
BitShield
Hardening Information Propagation in Blockchains

João Marçal
joao.marcal@tecnico.ulisboa.pt

Instituto Superior Técnico
(Advisor: Professor Miguel Matos)

(Co-Advisor: Professor Lúıs Rodrigues)

Abstract. Cryptocurrencies such as Bitcoin, and technologies that sup-
port such cryptocurrencies, such as Blockchains, have become extremely
relevant nowadays. Unfortunately, the protocols used in most of these
systems have a number of vulnerabilities that can, and have been, used
to attack them. For instance in Bitcoin, an attacker can tap into the
connection of a node to delay certain messages making that node vul-
nerable to double spending. In this work, we focus specifically on the
dissemination of information in cryptocurrency’s networks. We start by
analyzing and identifying vulnerabilites in the current designs and im-
plementations and then propose an architecture to mitigate or eliminate
this vulnerabilties.

1

Table of Contents

BitShield Hardening Information Propagation in Blockchains . . 1
João Marçal joao.marcal@tecnico.ulisboa.pt

1 Introduction . 3
2 Goals . 4
3 Bitcoin and Blockchain . 4

3.1 Transactions . 5
3.2 Blocks . 6
3.3 Blockchain . 8
3.4 Network . 9
3.5 Summary. 11

4 Bitcoin and Blockchain vulnerabilities . 11
4.1 Information Eclipsing . 11
4.2 51% Attack . 13
4.3 Partition Attack . 14
4.4 Delay Attack . 15
4.5 Summary. 16

5 Related Problems . 17
5.1 Secure Overlays . 17
5.2 Node’s Behaviour . 20
5.3 Discussion . 21

6 Architecture . 22
6.1 External vulnerabilities . 23
6.2 Internal vulnerabilities . 25
6.3 Summary. 26

7 Evaluation . 27
8 Scheduling of Future Work . 28
9 Conclusions . 28

1 Introduction

Cryptocurrencies and their associated mechanisms have gained an increasing
relevance in recent years. For instance, at the time of this writing, Bitcoin (the
most widely used cryptocurrency) has reached a trading value of more than
16K USD and the Bitcoin network processed more than 300K transactions per
day1. Moreover, the main technology behind Bitcoin, the Blochain, has emerged
as useful for a myriad of other applications, from birth, wedding, and death
certificates to the monetization of music2.

For instance in Bitcoin, in an attack known as the partition attack, an Au-
tonomous System (AS) can isolate a partition of the network to make it vul-
nerable to double spending (see [1]). Attacks such as this are increasingly more
appealing due to the significant financial advantage that an attacker can gain, if
successful. It is therefore of the utmost importance to the future of cryptocur-
rencies to design mechanisms that eliminate, or at least mitigate the possibility
of such attacks without sacrificing other important aspects of cryptocurrencies.

We are particularly interested in studying the protocols that support infor-
mation dissemination in blockchain networks, and their vulnerabilities, as these
are the backbone that allows cryptocurrencies to function properly. Even though
cryptocurrencies have attracted lots of attention from the community on higher
level subjects such as the consensus protocol used, few works explore the subject
of information dissemination [15]. Strikingly, the few that do, show that infor-
mation dissemination in cryptocurrencies is brittle and can have a severe impact
on the system [15].

In this work, we aim to address this problem by: i) doing a principled anal-
ysis of information dissemination vulnerabilities in the Bitcoin network and ii)
proposing an extensible architecture that eliminates or mitigates these vulnera-
bilities. We consider attackers with varying resources, from a rogue Autonomous
System to a set of colluding individuals that target a specific victim, and differ-
ent motivations in the system. To address these, we look at techniques that have
been proposed in distributed systems literature such as overlay networks [8] or
node behaviour [12].

Leveraging these techniques, we propose BitShield, an extensible architecture
that aims to harden information propagation in cryptocurrency networks. More
precisely, we focus on Bitcoin, but as we will see later the approach can be
applied to other cryptocurrencies as well. The reason for choosing Bitcoin is
that it is the most popular cryptocurrency and its core design is shared by many
other cryptocurrencies, hence improvements over Bitcoin could be easily applied
in other systems.

The rest of the report is organized as follows. Section 2 briefly summarizes the
goals and expected results of our work. In Section 3, we present the current Bit-
coin/Blockchain architecture and how it works. Afterwards, in Section 4, we will
discuss some vulnerabilities of Bitcoin/Blockchain. In Section 5, we present some

1 Taken from https://blockchain.info/charts.
2 Taken from https://blockgeeks.com/guides/blockchain-applications/

3

problems that are common between Bitcoin/Blockchain and peer-to-peer net-
works. Section 6 describes the proposed architecture to be implemented and Sec-
tion 7 describes how we plan to evaluate our results. Finally, Section 8 presents
the schedule of future work and Section 9 concludes the report.

2 Goals

This work addresses the problem of hardening against malicious and rational
attacks that exploit the information dissemination networks used by current
cryptocurrency and blockchain systems. More precisely:

Goals: We aim at extending current blockchain architectures with a
number of defence mechanisms that aim at the mitigation or elimination
of the vulnerabilities that can be found in current designs.

To achieve this goal, we will delve into the details of cryptocurrencies and
how their dissemination networks work, we will also discuss attacks that exploit
information dissemination in these cryptocurrencies, as well as, study a number
of techniques that have been proposed in different contexts and assess how these
can be adapted to blockchain networks. For instance, in the context of peer-to-
peer file sharing systems, techniques have been proposed to avoid attacks that
aim at manipulating the overlay network in order to free-ride the system. Such
techniques include the construction of robust overlays, and use of reputation
systems, among others. We aim at selecting and adapting a number of these
techniques in such a way that they can be plugged, with minimal effort, in
existing blockchain networks to make them more robust.

The project will produce the following expected results.

Expected results: The work will produce i) Bitshield a system for pro-
tecting blockchain networks against information dissemination attacks;
ii) a prototype implementation of this tool that can be plugged in a
blockchain network, iii) an extensive experimental evaluation to assess
the effectiveness of the proposed mechanisms and their impact on the
performance of the system.

3 Bitcoin and Blockchain

This section provides an overview of the operation of the Bitcoin network.
Bitcoin was created in 2008 by Satoshi Nakamoto with the aim of creating an
infrastructure for allowing people to make transactions without depending on a
third party while, at the same time, preserving anonymity [2]. For this purpose,
Bitcoin creates a cryptographic currency that can be exchanged among par-
ties. In order to exchange Bitcoins, the two parties must own a public-/private-
keypairs and execute a protocol where the transaction is signed in such a way that
serves as a cryptographic proof that the payer paid to the payee [3]. A key idea

4

of Bitcoin is that all transactions, that involve the exchange of Bitcoins between
two parties, are registered in a serial log that cannot be tampered. This log is
built by linking multiple blocks, where each block contains a set of transactions,
in an infinite chain known as the blockchain. Bitcoin is completely decentralized,
and the blockchain is maintained cooperatively by multiple servers.

In the rest of this section, we provide a more detailed description of several
components of Bitcoin. We start by describing how transactions are represented
in Section 3.1. Next, we describe how multiple transactions are registered in
blocks, that contain the most recent transactions (Section 3.2). In Section 3.3
we discuss how these blocks are linked together to create the blockchain. Finally,
in Section 3.4, we describe the operation of the network of nodes that maintain
the blockchain.

3.1 Transactions

A transaction represents the exchange of currency between accounts. It is
composed of inputs, outputs, a transaction ID and other fields not relevant
for this report. The inputs are the accounts of the payers, the outputs are the
accounts of the payees and the transaction ID is the hash of the serialized trans-
action. The transaction ID is also what is used to identify the transaction [3].

For an account to be able to spend Bitcoins the nodes responsible for ac-
cepting transactions have to know the balance of that account. Nodes know the
balance of an account because they keep track of all unspent transactions of that
specific account [3]. Unspent transactions of an account are transactions where
the account appears in the array of outputs of those transactions, meaning that
the owner of that account was paid the amount of Bitcoins that he now owns.

In order for a transaction to be valid, the payers have to sign the transaction,
this means that each owner transfers the amount to the payee by digitally signing
a hash of the previous transaction and the public key of the payee as seen in
Fig.1 [2]. The previous transaction is the transaction where the current payer
received the Bitcoins that he is using in the current transaction.

Fig. 1: Signing mechanism. Original from [2]

5

Furthermore, transactions have to fulfil the following criteria regarding out-
puts they claim and create in order to be valid [3]:

– An output may be claimed at most once;
– Outputs are created solely as a result of a transaction;
– The sum of the values of the claimed outputs has to be greater or equal than

the sum of the values of the newly allocated outputs. Claimed outputs are
Bitcoins the payer is trying to spend and allocated outputs are the amount
of Bitcoins the payee accounts are going to be able to spend.

The first criteria exist so that the user cannot double spend Bitcoins. The
second ensures that unspent Bitcoins need to be connected to a transaction,
avoiding forging of unspent Bitcoins. The third guarantees that Bitcoins can
only be transferred and not created.

In order for payees to know that previous owners did not sign any earlier
transactions, transactions are broadcasted through the Bitcoin network [2]. This
feature is required to ensure the payee that the payer did not already spend the
Bitcoins he is using to pay him. However, this feature introduces inconsistencies
in the system because transactions reach different nodes at different times:

– A node could receive a transaction that transfers Bitcoins from owner B to
owner C but that node has yet to receive the transaction that transferred
the Bitcoins from owner A to owner B. Which might result in either the
transaction not being accepted or a longer time to be accepted.

– A node could also receive two transactions from the same owner A where he
tries to transfer the same Bitcoins to two different payees B and C. This is
a case of double-spending.

As there is no guarantee that different nodes receive conflicting transactions
in the same order, those nodes will disagree on those transactions and any trans-
actions built on top of them by claiming their outputs [3]. This would have been
a problem because they would not agree upon a common record. For instance,
if a user sent his transaction to node A, A would accept it because in its record
the user had those Bitcoins to spend. But if the user had sent his transaction to
node B, B might not have accepted it because in its record the user had never
been the owner of the Bitcoins he is trying to transfer. We will see how this
problem is solved by Bitcoin in the next section.

3.2 Blocks

Since different nodes can commit transactions in a different order, as seen
previously, they need to have a way to reach a consensus on the set of transactions
that are considered valid. The role of the blocks is precisely to allow nodes to
agree upon a set of transactions.

Each block is composed of a set of transactions, a nonce, a pointer to its
parent block and other fields not relevant for this explanation. Each block is also
associated with a block header that summarizes the information in that block.

6

In order for a block to be accepted by other nodes it has to present a Proof of
Work (PoW). PoW consists in finding a byte string, called nonce, that hashed
with the block header results in a hash with a given number of zeros at the
beginning. That number of zeros at the beginning is also called target [3]. As
cryptographic hash functions are only one-way, discovering such nonce can only
be done by trial and error. Furthermore, the difficulty of the target is also ad-
justed. The Bitcoin network measures how much time it took to create the last
2016 blocks in a blockchain. If it took significantly more than 2 weeks, the PoW
difficulty is reduced, meaning that there will be fewer zeros at the beginning of
the next target. If it took significantly less than 2 weeks, the difficulty is increased.
Due to the very low probability of successful generation, it’s unpredictable which
miner nodes in the network will be able to generate the next block.

The PoW is necessary because it adds a real-world cost to produce a block. So
with the requirement of a block having to present a PoW, it becomes infeasible
for people to modify the history of the system and present it as the truth to
anybody else as we will see in Section 4.2.

To incentivise miners for having spent resources on finding the PoW, each
time a new block is created a new Bitcoin is generated [3]. The reward transaction
is only valid if it appears in a block. This transaction is also the only transaction
that is the exception to the third criteria seen in the Section 3.1 which states that
the sum of the inputs has to be greater or equal to the sum of the outputs [3].

Today as the number of transactions increases on a daily basis and given the
limited space each block has for transactions (1MB), miners also profit through
fees imposed on transactions. Most miners choose which transactions to include
in their blocks based on how profitable they expect those transactions to be. If
there are two transactions of equal byte size but only one of them fits in a block,
then the miner will choose whichever transaction has the higher transaction fee.

When a node finds a new block, it broadcasts it to the other nodes. Upon
receiving a new block, two things can happen:

– The node will rollback all tentatively committed transactions since the last
block reception and then commit the ones on the new block [3]. Tentatively
committed transactions are transactions that were valid and would have been
committed if the node had been able to generate a new block.

– The node has already mined or received a new block and it will ignore the
newly received block. The implications of this are further discussed in Section
3.3.

Regarding the tentatively committed transactions that were rolled back, if
they were present in the new block they do not have to be re-applied. For those
that were not, they will be re-applied only if they are valid. Invalid transactions
are transactions that conflict with one or more transactions that were present in
the new block. If a transaction is flagged as invalid it will be discarded [3]. The
node that created the invalid transaction will eventually receive the block with
the valid transaction and it will have to rollback the invalid transaction.

7

Because of this feature, the creator of the block imposes over the network
which transactions are going to be committed and what is the order that they
are committed [3].

In the next section, we will see how blocks are linked together to create a
distributed record of what happened.

3.3 Blockchain

As we have seen, blocks are used by nodes to agree on the order of recent
transactions. Furthermore once a block is generated it is also linked with the
block that preceded it. This creates a chronological order over all blocks and
therefore transactions as seen in Fig. 2 this chain of blocks is called blockchain [3].
The first block in the chain is called the genesis block.

Fig. 2: Blockchain representation. Original from [2]

The blockchain is defined as the longest path from any block to the genesis
block. This definition makes the blockchain resemble a tree where the root is
the genesis block and the leaves are the new blocks. The height of a block is the
distance of that block to the genesis block. The block that is the furthest away
from the genesis block is called the blockchain head [3].

As only new blocks are rewarded with new Bitcoins, miners try to build on
top of the blockchain head [3]. This is because if they were to build on top of
previously found blocks it would require them to first reach the same height as
the blockchain head and then find the new block [2]. Which is very hard to do
because they would have to re-find all the previous PoW and a new PoW while
competing against the rest of computational power present in the network. For
a miner to have success at doing this he would have to control at least 51% of
the computational power in the network, we will discuss this in section 4.2.

As seen in Section 3.2, a node can accept a new block or ignore it. Because
of this, there might be multiple blocks at the same height at any point in time.
This is called a blockchain fork. Hence, when this happens the network does not
agree on which block is the blockchain head. This leads to inconsistency of the
system because both block b and block b’ are guaranteed to disagree on some
transaction. This will go on until one of the branches overtakes the other [3].

When a node has as blockchain head the block b and it receives a new block
b’ where the height of b’ >b two things can happen depending on which branch
b is in:

8

– If b is in the same branch as b’ then the node only has to apply all trans-
actions in the intermediate blocks incrementally, if any, and then apply the
transactions in b’,

– If b is on another branch then the node is required to change branches. This
implies that the node has to revert all transactions it has been committing
until it reaches a common block ancestor. Then, it has to request all inter-
mediate blocks apply the transactions in those blocks and finally apply the
transactions on b’ [3].

The fork may be prolonged throughout multiple block heights h, h+1, h+2...
where subsets of the network work on the different branches and try to find new
blocks at the same time. Eventually one of the branches will surpass the others,
leading to the adoption of this branch by all the nodes and sequentially the end
of the blockchain fork [3]. The discarded blocks are called orphan blocks.

As a consequence of blockchain forks, a transaction in Bitcoin is never com-
mitted permanently. Because at any point in time it could appear a branch that
was not known by the nodes we were interacting with which might influence the
state of our transactions. If this new branch is taller than the one where our
transactions were confirmed then our transactions will be rolled back else they
will not be affected.

3.4 Network

Bitcoin is supported by a network of peer-to-peer nodes that mine new Bit-
coins, create and disseminate transactions and keep a record of what transactions
happened. This network has two components that should be looked into to un-
derstand some of the vulnerabilities that we will study in the next section. Those
two components are:

1. Network overlay - how the Bitcoin peer-to-peer network is built;
2. Information propagation - how does the Bitcoin protocol forward informa-

tion.

Network overlay When a node wants to join the network there are five ways
for it to connect with peers [4]:

1. Address database - this file contains other nodes that the node already knew
about, the node will try to re-connect with those nodes. If it is the first time
the node connects to the network this method doesn’t work;

2. User-specified - in this method the user can specify nodes to connect to on
the command line;

3. DNS seeding - this option is only used if the Address database file is empty
and the user did not specify any nodes. The nodes issue DNS requests to
the six DNS servers that are hardcoded in order to discover IP addresses of
other peers;

9

4. Hard-coded nodes - If DNS seeding fails, the node contains hard-coded IP
addresses that represent bitcoin nodes that IT contacts to get addresses of
other peers and then finishes the connection with them to avoid overloading
those nodes;

5. From other nodes - Nodes exchange IP addresses with other nodes via the
getaddr and addr messages which we will discuss later.

By default a node connects to a minimum of 8 outbound peers (nodes that
this node knows) and allows up to 125 inbound peers (nodes that know this
node). This limitations exist to prevent nodes from being isolated and to pre-
vent nodes from becoming essential to the system. For instance, if a node was
responsible for connecting all the nodes of Europe with all ones from Asia if that
node failed the system would collapse.

Once connected to the network nodes exchange among them the addresses
of other nodes, using the getaddr and addr messages, to maintain the network
overlay up to date. Usually, an addr message is sent in response to a getaddr.
However, the addr message may also arrive unsolicited, because nodes advertise
addresses gratuitously when they [4]:

– Relay addresses - once a node adds to its list of neighbours a newly received
IP addresses it may relay it to other nodes if certain conditions are met;

– Advertise their own address - every 24 hours, the node advertises its own
address to all connected nodes;

– Establish a connection;

In order to maintain a connection with a peer, nodes by default will send a
message to peers before 30 minutes of inactivity. If 90 minutes pass without
a message being received by a peer, the node will assume that connection has
closed [5].

There are also organizations called mining pools, composed by multiple nodes
that work together to find the PoW more efficiently. In mining pools each node
test different nonces to find the PoW which is faster than a single node testing all
the possible nonces. Mining pools are composed by multiple nodes and gateways
that connect the pool to the Bitcoin network. Once they find a PoW and generate
a block the reward is then split among the members of the pool that worked on
that PoW proportionately to the contribution that each member made.

Information propagation There are multiple ways a node can request/send
data but the usual interaction goes as follows.

When new transactions (txs) or blocks (blocks) are created, the node A that
generated them will broadcast an inv message. This message contains informa-
tion regarding txs and blocks that A knows about.

Once a node B receives an inv message that contains a tx or block that he
does not have, it will reply to A with a GetData requesting the new data. Upon
receiving the GetData message, node A will then send the requested data.

Finally, once node B receives the new data it will verify it. If the new data
is valid, it will also announce it to its neighbours with a inv message.

10

Txs and blocks are not broadcast directly to the network because of the size of
blocks and the high frequency of both of them. By sending inv messages Bitcoin
also avoids nodes from receiving multiple times the new tx/ block.

There are also messages that allow, nodes that were disconnected from the
network, to quickly get the data that they have missed. These messages are es-
pecially useful because it speeds up the process of gathering data for the creation
of blocks. They are also useful when nodes do not have the parent block of a
block they just received, they can use these messages to ask their neighbours for
the missing block [5].

3.5 Summary

In conclusion, Bitcoin is made up of multiple modules as seen in Fig.3. We
will briefly describe them [4].

Txs and Blocks represent transactions and blocks respectively.
Mempool is the place where the node stores the transactions that are going to

be included in next blocks. The Validation Engine is in charge of validating the
transactions/blocks that are received. The Miner is the module responsible for
mining blocks. Finally, the Storage Engine is the module that manages all the
databases where a node stores all the relevant data like Blocks, Blocks Headers
and Coins.

The Wallet is the module where the Bitcoins of the user are stored and
the RPC module is used so that applications can interact with Bitcoin, hence
providing an API to the outside.

The modules that we are more interested in are the Peer Discovery and
the Connection Manager because of their connection to the network aspect of
Bitcoin. The Peer Discovery is responsible for building the Network and main-
taining it. The Connection Manager is accountable for managing the way data
and control messages are broadcasted.

Next, we will take a look at some of the vulnerabilities of Bitcoin and compare
it with other cryptocurrencies to understand which modules have to be modified
in order to fix those problems.

4 Bitcoin and Blockchain vulnerabilities

In this section, our objective is to look at known vulnerabilities of Bitcoin,
as well as, look into the solutions proposed to those vulnerabilities. We will
also compare Bitcoin with other cryptocurrencies to see where Bitcoin stands in
comparison to the state of the art.

This section is divided into four sections, one for each of the main vulnera-
bilities we have identified.

4.1 Information Eclipsing

This vulnerability was found in Information Propagation in the Bitcoin Net-
work [3] and it happens because of following behavior. Lets consider that the

11

Fig. 3: Bitcoin architecture (Source Eric Lombrozo)

whole network recognizes a block b at height Hb as the blockchain head. Then
at two different locations of the network two new blocks are discovered. These
blocks are guaranteed to be different as seen in Section 3.2, lets call each one b’
and b”.

Now both blocks are going to be broadcast through the network because
both are at height Hb+1. Hence, when a node receives either b’ or b” it will
consider it as the new blockchain head and will broadcast it to its neighbours.
The problem is, when a node that already received b’ receives b” or vice-versa
that node will not broadcast b” through the network as it did with b’, because it
already moved to a new blockchain head at the same height. As a consequence,
only nodes that received both b’ and b” know about the existence of a fork.
This diminishes the effective computational power in the network because the
network will be working on different blockchain heads. Hence, empowering some
of the attacks in the following sections.

The authors of the paper discovered that it takes 6.5 seconds for the block to
reach 50% of nodes, 40 seconds for it to reach 95% of nodes and that the mean
delay for a block to be reach a node in the network is 12.6 seconds. Since Bitcoin
has a block creation time of 10 minutes the authors concluded that the effective
computational power in the Bitcoin network is only 98.20%. This happens be-
cause once a block is found it takes in mean 12.6 seconds to reach a node, so
in mean during those 12.6 seconds the rest of the network is wasting resources,
resources that do not contribute to extend and strengthen the blockchain.

If we wanted to use Bitcoin for faster transactions, then the block time would
have to go down. But if we maintain the 12.6 propagation delay and decrease the

12

block time the effective computational power would also decrease even more as
showcased in [6]. The intuition is that with a lower block time the probability of
stale blocks3 being created increases. This will result in more forks being created
and more resources more wasted resources.

Regarding solutions, the authors suggested multiple options to optimize the
propagation of a block, which would lower the 12.6 seconds delay and the lower
probability of stale blocks being created. One of the solutions consisted in chang-
ing the block verification process. In this solution, the verification of a block
would be split into two phases an initial difficulty check and a transaction vali-
dation. Since the transaction validation is the phase which takes longer, a node
would perform the initial difficulty check where it checks the validity of the PoW
and once this was done the node could broadcast the inv messages right away
while performing the transaction validations asynchronously.

Ethereum solved part of this problem through the implementation of uncle
blocks. Rather than discarding stale blocks as in Bitcoin, Ethereum includes
them in new blocks, hence the name uncle blocks. Uncle blocks are included in
new blocks up to a certain height difference between the uncle block and the
new block being generated. This happens because nodes that generated uncle
blocks are rewarded with a fraction of the full reward, so the limit imposed by
the height difference avoids having a group of nodes mining on lower heights.

With this solution Ethereum solved this problem because now blocks to be
built also include other previously built blocks in addition to the already included
parent block. This means that no computational power is lost. Because for an
attacker to forge a block he would need to remake all previous blocks of the
main chain and all the uncle blocks of that block, since uncle blocks also had
the transaction that the attacker is trying to eliminate. This attack is further
explained in the next section.

The disadvantage of this solution is the extra computational power and mem-
ory required to include the uncle blocks.

4.2 51% Attack

The 51% attack was first introduced in the original Bitcoin paper [2]. This
attack requires the attacker to control 51% of the computational power available
in the network, hence the name. Given the inefficiencies in the propagation
of messages through the network seen previously the required computational
power to perform the attack is actually 49.10% [3]. Once the attacker is able
to obtain this computational power it will proceed to rebuild blocks erasing
transactions where he was the payer. Note that this is the only thing the attacker
can do because nodes would never accept a block with forged transactions. This
is because valid transactions require the signature of the payer.

Although this attack is possible, it is very hard to perform because the at-
tacker would need to rebuild not only the block where his transactions were
present, but he would also need to rebuild all the blocks built on top of that

3 Blocks that were candidates to being the next blockchain head but were not chosen.

13

block until he reached the blockchain head and overtook it, making his branch
longer. As a consequence, this would result in the rest of the network consider-
ing that branch as the main branch, leading to the success of the attack. But
as Satoshi Nakamoto explained in [2], if the attacker does not catches up to
the blockchain head early on and overtakes it the difficulty of the attack will
increase. Because more blocks will be built on top of the main chain hence he
will have more blocks to generate.

This attack is possible because of the way consensus is reached in Bitcoin.
Bitcoin reaches consensus by considering the main branch of the blockchain the
taller branch on the blockchain tree. So if someone was able to control 51% of the
computational power he could generate a taller branch which would make the
rest of the network consider that the main branch. Hence this problem cannot
be solved unless we were able to control who joins the network.

Other coins affected by this problem tried to solve the problem in different
ways. Ethereum for instance, started using uncle blocks as we have seen in the
previous section. This solution does not solve the problem because an attacker
could still gather enough computational power to remake all the uncle blocks
and blocks in the main branch. But it makes it harder for the attacker to perform
the attack as it described in Section 4.1.

Ripple is also not affected by this attack because in ripple consensus is not
connected with computational power. In ripple, the consensus is achieved by
a set of trusted nodes called validators. Validators are chosen based on the
expectation they will not collude in a coordinated effort to falsify data relayed to
the network. A disadvantage of this approach is that it removes decentralization
characteristics of the cryptocurrency. In Bitcoin, everyone “votes” when they
start trying to mine on a block in Ripple power of “voting” is removed from the
users.

4.3 Partition Attack

This attack allows an adversary Autonomous System (AS) level to isolate a
set of nodes from the rest of the network using the Border Gateway Protocol
(BGP) hijack.

BGP hijack consists in injecting forged information in the network on how
to reach one or more IP prefixes, leading other ASes to send traffic to the wrong
location.

The attack starts by the given AS diverting the traffic destined to a certain
set of nodes (which we will call P) through BGP hijack. This means that all
traffic destined to P goes to the AS instead. Then, the AS will examine the
traffic being sent to P and it will drop every message that has a Bitcoin header
in the TCP payload. The rest of the traffic is considered irrelevant and reaches
P.

During the interception of traffic, there can be two types of relevant traffic:
i) traffic crossing the partition from the outside to the inside; ii) traffic that
appeared from inside the partition. In the first case, the AS only has to drop
Bitcoin messages but in the second case, the AS has to analyse the exchanged

14

Bitcoin messages to detect the “leakage points”, which are nodes that have
connections to the outside of the partition that the AS cannot control.

To accomplish this, the attacker checks, for every packet, if the sender belongs
to P. If the sender belongs to P the attacker will check whether the sender is
advertising information from outside P. Particularly, the attacker checks whether
the packet contains an inv message with the hash of a block mined outside of
P. If yes then the sender was a “leakage points” [1].

Once the AS finds out the “leakage points” it will exclude them from P,
successfully isolating the nodes in P from the rest of the network.

This attack leads to different consequences depending on the number of nodes
successfully isolated. If the number is low the impact of the attack is basically
a Denial of Service and the nodes within P have zero confirmation for double
spending. If the number of nodes is high it might result in revenue loss for miners
and the side with higher computational power will decide which transactions are
committed because they will generate blocks faster. This aspect will be discussed
in more detail in Section 5.3.

Regarding solutions for this attack in [1] the authors suggest, increasing the
diversity of the node connections while taking routing into account, monitoring
the RTT because the RTT value would increase if a node was being attacked
and a few others.

The success of this attack depends on the protocol used by the ASes to
advertise addresses. For instance, if BGP was not used by the ASes this attack
would not be possible. Still, a module that can be changed in Bitcoin to address
this problem is the Peer Discovery. Because this module should establish more
resilient connections.

In Ethereum and Ripple, this attack is not possible as the connections be-
tween nodes are encrypted which would make impossible the analysis of traffic
that the AS would need perform. But they sacrifice performance.

4.4 Delay Attack

The objective of this attack is to slow down the propagation of new blocks
sent to a set of nodes without disrupting their connections [1].

The mentioned attack has two different ways of being performed depending
on the direction the attacker is able to intercept the traffic: in the victim network
V→N direction or network victim N→V direction.

If the attacker is able to intercept the connection in the V→N direction then
the attack works as follows. When the victim requests a block to the network the
attacker will change the block request to another block which will lead the vic-
tim waiting for a response. After almost 20 minutes, time limit where the victim
requests the block to another neighbour, the attacker will modify another mes-
sage sent by the victim to that neighbour, probably a transaction request since
are the most common message type, to request the initial block that the victim
wanted. This way the attacker avoids the victim from dropping the connection
with that neighbour, which allows the attacker to perform the attack multiple
times.

15

If the attacker is able to intercept the communication in the other direction
N→V. In this direction, once the victim requests a block to a neighbour the
attacker will intercept and tamper with the response (the block itself) corrupting
it, which will lead to it being discarded by the victim. But the victim will not
request the corrupted block again. Then, after 20 minutes the victim will drop
that connection because the block never arrived and will request the block to
another neighbour. Hence, the attack performed this way can only be done once.

The impact of this attack depends on the node that is being attacked if it’s
a simple node then this attack will be a Denial of Service and that node will
not have guarantees for double spending if that attack is towards a gateway of
a pool it could be used to engineer block races.

This attack is successful because Bitcoin connections are not tamper proof
and Bitcoin does not requests the block again when presented with a corrupted
block, this is a problem related to the Connection Manager module.

A solution for this attack is monitoring the RTT, as the RTT increases con-
siderably when the node is being attacked. Other solution proposed in [1] is
encrypting Bitcoin communications which would not avoid the packets from be-
ing dropped by an attacker but it would prevent them from eavesdroppping
and tampering with connections. The disadvantage with this approach is that it
would require additional computations making the system slower.

Ethereum and Ripple are not affected by this attack as all the connections are
encrypted but the attacker can still drop packets. But they sacrifice performance.

4.5 Summary

We have analyzed several attacks that can be performed against Bitcoin.
Table 1 summarizes these attacks for Bitcoin but also for other popular cryp-
tocurrencies. For some attacks, we were unable to assess if the attack was really
possible due to some undocumented parts of the cryptocurrencies. These are
noted in the table as ”Might be affected by the attack”.

We can see in Table 1 that all the cryptocurrencies related with Bitcoin like
Bitcoin Cash and Bitcoin Gold suffer from the same vulnerabilities as Bitcoin.
Whereas all cryptocurrencies not relatable with Bitcoin have for the majority
of the attacks found a solution for them or at least a minor fix. This happens
because unlike those cryptocurrencies Bitcoin does not have an organization that
can make decisions on its own regarding the direction of the cryptocurrencies,
as seen recently by the Segweit agreement. So when decisions have to made it
takes a lot of time for the community to reach a consensus and sometimes these
decisions even lead to forks of the cryptocurrencies which decreases the value of
the cryptocurrencies.

It is also worth noticing that although cryptocurrencies not relatable with
Bitcoin have solutions for the vulnerabilities described they had to sacrifice other
characteristics. Ethereum for instance sacrifices performance because all its con-
nections are encrypted and uncle blocks are used. Ripple has pour privacy fea-
tures and also sacrifices performance because its connections are also encrypted.

16

Bitcoin
bitcoin.org

Ethereum
ethereum.org

Bitcoin Cash
bitcoincash.org

Ripple
ripple.com

Dash
dash.org

Bitcoin Gold
bitcoingold.org

51% Attack
X

Information
Eclipsing

X X ©

Partition
Attack

X X X

Delay
Attack

X X ©

Table 1: Cryptocurrencies and their respective problems.
X - Not affected by the attack
© - Might be affected by the attack

5 Related Problems

In this section we will take a look at some problems related with network
membership and node behaviour. These problems have been the focus of many
studies because they are important for a good and sustainable peer-to-peer net-
work.

Bitcoin is supported by a peer-to-peer network where is expected that all
nodes have a random sample of neighbours and disseminate information as soon
as they receive it. But as we have seen in the previous sections this does not
always happen with attacks being performed at the network level like the parti-
tion attack. Furthermore, as we will see in Section 5.3, even some nodes inside
the network do not behave properly and try to take advantage of high number
of connections or selfish behaviour. However, all these problems are not new in
the distributed systems field and have been the aim of a lot of research. Hence,
is in our interest to look into how these problems affected other peer-to-peer
technologies and study the solutions proposed to them.

We will start by looking into secure overlays in Section 5.1, where we will
explain what secure overlays are, present some secure overlays vulnerabilities
and present some approaches to building secure overlays.

In Section 5.2, will take a look at the different possible behaviours a node
can have in the network, as well as, look into approaches that punish undesirable
behaviours.

Finally, in Section 5.3, we will discuss how these problems affect Bitcoin.

5.1 Secure Overlays

An overlay is a network built on top of another network where peers are
connected through virtual or logical links. For instance in Bitcoin, the overlay of a
node is the connections that node keeps with other peers that are its neighbours.

In large systems like Bitcoin or BitTorrent is infeasible for a peer to know
the overlay of the whole network, not only because of the size these networks

17

achieve but also because peers are constantly joining and leaving. So to solve this
problem peers keep only a partial list of the peers ”closest” to them. Each peer is
also responsible for updating and expanding his own list. To build these partial
lists peers use peer sampling systems (PSS), these systems are a scalable and
robust approach to building these lists. They provide every peer with a random
sample of peers to exchange information with [7].

An important issue of modern PSS is their potential exploitation by malicious
peers. Many of the technologies of peer sampling did not take into account
attacks like the hub attack. The goal of this attack is to subvert the network
in order to achieve a leading structural position hence becoming a hub. This is
problematic because it can evolve in the complete defeat of the system, if the
malicious nodes simply disappear after having gained such leading position.

Attacks to the PSS like the hub attack led to the creation of secure peer
sampling (SPS) services. SPS use heuristics based on social network analysis to
allow the system to detect and react to the structural changes in the network in
a timely manner. Hence, nodes which have gained a central role in the network
are identified and banned.

But even attacks to SPS have been found [8]. The objective of these attacks
is to put discredit on a subset of nodes in order to disconnect or isolate them.
This is achieved by a set of malicious nodes broadcasting bogus messages to
discredit the victims, which will eventually lead the SPS to react by suspecting
and banning those nodes, which are non-malicious. This attack is called the
Mosquito attack.

Another problem that some peer-to-peer overlays like Bitcoin might have
is Supernodes. Despite Supernodes not being desirable in Bitcoin in some
peer-to-peer architectures like Skype they are actually desirable and contribute
to the performance of the system. Supernodes are nodes that have a number of
connections higher than the average number of connections. This is a problem
because these nodes start having an important role in the network and if for
instance one of these nodes leaves the network the system might crash.

We will now take a look at some overlays technologies.

Secure Peer Sampling Service: The Mosquito Attack [8] This system
was designed to extend the SPS functionality protecting it against the mosquito
attack. In this system, the attacker is considered to be a group of peers. This
system introduces the concept of a knowledge base, this knowledge base is used
by a peer to possibly recover its partial view in case of corruption and to de-
tect with a good accuracy malicious peer. Peers build their knowledge base by
making a stochastic proportion of their gossip exchanges as ”explorative”. The
intuition behind this system is that since the network should be random, detect-
ing a peer showing a popularity value too distant from the average means that
it could represent a network hub. So each peer will record in its knowledge base
the number of times that the address of each peer was shared with them, this
value is called hits. Once a peer identifies another peer with a high number of
hits it marks it as malicious. To protect against false negatives induced by at-
tacks like the mosquito attack, each well-behaved peer will choose one malicious

18

peer from their list of malicious peers and will make an explorative PS. If the
results received contain more than 25% of the already known malicious peers the
suspicion is confirmed. Otherwise, the peer is removed from the list of malicious
peers.

Brahms [9] This system was designed to provide a random sample of nodes in
a large dynamic system subject to Byzantine attacks that poison the views of
correct nodes. Brahms is a membership service that stores a sublinear number of
ids at each node and provides each node with independent random node samples
that converge to uniform ones over time. This is achieved by Brahms because in
its sampler every node has the same probability of being sampled and the gossip
algorithm uses two means for propagation: (1) push – sending the node’s id to
some other node, and (2) pull – retrieving the view from another node. Pushes are
needed to reinforce knowledge about nodes that are under-represented and pulls
are needed to spread existing knowledge within the network. Brahms protects
itself against poisoning attacks by limiting the number of pushes received by
nodes.

Identifying Malicious Peers Before It’s Too Late: A Decentralized Se-
cure Peer Sampling Service [10] This system was built to cope with mali-
cious nodes executing “hub attacks”. This system uses a set of multiple overlays,
this means that each node belongs to different overlays, and the neighbourhood
at every instance will be distinct with very high probability because the overlays
have independently random-like topologies. In this system, the concept of extra
caches is introduced as being the set of caches belonging to each peer; every
cache in the set is a random snapshot of a distinct PSS overlay. Essentially, the
multiple caches are useful in order to perceive how malicious nodes are spreading
the infection from distinct directions over distinct overlays. Due to the spreading
infection, is expected that common node ID patterns will emerge in all (or in
the majority) of the caches. Then based on this patterns, each peer can build
a set of statistics in order to guess or detect who are the malicious nodes. If a
node is detected as malicious the node will decline gossip from that node.

MACHETE [11] This system was designed to establish an overlay network
and scatter data over the available paths, thus reducing the effectiveness of
snooping attacks. Thus, it protects against passive attackers that eavesdrop on
communications at certain physical locations. This system sends data through
multiple paths using multiple interfaces that the computer has available, hence
protecting against snooping attacks. In contrast to the other systems presented
previously in MACHETE, the client is provided with the full overlay of the
system when he wants to send a message. Then the client will choose the best
path according to its RTT value. This system is interesting to us because of
its feature of sending data through multiple paths, something that if applied
correctly to Bitcoin could protect against certain attacks as we will see in Section
6. This tool is not like the other PSS presented because it provides every client
with a full view of the network instead of a partial view.

19

5.2 Node’s Behaviour

In general, nodes can adopt different behaviours with respect to the spec-
ification of the protocol they are supposed to follow, namely, there are three
types of nodes altruistic nodes, byzantine nodes and rational nodes. Altruistic
nodes are nodes that follow the specified algorithm and are willing to dissemi-
nate information. Byzantine nodes are nodes that generate arbitrary data, and
can behave in an arbitrary way, including pretending to be a correct one. Ratio-
nal nodes are nodes that instead of strictly following the algorithm do what is
best for them. For example, in the case of file sharing, a rational node is a node
that only provides small rates of upload while having a high rate of download.
These nodes are harmful to the system because they do not contribute to it, for
instance, if all nodes were to follow the same logic there would not be enough
seeders to support the network and the system would collapse [12,13].

It is important to look at these behaviours and the approaches to punish
them because although it would be desirable that in the Bitcoin network all
nodes behaved well that is not the case. This will be further discussed in Section
5.3.

Next, we discuss how some approaches deal with some of these possible be-
haviours.

BitTorrent [13] The approach described in this paper was conceived to cope
with free riders in a file sharing network. A free rider in this systems is a peer that
is trying to have the highest possible download rate while having a low upload
rate. This system tries to prevent free riders with a policy of tit-for-tat. This is
achieved by peers uploading only to peers which upload to them. This way the
network will have at any given time connections which are actively transferring
in both directions.

BAR gossip [12] This tool was designed with the objective of being the first
streaming application that guaranteeing a predictable throughput and low la-
tency in the BAR model, in which non-altruistic nodes can behave in a self-
serving or even arbitrarily malicious way. This system tries to prevent free riders
by having two protocols to disseminate information: Balanced Exchange and
Optimistic Push.

Balanced Exchange In this protocol peers exchange information while keeping
the trade equal. This means that the amount of information that a peer uploads
is the amount that it is able to download. This exchange is ciphered and signed
so that both parties act faithfully.

Optimistic Push This protocol exists to compensate peers that have fallen
behind and are not able to perform a Balanced Exchange. In this protocol, the
peers that have fallen behind when they are unable to provide useful updates
they are allowed to send junk. To avoid peers from abusing this protocol the
amount of junk sent has to be equal the amount of actual information. In this
paper the authors also state that a rational node would not choose a strategy of
just sending junk because i) it would not have a discernible impact on benefit
and ii) junk is more expensive to send than legitimate updates

20

LiFTinG [14] This protocol was the first to detect free riders in a gossip-based
content dissemination system with asymmetric data exchanges. In this protocol,
each peer is monitored by a set of peers chosen randomly. Each peer has a score
that if it drops below a certain threshold, it is assumed that that peer is free
riding. The score drops if a node that was exchanging information with the free
rider suspects that he is not being faithful and broadcasts a blame message
against him. Once a node is considered guilty by the managers they spread a
message to inform the other peers hence, punishing the free rider.

5.3 Discussion

As we have covered in the introduction of this section, the problems described
previously also affect Bitcoin. But given the difference between Bitcoin and the
usual peer-to-peer technologies the solutions that we just covered cannot be
implemented directly.

So in this section, our objective is to cover each problem presented previously
and explain how they transfer to Bitcoin and the implications they have.

Mosquito attack While analyzing the Bitcoin protocol to disseminate ad-
dresses, we found that we might be able to reproduce this attack in Bitcoin.

The way this attack would be reproduced in Bitcoin is through the DoS
prevention system that Bitcoin has. In this DoS prevention system, once node
A receives from node B more than 1000 IPs (max number of address entries on
an addr message) on an addr message it punishes B [4]. The punishment can
vary from A simply dropping the connection to B to A banning the IP of B so
he cannot immediately re-connect to A for a couple of hours.

Following the strategy described in [8] a set of attackers would send to a node
multiple addr messages with more than 1000 IPs with the IP of the neighbours
of the victim, which would lead the victim to punish her neighbours isolating
herself.

The impact of this attack depends on the importance of the victim. If the
victim was just a simple miner or node then this would function like a DoS attack
and it might result in revenue loss for the miner. If the victim was a gateway to
a pool then this could result in much bigger revenue loss and it could be used
to engineer block races.

The module that allows this attack to be possible is not only the Connection
Manager because it is what enforces the DoS prevention system but also the
lack of authentication in the messages sent through the network.

Supernodes As we have seen Bitcoin was designed to have a random overlay
topology. This protects Bitcoin because it makes it harder for nodes to achieve a
central position on the network and have an excessive control over the network.
But despite this, recent findings like the ones in [15] revealed that the topology
of Bitcoin is not purely random with some nodes having more than 125 active
connections (restriction of the mainline Satoshi client) sometimes by a factor of
nearly 80 [15].

21

This is a problem for the stability of the Bitcoin because it is centralizing
resources. These nodes are usually gateways of mining pools. So if an attacker
were to identify these nodes with a tool like AddressProbe [15] it could launch
an attack on these nodes and have a big impact on the network. Because all
the miners in the mining pool would be disconnected from the network causing
revenue loss for both the miner and the mining pool.

It is also worth noticing that although supernodes open some vulnerabilities
in the network, they are also good for the performance of the system. For in-
stance, when a block is found if it reaches a supernode will be disseminated much
faster through the whole network hence, decreasing the probability of forks hap-
pening. So once we implement a solution for supernodes we will have to evaluate
if the advantages of not having supernodes compensate the disadvantages.

Rational Node’s In Bitcoin, rational or selfish nodes are nodes that do not
broadcast a block right after its discovery. They keep it until a new block is
announced by another node, only then they broadcast their own block with the
intent that it being the one to get accepted as the new blockchain head. This
will result in revenue loss for the node that discovered the other block as he will
not be rewarded by the block that he found. Furthermore, the selfish node will
benefit even more from this behaviour because it will have a lead in finding the
next block if the one accepted was his own.

Single nodes usually do not have a very good connection to the rest of the
network which translates to them having a low probability of their blocks being
accepted versus already broadcasted blocks. So although selfish mining is not
very effective if performed by a single node, if a mining pool decides to implement
such behaviour it will probably succeed. Because usually, mining pools gateways
have a lot of connections [15], the probability of their blocks being accepted is
very high as they can broadcast them through the network very quickly, resulting
in revenue loss for other mining pools or other nodes.

6 Architecture

Given the problems presented beforehand in this section, our goal is to build
a set of extensions to Bitcoin and blockchain technologies to overcome these
threats. We have chosen Bitcoin to implement these extensions because it not
only has a big user base but it also well documented and has been the focus
of many research articles. Whereas other cryptocurrencies do not usually have
proper documentation of the protocols they use and their code. With this lack
of information, it would be difficult to identify the key modules that we would
need to modify or improve to create these extensions for those cryptocurrencies.

As we have seen Bitcoin still has a lot of problems linked to the network
protocol and the overlay used, that the other cryptocurrencies do not have. It
is worth noticing that those cryptocurrencies like Ripple, for instance, sacrifice
other properties in exchange for being protected against those vulnerabilities, for
instance, connections in Ripple are encrypted which imposes an overhead on the

22

nodes. Therefore, in this work we propose to extend Bitcoin architecture with a
module, which we call BitShield, to address these problems while also having a
low impact on performance. The architecture is presented in Fig. 4.

Fig. 4: BitShield architecture

BitShield is positioned between the Connection Manager and the Peer Dis-
covery because those are the modules we have identified as the cause of the
problems Bitcoin has.

In the rest of this section, we will cover each vulnerability individually and
propose possible approaches that will help Bitcoin overcome these vulnerabili-
ties. In Section 6.1, we will propose possible approaches to vulnerabilities that
attackers can use to exploit Bitcoin. Whereas in Section 6.2, we will propose
possible strategies to cope with behaviours that nodes inside the network might
have to exploit Bitcoin and increase profit.

6.1 External vulnerabilities

Information Eclipsing Our approach to this problem is to implement the op-
timization in the propagation discussed in Section 4.1. To achieve this, when a
node receives a block the verification of a block is split into two phases an initial
difficulty check and a transaction validation. After the node validating that the
block is valid through the first validation phase, the node would asynchronously
broadcast inv messages to his neighbours while performing the transaction val-
idation. This will decrease the mean time it takes for a block to reach a node
hence reducing the probability of forks happening. The drawback of this solution
is that it only lowers the probability this problem happening.

It would also be interesting implementing the solution Ethereum used to
solve this problem, Uncle Blocks mentioned in Section 4.1. Where nodes include
uncle blocks in future blocks strengthening the chain. They also reward nodes

23

that found uncle blocks and nodes that add uncle blocks to their blocks which
would compensate nodes that had their computational power wasted in a block
that was not accepted. The problem with this approach is that it would have an
increase in the block size and it would require more computational power from
the nodes.

Partition attack This attack is hard to protect against because the problem
is not only related with Bitcoin but also with the protocol used by the ASes.

Hence, our aim is to use MACHETE and also make nodes establish some
extra connections. In this approach, a node would have to establish extra con-
nections while having into account the route that the packets were going to have
then, nodes would also send certain key messages (like the inv for instance)
through multiple paths using the multipath approach of MACHETE. Nodes will
use a tool like traceroute4 to identify the best routes to avoid packets from pass-
ing always through the same AS. With this approach, a node is connected to the
Bitcoin network through multiple AS and is able to communicate with different
points of the network preventing the attack. A drawback of this approach would
be the extra overweight imposed on the nodes to create the extra connections
and send the extra messages.

Delay attack This attack can be done in two different directions. Our approach
is to address the problem in both directions as follows. Since this attack is
targeted at a single connection that a node has with a neighbour of his. We
will use a strategy like MACHETE and send multiple multiple block requests
to different neighbours. With this strategy the attacker has to intercept more
connections, this strategy also prevents the attack in both directions.

This solution might add overweight to the network because more request
messages will be traversing the network. But if we compare the computational
power wasted by the victim when being attacked with our solution, we believe
that our solution will be better. Because not only are the messages small in size
but also the victim will not be wasting computational power that could be used
for strengthening the blockchain.

We also want to modify the behaviour of nodes in the N→V direction.
Where once a node receives a corrupted block instead of staying idle it requests
the block again. If the node fails 3 times to receive the block form that neighbour
it drops the connection and asks for the block to another neighbour.

Mosquito attack Our procedure to cope with this attack is to implement a
system where every node analyzes the addr messages that their neighbours share
with them to identify if the neighbours are trying to attack them. The idea is
if all neighbours are sharing the same set of addresses with a node through a
period of time then the probability of them being malicious is high. If a node
identifies a set of neighbours as malicious, he would ban those nodes and re-start

4 Diagnostic tool for displaying the route and measuring transit delays of packets
across an Internet Protocol (IP) network.

24

its connection to the network. The disadvantages of this strategy are the extra
computational power and memory wasted on the analysis of the addr messages.

If we were to implement an approach where it costs a bit of the currency
to send messages like Ripple or Ethereum. We would cope with this attack but
it would require relevant changes to the Bitcoin protocol something that is not
desirable by users in Bitcoin.

Implement authenticated messages for sharing IP addresses would also pro-
tect against the attack but it would require much more computational power
and a system to distribute asymmetric key pairs.

51% attack For this attack, we are not going implement any solution in par-
ticular since this attack is always possible unless we control who joins the peer-
to-peer network.

Still performing this attack in Bitcoin is very hard. Given the current com-
petition in the mining community and the current size of the network, it would
be very costly to gather 51% of computational power.

6.2 Internal vulnerabilities

We will now address some of the solutions to the problems Bitcoin has with
the behaviour of peers in the network and the way they connect between them-
selves.

Supernodes To prevent this behaviour we are going to take advantage of the
analysis that nodes are going to perform on addr messages to prevent the
mosquito attack. During the analysis, we will collect the number of times a
node appears in those addr messages and if a node reaches a certain number
of appearances it is safe to presume that is a supernode. In this case, the node
that identified the supernode will drop the connection with him and connect
to another node. The disadvantages of this approach are once again the extra
computational power required and also the possible increase of the mean time it
takes for a block to propagate through all the network.

We could also introduce incentives towards a more random topology. An
example of those incentives is the approach that Ripple and Ethereum used,
where to send certain messages a node has to pay a fee. In our case to prevent
supernodes, if a node exceeded a pre-established number of connections then for
every extra connection the node would have to pay a fee in order to be able to
sustain that connection. The problem with this approach is that we would have
to modify the Bitcoin protocol something that is highly vetted against by the
Bitcoin community.

Rational nodes In Section 5.3, we saw that in Bitcoin rational nodes or selfish
miners do not behave like free riders so we cannot implement directly approaches
like the ones presented in before. In the context of file sharing, free riders are
nodes that would set their upload rate to low while having a high download rate.

25

This is not applicable to Bitcoin because rational nodes still work but they do
not share the results of their work so that others waste their time and resources.

To prevent this we are going to implement a solution like LiFTinG [14] where
nodes verify each other. In this solution, nodes analyze the messages their neigh-
bours are broadcasting. The idea is for a node to analyze if a neighbour is broad-
casting a new block right after receiving another block at the same height. If the
neighbour did this a certain number of times then it would be safe to assume
that that neighbour was a selfish node. Nodes punish selfish nodes by dropping
the connection with them. The disadvantage of this solutions is the extra com-
putational power required to perform these verifications and also the possibility
of false positives.

Another possible approach that would minimize the impact of this behaviour
is the implementations of uncle blocks. Because in this system node still gets
rewarded for finding a block at the same height as the new blockchain head, up
to a certain height difference.

6.3 Summary

Table 2 summarizes the approaches we discussed above. As is possible to
observe, there is no solution that fixes all the problems.

From Table 2 there are some approaches that are not feasible to implement
given the Bitcoin requirements for performance, those approaches are the en-
crypted messages and authenticated messages. Both approaches would require
nodes to perform considerable more computations which would lower the profit
of miners. Hence, these solutions would never be accepted by the Bitcoin com-
munity.

Other approaches like uncle blocks and the implementation of fees would
be equally hard to implement given the relevant impact they would have on
the protocol. Since uncle blocks requires multiple nodes to be rewarded by the
discovery of a new block and the implementation of fees would require fees to
be imposed on messages. Hence, both solutions would lower the profit of not
only miners but also users and would be highly vetted against by the Bitcoin
community.

However, there are still some approaches in Table 2 that combined are able to
cope with the multiple vulnerabilities while having a low impact on performance.
Those approaches are the optimization in block propagation, establishment of ex-
tra connections between nodes, the use of MACHETE to send messages through
multiple paths, analysis of addr messagues and the use of a LiFTinG approach
to cope with rational nodes. Although all these solutions combined will probably
require more computational power from the nodes if we compare them with the
approaches described before their impact is much lower.

26

Uncle
Blocks

Optimization
in block
validation

Extra
connections
between
nodes

MACHETE
Encrypted
messages

Monitor
RTTs

Analyze
addr
messages

Fees
Authenticated
messages

LiFTinG
approach

Information
Eclipsing

© ©

Partition
Attack

© X X ©

Delay
Attack

© X X X ©

Mosquito
Attack

X X X

51% Attack © © © ©
Supernodes X X
Rational
nodes

© © © X

Table 2: Solutions to the problems.
X - Protects against the problem
© - Helps protect against the problem

7 Evaluation

Given how adverse the Bitcoin community is to change once we evaluate our
system we will have to take into account the following factors that are a priority
for both Bitcoin users and miners.

– Transaction and block latency As it was described in the previous sec-
tion, some of the approaches have an impact on the time it takes to dissem-
inate transactions or blocks. So once we evaluate our system we will have to
study if our system does not increase this latency time by a relevant amount.
Otherwise, our system might induce more forks on the network which is not
desirable.

– Bandwith consumption This factor is also important for two reasons: i)
we want to preserve computational power and ii) we want our system to be
scalable.
We want to minimize the number of messages on the network to avoid nodes
from wasting computational power processing irrelevant messages. Further-
more, with the growing number of Bitcoin users if our system was to put a
big overweight on the network it would not scale well.
Some of our approaches will impose an extra overweight on the network so
once we evaluate our system we will have to take into consideration that
extra bandwidth and try to minimize it.

– Resources consumption This is one of the most important factors given
the performance requirements imposed by the Bitcoin community. If our sys-
tem was to downgrade the performance of Bitcoin without a worthy tradeoff
our system would never be adopted. It is certain that with the implementa-
tion of our approaches the performance aspect of Bitcoin will be affected. So
once we evaluate our system we will need to take this into consideration and
balance out the performance degradation with the advantages our system
brings.

27

Given the complexity of Bitcoin and its dimension we will start by using
the Shadow simulator [16] to evaluate our system. We will use an incremental
approach to test our system given the complex system that Bitcoin is. We will
start by examining if each our approaches protect Bitcoin against their respective
vulnerabilities. Then once we are sure that our strategies work as expected we
will combine them together and once again evaluate their effectiveness and also
measure the factors presented previously.

Our system should be tested with a workload that contains the same amount
of transactions happening these days but the amount of messages should be
proportional to the size of the emulated network, for instance, we are not going
emulate a system with 10 nodes and 100K transactions.

Finally, once we have a good understanding of the impact Bitshield has in
Bitcoin we will generate, if there is still enough time until the deadline of the
thesis, a working Bitcoin client ready to be deployed in the network.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 9 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

9 Conclusions

Bitcoin and blockchain today still have a lot of vulnerabilities regarding net-
work protocols. In spite of all the research being made in this field, few people
have looked at the networks used by these technologies to disseminate informa-
tion. This is an important aspect to look at because as we show in this report
there are multiple vulnerabilities in these networks that allow attackers to exploit
systems like Bitcoin that use them.

In this report, we surveyed other cryptocurrencies that use these networks to
compare them with Bitcoin. We discovered that although some cryptocurrencies
have implemented solutions to these vulnerabilities is at the cost of other factors
like performance and privacy.

Some of the vulnerabilities that we studied vary from attacks done by AS to
delay attacks performed by a singular attacker. We also cover some undesirable
behaviours that nodes inside the network might have like selfish mining.

After, we compare multiple approaches to protect Bitcoin against the identi-
fied vulnerabilities by identifying the advantages and disadvantages of each one.

28

Finally, we propose a set of extensions that have the purpose of helping Bitcoin
overcome these threats.

In the end, we identify relevant factors that we must take into account when
evaluating our solution in order for it to be accepted by the Bitcoin community.

References

1. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. arXiv preprint arXiv:1605.07524 (2016)

2. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
3. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:

Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference
on, IEEE (2013) 1–10

4. Bitcoin.org: Bitcoin wiki (2008)
5. Bitcoin.org: Bitcoin developer documentation (2009)
6. Buterin, V.: Toward a 12-second block time (2014)
7. Jelasity, M., Guerraoui, R., Kermarrec, A.M., Van Steen, M.: The peer sampling

service: Experimental evaluation of unstructured gossip-based implementations.
In: Proceedings of the 5th ACM/IFIP/USENIX international conference on Mid-
dleware, Springer-Verlag New York, Inc. (2004) 79–98

8. Jesi, G.P., Montresor, A.: Secure peer sampling service: the mosquito attack. In:
Enabling Technologies: Infrastructures for Collaborative Enterprises, 2009. WET-
ICE’09. 18th IEEE International Workshops on, IEEE (2009) 134–139

9. Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G., Shraer, A.: Brahms: Byzantine
resilient random membership sampling. Computer Networks 53(13) (2009) 2340–
2359

10. Jesi, G.P., Hales, D., Van Steen, M.: Identifying malicious peers before it’s too late:
a decentralized secure peer sampling service. In: Self-Adaptive and Self-Organizing
Systems, 2007. SASO’07. First International Conference on, IEEE (2007) 237–246

11. Raposo, D., Pardal, M.L., Rodrigues, L., Correia, M.: Machete: Multi-path com-
munication for security. In: Network Computing and Applications (NCA), 2016
IEEE 15th International Symposium on, IEEE (2016) 60–67

12. Li, H.C., Clement, A., Wong, E.L., Napper, J., Roy, I., Alvisi, L., Dahlin, M.: Bar
gossip. In: Proceedings of the 7th symposium on Operating systems design and
implementation, USENIX Association (2006) 191–204

13. Cohen, B.: Incentives build robustness in bittorrent. In: Workshop on Economics
of Peer-to-Peer systems. Volume 6. (2003) 68–72

14. Guerraoui, R., Huguenin, K., Kermarrec, A.M., Monod, M., Prusty, S.:
Lifting: lightweight freerider-tracking in gossip. In: Proceedings of the
ACM/IFIP/USENIX 11th International Conference on Middleware, Springer-
Verlag (2010) 313–333

15. Miller, A., Litton, J., Pachulski, A., Gupta, N., Levin, D., Spring, N., Bhattachar-
jee, B.: Discovering bitcoin?s public topology and influential nodes. et al. (2015)

16. Jansen, R., Hooper, N.: Shadow: Running tor in a box for accurate and efficient
experimentation. Technical report, Minnesota Univ Minneapoiis Dept of Computer
Science and Engineering (2011)

29

