevertheless, we assume that the underlying transactional engine features MVCC.

To simplify the description, we omit information regarding the concurrency control mech-

anisms used locally at each replica. Also, as the pseudo-code serves only as a programmatic

description of the general idea and of how to implement it, we omit the declaration of some

straightforward procedures to increase its readability.

We shall start with the disambiguation of some concepts. A transaction is speculatively

committed if, upon its commit request, it successfully passes on its local validation. The write-

set of a speculatively committed transaction is applied locally, making it visible for future

local transactions. The thread that executed the transaction proceeds normally, as the commit

procedure returns. The system is, therefore, optimistic about the outcome of the transaction’s

global validation. The write-set of a speculatively committed transaction becomes available as

speculative state.

We call speculative transaction to a transaction that depends on any speculation, i.e., one

that has read speculative state or was executed over the coordination phase of a previously

speculatively committed transaction.

A speculation ends up being either right or wrong. When the result of the global validation

of a transaction is known, the node that executed the transactions has to act accordingly.

If the speculation reveals itself correct, the transaction is finally committed, which leads to

the system-wide apply of its write-set as final state. Otherwise, the system has to hide the

transaction’s write-set, which was made (locally) public during its speculative commit, and

abort all transactions that depend directly or indirectly on the wrong speculation.

During its life, a transaction is always in one of the states depicted in Figure 2.1. In

SPECULA, when on state committing, a transaction is speculatively committed, while when on

state committed, it is finally committed.

3.7. OPERATION 37

3.7.1 Speculative Execution Support

In order to support the safe execution of both transactional and non-transactional code over

speculative state, it is required to keep track of some data. Therefore, per thread, we maintain

the following state:

• A FIFO queue containing all transactions that are in state committing.

• The oldest speculatively committed transaction that has been aborted since the last syn-

chronization (described ahead).

As we are considering the use of an STM featuring MVCC, read-only transactions con-

stitute a special case. MVCC schemes typically offer abort-free read-only transactions, as all

transactions read from a consistent snapshot (i.e., one that is serializable). In SPECULA, a

transaction may read speculative values, hence, it may have to abort due to a mis-speculation.

As a result, read-only transactions have to be validated. This poses a significant but inevitable

computational overhead.

To simplify the description of the algorithms here presented, we assume that all transactions

are globally validated according to the order by which their commit requests were issued, i.e., if

the commit request for transaction txa is issued before the commit request for transaction txb,

then txa is globally validated before txb, and, therefore, if both transactions (final) commit, txa

commits before txb. Notice that systems featuring MVCC typically do not offer this guarantee,

because read-only transactions do not need to be validated. In Section 3.9 we describe how this

detail is handled in our prototype.

Algorithm 3.1 Thread event handlers.

1: Map<Thread,ThreadContext> contexts← ∅

2: upon event start(Thread thread) do
3: var ThreadContext tc← createThreadContext()
4: put(contexts, thread, tc)
5: tc.oldestAbortedTx← null
6: tc.committingTxs← ∅
7: end event handler

8: upon event end(Thread thread) do
9: var ThreadContext tc← get(contexts, thread)
10: sync(tc)
11: end event handler

38 CHAPTER 3. SPECULA

Algorithm 3.2 ThreadContext data structure.

1: data structure ThreadContext
2: SpeculativeTransaction oldestAbortedTx
3: FIFOQueue<SpeculativeTransaction> committingTxs
4: end data structure

Algorithm 3.1 describes the actions performed upon the start and the end of a thread. Upon

its start, a thread t gets associated with a ThreadContext, and vice-versa, in a one-to-one

relationship between both. The ThreadContext data structure is described in Algorithm 3.2.

It holds information regarding the thread to which it is associated. On field oldestAbortedTx, it

holds a reference to the oldest speculatively committed transaction that has been aborted since

the last synchronization, and on field committingTxs, it holds a reference to a queue containing

all speculatively committed transactions that are still waiting for their final commit.

When a thread terminates, a synchronization is forced. The algorithm for synchronizing a

thread is described in Algorithm 3.3, by function sync. It consists in waiting until all transac-

tions present in the committingTxs queue are either final committed, or one of them is aborted.

In the first case, the thread proceeds normally. Otherwise, in the second case, the thread is

rolled-back, i.e., all the modifications made to shared state performed on the thread since the

speculative commit of the aborted transaction are undone, and the thread resumes its execu-

tion on the commit request of the oldest aborted transaction, from where the application is

informed of the inability to commit that transaction. After a synchronization, a thread resumes

its execution with the committingTxs queue in its ThreadContext empty.

Thread termination is not the only event that requires a synchronization point to be forced.

All non-transactional operations, like for instance, the output of data to the screen, have to be

preceded by a synchronization point. For our Java prototype, we carefully analyzed the set of

non-transactional operations present on the JVM, and we describe them in detail on Section

3.9.1. Each thread should also make periodic calls to the mustSync function and synchronize

accordingly. Function mustSync checks if there is any speculatively committed transaction in

the committingTxs queue that was aborted. If that is the case, the thread should synchronize

as soon as possible, as it is doomed to be rolled-back.

Continuations are essential for our speculative execution support. A continuation reifies the

program’s control state. A common analogy used to explain the concept is that continuations

are the dynamic version of the GOTO statement, although much more powerful. From the

3.7. OPERATION 39

Algorithm 3.3 Speculative execution support.

1: Integer MAX COMMITTING TXS ← getProperty(“MAX COMMITTING TXS”)
2: Integer MIN COMMITTING TXS ← getProperty(“MIN COMMITTING TXS”)
3: Integer specLimit←MIN COMMITTING TXS

4: void sync(ThreadContext tc)
5: var undoLogs← ∅ // LIFO queue
6: var abortAllRemainingTxs← false
7: var resumePoint← null
8: for all SpeculativeTransaction tx ∈ tc.committingTxs do
9: if abortAllRemainingTxs then
10: abort(tx)
11: push(undoLogs, tx.undoLog)
12: else
13: wait while tx.state = State.COMMITTING
14: if tx.state = State.ABORTED then
15: abortAllRemainingTxs← true
16: resumePoint← tx.resumePoint
17: push(undoLogs, tx.undoLog)
18: end if
19: end if
20: end for
21: tc.committingTxs← ∅
22: tc.oldestAbortedTx← null
23: if abortAllRemainingTxs then
24: restoreNonTransactionalSharedState(undoLogs)
25: resumeContinuation(resumePoint)
26: end if
27: end function

28: boolean mustSync(ThreadContext tc)
29: if tc.oldestAbortedTx 6= null then
30: return true
31: end if
32: return false
33: end function

34: void gotAborted(ThreadContext tc, SpeculativeTransaction tx)
// assumes that transactions are always aborted
// from the oldest to the newest

35: if tc.oldestAbortedTx = null then
36: tc.oldestAbortedTx← tx
37: specLimit← max(MIN COMMITTING TXS, specLimit / 2)
38: end if
39: end function

40: void gotCommitted(ThreadContext tc, SpeculativeTransaction tx)
41: remove(tc.committing, tx)
42: specLimit← min(MAX COMMITTING TXS, specLimit + 1)
43: end function

40 CHAPTER 3. SPECULA

perspective of our work, they can be seen as a snapshot of a thread, which saves the content

of all its local variables and the program counter. Continuations allow us to, in case of mis-

speculation, resume the execution at the precise moment where it should be resumed.

3.7.2 Modifications to the STM

Existing STMs have not been designed to take speculative state into account. We propose

a scheme that enables STMs to provide transactions with speculative values, while ensuring the

whole system’s correctness, namely the opacity property described in Section 2.4.3.

Algorithm 3.4 describes the data structures required. We use the concept of versioned boxes

introduced by Cachopo et al. in (Cachopo & Silva 2006). Let us assume that Box, Body and

Transaction are data structures already available in the underlying STM. A Box represents

a transactional variable, while a Body represents a value that was once written to a box by a

committed transaction, i.e., a Body represents a version in MVCC terms. SpeculativeBox

extends Box by holding references to both speculative and final bodies, on fields specBody and

finalBody, respectively. A SpeculativeBody represents a body created during a speculative

commit, and extends Body by holding a reference, on field tx, to the transaction that wrote it.

A FinalBody represents a body created during a final commit, and extends Body by holding

a reference, on field specBody, to its equivalent SpeculativeBody, i.e., the speculative body

that was created and placed on the same box as him, with the exact same value, upon the spec-

ulative commit of a now finally committed transaction. SpeculativeTransaction extends

Transaction by holding, on field state, the state of the transaction (executing, committing,

committed or aborted); on field specSnapshotID, the oldest snapshot created by a speculatively

committed transaction that is accessible to the transaction; on field resumePoint, a reference

to the continuation that will be resumed in case of mis-speculation; on field threadContext,

a reference to the context of thread where the transaction executes; finally, on field undoLog,

a reference to the undo log that will be applied to non-transactional shared state in case of

mis-speculation.

In standard MVCC, a transaction begins by obtaining the identifier of the newest snapshot.

During its life, a transaction always reads from that snapshot. Access to speculative transac-

tional data follows a similar approach. In SPECULA, specSnapshotID and snapshotID delimit

what we call the speculative transactional window. As executing transactions get speculatively

3.7. OPERATION 41

Algorithm 3.4 SpeculativeTransaction, SpeculativeBox, SpeculativeBody and
FinalBody data structures.

1: data structure Transaction
2: Integer snapshotID
3: Set<Pair<Box,Body>> readSet
4: Set<Pair<Box,Object>> writeSet
5: end data structure

6: data structure SpeculativeTransaction extends Transaction
7: State state
8: Integer specSnapshotID
9: Continuation resumePoint
10: ThreadContext threadContext
11: Map<Address,Object> undoLog
12: end data structure

13: data structure Box
14: Body body
15: end data structure

16: data structure SpeculativeBox extends Box
// inherited field body is not used

17: SpecBody specBody
18: FinalBody finalBody
19: end data structure

20: data structure Body
21: Integer version
22: Object value
23: Body next
24: end data structure

25: data structure SpeculativeBody extends Body
26: SpeculativeTransaction tx
27: end data structure

28: data structure FinalBody extends Body
29: SpecBody specBody
30: end data structure

42 CHAPTER 3. SPECULA

committed, and speculatively committed transactions are either final committed or aborted,

the window moves. A speculative commit adds new speculative state, so the right limit of the

window moves forward, which increases its size. In turn, an abort or a final commit makes spec-

ulative state eventually disposable, and therefore, the left limit of the window moves forward,

which reduces its size. Notice, however, that when a transactions begins, it obtains a fixed view

of the transactional window. This scheme is fully exempt from reorderings or removal of bodies

from boxes, at the cost of having to apply write-sets twice: once upon the speculative commit

of a transaction and again, upon its final commit.

Algorithm 3.5 Transaction initialization.

1: Integer newestSnapshotID ← 0
2: Integer oldestSpecSnapshotID ← 0
3: FIFOQueue<SpeculativeTransaction> allCommittingTxs← ∅

4: void start(SpeculativeTransaction tx, Thread thread)
5: var ThreadContext tc← get(contexts, thread)
6: tx.state← State.EXECUTING
7: tx.snapshotID ← newestSnapshotID
8: tx.specSnapshotID ← oldestSpecSnapshotID
9: tx.resumePoint← null
10: tx.threadContext← tc
11: tx.undoLog ← ∅
12: end function

The Begin of a Transaction Algorithm 3.5 depicts the initialization procedure of a trans-

action. Upon its begin, a transaction tx acquires not only the identifier of the newest snapshot

available, but also the left limit of its speculative transactional window, respectively snapshotID

and specSnapshotID.

Read Algorithm 3.6 depicts the read procedure. A transaction tx starts by consulting its

internal write-set. If there is value available there, it is returned to the application. Otherwise,

the read procedure starts searching through the state inside the target box. The search starts

by the speculative bodies, as they represent a possible future. If it exists, the matching body is

the one with the highest version that is both lower or equal to tx.snapshotID and greater or

equal to tx.specSnapshotID. If no body is found within the speculative transactional window

of the transaction, the search continues through the final bodies, from where the first body with

version lower or equal to tx.snapshotID is returned to the application.

If a speculative body is a match but belongs to the write-set of a transaction that was

3.7. OPERATION 43

Algorithm 3.6 Read procedure.

1: Object read(Box box, SpeculativeTransaction tx)
2: var body ← readFromWriteSet(tx, box)
3: if body 6= null then
4: return body
5: end if

// look into the speculative values
6: body ← box.specBody
7: while body 6= null do
8: if body.version < tx.specSnapshotID then

// reached the end of the transaction’s speculative window
9: break
10: end if
11: if body.version ≤ tx.snapshotID then
12: if body.tx.state = State.ABORTED then
13: throw MisspeculationException
14: end if
15: put(tx.readSet, box, body)
16: return body.value
17: end if
18: body ← body.next
19: end while

// look into the non-speculative values
20: body ← box.finalBody
21: while true do
22: if body.version ≤ tx.snapshotID then
23: put(tx.readSet, box, body)
24: return body.value
25: end if
26: body ← body.next
27: end while
28: end function

aborted, the application is informed of the inability of the transaction to read from the target

box. This behavior prevents transactions from accessing an inconsistent snapshot, which avoids

violating opacity.

Let us examine the examples depicted in Figures 3.4 and 3.5. In both examples, transaction

tx starts with tx.snapshotID equal to 8 and tx.specSnapshotID equal to 5. tx is a read-only

transaction, therefore, its internal write-set is empty. In Figure 3.4, tx is reading from box ba.

The read procedure finds a match on body version 6, as 6 is within tx’s speculative window

(6 ≥ tx.specSnapshotID ∧ 6 ≤ tx.snapshotID). Therefore, the value inside body version 6 is

returned to the application.

In Figure 3.5, tx is reading from box bb. The read procedure finds no matching body within

the speculative versions inside bb, as both versions 9 and 4 are outside tx’s speculative window

(9 > tx.snapshotID ∧ 4 < tx.specSnapshotID). However, the final body version 8 is a match,

44 CHAPTER 3. SPECULA

SpeculativeBox

specBody:

finalBody:

SpeculativeBody

version: 15

SpeculativeBody

version: 6

SpeculativeBody

version: 5

FinalBody

version: 9

FinalBody

version: 1 tx.specSnapshotID = 8

tx.snapshotID = 5

Figure 3.4: Reading example number 1.

as 8 ≤ tx.snapshotID. Therefore, the value inside final body version 8 is returned to the

application.

Validation In standard MVCC, a transaction cannot commit if it conflicts (read–write con-

flict) with a concurrent but already committed transaction. This is the only reason why a

transaction cannot commit.

In SPECULA, there are two additional reasons that may force a transaction to abort:

• If a transaction has read from the write-set of a speculatively committed transaction that

was aborted – we call this a speculative data dependency ;

• If a transaction was executed on a thread that has to be rolled-back and resumed at a

point prior to the transaction’s starting point – we call this a speculative flow dependency.

It is possible to avoid aborting transactions just due to a speculative flow dependency. By

tracing the execution flow of a rolled-back thread during its reexecution, it is possible to detect

3.7. OPERATION 45

Algorithm 3.7 Validation procedures.

1: boolean validate(SpeculativeTransaction tx)
2: if mustSync(tx.threadContext) ∨ tx.state = State.ABORTED then
3: return false
4: end if
5: if isReadWriteTransaction(tx) then
6: return validateReadWrite(tx)
7: else
8: return validateReadOnly(tx)
9: end if
10: end function

11: boolean validateReadWrite(SpeculativeTransaction tx)
12: for all Pair<Box,Body> entry ∈ tx.readSet do
13: var readBody ← entry.second // the body that was read
14: var NSBody ← entry.first.specBody // the newest speculative body
15: var NFBody ← entry.first.nonSpecBody // the newest final body
16: if tx.state = State.EXECUTING then
17: if NSBody 6= null ∧NSBody.version ≥ oldestSpecSnapshotID then
18: if readBody instanceof FinalBody then
19: return false
20: else if readBody instanceof SpecBody then
21: if NSBody 6= readBody ∨ NSBody.tx.state = State.ABORTED ∨ (NSBody.tx.state =

State.COMMITTED ∧NFBody.specBody 6= NSBody) then
22: return false
23: end if
24: end if
25: else if NFBody 6= readBody ∧NFBody.specBody 6= readBody then
26: return false
27: end if
28: else if tx.state = State.COMMITTING then
29: if NFBody 6= readBody ∧NFBody.specBody 6= readBody then
30: return false
31: end if
32: end if
33: end for
34: return true
35: end function

36: boolean validateReadOnly(SpeculativeTransaction tx)
37: for all Pair<Box, Body> entry ∈ tx.readSet do
38: var readBody ← entry.second
39: if readBody instanceof SpecBody ∧ readBody.tx.state = State.ABORTED then
40: return false
41: end if
42: end for
43: return true
44: end function

46 CHAPTER 3. SPECULA

SpeculativeBox

specBody:

finalBody:

SpeculativeBody

version: 9

SpeculativeBody

version: 4

FinalBody

version: 8

FinalBody

version: 3

tx.specSnapshotID = 8

tx.snapshotID = 5

FinalBody

version: 1

Figure 3.5: Reading example number 2.

if its flow is being repeated, thus leading to the execution of the same memory transactions.

This is, however, outside of the scope of this work.

All transactions are validated to ensure that their commit preserves the system’s correctness.

Validation is commonly made in two steps: first local, then global. Local validation is typically

not mandatory. It filters transactions that will certainly fail on global validation, avoiding

announcing them on the network. Performing local validation is normally a trade-off between

computation and communication. However, in SPECULA, local validation is mandatory, as it

is responsible for ensuring that speculative commits preserve the system’s correctness. Global

validation is always mandatory, as it is responsible for ensuring that a given transaction can be

committed system-wide, as final state.

Algorithm 3.7 depicts the validation procedures. Both local and global validations fail

if i) the transaction was already aborted in either a previous synchronization or cascading

abort procedure (described ahead), or if ii) function mustSync returns true, which reveals a

speculative flow dependency.

An update transaction txa fails to pass on its local validation if i) it has read from the

3.7. OPERATION 47

Algorithm 3.8 Commit procedures.

1: void commit(SpeculativeTransaction tx)
2: if isReadWriteTransaction(tx) then
3: if validate(tx) then
4: wait while size(tx.tc.committingTxs) > tx.tc.specLimit
5: AB-broadcast(tx)
6: tx.state← State.COMMITTING
7: newestSnapshotID ← tx.snapshotID ← newestSnapshotID + 1
8: specApplyWriteSet(tx)
9: enqueue(allCommittingTxs, tx)
10: else
11: throw CommitException
12: end if
13: end if
14: tx.resumePoint← captureContinuation()
15: if tx.state = State.ABORTED then

// this is only reached if the thread was rolled-back
16: throw CommitException
17: end if
18: enqueue(tx.threadContext.committingTxs, tx)
19: end function

20: void finalCommit(SpeculativeTransaction tx)
21: tx.state = State.COMMITTED
22: if isWriteTransaction(tx) then
23: newestSnapshotID ← tx.snapshotID ← newestSnapshotID + 1
24: finalApplyWriteSet(tx)
25: gotCommitted(tx.context, tx)
26: moveSpecWindow()
27: end if
28: end function

write-set of a transaction in state aborted, or if ii) it has read from speculative state that is

equivalent to final state, but that is not the newest available, or if iii) it has not read from the

latest speculative state available, or if iv) there is no speculative state available and txa has not

read from the latest final state available, or the equivalent speculative state. Transaction txa

fails to pass on its global validation if it has not read from the latest final state available, or the

equivalent speculative state.

A read-only transaction txb fails to pass on its (final and only) validation if it has read from

the write-set of speculatively committed transaction that ended up being aborted.

Commit Algorithm 3.8 depicts the commit procedures. Any locally valid update or read-

only transaction tx pass to state committing when its commit request is issued by the user.

If tx is an update transaction, its write-set is applied to memory as speculative state, and it

is then enqueued in the allCommittingTxs queue, which is used to adjust the limits of the

48 CHAPTER 3. SPECULA

speculative transactional window. Otherwise, if tx is a read-only transaction, it is exempt from

the two previously described actions, but both read-only and locally valid update transaction

are associated with a continuation that will be resumed, if necessary, in case of mis-speculation.

Finally, tx is enqueued in the committingTxs queue of its ThreadContext.

Final commits occur according to the GSO. If tx is a read-only transaction, it simply

passes to state committed. If otherwise, tx is an update transaction, its write-set is applied

to the transactional memory as final state, its associated ThreadContext is notified of the

final commit, and it tries to move the speculative transactional window, in order to hide its

speculatively committed write-set. The field specBody of each FinalBody created during

the final commit of a local transaction points to its equivalent SpeculativeBody, so that

the validation procedure can check for valid speculations. In turn, the write-sets of remote

transactions are always directly applied as final state.

Algorithm 3.9 Abort procedure.

1: void abort(SpeculativeTransaction tx)
2: tx.state = State.ABORTED
3: moveSpecWindow()
4: if tx.state = State.EXECUTING then
5: standardAbort(tx)
6: else if tx.state = State.COMMITTING then
7: if isReadWriteTransaction(tx) then
8: gotAborted(tx.threadContext, tx)
9: end if
10: end if
11: end function

Abort Algorithm 3.9 depicts the abort procedure. All aborting transactions pass to state

aborted and try to move the speculative transactional window. If the aborting transaction tx is

a read-only transaction, nothing more has to be done. Otherwise, if tx is an update transaction,

it is subject to a different set of actions. If tx is in state executing, the abort procedure can

be delegated to the underlying STM. Otherwise, ff tx is in state committing, it notifies its

ThreadContext of the abort, as it may be the oldest speculatively committed transaction to

be aborted.

Notice that there is no need to clean the entire speculative state with a cascading abort

procedure, upon the abort of a speculatively committed transaction.

3.7. OPERATION 49

3.7.3 Moving the Speculative Transactional Window

Algorithm 3.10 Moving the limits of the speculative transactional window.

1: void moveSpecWindow()
2: for all SpeculativeTransaction tx ∈ allCommittingTxs do
3: if tx.state 6= State.COMMITTING then
4: oldestSpecSnapshotID ← tx.snapshotID + 1
5: dequeue(allCommittingTxs)
6: else
7: return
8: end if
9: end for
10: end function

When a transaction is speculatively committed, it widens the speculative transactional win-

dow, as the identifier of the newest available snapshot increases, and it corresponds to the right

limit of the window. Upon the commit of a remote transaction, the number of the newest avail-

able snapshot also increases, but since no speculative values are added to memory, the increase

in the size of the window sorts no effect.

Moving the left limit of the window is a more complex procedure. Algorithm 3.10 depicts it.

When a speculatively committed transaction is finally committed or aborted, there is an attempt

to move the left limit of the window. Although final commits follow the GSO, aborts do not.

Therefore, the oldest transaction in the allCommittingTxs queue may still be waiting for its

global validation, while a newer speculatively committed transaction is already aborted. An

attempt to move the left limit of the window advances it until a transaction in state committing

is found. Therefore, while the oldest transaction in the allCommittingTxs queue is in state

committing, the left limit of the window stays still, and, in turn, if for instance the oldest five

transactions in the allCommittingTxs have already left state committing, the window is moved

five times in a row.

3.7.4 Integration with Replication Protocols

It is possible to use SPECULA with both voting and non-voting certification-based replica-

tion protocols.

50 CHAPTER 3. SPECULA

Algorithm 3.11 Integration with a voting certification-based replication protocol.

1: upon event URB-deliver(SpeculativeTransaction tx, boolean validationResult) do
2: if isLocal(tx) then

// tx was executed locally
3: if validationResult then
4: finalCommit(tx)
5: else
6: abort(tx)
7: end if
8: else

// tx was executed remotely
9: if validationResult then
10: cleanSpeculativeState(tx)
11: moveSpecWindow()
12: newestSnapshotID ← tx.snapshotID ← newestSnapshotID + 1
13: finalApplyWriteSet(tx)
14: else
15: // do nothing, ignore tx
16: end if
17: end if
18: end event handler

19: void cleanSpeculativeState(SpeculativeTransaction remoteTx)
20: for all SpeculativeTransaction localTx ∈ allCommittingTxs do
21: if shouldHaveReadFrom(localTx, remoteTx) 6= ∅ then
22: cascadingAbort(localTx)
23: end if
24: end for
25: end function

3.7.4.1 Voting

When a node n broadcasts the commit message for a transaction tx, it is certifying that

tx can be committed over n’s state, both final and speculative. At that point, the final state

is the same on all nodes, but the speculative state is not. Therefore, all other nodes have to

execute preventive actions before applying tx’s write-set to their memory. If they do not, new

(local) transactions may gain access to an inconsistent snapshot. The call to preventive actions

is depicted in Algorithm 3.11.

Before applying the write-set of a remote transaction, each node performs the cascading

abort of all transactions that should have read from the write-set of the remote committing

transaction, i.e., a transaction that has read from the newest final (or speculative equivalent)

state available.

Let us analyze the problematic scenario exemplified in Listing 3.1. Node 1 has issued the

commit confirmation for transaction txa. Transaction txb was already speculatively committed

3.7. OPERATION 51

Listing 3.1: Example of a problematic scenario.

1 // Remember that Transaction.commit() returns after the speculative commit
2

3 // Initially: x.get() == y.get() == z.get() == 100
4

5 // Node 1
6 void doSomething1() {
7 // tx_a
8 Transaction.begin();
9 x.put(x.get() - 50); // x = 50

10 y.put(y.get() + 50); // y = 150
11 Transaction.commit();
12 // tx_a is speculatively committed ---
13

14 // Node 2
15 void doSomething2() {
16 // tx_b
17 Transaction.begin();
18 y.put(y.get() - 10); // y = 90
19 z.put(z.get() + 10); // z = 110
20 Transaction.commit();
21

22 // final commit of tx_a --
23 }
24 // tx_c
25 Transaction.begin();
26 int a = x.get(); // a = 50
27 int b = y.get(); // b = 90
28 int c = z.get(); // c = 110
29 Transaction.commit();
30

31 int sum = a + b + c; // sum = 250
32 // when it should be 300
33 }

at node 2, and it conflicts with txa. If txb is not aborted before node 2 applies the write-set of

txa, a transaction txc that starts over the new freshly available snapshot will be able to read

values written by both txa and txb until txb is aborted. Therefore, this scenario violates opacity:

although txc will eventually end up being aborted, it was able to read from an inconsistent

snapshot, as there is no possible serialization where both txa and txb commit.

3.7.4.2 Non-voting

Making SPECULA work with a non-voting protocol is slightly more complex than with a

voting protocol, as it requires each replica to be aware of speculative dependencies present in

other nodes. The typical message used by non-voting protocols to announce transactions on the

52 CHAPTER 3. SPECULA

Algorithm 3.12 Integration with a non-voting certification-based replication protocol.

1: Map<ID,ID> globalToLocalSnapshotID ← ∅
2: Set<ID> badThreadContexts← ∅
3: Integer finalSnapshotID ← 0

4: upon event AB-deliver(SpeculativeTransaction tx) do
5: if isLocal(tx) then

// tx was executed locally
6: if validate(tx) then
7: finalCommit(tx)
8: finalSnapshotID ← finalSnapshotID + 1
9: put(globalToLocalSnapshotID, tx.snapshotID, finalSnapshotID)
10: else
11: abort(tx)
12: end if
13: else

// tx was executed remotely
14: if contains(badThreadContexts, tx.contextID) ∨ ¬ containsKey(globalToLocalSnapshotID,

tx.snapshotID) ∨ wasRemotelyCascadingAborted(tx) then
15: put(badThreadContexts, tx.contextID)
16: return
17: end if
18: if validate(tx, get(globalToLocalSnapshotID, tx.snapshotID)) then
19: cleanSpeculativeState(tx)
20: moveSpecWindow()
21: newestSnapshotID ← tx.snapshotID ← newestSnapshotID + 1
22: finalApplyWriteSet(tx)
23: finalSnapshotID ← finalSnapshotID + 1
24: put(globalToLocalSnapshotID, tx.snapshotID, finalSnapshotID)
25: else
26: put(badThreadContexts, tx.contextID)
27: end if
28: end if
29: end event handler

network contains the read and write-sets of the committing transaction, plus the snapshot times-

tamp in which it was started. In SPECULA, each node has bodies with different timestamps

inside the boxes in its memory. However, although different, these timestamps are equivalent,

as they ensure the same total order between versions. Since in non-voting certification-based

replication all replicas certify transactions, it is required to identify snapshots uniquely system-

wide, so that the announce message tells in a precise way from which snapshot the committing

transaction has read.

To make all nodes aware of the speculative flow dependency of the transaction, we give

each ThreadContext an unique identifier, and change it every time its associated thread is

rolled-back. This identifier is placed in the announce message of every transaction. When

the global validation of a remote transaction fails, all nodes get to know that they have to

abort the following transactions that hold the same identifier (the detection of speculative flow

3.7. OPERATION 53

dependencies).

Speculative data dependencies are recognized when the announce message of a transaction

indicates it has read from a snapshot that does not belong to the set of finally committed

snapshots.

The last detail are the transactions aborted during cascading abort procedure. Knowing

the snapshot accessible by a given transaction is not enough to know if it was aborted in its

home node due to a cascading abort. All replicas have to know not only the snapshot accessible

by the transaction, but also the newest final committed snapshot accessible by the transaction.

With this information, and the transaction’s read-set, it is possible to check if the committing

transaction has missed a final commit or not.

3.7.5 Speculative Execution Control

High conflict scenarios are not favorable for a speculative scheme like the one we propose.

Mis-speculations introduce unwanted load on the system. The overhead created by SPECULA

only pays off if a large faction of all speculatively committed transactions are final committed.

Notice that in Section 3.1, we stated that experimental results have shown that communication

time dominates execution time in DRSTM environments. This means that a thread can execute

a high number of transactions in the time required to by a single broadcast.

We decided to implement a scheme that limits the amount of speculations per thread.

While the number of transactions in the committingTxs queue of the context of a thread is

higher than the value of the specLimit variable, the execution of that thread stays blocked.

The maximum number of transactions allowed in each queue is dynamically adapted by an

algorithm that derives from the additive increase/multiplicative decrease algorithm used in TCP

(Allman, Paxson, & Stevens 1999). Its key heuristic is that successful speculations should allow

more speculations to occur, while, conversely, mis-speculations should decrease the maximum

number of speculations allowed. The value of the specLimit variable is never smaller than

the value of the MIN COMMITING TXS variable and never greater than the value of the

MAX COMMITTING TXS variable.

This scheme enables the system to better adapt to its surrounding environment.

54 CHAPTER 3. SPECULA

3.7.6 Restoring Non-transactional State

Algorithm 3.13 Building undo logs for non-transactional shared state.

1: upon event write(Thread thread, Address address) do
2: var threadContext← get(contexts, thread)
3: var newestCommittingTx← tail(threadContext.committingTxs)
4: if newestCommittingTx = null then
5: return // there is no speculatively committed transaction
6: end if
7: if ¬ containsKey(newestCommittingTx.undoLog, address) then
8: var currentV alue← read(address)
9: put(newestCommittingTx.undoLog, address, currentV alue)
10: end if
11: end event handler

Few application are fully transactional. Most make use of transactions to access shared

state, but perform heavy computations and system calls outside of them. Changes made to

non-transactional state have be undone in case of mis-speculation, just like the changes made

to transactional state. In order to restore the state of the non-transactional shared memory, at

the point where execution is resumed, we propose the construction of undo logs. Since we are

using continuations to snapshot the execution flow of a thread, and continuations save the state

of the thread’s stack, we only need to deal with writes made to non-transactional shared state.

To build an undo log, all writes to non-transactional shared state have be intercepted.

Algorithm 3.13 depicts the procedure. When an instruction executed on thread t tries to modify

non-transactional shared state, we save the value that is in target address before it is overwritten

with the new value. An undo log keeps just one value per memory address: the oldest. Each

saved value is kept in the undo log that is associated with the last speculatively committed

transaction that was executed on t. If later, a synchronization procedure has to resume the

execution of t using a continuation, it applies all undo logs required to restore the state that

was available when the continuation that is going to be resumed was captured.

3.7.7 Correctness Arguments

We now provide some informal arguments to show that our algorithm is correct.

All replicas start with the same state and final commit the same transactions, by the same

order. Therefore, the final state is always kept coherent among all nodes. This guarantees 1SR,

as it is easy to see that, if all replicas go from snapshot si to snapshot si+1, then the interleaved

3.8. STRENGTHS AND WEAKNESSES 55

execution of transactions among all nodes produces a serialization order that matches the one

produced by a serial execution, i.e., both executions would end up producing the same snapshot

sn.

The key to guarantee opacity is ensuring that every transaction always reads from the same

consistent snapshot. SPECULA’s read procedure ensures this by forcing transactions to read

from the newest snapshot that was available when they began. Moreover, since no snapshot is

ever modified after its creation, and the apply of the write-sets of remote transactions is preceded

by a clean-up of the speculative state, temporary inconsistent states never exist. This suffices

to guarantee opacity.

Notice that local validation ensures that all speculative commits create potentially serial-

izable snapshots. If a transaction always reads from the same consistent snapshot, its commit

produces a new guaranteed consistent snapshot. It is not even possible for a transaction to build

an inconsistent write-set.

Finally, as we assume that the program’s correctness does not depend on any kind of syn-

chronized access to non-transactional shared state, we are free to undo all modifications made

to it.

3.8 Strengths and Weaknesses

SPECULA makes a trade-off between the latency required to commit a transaction and

the amount of memory consumed by the middleware. With SPECULA, transactions can (spec-

ulatively) commit based on local information, and transaction processing can continue with

no further delays. This is achieved at the cost of having to continuously create snapshots of

the system. Therefore, SPECULA consumes more memory than other non-speculative trans-

actional memory systems. However, the increase in memory usage occurs for a limited amount

of time, and one that is expected to be short, as the final commit of a transaction hides its

speculative commit from new transactions, and most memory transactions are themselves very

short, as stated in Section 3.1. SPECULA has also the drawback of requiring the write-set of

a transaction to be applied twice: once when the transaction commits locally and again, when

the transaction is applied system-wide. We expect this cost to be paid off by the overlap of

communication with computation.

56 CHAPTER 3. SPECULA

On the other hand, new transaction are always provided with a consistent snapshot of the

system, and are shielded from the concurrent execution of other transactions. Thus SPECULA

preserves the programming model that makes software transactional memory appealing. Fur-

thermore, in face of low-conflict workloads, cascading aborts due to speculation rarely occur,

enabling SPECULA to effectively hide network delays.

3.9 Java Prototype Implementation

We developed a Java prototype as a proof-of-concept. The prototype makes use of the

components described in Section 3.5. This section describes how some minor low-level details

were implemented and some of the issues found along the development were solved.

3.9.1 Dealing with Non-transactional Operations

The set of non-transactional operations contains all methods that send data out of, or into

the JVM. These methods carry the native flag at the bytecode level, as they have to be

implemented in native code, in order to communicate with the underlying operating system.

In fact, a native method may not execute any non-transactional operation, but it is very hard

to know that, as it requires complex binary inspection. Therefore, we inject a synchronization

point before any call to a native method.

Another problem we had to deal with is that the Java Compatibility Kit requires certified

JVMs to enforce loading all classes in the java.* package with the bootstrap class loader,

thus not allowing us to modify those classes in runtime. A way to overcome this limitation is

by providing modified versions of those classes to the JVM in a custom bootstrap class path.

However, Oracle’s JVM license forbids any kind of modification to the JVM’s core classes, which

should also be true for most proprietary JVMs. Due to this, we have decided to use a different

approach: package filtering. We inject a synchronization point before any call of a method that

belongs to, or was inherited from a class that that is part of the java.* package.

3.9. JAVA PROTOTYPE IMPLEMENTATION 57

3.9.2 Bytecode Manipulation

In order to ease the life of the programmer, we modify the application’s code in runtime, so

that SPECULA can work in a fully transparent way.

Speculative Execution Support To be able to transparently offer speculative execution

support to all threads of the application, we modify all classes containing a concrete imple-

mentation of a method with the signature public void run(). An example is provided.

Listing 3.2 depicts the original code of class Example, and Listing 3.3 depicts the modified

code. Although the modifications are made at the bytecode level, we feel that it is both easier

to explain and understand them at the source level. We rename the original method run()

to specula$run, and preserve the final modifier if it is present. If the method belongs

to an object of a class that does not implement the java.lang.Runnable interface, than

it certainly is not bootstrapping a thread, so running the original run() method will suffice.

Otherwise, we check if we are already running on a thread with speculative support, and act

accordingly. The specula$bootstrapping field is used to flag if the method run() of the

object was the bootstrapping point of the executing thread or not. If it was, a synchronization

has to be enforced before the method returns.

It does not suffice to modify only classes implementing the java.lang.Runnable inter-

face, because they can inherit a public void run() method, which turns them into valid

non-abstract classes.

Listing 3.2: Original class Example.

1 class Example {
2

3 public void run() {
4 for (int i = 0; i < 100; i++);
5 }
6

7 }

Intercepting Writes to Non-transactional Shared State Saving non-transactional

shared state requires that we intercept the following opcodes: PUTSTATIC, PUTFIELD,

AASTORE, IASTORE, LASTORE, FASTORE, BASTORE and CASTORE. The first two opcodes

58 CHAPTER 3. SPECULA

Listing 3.3: Modified class Example.

1 class Example {
2

3 private boolean specula$bootstrapped = fa lse;
4

5 public void run() {
6 i f (! (this instanceof java.lang.Runnable)) {
7 specula$run();
8 return;
9 }

10 f inal ThreadContext tc = ThreadContext.getCurrent();
11 i f (tc == null) {
12 specula$boostrapped = true;
13 ThreadContext.makeNew();
14 Continuation.runWithContinuationSupport(this);
15 } else {
16 specula$run();
17 i f (specula$bootstrapped) {
18 tc.syncThreadContext();
19 specula$bootstrapped = fa lse;
20 }
21 }
22 }
23

24 private void specula$run() {
25 // the original run() method
26 for (int i = 0; i < 100; i++);
27 }
28

29 }

modify respectively, static and non-static fields, while the remaining modify arrays. We then

use Java’s reflection capabilities, more precisely classes java.lang.reflect.Field and

java.lang.reflect.Array, to save and restore non-transactional shared state.

3.9.3 Mixed Issues

Garbage Collection JVSTM features a scheme that removes unnecessary bodies from boxes.

A body becomes unnecessary if no active transaction has access to it, and if it does not belong

to the newest snapshot available. A very complete description of how this scheme works can be

found in (Fernandes & Cachopo 2011).

Our scheme fits JVSTM garbage collection algorithm naturally, because a

SpeculativeBox holds speculative and final state separately. Therefore, the removal

of a final body does not affect any speculative body, and vice-versa.

3.9. JAVA PROTOTYPE IMPLEMENTATION 59

Read-only Transactions JVSTM provides abort-free read-only transactions. As we stated

in Section 3.7.1, all transactions have to be committed according to the GSO, and by using

JVSTM read-only transactions are not right out of the box. To overcome this problem, we

associate read-only transactions with update transactions. When an update transaction is spec-

ulatively committed, it is made responsible for validating all the read-only transactions that

were speculatively committed on the same thread since the last speculatively committed update

transaction. Notice that when using a non-voting replication protocol, all nodes have to know

the snapshots that were read by the read-only transactions sheltered by update transactions, so

that the result of global validation is equal at all nodes.

Showing an example, let us assume that transactions txa, txb and txc were speculatively

committed by this same order, on the same thread, and that txa and txb are read-only trans-

actions, while txc is an update transaction. When txc is speculatively committed, it is made

responsible for validating both txa and txb. Then, later, upon the global validation of txc, txa

and txb are validated (before the validation of txc), thus the validity of txc depends on the

validity of both txa and txb (due to a speculative flow dependency). If, for instance, a thread

only speculatively commits read-only transactions, they are validated by the synchronization

procedure.

Useless Computation Although SPECULA modifies the applications bytecode and auto-

matically inserts the synchronization points needed to ensure its correctness, long computations

can create high amounts of useless work, as they can be performed while is already known that

the executing thread is doomed to be rolled-back due to a mis-speculation. In order to minimize

the amount of discarded computation, the programmer can himself introduce periodic checks to

function mustSync and act accordingly. There is an obvious trade-off between the number of

calls to function mustSync and the amount of useless computation performed by the application.

Summary

This chapter has presented the SPECULA system: the motivations behind its development,

its design and target environment. We have covered its operation in detail and discussed not only

the desired properties for a system of this kind, but also their impact on real-world scenarios. We

60 CHAPTER 3. SPECULA

also discussed the implementation of the developed prototype, and how we dealt with specific

details of the JVM platform.

The next chapter will present the evaluation of the developed prototype.

4Evaluation
Are you saying that I’m lazy?

– Misato Katsuragi, Neon Genesis Evangelion (TV Series)

This chapter reports the results of an experimental study aimed at evaluating and comparing

the performance of the system described in the previous chapter, in face of a variety of synthetic

workloads that mimic both extreme and more common situations. This was done using a

prototype developed for the JVM platform.

It begins by describing, in Sections 4.1 and 4.2 the experimental environment, the employed

settings, and the criteria used in our evaluation. Section 4.3 presents the results of executing

a simple micro-benchmark. Section 4.4 presents the results of executing STMBench7, a highly

complex benchmark. Finally, Section 4.5 presents a brief analysis over all results.

4.1 Experimental Environment and Settings

All the experiments presented here were performed in a cluster of eight nodes, each one

equipped with two Intel Xeon E5506 at 2.13GHz and 8 GB of RAM, running GNU/Linux 2.6.32

– 64 bits. The nodes are interconnected via a private Gigabit Ethernet switch.

The JVM is a development snapshot of version 1.7.0 of the OpenJDK. The AB service

provided by the Appia GCS toolkit (Miranda, Pinto, & Rodrigues 2001) uses a a sequencer-

based algorithm to order messages on top of a multicast layer that relies on point-to-point TCP

links (Défago, Schiper, & Urbán 2004; Cachin, Guerraoui, & Rodrigues 2011). It also implements

batching of the sequencer messages. We have set the batching value either to the same value of

MAX COMMITING TXS, or to one (i.e., no batching) on the baseline system. The batching

timeout is set to 250 ms.

Unless stated otherwise, all runs were executed with a single thread per node producing

62 CHAPTER 4. EVALUATION

transactions. The coordination among replicas is achieved using a non-voting certification-

based replication protocol. We compare our prototype with that of a system using the same

configuration but with the speculative extension turned off.

We assume a that the environment is stable, in which no nodes crash/stop or deviate from

their normal behavior.

4.2 Evaluation Criteria

The two main evaluation criteria for our system are speedup, and the average time required

to execute and commit a transaction. We also consider, although as secondary criteria, the abort

rate, the number of speculatively executed transactions that were committed, the overhead in

the local execution of transactions and the amount of time that worker threads were halted

by the execution control algorithm. These criteria allow us to measure the efficiency and the

effectiveness of our system. Ideally, a system should achieve high throughput and low latency.

However, in most practical system, there is a trade-off between these two aspects. In this

evaluation we aim at assessing if SPECULA achieves a reasonable compromise between these

two criteria.

The number of speculatively executed transactions that were committed and the overhead

in the local execution of transactions allows us to assess the the effectiveness and the benefits

of being speculative.

4.3 Bank Benchmark

4.3.1 Description

The bank benchmark was first proposed by Herlihy, Luchangco, & Moir (2006) as a per-

formance evaluation test for the DSTM2 transactional engine. It creates a synthetic workload

that mimics a bank environment. Update transactions transfer “money” between one pair of

accounts, while read-only transactions sum the value present in all accounts, hence their result

is (or should, in a opaque system) always be the same. It is a simple, yet powerful benchmark,

as one can use it to generate very specific workloads.

4.3. BANK BENCHMARK 63

4.3.2 Configuration

Configuration A In this configuration we set the percentage of update transactions to 100%

and make them write on distinct “bank accounts” (there are 2×NMachines accounts, so that

node with identifier I only writes on accounts 2 × I and (2 × I) + 1), thus there is no data

contention as there are no concurrency conflicts.

Configuration B In this configuration we keep the percentage of update transactions to

100% but force all nodes to access the same accounts (i.e., the system is configured with just

two accounts). In this scenario there is an extremely high data contention.

4.3.2.1 Results

All the results here presented were obtained by running the benchmark for 120 seconds.

Configuration A Figure 4.1a depicts the speedup achieved in this configuration. As the

number of replicas increased, the achieved speedup decreased. To understand this behavior we

need to look at the results in detail.

Figure 4.1d depicts the network latency observed. It can be verified that latency values

were very high. Although the batching layer is a source of additional latency, batching alone

is not the cause for latency observed. In fact, what happens is that transactions are very

short, therefore the system generated messages at a rate higher than the GCS could sustain,

congesting the networking layer. This can be explained as follows. Figure 4.1c depicts the

local execution time of transactions, which includes execution, local validation and the capture

of a continuation. Even if the overhead observed is not negligible, it was exacerbated by the

fact that the transactions in this benchmark are uncommonly short. Nevertheless, considering

the worst case scenario observed, where a transaction took 200 ms to execute, this means the

systems should have been able to execute 5000 transactions per second. Therefore, the batching

threshold can be achieved very quickly, even when set to the maximum of 256.

Due to the saturation of the network, the execution control algorithm kept blocking the

creation of new transactions. Looking to the rows “Blocked Time” in tables 4.1 we can see that

in some scenarios execution stayed blocked for more than 100 of the 120 seconds run. With

64 CHAPTER 4. EVALUATION

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8

S
pe

ed
up

Number of Machines

4 16 64 256

(a) Speedup – varying the value of MAX COMMITTING TXS.

1000

10000

100000

1e+06

1e+07

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(b) Total execution time of transactions – varying the value of
MAX COMMITTING TXS.

0

50

100

150

200

250

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(c) Local execution time of transactions – varying the value of
MAX COMMITTING TXS.

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(d) Network latency – varying the value of
MAX COMMITTING TXS.

Figure 4.1: Bank Benchmark – Configuration A.

4.3. BANK BENCHMARK 65

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 47 243 28 145 35 677 19 337 25 785 32 427 16 780 30 591

Committed Transact. 47 239 28 141 35 673 19 333 25 781 32 427 16 776 30 587
Spec. Transact. Committed 47 243 28 145 35 677 19 337 25 785 32 423 16 780 30 591

Blocked Time (ms) 94 843 103 156 99 591 106 551 103 672 101 442 108 328 102 030
Total Committed Transact. 229 728

(a) MAX COMMITTING TXS equal to 4.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 84 734 13 903 39 953 20 136 7 425 41 423 17 927 16 391

Committed Transact. 84 734 13 903 39 953 20 136 7 425 41 423 17 927 16 391
Spec. Transact. Committed 84 730 13 899 39 949 20 132 7 421 41 439 17 923 16 387

Blocked Time (ms) 78 683 109 141 97 718 105 501 113 235 97 358 107 386 108 223
Total Committed Transact. 241 892

(b) MAX COMMITTING TXS equal to 16.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 53 262 17 734 16 192 21 146 23 384 41 906 30 521 35 156

Committed Transact. 53 262 17 734 16 192 21 146 23 384 41 906 30 521 35 156
Spec. Transact. Committed 53 258 17 730 16 188 21 142 23 380 41 902 30 517 35 152

Blocked Time (ms) 90 717 106 034 107 472 105 113 103 448 95 762 100 994 98 520
Total Committed Transact. 239 301

(c) MAX COMMITTING TXS equal to 64.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 21 137 13 969 14 768 19 344 17 225 19 160 23 737 41 907

Committed Transact. 47 243 28 145 35 677 19 337 25 785 25 785 16 780 30 591
Spec. Transact. Committed 47 239 28 141 35 673 19 333 25 781 25 781 16 776 30 587

Blocked Time (ms) 104 875 109 646 108 694 106 557 107 197 106 386 103 931 96 790
Total Committed Transact. 171 247

(d) MAX COMMITTING TXS equal to 256.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 26 580 17 122 10 128 10 034 10 202 10 118 20 621 10 972

Committed Transact. 26 580 17 122 10 128 10 034 10 202 10 118 20 621 10 972
Total Committed Transact. 115 777

(e) Baseline system.

Table 4.1: Bank Benchmark – Configuration A (values per run).

66 CHAPTER 4. EVALUATION

MAX COMMITTING TXS = 4, the network latency and the time required to commit a

transaction (depicted in Figure 4.2c) were reasonable, as the latter includes the former. However,

17 ms is more than enough time to run four transactions, so execution was also kept blocked

for most of the time.

The difference between the number of committed transactions and the number of committed

speculative transactions is just the first transaction of the benchmark, which obviously cannot

have any speculative dependency, and a few transactions that we use to coordinate the replicas

of the system (i.e., barriers).

This benchmark is very poor in application logic, having just a few variables of control. The

time spent building undo logs of modifications to non-transactional shared state accounted for

less than 2% of the whole run.

Based on these results, the best value for MAX COMMITTING TXS in this con-

figuration is four, as all different values tested achieved very similar speedups, but with

MAX COMMITTING TXS = 4 the system’s response time was significantly lower.

Configuration B Figure 4.2a depicts the speedup achieved in this configuration. At first

glance, the fact that we almost always observed positive speedups with such high data con-

tention might be surprising. However, the abort rate depicted in Figure 4.2b explains why

we got these results. Notice that the abort rate decreased as we increased the value of

MAX COMMITTING TXS. In fact, with just two machines, the abort rate achieved with

MAX COMMITTING TXS = 64 was significantly lower than the abort rate of the baseline

system’s configuration (from around 44% to 35%). This was the due to a large unbalance in

the abort rate distribution, with one node committing noticeably more transactions than all

the others. The tables in 4.2 depict the situation. As we already stated, certification-based

replication is an optimistic scheme, so it delivers poor performance in high contention scenar-

ios. Therefore, the results we observed are normal, as confirmed by the results in Tables 4.2e

and 4.2f that show the number of committed transactions by the baseline system with one and

four threads, respectively. These results show the baseline system executing and committing

less transactions when there is more computational power trying to do work. It happens that

the extra computational power only overloads the system, increasing the network latency and

the data contention.

4.3. BANK BENCHMARK 67

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8

S
pe

ed
up

Number of Machines

4 16 64 256

(a) Speedup – varying the value of MAX COMMITTING TXS.

0

10

20

30

40

50

60

70

80

90

2 4 6 8

A
bo

rt
 R

at
e

(p
er

ce
nt

ag
e)

Number of Machines

0 (Baseline)
4

16
64

256

(b) Abort rate – varying the value of
MAX COMMITTING TXS.

1000

10000

100000

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(c) Network latency – varying the value of
MAX COMMITTING TXS.

0

20

40

60

80

100

120

140

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(d) Local execution time of transactions – varying the value of
MAX COMMITTING TXS.

Figure 4.2: Bank Benchmark – Configuration B.

68 CHAPTER 4. EVALUATION

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 34 381 30 992 27 876 32 702 34 153 33 902 27 133 28 482

Abort Rate (%) 43.827 75.455 99.358 91.031 96.393 93.95 93.963 92.904
Committed Transact. 19 313 7 607 179 2 933 1 232 2 051 1 638 2 021

Spec. Transact. Committed 19 282 7 569 175 2 909 1 220 2 023 1 625 2 006
Blocked Time (ms) 98 833 100 130 102 209 100 080 99 987 98 937 103 341 102 327

Total Committed Transact. 36 974

(a) MAX COMMITTING TXS equal to 4.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 32 249 30 519 32 777 32 527 32 664 32 831 32 337 33 574

Abort Rate (%) 77.478 65.91 92.989 99.988 99.994 88.977 99.988 58.748
Committed Transact. 7 263 10 404 2 298 4 2 3 619 4 13 850

Spec. Transact. Committed 7 259 10 397 2 293 1 0 3 613 1 13 840
Blocked Time (ms) 97 276 102 683 99 235 98 986 99 923 99 274 101 302 99 935

Total Committed Transact. 37 444

(b) MAX COMMITTING TXS equal to 16.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 37 766 36 322 30 033 34 221 34 416 34 095 38 269 34 048

Abort Rate (%) 58.873 45.124 89.988 99.997 99.997 99.997 75.672 99.997
Committed Transact. 15 532 19 932 3 007 1 1 1 9 310 1

Spec. Transact. Committed 15 528 19 929 3 004 0 0 0 9 307 0
Blocked Time (ms) 96 398 101 521 101 300 98 378 99 839 102 538 98 947 100 234

Total Committed Transact. 47 785

(c) MAX COMMITTING TXS equal to 64.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 31 573 31 444 38 420 59 667 31 602 37 796 31 802 38 121

Abort Rate (%) 99.997 99.997 99.997 0 99.991 99.997 99.997 99.997
Committed Transact. 1 1 1 59 667 3 1 1 1

Spec. Transact. Committed 0 0 0 59 665 1 0 0 0
Blocked Time (ms) 102 048 101 773 101 152 90 854 100 581 99 839 104 461 100 869

Total Committed Transact. 59 676

(d) MAX COMMITTING TXS equal to 256.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 33 484 18 572 19 505 20 121 16 607 17 338 23 431 21 056

Abort Rate 48.423 85.09 81.882 84.017 87.198 85.95 75.622 79.588
Committed Transact. 17 270 2 769 3 534 3 216 2 126 2 436 5 712 4 298

Total Committed Transact. 41 361

(e) Baseline system – 1 thread.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 37 917 27 562 20 162 27 830 31 452 34 431 28 589 309 35

Abort Rate 84.682 91.833 93.82 92.012 90.315 88.641 92.927 91.44
Committed Transact. 5 808 2 251 1 246 2 223 3 046 3 911 2 022 2 648

Total Committed Transact. 23 155

(f) Baseline system – 4 threads.

Table 4.2: Bank Benchmark – Configuration B (values per run).

4.3. BANK BENCHMARK 69

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(e) Total execution time of transactions – varying the value of
MAX COMMITTING TXS.

Figure 4.2: Bank Benchmark – Configuration B.

Figure 4.2e depicts the network latency observed. Like in Configuration A, there was a

significant latency increase as we increased the value of MAX COMMITTING TXS, namely

to 256. Although the total number of executed transactions was similar to that obtained in

Configuration A, there was a large number of transactions that were locally aborted, thus never

reaching the network. With eight machines and MAX COMMITTING TXS = 256, 18% of

all executed transactions did not pass on their local validation.

The time spent building undo logs accounted for less than 0.7% of the whole run, while the

time spent restoring non-transactional shared state was inferior to 0.2%.

With these results, the best value for MAX COMMITTING TXS in this configuration

depends of whether latency is an issue or not. If it is, then MAX COMMITTING TXS = 4

and MAX COMMITTING TXS = 16 presented a total execution time of transactions in

the same order of magnitude of the baseline system. Otherwise, if the system is not latency

sensitive, then MAX COMMITTING TXS = 256 offered consistently the higher speedup.

70 CHAPTER 4. EVALUATION

4.4 STMBench7 Benchmark

4.4.0.2 Description

The STMBench7 benchmark was introduced by Guerraoui, Kapalka & Vitek (2007) as a

complex benchmark that generates realistic workloads, by mimicking the operations present in

large object-oriented applications, such as CAD/CAM applications. Operations vary signifi-

cantly in complexity, containing both short and trivial transactions that read a few items, and

highly read/write intensive ones, which perform not only deep structural modifications to an

object graph with millions of vertices, but also do long transversals on the same graph, resulting

in transactions with huge data-sets.

The configuration parameters of this benchmark allow the selection of one of three different

workloads: one read-dominated, one with a balanced mix of read-only and update transac-

tions, and one write-dominated. It is also possible to enable/disable the execution of both long

transversals and deep structural modifications.

4.4.0.3 Configuration

We analyze the results of both the write and read-dominated workloads. Long transversals

and deep structural modifications were disabled, otherwise the number of conflicts becomes

unbearable.

The operation ratios (in percentage) of the write-dominated workload are depicted in Table

4.3, and of the read-dominated workload in Table 4.4.

TRAVERSAL: 0.00
TRAVERSAL RO: 0.00
SHORT TRAVERSAL: 0.00
SHORT TRAVERSAL RO: 47.06
OPERATION: 47.65
OPERATION RO: 5.29
STRUCTURAL MODIFICATION: 0.00

Table 4.3: STMBench7 – Write-dominated workload – Operation ratios.

4.4. STMBENCH7 BENCHMARK 71

TRAVERSAL: 0.00
TRAVERSAL RO: 0.00
SHORT TRAVERSAL: 0.00
SHORT TRAVERSAL RO: 47.06
OPERATION: 5.29
OPERATION RO: 47.65
STRUCTURAL MODIFICATION: 0.00

Table 4.4: STMBench7 – Read-dominated workload – Operation ratios.

4.4.0.4 Results

All the results here presented were obtained by running the benchmark during 60 seconds.

Write-dominated Workload Figure 4.3a depicts the speedup achieved in this configuration.

For values of MAX COMMITTING TXS > 4 we always observed positive speedups, with a

maximum gain of 1.66 times when MAX COMMITTING TXS = 64.

The abort rate depicted in Figure 4.3b indicates that this configuration suffers from the

same unbalance in the abort rate distribution as the Configuration B used in Bank Benchmark.

Indeed, the tables in 4.5 confirms it. Tables 4.5e and 4.5f show, once more, that with the increase

of the number of working threads in the baseline system, its performance decreased, and in a

very considerable manner.

Figure 4.3d depicts the local execution time of transactions. The maximum overhead regis-

tered was 257%, a value that is much lower than the 1804% observed in the results of Configu-

ration A used in Bank Benchmark. In MVCC, the longer a transaction is, the more expensive

is for it to read, as it has to iterate over newer committed versions to find the version of its

snapshot. Also, the longer the transaction, the higher the probability that there were actually

other transactions committing during its execution. Besides this, in SPECULA, the writes to

non-transactional shared state are logged in undo logs. This represented 15% off the total time

of execution in each node (however, using undo logs to restore non-transactional shared state

accounted for less than 0.01%), because STMBench7 has a rich application logic. Moreover,

although the configuration we evaluated was the so called write-dominated, it has a ratio of

read-only transactions over 50%, and read-only transactions incur into a meaning performance

penalty in SPECULA, as they their read-sets have to be tracked and validated.

72 CHAPTER 4. EVALUATION

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 4 6 8

S
pe

ed
up

Number of Machines

4 16 64 256

(a) Speedup – varying the value of MAX COMMITTING TXS.

0

5

10

15

20

25

30

35

40

45

2 4 6 8

A
bo

rt
 R

at
e

(p
er

ce
nt

ag
e)

Number of Machines

0 (Baseline)
4

16
64

256

(b) Abort rate – varying the value of
MAX COMMITTING TXS.

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(c) Total execution time of transactions – varying the value of
MAX COMMITTING TXS.

0

500

1000

1500

2000

2500

3000

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(d) Local execution time of transactions – varying the value of
MAX COMMITTING TXS.

Figure 4.3: STMBench7 – Write-dominated workload.

4.4. STMBENCH7 BENCHMARK 73

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 816 2 227 642 715 705 5 733 682 701

Abort Rate (%) 85.049 39.38 99.221 98.741 85.248 7.256 89.15 82.311
Committed Transact. 122 1 350 5 9 104 5 317 74 124

Spec. Transact. Committed 115 1 312 2 5 100 5 294 70 119
Blocked Time (ms) 49 844 42 739 50 707 51 070 51 061 34 732 52 157 49 738

Total Committed Transact. 7 105

(a) MAX COMMITTING TXS equal to 4.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 993 1 106 917 1 201 874 839 834 11 966

Abort Rate (%) 98.59 96.926 95.856 67.86 99.085 99.166 99.041 1.905
Committed Transact. 14 34 38 386 8 7 8 11 738

Spec. Transact. Committed 9 30 32 381 4 3 5 11 732
Blocked Time (ms) 48 542 49 662 51 949 51 075 51 543 53 225 52 865 15 964

Total Committed Transact. 12 233

(b) MAX COMMITTING TXS equal to 16.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 840 824 810 854 832 1 056 16 978 1 042

Abort Rate (%) 97.5 99.393 99.753 97.892 99.76 97.822 1.708 99.424
Committed Transact. 21 5 2 18 2 23 16 688 6

Spec. Transact. Committed 17 2 0 14 0 19 16 685 2
Blocked Time (ms) 52 254 54 089 52 203 54 248 52 659 52 550 986 52 705

Total Committed Transact. 16 765

(c) MAX COMMITTING TXS equal to 64.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 1 002 1 018 1 025 742 977 14 809 1 653 1 000

Abort Rate (%) 98.104 99.804 99.122 97.978 96.418 1.992 62.613 98.2
Committed Transact. 19 2 9 15 35 14 514 618 18

Spec. Transact. Committed 14 0 5 11 31 14 511 614 13
Blocked Time (ms) 53 180 54 400 53 260 53 499 53 736 9 605 49 550 54 676

Total Committed Transact. 15 230

(d) MAX COMMITTING TXS equal to 256.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 1 983 1 708 1 476 2 127 1 173 405 2 258 2 419

Abort Rate 17.549 27.518 33.266 21.392 45.269 78.025 18.822 17.197
Committed Transact. 1 635 1 238 985 1 672 642 89 1 833 2 003

Total Committed Transact. 10 097

(e) Baseline system – 1 thread.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 4 376 1 150 797 428 551 290 1 254 2 415

Abort Rate 21.938 84.174 92.472 86.916 82.214 90 76.874 43.188
Committed Transact. 3 416 182 60 56 98 29 290 1 372

Total Committed Transact. 5 503

(f) Baseline system – 4 threads.

Table 4.5: STMBench7 – Write-dominated workload (values per run).

74 CHAPTER 4. EVALUATION

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(e) Network latency – varying the value of
MAX COMMITTING TXS.

Figure 4.3: STMBench7 – Write-dominated workload.

Figure 4.3e depicts the network latency values that were observed. As STMBench7’s trans-

actions are much longer than for instance the ones generated by Bank Benchmark, the GCS had

to handle less work, which made it perform more consistently. Nevertheless, latency was still

abnormally high for a LAN environment, even for the baseline system.

The tables in 4.5 show that even with an abort rate such high, there was a big amount of

speculative transactions being successfully committed. This is a very good sign and one that

empowers the motivations behind this work. Unfortunately, the same tables also show that

worker threads were blocked by the execution control algorithm for most of the run.

With MAX COMMITTING TXS = 64 the system achieved a significant speedup and

a consistent response latency, therefore, based on these results it is a adequate value for high

contention scenarios with not so short transactions.

Read-dominated Workload Figure 4.4a depicts the speedup achieved in this configuration.

As expected, it is negative, since as already stated, read-only transactions incur into a significant

overhead that comes from the need of tracking and validating their read-sets. Furthermore, the

application logic in this configuration is even richer than in the write-dominated workload, and

so building undo logs accounted for 20% of the whole execution. Using them to restore non-

4.4. STMBENCH7 BENCHMARK 75

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2 4 6 8

S
pe

ed
up

Number of Machines

4 16 64 256

(a) Speedup – varying the value of MAX COMMITTING TXS.

0

5

10

15

20

25

30

35

2 4 6 8

A
bo

rt
 R

at
e

(p
er

ce
nt

ag
e)

Number of Machines

0 (Baseline)
4

16
64

256

(b) Abort rate – varying the value of
MAX COMMITTING TXS.

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(c) Total execution time of transactions – varying the value of
MAX COMMITTING TXS.

0

500

1000

1500

2000

2500

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(d) Local execution time of transactions – varying the value of
MAX COMMITTING TXS.

Figure 4.4: STMBench7 – Read-dominated workload.

76 CHAPTER 4. EVALUATION

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 4 639 10 869 9 745 10 292 3 595 3 290 11 442 3 810

Abort Rate (%) 49.364 31.824 30.251 29.431 50.598 49.696 22.103 48.399
Committed Transact. 2 349 7 410 6 797 7 263 1 776 1 655 8 913 1 966

Spec. Transact. Committed 2 299 7 313 6 712 7 172 1 727 1 619 8 830 1 918
Blocked Time (ms) 36 466 28 822 29 731 28 563 39 876 41 274 25 600 40 248

Total Committed Transact. 38 129

(a) MAX COMMITTING TXS equal to 4.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 3 421 3 711 6 198 6 501 5 792 1 595 2 219 1 989

Abort Rate (%) 41.333 41.471 28.138 24.258 26.968 33.605 43.894 40.573
Committed Transact. 2 007 2 172 4 454 4 924 4 230 1 059 1 245 1 182

Spec. Transact. Committed 1 969 2 137 4 427 4 895 4 201 1 049 1 227 1 166
Blocked Time (ms) 4 5925 4 7441 4 5525 4 1594 4 5324 5 2383 5 0470 5 0590

Total Committed Transact. 21 273

(b) MAX COMMITTING TXS equal to 16.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 6 314 2 387 2 802 2 063 1 589 6 236 7 673 3 584

Abort Rate (%) 26.655 41.307 27.73 31.508 50.472 25.289 17.842 29.074
Committed Transact. 4 631 1 401 2 025 1 413 787 4 659 6 304 2 542

Spec. Transact. Committed 4 601 1 380 2 009 1 401 774 4 636 6 276 2 528
Blocked Time (ms) 42 348 51 415 49 206 52 620 52 388 44 512 41 080 48 331

Total Committed Transact. 23 762

(c) MAX COMMITTING TXS equal to 64.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 7 661 3 467 2 149 2 141 3 089 3 474 4 648 1 727

Abort Rate (%) 26.041 40.554 33.411 31.854 40.207 30.829 41.007 43.833
Committed Transact. 5 666 2 061 1 431 1 459 1 847 2 403 2 742 970

Spec. Transact. Committed 5 621 2 026 1 419 1 448 1 820 2 379 2 708 955
Blocked Time (ms) 36 366 47 149 50 644 53 610 49 262 46 798 47 956 52 732

Total Committed Transact. 18 579

(d) MAX COMMITTING TXS equal to 256.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
Exec. Transactions 11 582 13 293 8 953 16 612 19 536 4 330 13 375 13 474

Abort Rate 4.274 4.461 6.802 3.732 2.943 11.224 4.344 4.809
Committed Transact. 11 087 12 700 8 344 15 992 18 961 3 844 12 794 12 826

Total Committed Transact. 96 548

(e) Baseline system.

Table 4.6: STMBench7 – Read-dominated workload (values per run).

4.4. STMBENCH7 BENCHMARK 77

1000

10000

100000

1e+06

2 4 6 8

T
im

e
(m

ic
ro

se
co

nd
)

Number of Machines

0 (Baseline)
4

16
64

256

(e) Network latency – varying the value of
MAX COMMITTING TXS.

Figure 4.4: STMBench7 – Read-dominated workload.

transactional shared state accounted for less than 0.01%.

Figure 4.4b depicts the abort rate observed. Again, as expected, it was significantly higher

than the one verified in the baseline system, which is totally normal as it ensures that read-

only transactions are abort-free and SPECULA does not. For instance, with eight machines

and MAX COMMITTING TXS = 256, from all the 1222 aborted transactions, 909 were

read-only.

Figure 4.4d depicts the local execution duration of transactions that was observed. The

explanation for these is similar to the one present in the write-dominated configuration.

Figure 4.4c depicts the total execution time of transactions. The graphic is however mis-

leading, because, as described in Section 3.9.3, we have to associate read-only transactions with

update transactions. Therefore, the average total execution time of read-only transactions is

similar to the total execution time of update transactions, although they are executed in a totally

uncoordinated fashion.

Figure 4.4e depicts the network latency observed. Since this workload is composed by few

update transactions, the network latency represents a minor issue in this case.

The tables in 4.6 show that, unfortunately, all nodes remained blocked by the execution

78 CHAPTER 4. EVALUATION

control algorithm for most of the run. This was not due to the network latency but to the high

abort rate, which causes the execution control to slice the value of specLimit by half. However,

the same tables also show that a high amount of all speculatively executed transactions were

final committed.

4.5 Discussion

Results show that SPECULA is suitable even for high contention scenarios. In fact, the

unbalance in the abort rate distribution ends up benefiting our approach; in the baseline system

the node that features a low abort rate is able to commit less transactions than in SPECULA.

Unfortunately, with very small transactions, the high rate of (speculative) commits quickly

saturates the network. In this scenario, the pipelining effect created by SPECULA is constantly

halted by the execution control mechanism. Thus, the network is still a bottleneck in the system

operation.

Configuration A in Bank Benchmark achieved meaningful speedups with just around

20 seconds of execution in each node. We can further increase the value of

MAX COMMITTING TXS but the results have showed that the system’s responsiveness

was already poor with MAX COMMITTING TXS = 256. The time required to fully exe-

cute a transaction is of course the sum of time needed by all the phases in its critical path, so it

is as fast as the slowest link in the chain. We have assumed the network latency to be just one

order of magnitude higher than local execution of transactions, for which low contention scenar-

ios like the Configuration A used in Bank Benchmark should have never required the execution

control algorithm to act with MAX COMMITTING TXS = 256, namely after the warm-up

phase. Instead, we verified that network latency was in some cases three orders of magnitude

higher than the local execution time of transactions, which has seriously hampered SPECULA.

It is difficult for SPECULA to be competitive in scenarios with mostly read-only transac-

tions, as in the baseline system they are guaranteed to be abort-free, hence their read-sets do not

need to be tracked and validated, all properties that SPECULA does not share. However, if we

model read-only and update transactions according to the Amdahl’s law, as update transactions

have to serialized whereas read-only transactions can be freely executed concurrently, we notice

that SPECULA opens rooms for larger speedups in highly concurrent systems, as it reduces the

4.5. DISCUSSION 79

percentage of serial execution.

Nevertheless, SPECULA achieved meaningful speedups even in complex scenarios like the

write-dominated configuration of the STMBench7 benchmark. Although we were expecting to

achieve better results, the ones we got are definitely encouraging.

Summary

This chapter presented the evaluation of our SPECULA prototype. The results obtained

show evidence that the system is capable of deliver boosts in performance in face of very different

scenarios. Both a relatively simple micro-benchmark and more complex applications like the

STMBench7 benchmark benefited from the optimistic approach introduced with SPECULA.

We presented a detailed discussion and analyzed the possible sources of inefficiency in each

benchmark. Finally, the chapter concluded with a brief general analysis.

The next chapter presents the conclusions about this work and directions for future work.

80 CHAPTER 4. EVALUATION

5Conclusions and Future

Work

Survivability takes priority.

– Misato Katsuragi, Neon Genesis Evangelion (TV Series)

DRSTMs allows programmers to develop highly concurrent and dependable systems with

minimal effort. Unfortunately, the implementation of this powerful abstraction with good perfor-

mance is still an open challenge. This thesis addressed this problem by analyzing, implementing

and evaluating techniques to improve the performance of DRSTMs.

To this end, this thesis presents SPECULA, a novel system that can speculatively execute

transactional and non-transactional code in a safe manner, by being able to rollback all changes

made to memory if a mis-speculation is detected. SPECULA relies on a certification-based repli-

cation scheme to enable the speculative commit of memory transactions. This allows transaction

processing to proceed while the global serial order of (speculatively) committed transactions is

defined in background. For this purpose, SPECULA manages access to speculatively committed

data and performs modifications to the application at the bytecode level that enables it to undo

writes made to non-transactional shared state, and also to rollback the execution flow of threads,

all in a fully transparent fashion for both the application and the programmer.

Experimental results show that SPECULA achieves significant speedups in low contention

scenarios and can be also useful in high contention scenarios. By extending the level of optimism

of standard certification-based replication solutions, SPECULA promotes a better use of the

computational resources available in the system.

SPECULA does not address the problem of optimizing network usage, a topic that is or-

thogonal to the focus of this thesis. Therefore, as other certification-based approaches, the costs

of inter-replica synchronization can saturate the underlying group communications system, with

the resulting penalties in the resulting coordination latency. This fact constrained the system’s

throughput in low contention scenarios and made its responsiveness significantly lower as the

82 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

level of optimism increased.

As future work the system would benefit from better execution control mechanisms, feedback

and auto-tuning schemes, in order maximize its throughput without affecting its responsiveness.

Static analysis of the application’s code can also help to reduce the overhead of building undo

logs, by identifying write operations that never need to be undone. A reevaluation of the system

in a low network latency environment should also be performed to further validate this work.

To this end, the performance of the system should be assessed with various AB protocols (e.g.,

token based) and GCSs (e.g., JGroups).

Bibliography

Allman, M., V. Paxson, & W. Stevens (1999). RFC 2581: TCP congestion control.

Ananian, C. S., K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, & S. Lie (2005, February).

Unbounded transactional memory. In Proceedings of the 11th International Conference

on High-Performance Computer Architecture, HPCA’05, San Francisco, CA, USA, pp.

316–327. IEEE.

Bernstein, P. A., V. Hadzilacos, & N. Goodman (1987). Concurrency Control and Recovery

in Database Systems. Addison-Wesley.

Birman, K. P. & T. A. Joseph (1987, January). Reliable communication in the presence of

failures. ACM Trans. Comput. Syst. 5 (1), 47–76.

Bloom, B. H. (1970, jul). Space/time trade-offs in hash coding with allowable errors. Commun.

ACM 13 (7), 422–426.

Bobba, J., N. Goyal, M. D. Hill, M. M. Swift, & D. A. Wood (2008, June). Tokentm: Efficient

execution of large transactions with hardware transactional memory. In Proceedings of the

35th International Symposium on Computer Architecture, ISCA’08, Beijing, China, pp.

127–138. IEEE.

Bruneton, E., R. Lenglet, & T. Coupaye (2002, November). ASM: A code manipulation tool to

implement adaptable systems. In In Proceedings of Adaptable and Extensible Component

Systems, Grenoble, France.

Cachin, C., R. Guerraoui, & L. Rodrigues (2011). Introduction to Reliable and Secure Dis-

tributed Programming (2. ed.). Springer.

Cachopo, J. (2007). Development of Rich Domain Models with Atomic Actions. Ph. D. thesis,

Technical University of Lisbon.

Cachopo, J. P. & A. R. Silva (2006, December). Versioned boxes as the basis for memory

transactions. Sci. Comput. Program. 63 (2), 172–185.

83

84 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Carvalho, N., P. Romano, & L. Rodrigues (2011, May). Scert: Speculative certification in

replicated software transactional memories. In Proceedings of the 4th Annual International

Systems and Storage Conference, SYSTOR’11, Haifa, Israel, pp. 10. ACM.

Chockler, G., I. Keidar, & R. Vitenberg (2001, December). Group communication specifica-

tions: a comprehensive study. ACM Comput. Surv. 33 (4), 427–469.

Couceiro, M., P. Romano, N. Carvalho, & L. Rodrigues (2009, November). D2stm: Depend-

able distributed software transactional memory. In Proceedings of the 15th IEEE Pacific

Rim International Symposium on Dependable Computing, PRDC’09, Shanghai, China, pp.

307–313. IEEE.

Coulouris, G., J. Dollimore, & T. Kindberg (2002). Distributed systems - concepts and designs

(3. ed.). International computer science series. Addison-Wesley-Longman.

Damron, P., A. Fedorova, Y. Lev, V. Luchangco, M. Moir, & D. Nussbaum (2006, October).

Hybrid transactional memory. In Proceedings of the 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS’06,

San Jose, CA, USA, pp. 336–346. ACM.

Défago, X., A. Schiper, & P. Urbán (2004, December). Total order broadcast and multicast

algorithms: Taxonomy and survey. ACM Comput. Surv. 36 (4), 372–421.

Dice, D., O. Shalev, & N. Shavit (2006, September). Transactional locking ii. In Proceedings of

the 20th International Symposium on Distributed Computing, DISC’06, Stockholm, Swe-

den, pp. 194–208. Springer.

Dice, D. & N. Shavit (2007, March). Understanding tradeoffs in software transactional mem-

ory. In Proceedings of the 5th International Symposium on Code Generation and Optimiza-

tion, CGO’07, San Jose, CA, USA, pp. 21–33. IEEE.

Ennals, R. (2006, Jan). Software transactional memory should not be obstruction-free. Tech-

nical Report IRC-TR-06-052, Intel Research Cambridge Tech Report.

Fernandes, J., N. Carvalho, P. Romano, & L. Rodrigues (2011). SPECULA: um protocolo

de replicação preditiva para memória transaccional por software distribúıda. In Actas do

Terceiro Simpósio de Informática, INForum’11, Coimbra, Portugal.

Fernandes, S. M. & J. P. Cachopo (2011, February). Lock-free and scalable multi-version

software transactional memory. In Proceedings of the 16th ACM SIGPLAN Symposium on

85

Principles and Practice of Parallel Programming, PPOPP’11, San Antonio, TX, USA, pp.

179–188. ACM.

Guerraoui, R. & M. Kapalka (2008a, June). On obstruction-free transactions. In Proceedings

of the 20th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA’08,

Munich, Germany, pp. 304–313. ACM.

Guerraoui, R. & M. Kapalka (2008b, February). On the correctness of transactional memory.

In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPOPP’08, Salt Lake City, UT, USA, pp. 175–184. ACM.

Guerraoui, R. & M. Kapalka (2009, January). The semantics of progress in lock-based trans-

actional memory. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL’09, Savannah, GA, USA, pp. 404–415.

ACM.

Guerraoui, R., M. Kapalka, & J. Vitek (2007, March). Stmbench7: a benchmark for software

transactional memory. In Proceedings of the 2007 EuroSys Conference, EuroSys’07, Lisbon,

Portugal, pp. 315–324. ACM.

Hammond, L., V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.

Prabhu, H. Wijaya, C. Kozyrakis, & K. Olukotun (2004, June). Transactional memory co-

herence and consistency. In Proceedings of the 31st International Symposium on Computer

Architecture, ISCA’04, Munich, Germany, pp. 102–113. IEEE.

Härder, T. & A. Reuter (1983, December). Principles of transaction-oriented database recov-

ery. ACM Comput. Surv. 15 (4), 287–317.

Harris, T., S. Marlow, S. L. P. Jones, & M. Herlihy (2005, June). Composable memory

transactions. In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP’05, Chicago, IL, USA, pp. 48–60. ACM.

Harris, T. L. & K. Fraser (2003, October). Language support for lightweight transactions.

In Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming

Systems, Languages and Applications, OOPSLA’03, Anaheim, CA, USA, pp. 388–402.

ACM.

Haynes, C. T., D. P. Friedman, & M. Wand (1984, August). Continuations and coroutines. In

Proceedings of the 1984 ACM Conference on LISP and Functional Programming, Austin,

86 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

TX, USA, pp. 293–298. ACM.

Herlihy, M., V. Luchangco, & M. Moir (2006, October). A flexible framework for implementing

software transactional memory. In Proceedings of the 21th Annual ACM SIGPLAN Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications, OOP-

SLA’06, Portland, OR, USA, pp. 253–262. ACM.

Herlihy, M. & J. E. B. Moss (1993, May). Transactional memory: Architectural support for

lock-free data structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture, ISCA’93, San Diego, CA, USA, pp. 289–300. IEEE.

Herlihy, M. & J. M. Wing (1990, July). Linearizability: A correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. 12 (3), 463–492.

Jr., R. L. B., V. S. Adve, & B. L. Chamberlain (2008, February). Software transactional

memory for large scale clusters. In Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPOPP’08, Salt Lake City, UT, USA,

pp. 247–258. ACM.

Kemme, B., F. Pedone, G. Alonso, A. Schiper, & M. Wiesmann (2003, July). Using optimistic

atomic broadcast in transaction processing systems. IEEE Trans. Knowl. Data Eng. 15 (4),

1018–1032.

Kotselidis, C., M. Ansari, K. Jarvis, M. Luján, C. C. Kirkham, & I. Watson (2008, September).

Distm: A software transactional memory framework for clusters. In Proceedings of the 2008

International Conference on Parallel Processing, ICPP’08, Portland, OR, USA, pp. 51–58.

IEEE.

Kumar, S., M. Chu, C. J. Hughes, P. Kundu, & A. D. Nguyen (2006, March). Hybrid transac-

tional memory. In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPOPP’06, New York, NY, USA, pp. 209–220. ACM.

Lamport, L. (1978, July). Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21 (7), 558–565.

Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet, Matthieu

Morel, & Romain Quilici (2006). Programming, Composing, Deploying for the Grid. In

Jose C.; Rana Omer F. Cunha (Ed.), Grid Computing: Software Environments and Tools,

pp. 205–229. Springer.

87

Manassiev, K., M. Mihailescu, & C. Amza (2006, March). Exploiting distributed version

concurrency in a transactional memory cluster. In Proceedings of the 11th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPOPP’06, New York,

NY, USA, pp. 198–208. ACM.

Marathe, V. J., W. N. S. Iii, & M. L. Scott (2004, October). Design tradeoffs in modern

software transactional memory systems. In Proceedings of the 7th Workshop on Languages,

Compilers, and Run-time Support for Scalable Systems, LCR’04, Houston, TX, USA, pp.

1–7. ACM.

Marathe, V. J., W. N. S. III, & M. L. Scott (2005, September). Adaptive software transactional

memory. In Proceedings of the 19th International Symposium on Distributed Computing,

DISC’05, Cracow, Poland, pp. 354–368. Springer.

Miranda, H., A. S. Pinto, & L. Rodrigues (2001, May). Appia: A flexible protocol kernel sup-

porting multiple coordinated channels. In Proceedings of the 21st International Conference

on Distributed Computing Systems, ICDCS’01, Phoenix, AZ, USA, pp. 707–710. IEEE.

Palmieri, R., F. Quaglia, & P. Romano (2010, July). Aggro: Boosting stm replication via ag-

gressively optimistic transaction processing. In Proceedings of the 9th IEEE International

Symposium on Network Computing and Applications, NCA’10, Cambridge, MA, USA, pp.

20–27. IEEE.

Palmieri, R., F. Quaglia, P. Romano, & N. Carvalho (2010, April). Evaluating database-

oriented replication schemes in software transactional memory systems. In Proceedings of

the 24th IEEE International Symposium on Parallel and Distributed Processing, IPDPS’10,

Atlanta, GA, USA, pp. 1–8. IEEE.

Papadimitriou, C. H. (1979, October). The serializability of concurrent database updates. J.

ACM 26 (4), 631–653.

Pedone, F., R. Guerraoui, & A. Schiper (2003, July). The database state machine approach.

Distributed and Parallel Databases 14 (1), 71–98.

Perelman, D., R. Fan, & I. Keidar (2010, July). On maintaining multiple versions in stm.

In Proceedings of the 29th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, PODC’10, Zurich, Switzerland, pp. 16–25. ACM.

Powell, D. (1996, April). Group communication (introduction to the special section). Com-

88 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

mun. ACM 39 (4), 50–53.

Romano, P., N. Carvalho, & L. Rodrigues (2008). Towards distributed software transactional

memory systems. In Proceedings of the 2nd ACM Workshop on Large-Scale Distributed

Systems and Middleware, LADIS’08, Watson Research Labs, Yorktown Heights, NY, USA.

ACM. (invited paper).

Saha, B., A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, & B. Hertzberg (2006, March).

Mcrt-stm: a high performance software transactional memory system for a multi-core

runtime. In Proceedings of the 11th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPOPP’06, New York, NY, USA, pp. 187–197. ACM.

Schneider, F. B. (1990, December). Implementing fault-tolerant services using the state ma-

chine approach: A tutorial. ACM Comput. Surv. 22 (4), 299–319.

Shavit, N. & D. Touitou (1995, August). Software transactional memory. In Proceedings of

the 14th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing,

PODC’95, Ontario, Canada, pp. 204–213. ACM.

Tabba, F., M. Moir, J. R. Goodman, A. W. Hay, & C. Wang (2009, August). Nztm: nonblock-

ing zero-indirection transactional memory. In Proceedings of the 21st ACM Symposium on

Parallelism in Algorithms and Architectures, SPAA’09, Calgary, Canada, pp. 204–213.

ACM.

Tomic, S., C. Perfumo, C. E. Kulkarni, A. Armejach, A. Cristal, O. S. Unsal, T. Harris, &

M. Valero (2009, December). Eazyhtm: eager-lazy hardware transactional memory. In Pro-

ceedings of the 42st Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO’09, New York, NY, USA, pp. 145–155. ACM.

