
Detection of Invariant Violations in Microservices
(extended abstract of the MSc dissertation)

João Fitas
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professor Luı́s Rodrigues and Professor António Rito da Silva

Abstract—In a monolith, functionalities are executed as
transactions, that are isolated from each other. In a mi-
croservice architecture, functionalities may be composed of
multiple transactions, each executed in a different microservice.
When functionalities execute concurrently, these individual
transactions may interleave, generating states that violate
correctness invariants. This work studies techniques to: 1)
detect automatically executions that may cause invariants to be
violated, and 2) automatically present concrete executions that
illustrate those violations. We have built a tool, named DAVIAC,
that achieves these goals. The tool encodes the application code
and the invariants as Satisfiability Modulo Theories formulas
and then uses a SMT solver to explore the space of possible
interleavings and input parameters. When the violation of an
invariant is found, the tool captures the exact interleaving that
causes the violation. We have evaluated the tool by applying it
to different microservice applications.

I. INTRODUCTION

Microservices are an architectural style that promotes
the development of applications through the composition
of small loosely coupled services, in contrast to the tra-
ditional monolithic architecture in which all functionalities
are provided by a centralized software component [1], [2],
[3]. Microservice architectures have several advantages over
monolithic architectures. In particular, they are easier to
scale, both from the perspective of the software develop-
ment process and from the perspective of deployment and
execution.

Unfortunately, managing the effect of concurrency be-
comes more challenging in a microservice architecture com-
pared to a centralized environment. In a monolith, func-
tionalities are executed as isolated ACID transactions [4].
In a microservice architecture, by design, functionalities are
composed of multiple transactions, each possibly executed
in a different microservice. When functionalities execute
concurrently, the resulting interleavings may generate global
states that violate the application’s invariants: applications’
correctness rules that must be enforced throughout execu-
tion.

As such, the goal of this work is to automatically identify
and help the developer handle all invariant violations in
their application. This is a complex task, as it it involves
the analysis of all the possible ways the invariants can be
affected during the application’s execution, especially when
the goal is full coverage.

II. RELATED WORK

There are two main distinct approaches to analyze the
execution of an application, namely following a black-
box approach or following a white-box approach. So, tools
following both approaches were covered while performing
this work. Furthermore tools related to the development and
testing of microservices were also analyzed. To sum up
the most relevant characteristics of the tools covered, their
characteristics are presented in Table I, along with the new
tool produced by this work, DAVIAC.

Tool Black/White-Box Invariants Microservice Complete Source Code
Oriented Analysis Analysis

HawkEDA Black-Box API Level ✓ ✗ ✓
PETIT Black-Box API Level ✓ ✗ ✓

Simulator White-Box Entity Level ✓ ✗ ✓
JoT White-Box Entity Level ✓ ✗ ✓

Ucheck White-Box Entity Level ✓ ✓ ✗
Harmony White-Box Entity level ✗ ✓ ✗

Alloy White-Box Entity level ✗ ✓ ✗
MAD White-Box Not Supported ✓ ✓ ✓

Noctua White-Box Not Supported ✗ ✓ ✓
DAVIAC White-Box Entity level ✓ ✓ ✓

Table I: Tool Comparison

By definition, invariants are correctness constraints over
the application’s domain, which are often defined in terms
of domain entities. As such, representing them at the entity
level is simpler, albeit they can also be defined at the API
level through methods that interact with the entities.

Harmony [5], Ucheck [6], and Alloy [7] define invariants
at the entity level, while HawkEDA [8] and PETIT [9] define
them at the API level. As a consequence, the first group does
not require, procedure calls to verify the invariants, it can
directly verify the state of the attributes, making the invariant
verification process simpler and faster.

Furthermore, black-box approaches are unable to achieve
a complete analysis, as they are based on testing approaches.
Meaning that such an approach could never fulfill this work’s
completeness goal.

The Simulator [10] and JoT [11] are white-box tools.
However, as they require the user to manually create all
the test cases required to provide a complete analysis, their
invariant violation detection capabilities are also not as
interesting for this work as the remaining white-box tools,
which aims to automate the detection process.

With all this in mind, the tools that are more related to
the goal of detecting all invariant violations in an application

1



are MAD [12], Harmony [5], Alloy [7], and Noctua [13].
Within these, it is worth highlighting that MAD [12] and
Noctua [13] are the only ones that support source code
analysis and do not require a manually generated model of
the application.

Another relevant aspect of this work is addressing the
discovered violations. From a high-level perspective, this is
done in three stages: understanding the violation, reworking
the problematic functionalities, and testing the new code.
In terms of addressing the first step, Alloy [7] and Har-
mony [5] are the only tools with specific components for
the understating of the results, by providing a graphical
representations of the results. The second stage could be
addressed with suggestions of possible ways to alter the code
to avoid violations. However, that is outside the scope of
this work and will not be covered. Lastly, when testing the
code, different testing techniques may be required depending
on the technologies used in the application under test. One
possible solution is to support multiple technologies and
generate technology-specific test cases, such as those in
the Simulator [10]. Another would be to use a generic
framework like Jot [11] that can be used regardless of the
technologies used by each microservice. Given the various
approaches to this issue in the industry, it was decided not
to include concrete test case generation in this work and
instead to focus on providing the information required to
create test cases in a useful way.

Considering all this aspects, Harmony [5], MAD [12],
Noctua [13], and Alloy [7] are the tools closer to achieve
the goals of this work, however they all lack some aspect. In
summary, the requirements for the new tool and what these
tools have already accomplished are as follows.

• Verify Microservices Invariants: Alloy and Harmony do
this, while MAD and Noctua do not.

• Make A Complete Analysis: All these tools do it.
• Analyze Source Code: MAD and Noctua perform

source code analysis
• Distinguishing Between Eventual and Absolute Invari-

ants: None of the tools provide this feature, nor a way
to emulate it.

For these reasons, this work produced a new tool,
DAVIAC, that achieved all of its goals, using some of
MAD [12] and Noctuas’s [13] concepts on automatic source
code analysis. It does not rely on the user’s ability to model
their application to provide accurate results, but instead
analyzes the source code directly. Furthermore, taking inspi-
ration from these tools, the new tool uses formal verification
techniques to grant a complete analysis of the application.
Given that both MAD [12] and Noctua [13] use an internal
representation optimized for SMT solvers, this work will
also follow that approach. This tool is presented in the next
Section.

III. DAVIAC

This section presents a tool produced by this work for the
automatic detection of invariant violations in business logic

rich applications, DAVIAC (from the Portuguese Deteção
Automática de Violação de Invariantes em Aplicações de
Domı́nio Complexo). To detect possible invariant breaches
in an application, the tool encodes the application’s in-
variants and transactions in Satisfiability Modulo Theories
(SMT) [14]. Using an SMT solver, the tool explores the uni-
verse of possible functionality interleavings and arguments
in search of combinations that cause invariant violations.
Upon discovery, the initial state, functionality interleaving,
and arguments are recorded, and all violations are presented
at the end of the tool’s execution.

1) Usage Overview: To use DAVIAC the user first pro-
vides a description of the application under test, specifi-
cally the description of the application’s entities, invariants,
transactions, and functionalities. Details of these descriptions
are presented in Section III-A1. Then, to run the tool, the
user must define the number of concurrent functionalities
to consider (fmax); naturally, the user is free to choose any
number. However, an incremental approach is recommended.
In other words, it is recommended that the user begins with
a fmax value of one and resolves any discovered violation
test. Once resolved, the user should run once again with the
same fmax value, ensuring no other violation remains and, if
solved, moves to fmax of two and so on until no violations
are discovered. This approach is not without limitations, as
is discussed in Section III-C1.

A. Architecture
The architecture and execution flow of the DAVIAC tool

are represented in Figure 1. The tool follows this execution:
first, the source code, the entities, and the information about
the functionalities and transactions are supplied to the tool,
processed, and transformed into an internal representation,
independent of the specific technologies used in the provided
specification.

This internal representation is compiled into an SMT
formula and analyzed by an SMT solver to detect invariant
violations. Lastly, the discovered violations are presented to
the user using several visualization strategies. The following
sections describe each DAVIAC module in detail.

DAVIAC Modules

Figure 1: DAVIAC Module Sequence

1) Input Parser: DAVIAC uses four parser classes: I)
Entity Parser, II) Invariant Parser, III) Transaction Code
Parser, and IV) Functionality Parser.

• Entity Parser: The entity parser is responsible for
translating the systems entities (including their at-
tributes and respective types) into the internal represen-
tation used by the tool. Entities are usually represented
in SQL or ORM) [15]. The tool can extract attributes
and their types using the database schemes used in both

2



techniques. Currently, the DAVIAC prototype only sup-
ports entities encoded as SQL, considering each table
as an entity and its comprising columns the entities’
attributes. Information on database schemas can be ob-
tained from SQL database creation commands, whether
manually written by the programmer or automatically
generated by the ORM. Currently, only basic types are
supported by the tool.

• Invariant Parser: Invariants capture the domain’s con-
sistency rules, which, according to DDD, should be
formalized for each aggregate during its design. This
formalization is supplied to the tool, including informa-
tion related to the type of each invariant (i.e. eventual
or absolute). For clarification, an eventual invariant
is breached if it is not upheld in an application’s
quiescent state. This means that it can be breached
during the execution of a functionality as long as it is
restored before the execution finishes. Conversely, ab-
solute invariants must be upheld at all times during the
application’s execution. The Invariant Parser is respon-
sible for translating these high-level specifications to an
internal representation, connecting each invariant with
the entities and functionalities involved. Concretely,
the current parser in the prototype takes a JSON file
that contains the invariant description in an SQL-like
syntax. Currently, the prototype supports invariants that
affect all entities of a type or subset of entities indicated
by a given condition, presented as a clause WHERE. The
prototype supports logic changing of conditions using
conjunctions and disjunctions as well as the following
operators: “<”, “>”, “<=”, “>=”, “==” e “! =”.

• Transaction Code Parser: The Transaction Code
Parser is responsible for translating the entity accesses
performed by the application transactions into the in-
ternal representation. These accesses are represented
as an execution graph containing the operations per-
formed over the accessed entities and the conditions
required to perform the said operations. This graph is
translated to an internal representation that is agnostic
to the programming language used by the application,
allowing the implementation of multiple parses, each
supporting a different input technology. The current
prototype includes a parser for Java code, which uses
SQL statements to manipulate the entities. This parser
uses the Java Parser1 Library to build and traverse
an Abstract Syntax Tree (AST), which represents the
transactions that make up the functionalities of the
application under test. As it traverses the tree, the
parser generates the corresponding nodes in the internal
representation, which will store the types of the entities
in the code, the arguments of each transaction, and all
expressions that are used in conditions or writes to
entities. In the future, the tool can be expanded with
parsers that support code using popular frameworks,

1https://javaparser.org/

like Spring2, Django3, among others that are common
throughout the microservice world.

• Functionality Parser: The Functionality parser is re-
sponsible for translating the sequences of transactions
into functionalities. A functionality corresponds to a
sequence of transactions executed on one or more mi-
croservices and by an order defined by the functionality.
Information about these sequences allows the tool to
narrow its search universe, avoiding the exploration of
interleavings of transactions that are impossible in the
application. The current prototype of DAVIAC only
supports linear sequences of transactions, which were
enough to completely analyze our test case. It receives
a JSON file containing the functionalities and their
transactions, presented as a list sorted by sequence
order.

2) Internal Representation: The internal representation
allows the decoupling of the generation of the SMT formula
from the codification of the system under test, which makes
the tool’s expansion easier. It stores the information extracted
by the input parsers required for the SMT formulation
created by DAVIAC. Concretely, the internal representation
is composed of three lists of objects: entities, invariants, and
functionalities. The entities hold information related to their
attributes, specifically related to their type. The invariants de-
fine the restrictions imposed on the possible coherent entity
attribute states and are categorized as absolute or eventual.
The functionalities keep a sequence of transactions, where
each transaction is represented by an AST and captures
the entities and attributes manipulated by itself. The AST
representation is generic in the sense that it is agnostic
to the input programming language. Yet, it is capable of
capturing all its relevant aspects, namely the chaining of
entity accesses and all branching and conditions relevant to
these accesses.

The internal representation also connects the invariants,
the relevant attributes to maintaining their correctness, and
the transactions that interact with these attributes. These
connections are essential to the generation of the SMT
formulation, allowing the search universe to be reduced to
include only the functionalities relevant to each invariant.

3) Formula Generator: This component is responsible for
compiling the internal representation to SMT by generating
the formulas that the solver will verify to discover invariant
violations. The tool explores, for each invariant, all the pos-
sible functionality executions that interact over the relevant
entities to the invariant. For that purpose, the tool covers
all the possible functionality interleavings, not only among
different functionalities but also among concurrent instances
of the same functionality. In addition, for each interleaving,
DAVIAC covers all possible inputs for each transaction and
possible initial application states. DAVIAC only explores
initial states which verify all of the application’s invariants.
Using the information contained in the AST, the tool can

2https://spring.io/
3https://www.djangoproject.com/

3



explore all branchings of accesses to entities that occur from
conditional accesses within a transaction.

Taking advantage of the fact that the search of viola-
tions for each invariant is independent, DAVIAC generates
separate formulas for each invariant. This separation allows
not only the parallelization of the violation search, making
concurrent invocations of the solver possible, but it also
reduces the complexity of the SMT formulations, improving
the search performance. The possibility of parallelizing the
analysis is discussed further in Section VI.

To limit the maximum search depth of the tool, the
maximum number of concurrent functionality instances in
a given execution is a predetermined value fmax, defined
in the tool configuration. For a more complete analysis,
multiple incremental values of fmax should be tested. More
details on the impact of the choice of this value are discussed
in Section III-C1.

Lastly, DAVIAC’s current prototype assumes that all
transactions are serializable, although this will be expanded
in the future, as discussed in Section VI-B.

Design details on the SMT formulas are covered in
Section III-B.

4) Analyzer: This component verifies the satisfiability of
the formulas produced by the generator. DAVIAC uses Z34

as a solver due to its efficiency and popularity in the area.
The analyzer is invoked for each generated formula and, if a
formula is satisfiable, the solution model is used to represent
the violation. Otherwise, it is guaranteed that the execution
represented by that formula cannot lead to an invariant viola-
tion and, as such, can be discarded. Concretely, approaching
the problem as an SMT problem provides the guarantee of
total coverage of violations in the applications caused by
the simultaneous execution of up to fmax functionalities
because DAVIAC analyzes all the executions for all the
possible functionality combinations of length up to fmax as
SMT formulas which are mathematically proven satisfiable
or not. In case no violations are found for a certain fmax, it
is guaranteed that no violations can occur when up to fmax

concurrent functionalities are executed in the application.
5) Invariant Violation Representation: This representa-

tion is generated by extracting information from the solution
model created by the analyzer, and contains all the relevant
data to identify and reproduce the discovered violation.
Namely, it contains which invariant was breached, the in-
volved functionalities, the execution order, the application’s
initial state, and the inputs that caused the violation. The
purpose of this representation is to separate the SMT solver’s
output from the result presented to the programmer. This
allows the violation to be reported in several ways and makes
it possible for the programmer to create multiple visualizers
for the violation according to their use cases.

6) Visualizers: These components are responsible for
meaningfully presenting the invariant violations to the pro-
grammer. DAVIAC is prepared to use several visualizers
and encourages the user to augment it by implementing

4https://github.com/Z3Prover/z3

visualizers that best suit their needs, such as a visualizer
that automatically creates test cases for their specific envi-
ronment. The prototype is equipped with two visualizers, one
that generates a JSON description of the violation III-A6,
and one that generates a graph of the violation III-A6.

• JSON Visualizer This visualizer creates a JSON file
containing a data flow description of the execution
where the invariant violation occurs. This description
comprises a list of the states of the application’s en-
tities, with the functionalities that originate each state
between them, along with their respective arguments.

• Graph Visualizer: This visualizer creates a graph that
contains a description of the data flow of the execution
where the invariant violation occurs. This description
comprises a sequence of entities states that compose
the application, with the functionalities that originate
each state linked to them, along with their respective
arguments. The red arrows indicate the sequence of
transactions, whereas the links between the initial and
final states of the transactions are annotated in black.
Furthermore, any changes from one state to the next are
highlighted in yellow or red, and the latter also indicates
that the changes in that state caused a violation. A
concrete example is in Figure 2, where the interleaving
of two instances of the Withdrawal functionality makes
it so that, in the last state, the account with id 0 has a
negative balance, breaching the invariant.

B. SMT Formula Specifics
The goal of the SMT formulas is to represent the ex-

ecution of an interleaving of functionalities in order to
discover Invariant breaches. The execution of the application
is represented as a series of chained states, and moves from
one state to the next due to the execution of transactions
which manipulate entities, upon which the Invariants are
defined.

DAVIAC generates separate SMT formulas for all possi-
ble functionality interleavings for each invariant. However,
much of the information contained in this formulas is the
same, and is recycled from one formula generation to the
other in order to save resources.

The application starts from an initial state respecting all
invariants, while the final state is the system state after the
execution of all transactions. Lastly, given that DAVIAC
assumes transactions to be serializable, each transaction has
a start state and an end state.

1) Formula Components: Concretely, each formula con-
tains: the encoding of the domain Entities into SMT sorts;
the encoding of the application’s Transactions into SMT
clauses; the Initial State Constraints, i.e. all the invariants
to be upheld on the initial state; the Execution Order under
test; the Invariant which is under test. From this list, only
the last two need to be generated again for each formula.
The rest are generated once and reused in all formulas.

In this section we now breakdown each component of
the formula. The Execution Order, Initial State Constraints
and Invariants are all contained within the body of the Exist

4



Figure 2: Graph visualization of a Simple Bank Invariant violation

clause. The Exist clause header, defines how many states
and functionality parts should exist, while the Entities and
Transactions are introduced as a set of separate clauses.
These separate clauses remain the same for the formula of
each execution while the Exists clause is adapted depending
on the transaction/functionality types and their execution
order.

• Entities: Entities are modeled in the formula as SMT
sorts. These sorts are then used in functions, as argu-
ments, to obtain the values of each entities’ attributes.
Each function takes as an argument the state and entity
which the attribute is being accessed on and returns
the value in the correct type. Furthermore, to represent
whether an entity exists in a state or not (in case it is
created or deleted in the middle of an execution), an
additional function is created to represent its existence
in a given state, receiving the entity and state in
question, and returning a boolean. Lastly the formula
also needs to capture the behavior of both unique and
foreign attributes. Unique attributes are represented by
clauses indicating that in any state, if two entities of
the same type have the same unique attribute, then they
are the same entity. Foreign attributes are represented
by clauses stating that if in a state an entity holds
a foreign attribute, then the entity reponsible for the
foreign attribute must also exist, similar to SQL foreign
keys. For example, in a simple bank application, an
Accounts Entity is represented by the Accounts sort,
the exists function and the one function for each of its
attributes, as shown in Listing 1. Listing 2 contains the
unique clause for the id attribute of the Accounts entity.
Lastly, Listing 3 introduces a foreign clause for the
name attribute of the Accounts entity. For the purpose
of this example, assume that this attribute is a foreign
attribute linked to the name attribute of the Clients
entity.

1 (declare-sort Accounts)
2 (declare-fun Accounts_exists (State) Bool)
3 (declare-fun Accounts_id (Accounts State) Int)
4 (declare-fun Accounts_name (Accounts State) String)
5 (declare-fun Accounts_balance (Accounts State) Int)

Listing 1: SMT formula representation of Simple Bank’s Accounts Entity

1 (assert (forall ((accounts_1 Accounts) (accounts_2 Accounts) (state_1
State) (state_2 State))

2 (=> (= (Accounts_id accounts_1 state_1) (Accounts_id accounts_2 state_2)
)

3 (= accounts_1 accounts_2)
4 )))

Listing 2: SMT formula representation of a unique atribute

1 (assert (forall ((accounts Accounts) (state State))
2 (=>
3 (Accounts_exists accounts state)
4 (exists ((clients Clients))
5 (and
6 (= (Accounts_id accounts state) (Clients_id clients state))
7 (Clients_exists clients state)
8 )))))

Listing 3: SMT formula representation of a foreign atribute

• Transactions: Unlike entities, transactions are modeled
as the sort Functionality Part and are identified by an
id. Each transaction in the application is assigned a
distinct integer id by a function named after the trans-
action, that takes no arguments and returns an Int. This
id can be retrieved by the use of the get func part type
function which takes as an argument an instance of
a Functionality Part and returns its Int id. The id is
used for matching the Functionality Parts to their trans-
action types. Each Functionality Part (transaction) is

5



part of a functionality, represented by the Functionality
sort, which can be obtained by using the get func
function, which takes as an argument an instance of
a Functionality Part and returns an instance of Func-
tionality, corresponding to its parent Functionality. The
arguments of each transaction, as well as any value
that is propagated from one transaction to the next
is represented by a function named as <transaction
name> <argument name> which receives as an argu-
ment the Functionality Part instance and returns the
argument value. Lastly, the effect of executing the
transaction is represented as an assert. These asserts
enforce conditions to all Functionality Part instances
of the same type, translating the operations performed
by the transaction on the Entities values in terms of
the Functionality Part’s start and end states. The start
and end states can be obtained using the start state and
start state functions, which take as input the Function-
ality Part instance and return the corresponding State
instance. The representation of the balance transaction,
from the same Simple Bank App, in the formula can
be seen in Listing 4

1 (declare-fun balance () Int)
2 (declare-fun balance_id_account (Functionality_Part) Int)
3 (declare-fun balance_balance (Functionality_Part) Int)
4 (assert (forall ((func_part Functionality_Part))
5 (=>
6 (= (get_func_part_type func_part) balance)
7 (exists ((start_state State) (end_state State))
8 (ite
9 (and

10 (= (start_state func_part) start_state)
11 (= (end_state func_part) end_state)
12 )
13 (forall ((clients Clients) (accounts Accounts))
14 (and
15 (=>
16 (and
17 (Accounts_exists accounts start_state)
18 (= (Accounts_id accounts start_state)
19 (balance_id_account func_part))
20 )
21 (= (Accounts_balance accounts start_state)
22 (balance_balance func_part))
23 )
24 (= (Accounts_exists accounts start_state)
25 (Accounts_exists accounts end_state))
26 (= (Accounts_id accounts start_state)
27 (Accounts_id accounts end_state))
28 (= (Accounts_balance accounts start_state)
29 (Accounts_balance accounts end_state))
30 (= (Accounts_name accounts start_state)
31 (Accounts_name accounts end_state))
32 (= (Clients_exists clients start_state)
33 (Clients_exists clients end_state))
34 (= (Clients_id clients start_state)
35 (Clients_id clients end_state))
36 (= (Clients_address clients start_state)
37 (Clients_address clients end_state))
38 (= (Clients_name clients start_state)
39 (Clients_name clients end_state))
40 ))
41 false
42 )))))

Listing 4: SMT formula representation of Simple Bank’s balance transaction

• Execution Order: The execution order is what rep-
resents each execution in the SMT formula, as it
introduces the chaining of transactions, what type of
transaction they are and which functionality they belong
to. First, it indicates the execution flow, setting the
start and end states of each Functionality Part using
the start state and end state functions declared in the
Exists clause. Then, it sets the type of each Func-
tionality Part using the get func part type function,
according to the given interleaving the formula is
validating. Finally, instances of Functionality Part that

belong to the same functionality are also matched using
the get func function which receives an instance of
Functionality Part and returns the corresponding in-
stance of Functionality. To exemplify this, the Listing 5
contains part of the Exists clause, corresponding to an
execution of two instances of the Withdrawal func-
tionality, where the execution order is: Withdrawal 1.1
(tx:balance), Withdrawal 2.1 (tx:balance), Withdrawal
1.2 (tx:withdrawal ), Withdrawal 2.2 (tx:withdrawal );
like the example on Figure 2.

1 ;; Exists Clause
2 (assert (exists ((state_0 State) (state_1 State) (state_2 State) (state_3

State) (state_4 State) (func_part_0 Functionality_Part) (
func_part_1 Functionality_Part) (func_part_2 Functionality_Part) (
func_part_3 Functionality_Part))

3 (and
4 [...]
5 ;; Execution Order
6 (= (start_state func_part_0) state_0)
7 (= (end_state func_part_0) state_1)
8 (= (start_state func_part_1) state_1)
9 (= (end_state func_part_1) state_2)

10 (= (start_state func_part_2) state_2)
11 (= (end_state func_part_2) state_3)
12 (= (start_state func_part_3) state_3)
13 (= (end_state func_part_3) state_4)
14 (= (get_func_part_type func_part_0) balance)
15 (= (get_func_part_type func_part_1) balance)
16 (= (get_func_part_type func_part_2) withdrawal)
17 (= (get_func_part_type func_part_3) withdrawal)
18 (= (get_func func_part_0) (get_func func_part_2))
19 (= (get_func func_part_1) (get_func func_part_3))
20 [...]
21 )))

Listing 5: SMT formula representation of Simple Bank’s Execution Order
Example

• Initial State Constraints: Executions must start from
a correct initial state (i.e. one which upholds all In-
variants), otherwise one could detect invariant breaches
raised due to already invalid initial states. As such,
the Exists clause contains a clause for each invariant,
indicating that it must be upheld in the initial state.
The Simple Bank’s invariants would be represented as
shown in Listing 6.

1 ;; Exists Clause
2 (assert (exists ((state_0 State) (state_1 State) (state_2 State) (state_3

State) (state_4 State) (func_part_0 Functionality_Part) (
func_part_1 Functionality_Part) (func_part_2 Functionality_Part) (
func_part_3 Functionality_Part))

3 (and
4 [...]
5 ;; Initial State Invariants
6 (forall ((accounts Accounts) (clients Clients))
7 (=>
8 (= (Accounts_id accounts state_0)
9 (Clients_id clients state_0))

10 (= (Accounts_name accounts state_0)
11 (Clients_name clients state_0))
12 ))
13 (forall ((accounts Accounts))
14 (>= (Accounts_balance accounts state_0) 0)
15 )
16 [...]
17 ))

Listing 6: SMT formula representation of Simple Bank’s Initial State Invariants

• Invariants:The last component of the SMT formula
is the representation of the invariant under test. This
is represented by another exist clause inside the main
Exists clause. The internal clause makes use of all the
clauses defined so far to represent if there is a state
X where the invariant under test is not verified. To
distinguish between eventual and absolute invariants,
the state X must either be the final state or any state
(other than the initial), respectively. To illustrate this,
the representation of both Simple Bank’s invariants is
presented, the eventual invariant in Listing 7 and the
absolute in Listing 8.

6



1 ;; Exists Clause
2 (assert (exists ((state_0 State) (state_1 State) (state_2 State) (state_3

State) (state_4 State) (func_part_0 Functionality_Part) (
func_part_1 Functionality_Part) (func_part_2 Functionality_Part) (
func_part_3 Functionality_Part))

3 (and
4 [...]
5 ;; Enventual Invariant
6 (exists ((state State) (accounts Accounts) (clients Clients))
7 (and
8 (or
9 (= state state_4)

10 )
11 (Accounts_Exists accounts state)
12 (= (Accounts_id accounts state)
13 (Clients_id clients state))
14 (not
15 (= (Accounts_name accounts state)
16 (Clients_name clients state))
17 ))))))

Listing 7: SMT formula representation of Simple Bank’s Eventual Invariant

1 ;; Exists Clause
2 (exists ((state_0 State) (state_1 State) (state_2 State) (state_3 State) (

state_4 State) (func_part_0 Functionality_Part) (func_part_1
Functionality_Part) (func_part_2 Functionality_Part) (func_part_3
Functionality_Part))

3 (and
4 [...]
5 ;; Absolute Invariant
6 (exists ((state State) (accounts Accounts) (clients Clients))
7 (and
8 (or
9 (= state state_1)

10 (= state state_2)
11 (= state state_3)
12 (= state state_4)
13 )
14
15 (Accounts_Exists accounts state)
16 (not
17 (>= (Accounts_balance accounts state) 0)
18 )))
19 [...]
20 ))

Listing 8: SMT formula representation of Simple Bank’s Absolute Invariant

C. Limitations
1) Choosing fmax: To ensure the analysis is finite,

DAVIAC imposes a limit, fmax, to the number of con-
current functionalities to be considered when analyzing an
application. As previously stated, it is recommended that
the user takes an incremental approach when analyzing
their application, that is to run the tool several times with
increasing fmax values. However, deciding the highest fmax

value to consider is difficult because there might be a gap
between two fmax values that discover invariant violations.
For example, there may be violations for fmax of 1 and 2
but then only again for fmax 20.

1 //Invariant: Accounts.balancce < 100
2 func1_T0(){
3 assert Accounts.balancce < 50
4 }
5 func1_T1(){
6 Accounts.balance += 10
7 }

Listing 9: Tool limitation sample application

Consider the simple application introduced in Listing 9
that has only one functionality func1, composed of two
transactions: T0, that verifies whether the attribute balance
of an Accounts entity is less than 50 and aborting the
functionality in case the restriction does not hold. And
another transaction T1 that increments the balance attribute
by 10. Note that T1 only executes if the verification in
T0 passes. In this application, there is an invariant on the
balance attribute, which states that the value of this attribute
is never greater than or equal to 100. In this example, with
only one invocation of func1, in other words, fmax of one,

it is impossible to violate the invariant because only one
increment 10 is performed to the balance attribute and that
increment only occurs in the case where the attribute had
an initial value lower than 50. However, in the case where,
initially, the value of the balance attribute is 49, and there
are six instances of the functionality executing with fmax

of six, there are several executions where all the instances
of T0 execute before all the instances of T1. In this case,
all the T0 instances will validate that the balance attribute
is less than 50, and all six instances of T1 will execute,
resulting in a combined increase of 60 to the value of the
balance attribute making it 109 and violating the invariant.
For fmax values up to five, no violations would be detected,
and similar examples can be given with even larger intervals
of fmax values without violations, followed by values that
yield violations.

By default, a maximum fmax value corresponding to the
number of functionalities that affect each invariant is recom-
mended, so that the tool explores interleavings that involve
at least one instance of each functionality that affects the
invariant under analysis; however, when dealing with cases
such as the one presented above, this may not be sufficient.
Another possible approach would be to choose a fmax value
higher than the number of concurrent functionalities that
the deployed application allows. However, such value is not
easily determined in a microservice application due to its
distributed nature.

An automatic approach to determine the required value
would be most useful. This is discussed further in Sec-
tion VI-A

2) Duplicate Violations: During the search for invariant
violations, the same violation can be found in several differ-
ent executions. However, the number of such occurrences is
severely reduced by the use of the proposed incremental
analysis, as shown in Section IV-A. Currently, DAVIAC
presents all the discovered executions that cause violations,
which can result in different versions of the same anomaly
being presented to the user. This limitation will be addressed
in future work, as discussed in Section VI-A.

IV. EVALUATION

A. Pertinence of the Results

To evaluate DAVIAC’s capacity to detect invariant viola-
tions in real applications and validate the use of the proposed
incremental analysis, we ran DAVIAC on the Quizzes Tutor5

application, whose microservice implementation is available
in [10], which was translated to a syntax supported by
DAVIAC. This application is composed of four function-
alities and four invariants (two absolute and two eventual),
where, on average, each invariant is accessed for writing or
reading by three functionalities. Applying the incremental
analysis, the results are as presented in Table II, while the
results of directly running each fmax value are presented in
Table III.

5https://quizzes-tutor.tecnico.ulisboa.pt/

7



fmax #Violations Runtime #Violations Runtime Total Runtime
after Fix after Fix

1 1 0.557s 0 0.501s 1.058s
2 9 7.048s 0 8.626s 15.674s
3 0 3725.432s aprox 1h − − 3725.432s aprox 1h

Table II: Quizzes Tutor incremental analysis results

fmax #Violations Runtime
1 1 0.684s
2 27 10.529s
3 464 3973.447s aprox 1h

Table III: Quizzes Tutor non incremental analysis results

Looking at these results, two things become clear: one is
that DAVIAC is indeed capable of analyzing real applica-
tions in useful time, the combined analysis time for fmax up
to three is little over an hour, using the incremental analysis
(excluding the time to fix the invariant violations) and it
discovers relevant and real invariant violations. The other is
that the use of incremental analysis removes 254 duplicate
violations that the programmer would have to manually
check if they opted to directly analyze the application with
fmax value of three.

The reduction of duplicates caused by the use of incre-
mental analysis is expected, as violations are detected using
the minimal number of required functionalities, stopping the
propagation of the bug to executions with more function-
alities. By doing so, the developer can discover the same
violations without having to analyze as many cases.

Even though Quizzes Tutor is a small application when
compared to some of the microservice compositions that
exist in the industry, its functionalities are of similar com-
plexity, showing the capability of DAVIAC handling real,
complex applications. While larger applications may take
more time to analyze (as we will explore in the next section),
we believe the parallelization of the analysis may signifi-
cantly reduce the analysis time complexity, as discussed in
Section VI-A.

These results confirm DAVIAC’s ability to analyze real
applications and detect invariant violations within an accept-
able time, and prove that the incremental analysis is effective
in fighting the occurrence of duplicate violations.

B. Tool Performance

Beyond the ability to detect invariant violations, analysis
time is critical for a development aid tool such as DAVIAC.
As such, to evaluate the execution time scaling with the
application size, a synthetic application with a varying
number of functionalities, varying functionality length, and
varying number of invariants was analyzed with DAVIAC,
and the analysis times were recorded. For the first three
experiments, the value of fmax is fixed at two, and the
application has no violations reported for fmax value of
one. The initial synthetic application consists of one absolute
invariant, which relates two attributes, and a functionality
composed of two transactions, each updating one of the
invariant’s attributes.

(a) Vs. Invariants (b) Vs. functionalities

Figure 3: Execution time in terms of number of Invariants and Functionalities

First, the impact of the number of invariants on an
application was measured. For that, the number of invariants
in the original application was increased while maintaining
the number of functionalities that interact with each invariant
unchanged, as well as the number of transactions in each
functionality (two). The results of this experience are shown
in figure 3(a), where the tool’s execution time is measured
in terms of the number of invariants, which increase up to
sixty-four. The performance of the tool grows linearly with
the increasing number of invariants, as is to be expected
given that the analysis of each invariant is independent of
the previous and given the number of functionalities that
affect each invariant is the same, the analysis time for each
invariant is approximately the same. Given the possibility
of running the analysis for each invariant in parallel, the
analysis time can be reduced linearly with the increase of
logical processors, as discussed in Section VI.

Second, the impact of the number of functionalities that
interact with each invariant on performance was measured.
For that, we fix our application to our single original invari-
ant and increase the number of functionalities by introducing
extra functionalities with the same behavior as that of the
original, each composed of two transactions. The results of
this experience are shown in figure 3(b), where the tool’s
execution time is measured in terms of the number of func-
tionalities, which increase up to sixty-four. As expected, the
execution time displays approximately exponential growth
due to the increase of possible functionality combinations
and consequentially executions that DAVIAC has to cover.

Third, the impact of the length of the functionalities was
measured. For that, we maintain a single invariant and two
functionalities, both affecting the same invariant, increasing
the number of transactions in each functionality. The results
of this experience are shown in figure 4(a), where the tool’s
execution time is measured in terms of the length of the
functionalities, which increase up to five. The execution time
displays approximately exponential growth due to increased
possible functionality interleavings and consequentially ex-
ecutions that DAVIAC has to cover. However, this growth
is expected to be less significant than the one introduced by
increasing the number of functionalities, as the interleavings
between transactions must still respect the order of execution
within a functionality, while functionalities may be inter-
leaved in any order. We will further explore this difference
in growth later in the section.

8



(a) Vs. Functionality Length (b) Vs. fmax

Figure 4: Execution time in terms of Functionality Length and fmax

Figure 5: Execution time in terms of Number of Functionalities with constant Total
Transaction Number

We now evaluate the impact of the fmax value in the
analysis time. For that, we use an application with four
functionalities and two transactions each, all affecting the
same unique invariant. As expected and as can be observed
in Figure 4(b), the execution time shows an approximate fac-
torial growth due to the increasing number of functionalities
and transactions involved in each execution, causing a signif-
icant increase in the possible functionality interleavings that
DAVIAC has to cover. This result has a very direct impact
on the analysis; it means that more extensive analyses, in
other words, those that cover higher fmax values, will see a
significant increase in execution time for each analysis step
as the value of fmax increases.

Finally, we test whether the number of functionalities
causes a greater increase in execution time than their length
while maintaining the number of transactions involved in
each formula constant. Which was not clear from the pre-
vious experiments given that the number of transactions
involved in each formula was not constant.

To do so, we use four applications, each composed by
the same eight transactions but evenly distributed over a
varying number of functionalities, increasing from 1 to 8
functionalities. Each application was analyzed using fmax

values such that the analysis involve all functionalities in
each formula. The results are presented in Figure 5, and
as expected, as the number of transactions are increasingly
distributed along more functionalities, the increased space
for interleavings leads to an increase in time complexity.
This verifies that increasing the number of functionalities has
a more significant time complexity impact than increasing
the number of transaction in each functionality.

V. CONCLUSIONS

This thesis describes the design, implementation, and
evaluation of DAVIAC, a tool for formal verification of mi-

croservice applications that discovers all possible invariant
violations. By mapping JAVA code to SMT statements, the
tool is capable of analyzing real applications and does so in
useful time, presenting graphic visualizations of the results.
As far as we know, DAVIAC is the first tool capable of
performing a complete invariant analysis of a microsservice
application directly from its source code.

VI. FUTURE WORK

Future work for this project is divided into two categories:
Addressing Current Limitations, in Section VI-A, where
proposed solutions for the current limitations of DAVIAC
are addressed; and Expanding The Tool, in Section VI-B,
where we address possible extensions to the tool.

A. Addressing Current Limitations
Currently, it is recognized that DAVIAC has four limita-

tions that need to be addressed in future work: picking the
highest fmax value to consider, the inability to recognize
different versions of the same violation, the reduced set of
allowed inputs, and the analysis time.

1) Picking the Highest fmax to Consider: In order to
guarantee termination of the SMT solver execution, the
number of concurrent functionalities in each formulation
must be finite. However, this means that the user must
decide on which fmax value to stop the analysis which,
as previously mentioned, may result in some invariant vi-
olations with higher concurrent number of functionalities
to remain undetected. As such, future studies on automated
approaches to analyze the content of transactions and look
for clauses similar to those presented in Section III-C1 in
order to indicate the ideal fmax would be most advanta-
geous. Another possible approach to this problem, albeit
not ideal, could be to analyze many real-world microservice
applications and determine the average max fmax value for
which invariant violations are still discovered and use that
value as a reference.

2) Recognizing Different Versions of the Same Violation:
Naturally, the same invariant violation can occur in dif-
ferent executions. However, DAVIAC lacks the ability to
recognize which invariant violation instances correspond
to the same violation, which leads to duplicate violations
being counted as new violations. Currently, DAVIAC groups
violations that are discovered for the same set of invariant
and functionalities. During the development of the tool, it
was observed that in most cases, the detected violations
were in fact duplicates. However, some cases still presented
distinct violations for the same invariant and functionalities.
To address this, a mechanism to detect equivalent violations
should be developed in future work. A good start for this
mechanism would be to group equivalent executions.

3) Augmenting the Allowed Inputs: Currently, DAVIAC
only supports the analysis of applications in which the entire
code base is developed in JAVA and makes direct use of
SQL statements to manipulate its entities. However, most
microservice applications are not developed exclusively us-
ing the JAVA programming language, and even those that

9



use JAVA tend to use ORM frameworks. To address this,
future work on DAVIAC will add a parser for JAVA code
that supports the use of the Spring framework in JAVA.
This expansion will allow further testing of the tool on
popular benchmark microservice applications such as the
Train Ticket application 6 or other real-world code bases that
are publicly available. Further work on this aspect should
include parsers for other popular programming languages
and frameworks. This process is expected to be simple and
mechanical, not involving much, if any, engineering work.
This is due to the existence of the internal representation,
which makes the input parsers independent from the analy-
sis, and similar parses have been done in related work [13].

4) Parallelization of the Analysis: One of the concerns
with using SMT solvers is the high temporal complexity
of solver. To address this, the formulas used by DAVIAC
are as simple as possible, meaning that the solver execution
time for each formula is short. However, as the application
grows in size, this leads to an increase in the number
of formulas to analyze. Given that several instances of
the solver can be run concurrently, DAVIAC’s next step
should include implementing a pool of solver instances to
analyze the formulas concurrently. This would reduce the
analysis time linearly with the increase of workers. Further
improvements could be gained by paralyzing the formula
generation process, namely the process of computing all the
possible functionality executions.

B. Expanding the Tool

To make DAVIAC even more appealing to the microser-
vice community, we believe two particular features should be
added to the tool. The first is the ability to support different
isolation levels. The second is the ability to support more
complex microservice orchestrations than linear sequences.

1) Support for Varying Isolation Levels: Presently,
DAVIAC assumes all transaction executions are serializable;
however, this is not industry standard. In fact, due to effi-
ciency concerns, developers often opt to execute some trans-
actions with weaker isolation levels, such as read committed.
A useful feature for DAVIAC would be the ability to indicate
the desired isolation level for each transaction. This would
allow the tool to evaluate the impact of different transaction
isolation levels on the number of invariant violations.

2) Support for Other Microservice Orchestrations:
DAVIAC only supports functionalities that are a linear
sequence of transactions. Corrective and branching trans-
actions are not currently supported and are often used in
microservice deployments. While this feature is not critical
for the tool to yield useful results, it would be a useful
addition as it would make the tool more complete.

ACKNOWLEDGMENTS

This work was supported by FCT - Fundação para a
Ciência e a Tecnologia, via the projects UIDB/50021/2020

6https://github.com/FudanSELab/train-ticket

and DACOMICO (financed by the OE with ref. PTDC/CCI-
COM/2156/2021). Parts of this work have been performed in
collaboration with other members of the Distributed Systems
Group at INESC-ID, namely, Rafael Soares.

REFERENCES

[1] M. Fowler, “Microservices,” Web page: http://martinfowler.
com/articles/microservices.html, accessed: 2024-06-25.

[2] J. Thönes, “Microservices,” IEEE Software, vol. 32, no. 1,
Jan. 2015.

[3] S. Newman, Building microservices. O’Reilly Media, Inc.,
2021.

[4] T. Harder and A. Reuter, “Principles of transaction-oriented
database recovery,” ACM Computing Surveys, vol. 15, no. 4,
1983.

[5] R. Renesse, Concurrent Programming in Harmony. Cornell,
2020.

[6] A. Panda, M. Sagiv, and S. Shenker, “Verification in the age
of microservices,” in 16th HotOS, Whistler, BC, Canada, May
2017.

[7] D. Jackson, Software Abstractions, Revised Edition. The
MIT Press, 2016.

[8] P. Das, R. Laigner, and Y. Zhou, “Hawkeda: A tool for quanti-
fying data integrity violations in event-driven microservices,”
in 15th DEBS, Virtual Event, Italy, June 2021.

[9] A. Ribeiro, “Invariant-driven automated testing,” Master’s
thesis, Universidade NOVA de Lisboa, 2021.

[10] P. Pereira and A. Silva, “Transactional causal consistent
microservices simulator,” in 23rd DAIS, Lisbon, Portugal, Jun.
2023.

[11] S. Giallorenzo, F. Montesi, M. Peressotti, F. Rademacher,
and N. Unwerawattana, “JoT: A Jolie framework for testing
microservices,” in 26th COORDINATION, Jun. 2023.

[12] V. Romão, R. Soares, V. Manquinho, and L. Rodrigues,
“Deteção automática de anomalias em arquiteturas de
microsserviços,” in 14th Inforum, Porto, Portugal, Sep. 2023.

[13] K. Ma, C. Li, E. Zhu, R. Chen, F. Yan, and K. Chen, “Noctua:
Towards automated and practical fine-grained consistency
analysis,” in EuroSys 2024, Athens, Greece, Apr. 2024.

[14] L. Moura and N. Bjørner, “Z3: An efficient smt solver,” in
14th TACAS, Budapest, Hungary, Apr. 2008.

[15] S. Rogers, “The pros and cons of object relational
mapping (orm),” Web page: https://midnite.uk/blog/
the-pros-and-cons-of-object-relational-mapping-orm, 2019,
accessed: 2024-06-25.

10


