
Fault Isolation in Software Defined Networks
(extended abstract of the MSc dissertation)

João Sales Henriques Miranda
Departamento de Engenharia Informática

Instituto Superior Técnico

Supervisor: Professor Luı́s Rodrigues

Abstract—Software Defined Networking (SDN) has been
emerging as one of the most promising approaches to simplify
network configuration and management. However, SDNs are
not immune to errors such as forwarding loops, black holes,
suboptimal routing and access control violations. These errors
are typically caused by errors in the specification or by bugs
in the equipment. While the former may be, mostly, eliminated
by using tools that automatically validate specifications before
their installation, firmware or hardware bugs in the switches
(many times of non deterministic nature) can only be detected
in execution time, in most cases.

We propose a new technique to facilitate the fault isolation in
SDN equipments. The described technique combines the usage
of formal validation tools (to obtain the expected paths of the
packets) and packet recording tools (to obtain the observed
paths) to perform a differential analysis that allows the precise
identification of which equipment had failed, causing the
network misconfiguration. We built a prototype and evaluated
it on MiniNet. Our results show that our system is able to
pinpoint either the faulty switch or, in the worst case, pairs
of switches in which one is the faulty, and that it can also
categorize the error within five different error types.

I. INTRODUCTION

Software Defined Networking (SDN) has recently
emerged as an appealing and powerful paradigm for man-
aging networks. First, SDN provides a clear separation
between the data plane (in charge of forwarding packets
among devices) and the control plane (which defines how
packets should be forwarded). Second, SDN allows the
packet-handling rules of each switch to be configured by a
logically-centralized controller, using a standard API (e.g.,
OpenFlow [1]). The existence of a single central point of
control, maintaining a global view of the network and hold-
ing a specification of the control-plane configuration, has the
potential to strongly simplify network management [5], [4],
[2].

Like traditional networks, software defined networks
(SDNs) are prone to errors (or bugs), such as forwarding
loops, black holes, suboptimal routing, and access control
violations. One of the advantages brought by SDN is the
easiness of designing tools to perform or simplify the tasks
of testing, verification and debugging. Recent work has
been showing that SDNs’ architecture can be leveraged to
create such tools [3], [4], [5], [6], [7]. As these networks
rely on a software based, logically centralized controller,
they can benefit from automatic testing and verification

tools used in other fields of computer science to increase
controllers’ reliability [3], [4] or check whether invariants
hold among different layers of the SDN stack [8]. They
can also benefit from debugging tools that help network
operators to replicate errors in order to identify the causes
from errors triggered in execution time [6], [9], [7], [5].
These tools intercept controllers’ commands in production
or test networks (possibly recording them) and instrument
switches to record data packets in order to reproduce the
network behavior, possibly in other network, experimenting
different executions with the objective of isolating traffic that
causes the errors.

Despite these advances, debugging SDNs still remains a
daunting task. Hardware and firmware bugs on equipments
that make them behave differently than specified continue to
generate errors that can only be detected at execution time.
Testing and verification tools are not adequate for this type
of errors, because they rely on predictable models of the net-
work to identify bugs. To help network operators diagnose
and debug this kind of bugs, tools such as OFRewind [6] and
ndb [7] typically resort to instrumentation, event logging,
and replay mechanisms. Unfortunately, inspecting the event
trace in order to isolate the faulty component(s) is usually a
time-consuming task [10], [5].

In this paper, we propose NetSheriff, a system that auto-
matically isolates misbehaving switches in SDNs. NetSheriff
combines features from both verification tools and debug-
ging tools, with the aim of simplifying the task of finding
the root cause of a network error. For each equivalence
class of packets traversing the network, NetSheriff uses a
model of the network and the commands provided by the
controller to first generate the paths that are expected to
be followed by packets of the different equivalence classes.
Then, at execution time, NetSheriff records the observed
paths. Finally, NetSheriff applies a differential analysis to
both the expected and the observed paths and checks whether
they match or not, identifying the misbehaving switch in
case of divergence. Moreover, NetSheriff helps the network
operator to diagnose the root cause of the fault and fix
the problem in a more timely manner by categorizing it
accordingly to patterns in the differences between these two
paths.

1



II. RELATED WORK

Although SDN is still an emerging technology, over the
past few years, a number of systems have been proposed
to help improve the reliability of SDNs. In this section, we
overview some of the prior efforts on this topic that are most
related to our work.

Testing and Model Checking: Several tools aim at
verifying the correctness of SDN applications. Some take
a static approach, performing this tests or verification prior
to deployment. For instance, NICE [3] combines model
checking and symbolic execution to automatically find errors
in SDNs and output a sequence of packets that triggers
the error. VeriCon [11] verifies SDN programs at compile
time, validating their correctness not only for any admissible
topology, but also for all possible (infinite) sequences of
network events, given that the network topology specifi-
cation and the correctness conditions are written as first-
order logic formulas. VeriCon has the advantage of providing
the guarantee that a given SDN program is indeed free of
errors. In turn, SOFT [12] is a tool designed to find bugs
in OpenFlow implementations or interoperability problems
among different switch vendors.

Conversely, Veriflow [4], ATPG [13] and Monocle [14]
perform dynamic checks. VeriFlow verifies if the data plane
holds the invariants specified in the input policies, intercept-
ing the rules from the controlling and performing checks in
the network model as they arrive. Monocle uses a similar
technique to verify if the switches forwarding tables are
being correctly updated as new rules are intercepted. ATPG
frequently generates probe packets that verify reachability
policies and performance health in the data plane.

NetSheriff contrasts to the aforementioned tools in that it
does not strive to check for predictable invariant violations.
Instead, NetSheriff focuses on reporting unexpected and
incorrect behavior of forwarding devices (potentially due to
hardware transient faults).

Post-mortem analysis: The advent of SDN facilitated
the development of better tools for network debugging, since
the control software is logically centralized, has a global
network view and is hardware transparent. As prominent
systems for debugging and diagnosis SDN errors, we high-
light NetSight [9], OFRewind [6], and STS [5].

NetSight registers the packet histories and offers an
interactive network debugger (dubbed ndb) that eases the
navigation through different states of the network in order
to help network operators to identify which sequences of
events reproduce the incorrect network behavior.

OFRewind is a debugging tool that allows the record and
replay of packets in SDNs. A network operator can then
reproduce the error multiple times and, throughout these
repeated replays, isolate the component or traffic causing the
error. OFRewind also allows partial recording (e.g., track
only the control messages or the packet headers), which
helps reduce the recording overhead.

Both NetSight and OFRewind provide the means to in-
spect a sequence of packets that lead to a failure, but offer no

clues on what events actually caused the error. The network
operators are the ones that have to progressively reduce
these sequences in order to isolate the events that cause the
error. STS, on the contrary, aims at reducing the effort spent
on troubleshooting SDN control software by automatically
eliminating from buggy traces the events that are not related
to the error. This curated trace, denoted minimal causal
sequence (MCS), contains the smallest amount of events
responsible for triggering the bug. However, STS is not able
to detect errors outside the control software (for instance,
hardware problems in switches), whereas NetSheriff is. In
fact, we believe that NetSheriff can be a useful system to
complement current debugging tools. By quickly pinpointing
faulty components of the SDN and categorizing the prob-
lem accordingly to patterns in the differences between the
expected and observed paths for packets, NetSheriff allows
network operators to direct their efforts to analyze devices
that are indeed relevant to the network misconfiguration.

III. NETSHERIFF

This section describes NetSheriff. We start by provid-
ing an overall description of NetSheriff’s architecture and
components (Section III-A). We then show how NetSheriff
uses features from model checking tools to compute the
expected path of a packet (Section III-B), as well as tracing
mechanisms to efficiently obtain the respective observed
path (Section III-C). We conclude the section by with a
description of the main steps for building our prototype
(Section III-D).

A. Overview
NetSheriff is a system that detects incorrect traffic paths

and automatically pinpoints the network device responsible
for the network misconfiguration. NetSheriff comprises four
components: the seer, the instrumenter, the collector, and
the checker. These components, depicted in Figure 1, are
described as follows.

Seer: The seer component in NetSheriff is responsible
for computing the expected path for each equivalence class
of packets in real time. To this end, the seer models the
network’s behavior as a set of forwarding graphs [4]. A
forwarding graph is a representation of how packets be-
longing to the same equivalence class (i.e., packets that
exhibit the same forwarding action for any network device)
should traverse the network. In other words, it represents the
expected path of these packets. Vertices in forwarding graphs
represent switches, and edges indicate forwarding decisions
between two switches. For instance, let F be the forwarding
graph of an equivalence class EC. An edge A → B in F
indicates that switch A forwards all packets within EC to
switch B.

Concretely, the seer intercepts all the commands sent by
the controller to the switches (e.g., rule insertion or deletion).
Then, it generates new forwarding graphs for the equivalent
classes that are affected by these commands. Finally, the
seer sends the updated forwarding graphs to the checker,
which will later use them to perform the differential analysis

2



switch

controller

command

postcard

packet

forwarding
graph

packet
history

differential
analysis

Seer
1

Instrumenter
2

Collector
3

Checker
4

Figure 1. Overview of NetSheriff. 1) The seer builds forwarding graphs,
which are a representation of how packets should be forwarded in the
network. 2) The instrumenter intercepts the controller’s commands and
modifies them, so that they additionally instruct switches to create postcards
of packets traversing them. 3) The collector collects postcards from the
switches, and assembles them into packet histories, which correspond to
the actual packet flows observed at runtime. 4) Finally, the checker is
responsible for comparing the expected forwarding behavior of a packet
(indicated by the forwarding graph) against the observed path (indicated
by the packet history), in an effort to find inconsistencies, which reveal
errors in the switches.

between the expected and the observed paths of packets.
Quickly computing these graphs in execution time in order
to allow their analysis in a short time span might be a
challenge. In Section III-B, we describe how NetSheriff
addresses this challenge.

Instrumenter: The instrumenter component has the goal
of triggering the record of the necessary information to
rebuild the paths taken by each packet in the network. For
this purpose, the instrumenter leverages the SDN architec-
ture, intercepting messages between the controller and every
switch (note that both the seer and the instrumenter are
transparent for the switches and the controller).

In particular, the instrumenter extends each rule sent by
the controller, appending actions that first modify the packet
so that it carries additional information (detailed below)
and after that forwards this duplicate packet so that it will
reach the collector. The original packet is sent unmodified
to the specified output port in the rule. The duplicated
packet, which we will call postcard just like in [9], contains
the essential packet information as well as the id of the
switch that has recorded it, the version of the switch flow
table (a counter incremented when this table is modified),
and the input and output ports. We take into account that
the postcards themselves can be incorrectly dropped by
misbehaving switches, but we will assume they are not until
Section IV-D, where we explain how we deal with this
problem.

Collector: The collector component consists in a server
(centralized or distributed) that receives the postcards sent
from the switches and reorganizes them with the purpose of
creating multiple distinct collections, designated by packet

histories, as in [9]. Each packet history corresponds to
the set of all postcards generated while a packet traverses
the network. The packet history thus allows to build the
path taken by this packet and infer the possible header
modifications performed by each switch.

Checker: The checker component is responsible for
signaling an unexpected network behavior regarding for-
warding decisions, pinpointing the faulty switch that caused
such misbehavior. To this end, the checker leverages both
the forwarding graphs generated by the seer and the packet
histories assembled by the recorder.

The checker performs the differential analysis by project-
ing the histories against the graphs and detecting possible
divergences. If the projection of the expected path and
the actual path yields a perfect match, then the packet
was correctly forward across the network and NetSheriff
does not report any anomaly. Conversely, when there is a
mismatch between the expected path and the observed path,
NetSheriff reports the incorrect forwarding and indicates the
switch where the divergence first occurred, i.e., the switch
responsible for the fault. In this latter case, different patterns
in the projection can also give further information about the
switch problem.

As a simple example, consider the scenario in Figure 2,
which depicts an SDN with five switches: A,B,C,D, and
E. Now let us consider that one wants to send a packet
from A to E and that the packet is expected to be forward
along the route A → B → C → D (Figure 2b). However,
the actual path of the packet ends to be A → D → E
(Figure 2c). When the checker performs the differential
analysis between these two paths, it verifies that there is
a mismatch in switch D. As a result, NetSheriff reports a
fault in the SDN and identifies switch D as the source of
the problem.

In more complex scenarios, there are the possibilities of
multicasts or broadcasts, which means that, in certain points,
the paths can be split in multiple branches. Furthermore,
switches might modify the packet headers (e.g., in presence
of Network Address Translation (NAT) boxes). These mod-
ifications must be taken into account when performing the
differential analysis, because when the header is modified,
the “new” packet might belong to a different EC, therefore
having a different forwarding graph. NetSheriff deals with
this problem by merging the multiple possible graphs for
a given packet history. The merged graph is then projected
against the postcards of the corresponding packet histories.
If there is a divergence between the expected and the
observed paths, the error can be categorized according to
the characteristics of the projection. The differential analysis
algorithm is described in detail in Section III-D.

B. Computing Forwarding Graphs

As mentioned in the previous section, NetSheriff’s Seer
component is based in forwarding graphs, which represent
the paths that each equivalence class of packets is expected
to follow. NetSheriff computes forwarding graphs while the

3



A B C

D E

A
D

B
E

b) Expected path

a) Network topology

A
D E

c) Observed path

A
D

B
E

mismatch

faulty
switch

d) Differential Analysis

Figure 2. Differential analysis performed by NetSheriff’s checker. The
checker projects the expected path (3.b) against the observed path (3.c) in
order to find potential mismatches in the packet flow and pinpoint the faulty
switch (3.d).

network state is being altered, recomputing the graphs only
for equivalence classes that are affected by the intercepted
rules issued by the controller, since in the presence of large
and complex networks, it becomes impractical to compute
forwarding graphs for the whole network every time a new
forwarding rule is changed.

NetSheriff’s seer component is built on top of part of
VeriFlow [4], leveraging its ability to efficiently compute the
forwarding graphs. In particular, we do not need to verify
network invariants, but we need the rest of its functionality
to compute the graphs. We modified it so it sends to the
checker component the links of the forwarding graphs that
are modified, along with the respective EC. The checker will
then reconstruct the forwarding graphs using this informa-
tion.

The seer maintains a trie (i.e., a prefix tree) that associates
the forwarding rules installed in the switches to the prefixes
of the packet header fields that they match. Using this
structure, the n-th level in the trie represents the n-th bit
of the packet header field matched by a forwarding rule.
Nodes in the trie (apart from the root and the leaves) contain
one of the three possible values for that specific bit in the
packet header, namely 0, 1, and wildcard (represented by ∗).
Hence, each node in level n− 1 spawns three child nodes,
corresponding respectively to the three values that the n-th
bit of the header can have. Leaves in the trie store pairs of
type (s, r), meaning that the switch s contains a forwarding
rule r that matches packets with prefixes given by the path
between that leaf and the root of the tree.

When the controller issues a command to one of the
switches, the seer traverses each level of the trie to find
all packet headers that are affected by the incoming rule.
In particular, the search outputs the set of leaves whose
rules overlap with the new forwarding decision. Note that,
by having each dimension representing a bit of the packet
header, the trie allows the seer to perform the lookup very
efficiently (as it only searches along the branches that fall
within the address range of the new rule).

Next, the seer computes affected ECs (i.e., ECs affected
by the updated rule) as follows. For the set of overlapping
rules, the seer computes a group of disjoint ranges (starting
from the most generic rule to the least generic one), such

that no range can be further divided. Each EC will then be
defined by a unique, individual range. As an example of this
procedure, let us consider a switch with a rule matching
packets having IP addresses with prefix 10.1.1.0/24. Now
consider that the switch installs a new rule (with higher pri-
ority) affecting packets within the address space 10.1.0.0/16.
Since the two rules overlap (the latter rule is more restrict
than the former and has higher priority), NetSheriff’s seer
will identify three different ECs for this case, correspond-
ing to the three following ranges: [10.1.0.0, 10.1.0.255],
[10.1.1.0, 10.1.1.255], and [10.1.2.0, 10.1.255.255]. A more
detailed description on how to compute ECs can be found
in Veriflow’s paper [4].

Finally, NetSheriff’s seer generates the forwarding graphs
for the new ECs and sends them to the checker, as referred
in Section III-A.

C. Computing the Observed Path

NetSheriff’s obtains packet histories by assembling the
postcards generated by the switches which the packets
passed through. To this end, the collector has to gather all
postcards corresponding to each individual packet, which
may correspond to a large amount of data. To build packet
histories in an efficient and scalable way, we used two com-
ponents of NetSight [9]. NetSight is a tool for generating,
capturing and processing postcards. For large networks, it
allows the usage of multiple servers that collect postcards.
Our instrumenter is NetSight’s Flow Table State Recorder
(FTSR), and we our collector is a NetSight server that sends
all the packet histories to our checker component.

Generation and capture: NetSight implements the
mechanism for packet duplication described in Section III-A.
The propagation of postcards can be performed in two
different modes: using the production network (in-band)
and therefore consuming part of the available bandwidth
but avoiding the use of additional switches only for this
purpose, or opposingly, using a different subnetwork to avoid
bandwidth overhead at the cost of having dedicated switches
for this purpose, that will connect the remaining switches
to NetSight servers. As it was already stated, in either of
these two situations it is possible to use multiple servers,
dispersed in the network. This will minimize the traffic that
is essential for this phase. Using multiple servers requires
another phase that will guarantee that postcards generated
by the same packet will eventually be stored in the same
server.

Processing: To ensure load balancing, NetSight dis-
tributes the packets across the servers. Servers periodically
exchange batches of postcards among them, such that post-
cards corresponding to the same packet are assembled by the
same server. To guarantee packet locality, NetSight uses the
packet ID (which is an hash of the packet contents) as index,
and associates servers with packet index ranges. Moreover,
to reduce both the storage space and the network bandwidth,
postcards are compressed before being exchanged by the
servers.

4



Each server maintains a path table, where it stores post-
cards belonging to different packet flows. The path table is
a key-value data structure that maps a unique packet ID to
the group of postcards observed for that packet.

NetSight’s coordinator receives user queries, called packet
history filters, for filtering user’s packet histories of interest.
This allows network operators to look at packet histories
that match specific patterns which they want to analyze,
e.g., packets that traverse two specific switches (or any other
number). Matched packet histories become available to ap-
plications built on top of NetSight, along with the respective
matched filter. NetSheriff performs the task of setting filters
automatically, setting filters for affected equivalence classes
after the seer component computes these classes.

NetSheriff requires packet histories to be ordered in order
to be able to perform the differential analysis. However,
due to delays in the network, postcards from switches can
arrive to the servers in an out-of-order fashion. To cope
with this issue, the collector relies on topology information
(namely information regarding the switch IDs and output
ports) to correctly sort the postcards. A packet history thus
corresponds to a sorted list of postcards. Once assembled,
packet histories are sent to the checker, as described in
Section III-A.

D. Implementation
As it is mentioned in Sections III-B and III-C, NetSher-

iff’s seer and collector components are small modification
of VeriFlow and of NetSight server, respectively. The mod-
ifications add the necessary logic to project packet histories
in forwarding graphs, by sending the data to our checker
component. Our instrumenter component is NetSight’s flow
table state recorder (FTSR). This NetSight component orig-
inally acts as a proxy between an OpenFlow controller and
the switches of the network, as it happens with VeriFlow.
Thus, we connected these two proxies to each other so that
VeriFlow acts as a proxy between the controller and FTSR,
and this latter acts as a proxy between VeriFlow and the
switches. NetSight servers listen to specific ports of host
machines called logger hosts. In the specific case of our
prototype, we launched a server listening to a port created by
the network emulator MiniNet [15], which was the chosen
environment to test and evaluate our prototype.

Despite the checker not being an extension to either of
these systems, but rather a component whose inputs are
generated by their extensions, in our prototype the checker’s
code was added to NetSight server’s code to avoid an extra
communication flow and another program being executed,
thus easing the development and tests. The changes per-
formed to the original versions of VeriFlow and NetSight
were the following.

• Upon receiving a flow mod message, VeriFlow com-
putes the affected Equivalence Classes of packets and
the respective Forwarding Graphs. In NetSheriff, we
leverage this fact to generate the expected path of a
packet from the forwarding graphs created by Veri-
Flow. Concretely, we extended VeriFlow to send the

forwarding graphs to NetSight server as a sequence of
connections, which are pairs of switch identifiers. This
simpler version of forwarding graph is sent through
an operation that we added to NetSight server’s API
- change_path_request - that receives a pair
〈equivalence class, forwarding graph〉, in the form of
text;

• NetSight server was extended to process the pair
mentioned above through the following steps. When
the pair is received, NetSight server reconstructs the
equivalence class and the respective forwarding graph
(received as text). Then it installs a packet history
filter that matches packets belonging to this equivalence
class. Since, by definition, packets cannot belong to
more than one equivalence class, we have guaranteed
that this filter results (i.e., matched packet histories)
are uniquely matched by one filter. In other words,
the packet history returned by matching a filter will
be associated to only one expected path, and is ready
for differential analysis.

Differential analysis algorithm: Having available the
packet histories and the respective expected paths (forward-
ing graphs), the checker can proceed to differential analysis
to check if the observed paths match the expected ones.

The checker component reconstructs the forwarding
graphs using the same order as the topological order ar-
ranged by NetSight. Therefore, when it receives a packet
history, it can assume that as as soon as a difference in the
paths is detected, this difference exists, without having to
analyze the remaining postcards. For this reason, the checker
performs a breadth-first search in order to detect faults as
soon as possible in the path. This fact is relevant because
a fault in a switch might cause that a packet would then
belong to a different equivalence class, if the headers are
are modified differently than expected, invalidating the rest
of the graph from that point onwards. For this reason, the
graph should be analyzed starting in the source rather than
arbitrarily.

The divergences are found by comparing the vertices from
the forwarding graph and the id of the switch associated to
the next postcard popped out of the packet history. Before
processing each vertex, the checker analyses the data stored
in the postcards to verify if there were any modifications to
the packet header during its network traverse. In case of any
modifications, the graphs corresponding to the equivalence
classes of the different headers are merged. After that, the
checker compares each neighbor vertex in the forwarding
graph with the id of the switch associated to the next
postcard, until it finds a mismatch, marking the edges
throughout the search. If there all the graph is traversed and
there are not more postcards in the packet history, we have
a perfect match and the check passes. Otherwise an error is
reported.

This is semantically equivalent to performing a projection
of two graphs (expected and observed paths). We classify
edges of the projection as expected or unexpected. An ex-

5



pected edge is an edge that belongs to the merged forwarding
graph (i.e., the edge represents a portion of the expected
path of the packet in the network). On the other hand, an
unexpected edge is an edge that did not belong to the merged
forwarding graph but is created by projection a vertex in the
graph and the switch associated to the next postcard in the
history. In other word, an unexpected edge means that the
packet was forwarded to an unexpected switch, according to
the network configuration.

In summary, when the network is behaving correctly,
corresponding to its configuration, all expected edges in the
projection graph are marked by the checker. Also, there are
not unexpected edges in the projection graph. On the other
hand, in case of errors, these conditions are not verified
simultaneously. Additionally to identifying the faulty switch,
we can also categorize the error, using the criteria defined
in Table I.

IV. EVALUATION

This section describes the experimental evaluation that we
performed for NetSheriff. We will start with the details of
the base experimental setup for each of the evaluated case
studies (Section IV-A). We will then analyze five simple
case studies that serve the purpose of demonstrating that
NetSheriff can locate the faulty switch in errors from the
five categories, presented in Table I, and identify which are
the categories of the error (Section IV-B). After that, we
will head to slightly more complex cases, yet more realistic
(Section IV-C). Finally, we discuss the system’s accuracy
(Section IV-D) and network overhead (Section IV-E).

A. Experimental setup
We evaluated NetSheriff’s prototype mainly targeting its

efficacy in identifying faulty switches, as well as its ability
to differentiate multiple types of errors in an SDN. With this
in mind, we performed experiments with multiple types of
errors that might appear in these networks. The experiments
were performed using MiniNet [15], version 2.2.1, in an Intel
i7-720QM with 8GB RAM DDR3, 250 GB SSD and Ubuntu
14.04.

Fault injection: To evaluate NetSheriff’s efficacy in
detecting errors in SDNs, we injected different faults in
switches so that the multiple types of errors enumerated in
Table I were generated. More concretely, to inject faults in
switches we changed the flow tables using the command:

sudo ovs-ofctl mod-flows \
<switch-id> <flow>

This way, NetSheriff does not change the forwarding
graphs, since the forwarding rules are not being modified
by the controller. We can also simulate that a switch fails
to install, modify or delete one or more rules by recording
entries in the flow table of that switch before the controller
issues the commands and then restore these entries using
the aforementioned method. This way, the forwarding graphs
will change but the switch will keep forwarding like it did
not receive any commands.

Network configurations: The first experiments were
performed using the simple topologies and network config-
urations presented in Section IV-B. By applying different
faults on these topologies,, we recreated the different error
categories listed in Table I. We then made tests in fat-trees
using more realistic network configurations.

To perform these experiments, we first modified a POX
controller so that it would configure the network according
to the expected paths for each case. We then manipulated the
flow tables of the ”faulty” switch in order to simulate that a
controller command was ignored by that switch, a command
that would result in the expected configuration. We modify
the corresponding entry so that packets are forwarded along
the observed paths represented in the figure.

We also performed additional experiments, using the POX
and NOX unmodified controllers in larger fat-trees and linear
topologies of multiple sizes, to evaluate the operation of
NetSheriff in multiple different situations, when possible
(for example, some controllers do not allow physical loops
in the network, independently of using NetSheriff or not).
NetSheriff also operated correctly in these experiments.

Applications: For our tests we used ICMP pings,
iperf and a python web server.

B. Simple case studies

To better understand and assess the limitations of Net-
Sheriff, we first tested our prototype with five simple con-
figurations that produce the categories of errors previously
described when we injected specific faults. Recall that these
categories are not disjoint sets.

We also tried different variations of each case and verified
that NetSheriff was able to identify the faulty switch and
the type of error in all cases, except when we consider
dropped postcards. In this situation, there were cases where
our system can extrapolate the missing part of the observed
path (i.e., the dropped postcard), and others where it can
only identify that one of two switches is failing, or multiple
pairs of adjacent switches are failing. This is not our ideal
objective, but it is still very good to be able to narrow
down an error to pairs of switches, specially considering
the number of switches on typical datacenters (hundreds to
thousands). This issue of postcard drops and accuracy is
explored in Section IV-D

1) Unexpected forwarding: The first two cases are errors
in which a switch forwards a certain class of packets through
more ports than those that it was expected to. Recall that this
type of errors is detected by NetSheriff when unexpected
edges are found, and that an unexpected edge is an edge that
is found in the projection of a packet history in a forwarding
graph of the respective equivalence class of packets, but is
not present in the original forwarding graph.

The distinction between the two cases (presented below) is
relevant because, as we can seen in Table I, these two types
of error may have different consequences, and also because
one may be harder to detect with other tools than the other.
Therefore, it seems logical that we check if NetSheriff can

6



Name Description Examples of possible
problems raised Detection

Total unexpected for-
warding

Switch forwards a packet that
should be dropped

Access control viola-
tions

One or more unexpected edges have origin in vertices without
expected exiting edges

Partial unexpected for-
warding

Switch forwards a packet to
additional ports other than the
expected in the configuration

Network congestion, ac-
cess control violations

At least one expected edge exits from vertices with at least
one marked expected edge

Unexpected partial drop
Switch forwards a packet
only to a (non-empty) smaller
subset of the expected ports

Availability downgrade
(less fault tolerance)

A source vertex contains one or more marked expected edges,
alongside one or more unmarked expected edges

Unexpected total drop Switch unexpectedly drops a
received packet No reachability All the expected edges exiting from a vertex are unmarked

Suboptimal routing
Combinations of the above
cases, but the packets reach
their correct destinations

Network congestion

Possible combinations of the aforementioned cases where it is
possible to traverse the projection graph from the source to the
final vertices (i.e., the ones that have no exiting edges) through
expected marked edges and the unexpected edges calculated
by NetSheriff

Table I
CATEGORIES OF ERRORS IDENTIFIED BY NETSHERIFF, ALONGSIDE THEIR DESCRIPTION, POSSIBLE PROBLEMS RAISED BY THEM AND HOW

NETSHERIFF DETECTS THEM

(a) Total unexpected forwarding (b) Partial unexpected forwarding (c) Unexpected partial drop 

(d) Unexpected total drop (e) Suboptimal routing

A DCB E

F

G

A DCB E

F

G

A DCB E

F

G

A B C D E

F

G

Faulty switch 
Expected path 
Observed path

A DCB E

F

G H

Figure 3. Simple case studies, used in the first part of our evaluation.

locate the error automatically in both situations and also if
they are correctly identified.

Total unexpected forwarding: Figure 3a) represents this
case. We can see that there is a difference between the
expected path and the observed path for packets of a certain
EC. Particularly, switch D should drop all packets of this
EC, although, we can observe that it is forwarding packets
through the link D −→ E. NetSheriff detected this case
correctly.

Partial unexpected forwarding: This case is represented
by Figure 3b). Now, comparing the represented expected and
the observed paths, we are looking at a slightly different type
of error: now the switch should not drop the packets. Instead,
the switch is expected to forward the packets to some ports,
but the injected fault makes it forward packets through ad-
ditional ports. Concretely, switch B should forward packets
only to links B −→ C and B −→ F . Despite that, not only
switches C and F receive these packets, but also switch G.

2) Unexpected drops: The next two cases are errors in
which a switch drops packets that were expected to be
forwarded. As it was mentioned in the previous section, this
type of errors is detected if the differential analysis algorithm
finishes with unmarked edges in its projection.

Again, the distinction between these two cases is rele-
vant because these two types of error may have different
consequences (identified in Section ??), and also because
one may be harder to detect with other tools than the other,
depending on the policies defined by the network operator.
For example, if five servers are receiving the same packets, it
is reasonable to consider that one would detect a total drop
faster than a partial drop. The first case is a reachability
problem, while the first is just an availability downgrade
(some replicas receive the packets).

Unexpected partial drop: In Figure 3c) we can see
that the error corresponds to a switch dropping packets on
some ports where it was expected to forward them, while
maintaining the correct behavior in other ports. Namely, in
this case, switch B forwards the packets only to switch F ,
when it was expected to forward them also to switch C.

Unexpected total drop: Figure 3d) represents the case
where a switch just drops all the packets of an EC. In this
case we can see that none of the links B −→ C or B −→ F
is followed.

3) Suboptimal routing: Figure 3e) shows a case where a
switch forwards the packets incorrectly, but they still reach
their destination. Of course, this is still undesirable and could

7



trigger multiple problems, being performance degradation
(i.e., bottlenecks in the network) the most obvious. Particu-
larly, in this example, switch B should forward packets to
switches F and G. Instead, it forwards them to switches F
and C. Because of the state of the forwarding tables of the
other switches, packets will still reach F , following another
path. Note that, despite switch B not being expected to
forward the packets to C, we still represented the path from
C to G to avoid confusion, but recall that even if the rules are
not yet installed, the path could be followed without errors
if the controller then sends the respective commands. The
problem here is that switch B had a rule in its forwarding
table to match those packets and output them to switches
B and G only, so switch C should not receive it (and G
should, but from B).

Errors like this could be triggered by a switch that does
not install a rule or a set of rules (in this case, switch
B). They are special instances of cases where the ir both
unexpected forwarding and unexpected drops.

C. Case studies in Fat-Trees

We now present two network configurations on a very
common baseline for datacenter topologies, the fat-tree [16],
along with possible errors that could occur and their respec-
tive possible causes. Both topologies of the examples are fat-
trees with k = 4 (the simplest fat-tree), since this simplifies
the presentation and comprehension, but they can be adapted
to larger and more realistic values of k. As with the simple
case studies, we are for now ignoring the issue of dropped
postcards. That will be discussed in Section IV-D.

Ignored commands in ECMP routing: The first fat-
tree configuration, represented in Figure 4, is based on a
load balancer similar to one that uses Equal-cost multi-path
routing (ECMP), where traffic between two hosts is split
among the best paths that have an equal cost. A specific
path is chosen based on a 5-tuple hash for each packet (the
protocol number, the IP addresses and the TCP or UDP
source and destination port numbers).

Consider, in this case, communications between H1 to
H8. Each packet can be forwarded through one of four
different paths. These four paths are enumerate in the caption
of Figure 4. Every time there are different branching possi-
bilities, the links are represented with thiner lines, and when
the traffic from two different switches is merged to only one
output, the line gets thicker. For example, packets arriving to
switch A1 from switch E1 could be output to switch C1 or
to switch C2, depending on the hash result. Ideally, half of
the packets would be routed through sub-paths represented
with full lines, and the other half would be routed through
the others, represented with dashed lines. Also, we will
consider that the controller logic is fault tolerant against
path breaks, meaning that if a switch that is used for
full-line paths (but not for dashed-line paths) crashes, the
corresponding traffic should be now routed through dashed-
line paths. Switches that meet these conditions are A1 and
A3. Only one of these needs to fail in order for the traffic

to be redirected. Also, if C1 and C2 fails, the result would
be the same, although this is more unlikely compared to
the previous scenario. Note that in bigger topologies there
would be more paths and more switches would meet these
conditions. Also note that this type of crashes is not rare
in big datacenters, hence the fault tolerance mechanism,
which can be implemented by using heart beats or regularly
checking switches’ port status (ping/echo).

Po
d 

0

Po
d 

1

Po
d 

2

Po
d 

3

C
or

e 
 

Sw
itc

he
s

C1 C2 C3 C4

A1 A2 A3 A4

E1 E2 E3 E4

H1 H8

Figure 4. Load balancing in a fat-tree. Ideally, the traffic would be
equally (in ECMP) splited among the different equal (lowest) cost paths.
Between hosts H1 and H8, these paths (with hosts excluded) are: E1 →
A1 → C1 → A3 → E4 ; E1 → A1 → C2 → A3 → E4 ; E1 →
A2 → C3 → A4 → E4 and E1 → A2 → C4 → A4 → E4

The situation that might happen not so often, but is also
way harder to detect, is the one where a switch is not
behaving as specified, failing in a not so clean manner. One
example of such a failure is ignoring new commands from
the controller. Failing to install new rules in switch E1
at this point would cause packets from currently installed
flows to keep being routed through dashed-line paths, even
when the full-line paths could be followed again, after
the crashed switch is recovered. At this point, there is a
misconfiguration in the network, causing an error that is not
always detected, since packets are reaching their expected
destination, without delays while the path is not congested. If
this was a transient fault in switch E1 the full-line path will
be used by other classes of packets and detecting the error
will get even harder, let alone identifying the responsible
device. NetSheriff can be used to detect such problems, as
we verified experimentally with this case.

Anomalous forwarding in a actively replicated server:
The second example on fat-trees is a configuration that
implements an actively replicated server using network
level packet duplication. Consider an edge switch that was
configured to replicate certain packets to k−1 servers, each
connected to a different pod. In this case, where k = 2, this
would be 3 servers. We set a network to have this behavior,
represented in Figure 5, and then injected faults to drop
packets, partially or totally, reproducing a behavior similar
to the unexpected packet drops in the simpler examples
(Section IV-B2). Concretely, H1 is sending packets to H5.
Switch C1 replicates these packets as they arrive, redirecting
copies to H9 and H13. The replication could be done
in other switches and use multiple paths in a ECMP like
fashion. In this particular case, the faults injected made
switch C1 send the packet only through 2 or 1 ports instead

8



of 3, or simply drop it. Again, NetSheriff was able to
identify the switch responsible for the errors and determine
the category of the error.

Po
d 

0

Po
d 

1

Po
d 

2

Po
d 

3

C
or

e 
 

Sw
itc

he
s

C1

A1 A3

E1 E3

H1 H5

A5

E5 E7

A7

H9 H13

Figure 5. Replication in a fat-tree

D. Postcard drops and accuracy

The results of the experiments show that NetSheriff was
able to correctly detect all the tested error scenarios, except
when we injected faults to drop postcards. However, we
cannot assume that postcards are not dropped, because that
would defeat the purpose of our system, as we are mainly
aiming at locating faulty switches, targeting hardware faults
and faults in software running on switches. Thus we must
find ways of detecting postcard drops or at least suspect of
these drops.

We address this problem by trying to reconstruct the
observed path (or the branch) when we miss a postcard.
Because postcards carry information about the output ports,
when we cannot proceed in the graph search we know
the switch of the missing postcard (using the topology
information). Postcards also carry information about the
input port. Thus, we can check which switch sent the packet
that generated the available postcards to the switches that
generated them. If we find a match against the switch of
the missing postcard, we can reconstruct the path and even
proceed with the differential analysis. This worked for all
tested examples of a single failing switch if the error was
an unexpected forward (variations of the previous presented
case studies).

The harder case is when normal packets are unexpectedly
dropped. We should be able to distinguish a normal packet
being dropped from a postcard drop, or at least warn the user
about the possibility. In practice, in some cases we can say
that a packet is being dropped: cases when we try the above
method and it still can not mark all the edges, being the
number of unmarked edges not very low. This is an heuristic,
but we can better see this intuition by looking at Figure 6.
This is how NetSheriff sees two of the tested variations of
the case presented in Section IV-C: one where switch C1
does not forward the packets to any of the switches A3,
A5 and A7 (but sends the postcard, hence the marked edge
A1 → C1), and other where all switches A3, A5 and A7
do not forward packets to the next switches (E3, E5 and
E7, respectively) and also do not forward the respective
postcards. Recall that observed paths are constructed from

postcards, so if C1 drops the packet but not the postcard,
we will see the path E1→ A1→ C1 (hosts excluded), and
if A3, A5 and A7 drop the packet and the postcards we will
see the same result. If they did not drop the packet, but only
the postcards, we would see postcards from switches A3,
A5 and A7 and could reconstruct the incomplete branches.

Since the accumulation of errors is way bigger in the latter
case than in the former, it is safe to say that it is more likely
that switch C1 is the faulty one. Despite that, since it is not
guaranteed that the latter case will not happen, we keep the
output of NetSheriff to list the unmarked edges in such cases
(of when we cannot extrapolate the observed path in case
of possible dropped postcards) and leave this conclusion of
what is the most likely scenario for the network operator
using NetSheriff.

Po
d 

0

Po
d 

1

Po
d 

2

Po
d 

3

C
or

e 
 

Sw
itc

he
s

C1

A1 A3

E1 E3

H1 H5

A5

E5 E7

A7

H9 H13

Expected path 
Observed path

Figure 6. One total drop or three different total drops (plus postcard
drops)?

Table II summarizes this section. In the cases where
NetSheriff presents pairs of switches instead of just one,
we say it has high accuracy. This is because we are not
pointing a single switch, but still we know that one of those
in the pair is the faulty switch, thus we can say we have
high accuracy. In the other cases we say it has maximum
accuracy.

Another issue is that NetSheriff currently generates false
positives in multiple switches in presence of link congestions
along a path, due to packet loss (either normal packets or
postcards). We consider that this is a error that is easier
to diagnose with other tools and therefore did not resolve
the issue, but we might consider in future work the task of
differentiating these cases from the other types of error.

Error Accuracy
Total unexpected forwarding Maximum
Partial unexpected forwarding Maximum
Unexpected partial drop High
Unexpected total drop High
Suboptimal routing High

Table II
NETSHERIFF’S ACCURACY FOR DIFFERENT ERROR TYPES,

CONSIDERING THE POSSIBILITY OF POSTCARD DROPS.

E. Network overhead
The network overhead induced by postcard collection, as

well as the cost associated to their processing, was exten-
sively evaluated by NetSight’s authors, and can be consulted

9



in [9], and thus we omit that analysis in this dissertation. We
let for future work the evaluation of overhead produced by
introducing a proxy between the controller and the switches,
since that evaluation is only relevant in real networks, and
not in the simulated environment we used in this evaluation.

V. CONCLUSIONS

We proposed and evaluated NetSheriff, an automatic
debugging tool for software defined networks. NetSheriff
combines formal validation techniques (to obtain the ex-
pected paths of packets) and packet recording mechanisms
(to obtain the observed paths) with the goal of performing a
differential analysis, that allows to identify exactly in which
device a fault occurs. We experimentally evaluated Net-
Sheriff with different types of errors, that exercise different
aspects of the differential analysis. The results have shown
that NetSheriff was able to pinpoint the faulty switch and
categorize the error in all tested scenarios, except in some
cases of packet drops. Although, even in these cases Net-
Sheriff could detect that it was either one switch dropping
packets unexpectedly or other switch(es) dropping both the
packets and the respective postcards. Based in these findings,
we think this work, with a few further improvements, can
be useful to detect and to help in debugging unpredictable
faults in hardware and software running in the switches in
production networks.

ACKNOWLEDGMENTS

We are grateful to N. Machado for the fruitful discussions
and comments during the execution of this work.

This work was supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with ref-
erence UID/CEC/50021/2013. VeriFlow software was de-
veloped in the Department of Computer Science at the
University of Illinois at Urbana-Champaign.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
flow: Enabling innovation in campus networks,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, Mar. 2008.

[2] N. McKeown, “How SDN will shape networking,” Available
at https://www.youtube.com/watch?v=c9-K5O qYgA, Oct.
2011.

[3] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford,
“A nice way to test openflow applications,” in Proceedings of
the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’12. Berkeley, CA, USA:
USENIX Association, 2012.

[4] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,”
in Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13).
Lombard, IL: USENIX, 2013.

[5] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai,
E. Huang, Z. Liu, A. El-Hassany, S. Whitlock, H. Acharya,
K. Zarifis, and S. Shenker, “Troubleshooting blackbox sdn
control software with minimal causal sequences,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 4, Aug. 2014.

[6] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“Ofrewind: Enabling record and replay troubleshooting for
networks,” in Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, ser. USENIXATC’11.
Berkeley, CA, USA: USENIX Association, 2011.

[7] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown, “Where is the debugger for my software-
defined network?” in Proceedings of the First Workshop on
Hot Topics in Software Defined Networks, ser. HotSDN ’12.
New York, NY, USA: ACM, 2012.

[8] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam,
H. Zeng, S. Whitlock, V. Jeyakumar, N. Handigol, J. Mc-
Cauley, K. Zarifis, and P. Kazemian, “Leveraging sdn layering
to systematically troubleshoot networks,” in Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’13. New York,
NY, USA: ACM, 2013.

[9] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown, “I know what your packet did last hop: Using
packet histories to troubleshoot networks,” in Proceedings of
the 11th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’14. Berkeley, CA, USA:
USENIX Association, 2014.

[10] Cisco Systems Inc., “Spanning tree protocol
problems and related design considerations,”
http://www.cisco.com/c/en/us/support/docs/lan-
switching/spanning-tree-protocol/10556-16.html, Aug.
2005.

[11] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev,
M. Sagiv, M. Schapira, and A. Valadarsky, “Vericon: Towards
verifying controller programs in software-defined networks,”
SIGPLAN Not., vol. 49, no. 6, Jun. 2014.

[12] M. Kuzniar, P. Peresini, M. Canini, D. Venzano, and D. Kos-
tic, “A soft way for openflow switch interoperability testing,”
in Proceedings of the 8th International Conference on Emerg-
ing Networking Experiments and Technologies, ser. CoNEXT
’12. New York, NY, USA: ACM, 2012.

[13] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown,
“Automatic test packet generation,” in Proceedings of the 8th
International Conference on Emerging Networking Experi-
ments and Technologies, ser. CoNEXT ’12. New York, NY,
USA: ACM, 2012.

[14] P. Perešı́ni, M. Kuzniar, and D. Kostić, “Rule-level data plane
monitoring with monocle,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 4, Aug. 2015.

[15] B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: Rapid prototyping for software-defined networks,” in
Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, ser. Hotnets-IX. New York, NY, USA:
ACM, 2010.

[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proceedings
of the ACM SIGCOMM 2008 Conference on Data Commu-
nication, ser. SIGCOMM ’08. New York, NY, USA: ACM,
2008.

10


