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Resumo

As redes definidas por software (do Inglês, Software Defined Networks, SDNs) têm vindo a afirmar-

se como uma das mais promissoras abordagens para simplificar a configuração e gestão de equipa-

mentos. No entanto, as SDNs não são imunes a erros tais como ciclos no encaminhamento, buracos

negros, encaminhamento sub-óptimo, entre outros. Estes erros são tipicamente causados por falhas na

especificação ou por erros nos equipamentos. Se as primeiras podem ser, em grande parte, eliminadas

através da utilização de ferramentas que fazem a validação automática de uma especificação antes da

sua instalação, os erros (e/ou avarias) nos equipamentos (muitas vezes de natureza não determinista)

geralmente só conseguem ser detectados em tempo de execução.

Esta dissertação propõe uma nova técnica para facilitar o isolamento de falhas nos equipamentos

em redes SDN. Esta técnica combina a utilização de ferramentas de validação formal (para obter os

caminhos esperados para os pacotes) e ferramentas de registo de pacotes (para obter os caminhos

observados) para realizar uma análise diferencial que permite identificar com forte precisão qual o

equipamento onde ocorreu a falha que causou a desconfiguração da rede. Construı́mos um protótipo

desta ferramenta e avaliámo-lo no MiniNet. Os nossos resultados mostram que o nosso sistema é

capaz de apontar o comutador em falha ou, no pior caso, pares de comutadores em que um deles está

em falha, e que o sistema consegue também categorizar o erro da rede dentro de cinco tipos diferentes

de erro.



Abstract

Software Defined Networking (SDN) has been emerging as one of the most promising approaches

to simplify network configuration and management. However, SDNs are not immune to errors such as

forwarding loops, black holes, suboptimal routing and access control violations. These errors are typi-

cally caused by errors in the specification or by bugs in the equipment. While the former may be, mostly,

eliminated by using tools that automatically validate specifications before their installation, firmware or

hardware bugs in the switches (many times of non deterministic nature) can only be detected in execu-

tion time, in most cases.

This dissertation proposes a new technique to facilitate the fault isolation in SDN equipments. The

described technique combines the usage of formal validation tools (to obtain the expected paths of the

packets) and packet recording tools (to obtain the observed paths) to perform a differential analysis that

allows the precise identification of which equipment had failed, causing the network misconfiguration.

We built a prototype and evaluated it on MiniNet. Our results show that our system is able to pinpoint

either the faulty switch or, in the worst case, pairs of switches in which one is the faulty, and that it can

also categorize the error within five different error types.
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1Introduction

Software Defined Networking (SDN) is a novel paradigm for managing computer networks. It pro-

vides a clear separation between the data plane (in charge of forwarding packets among devices) and

the control plane (which defines how packets should be forwarded). Furthermore, it defines an architec-

ture that allows the control functions on each device to be configured by a logically centralized controller,

through a standardized interface. This architecture has the potential to strongly simplify network man-

agement (Scott, Wundsam, Raghavan, Panda, Or, Lai, Huang, Liu, El-Hassany, Whitlock, Acharya,

Zarifis, and Shenker 2014; Khurshid, Zou, Zhou, Caesar, and Godfrey 2013; Ball, Bjørner, Gember,

Itzhaky, Karbyshev, Sagiv, Schapira, and Valadarsky 2014; McKeown 2011; Shenker 2011), and has

been adopted by reference companies in the area of computer networking such as Google, Microsoft

and AT&T (Jain, Kumar, Mandal, Ong, Poutievski, Singh, Venkata, Wanderer, Zhou, Zhu, Zolla, Hölzle,

Stuart, and Vahdat 2013; TechTarget 2016; Shenker 2011).

This thesis addresses the problem of identifying misbehaving switches in Software Defined Net-

working (SDN). Particularly, we aim to find inconsistencies between the states of the devices, config-

ured by the controller, and their respective behavior observed at hardware level, and identify the switch

were we found these inconsistencies. Our system, called NetSheriff, compares the expected paths of

packets with their respective observed paths and performs a differential analysis in order to identify the

misbehaving switches. We implemented a prototype that leverages outputs resulting from one system

that verify network invariants in execution time of the controller program (VeriFlow (Khurshid, Zou, Zhou,

Caesar, and Godfrey 2013)) and one system that records information of packets as they traverse the net-

work (NetSight (Handigol, Heller, Jeyakumar, Mazières, and McKeown 2014)), to produce the expected

paths and the observed paths, respectively.

1.1 Motivation

One of the improvements that SDN has brought is the possibility of simplifying network testing,

verification and debugging. This happens because it is possible to leverage SDNs’ architecture by

intercepting commands issued by controllers in order to create models of the network configuration or

instrument switches to apply record and replay techniques for these purposes.



There are two main sources of errors in a SDN. One consists of faulty controller programs, that

may generate network misconfigurations such as routing loops or black holes when deployed. A signif-

icant amount of research has been performed in recent years in tools that aim at detecting and helping

in correcting this type of faults. Tools such as NICE (Canini, Venzano, Perešı́ni, Kostić, and Rexford

2012) or VeriFlow (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013) can analyse a controller program

by manipulating models of network configurations, producing possible configurations and verifying that

a number of target invariants are not violated under these configurations. The other source of errors

are faults in the software that runs on the networking devices or in the hardware itself. Unlike the for-

mer faults, these are often unpredictable and occur at run-time, and thus cannot always be detected

through test or verification. To help network managers to detect and to correct these faults, tools such

as OFRewind (Wundsam, Levin, Seetharaman, and Feldmann 2011) or ndb (Handigol, Heller, Jeyaku-

mar, Maziéres, and McKeown 2012) typically resort to instrumentation, logging of events, and replay

mechanisms. Although, despite these advances in debugging SDNs, it is still generally a daunting and

time consuming task, as it will become clear later in the text. With this in mind, we defined the goal of

this work, which is to create a mechanism that helps network administrators to isolate error causes by

automatically identifying the device responsible by a network error.

1.2 Contributions

To achieve the goal we just mentioned, we leverage techniques used in testing and verification tools

as well techniques used in debugging tools, combining them in order to produce a differential analysis

between expected paths of packets and the respective observed paths. By doing so, this work brings

the following contributions.

• A system that automatically identifies misbehaving switches in a SDN without any modification

to its components, helping network administrators to detect and troubleshoot network errors that

happen in production;

• An evaluation of the system that shows its efficacy in detecting misbehaving switches and clas-

sifying forwarding errors into categories that can further help narrowing down the causes of such

error.

1.3 Results

This work has produced the following results.
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• A description of an architecture that is able to achieve our goal.

• A prototype of this system, where some components where adapted from other systems.

• An experimental evaluation of this prototype in an emulated environment showing that it can effec-

tively identify multiple types of errors and make distinctions among them, automatically.

1.4 Research History

This work benefited from the fruitful collaboration of Nuno Machado, who was always available for

listening and giving ideas, during all stages of the project.

A paper that describes part of this work was published and rewarded as best paper in Actas do

Oitavo Simpósio de Informática, Inforum 2016 (Miranda, Machado, and Rodrigues 2016).

1.5 Structure of the Document

The rest of this document is organized as follows. For self-containment, Chapter 2 provides an

introduction to SDN and testing, verification and debugging tools. Chapter 3 describes the architecture

and the algorithms used by our system, which we call NetSheriff. Then, Chapter 4 presents the results

of the experimental evaluation study. Finally, Chapter 5 concludes this document by summarizing its

main points and future work.
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2Related Work

Our approach to achieve the main goal, which is to automatically identify the switch responsible for

an error in an SDN, is based on ideas presented in previous work in the areas of testing, verification, and

debugging of SDNs. Testing and verification approaches try to validate SDN control software in respect

to previously specified target invariants, aiming to find problems (and possibly their causes) proactively.

Conversely, debugging approaches are tailored to help finding the cause of problems after they are

discovered.

Before overviewing the work in areas of testing, verification and debugging, this chapter introduces

the concept of Software Defined Networking (SDN) (Section 2.1). Then we will present OpenFlow

which is one of the existing Application Programming Interfaces (APIs) to manage switches in SDN

(Section 2.2). After that, we briefly describe common types of errors that can appear in an SDN and

their causes (Section 2.3). Finally, we conclude the chapter by presenting a set of tools that help the

SDN development cycle, including testing, verification and debugging tools (2.4).

2.1 Software Defined Networking

Traditional networks are based on specialized components bundled together in the networking de-

vices. Examples of these devices are routers, switches, firewalls or Intrusion Detection Systems (IDS).

Each of these devices has a specific role and requires individual configuration (that is vendor spe-

cific). A network can have multiple devices that, despite being configured independently, are expected

to cooperate to achieve a common goal. To ensure a consistent configuration across all devices in a

traditional network can be extremely challenging (Scott, Wundsam, Raghavan, Panda, Or, Lai, Huang,

Liu, El-Hassany, Whitlock, Acharya, Zarifis, and Shenker 2014; Khurshid, Zou, Zhou, Caesar, and God-

frey 2013; Ball, Bjørner, Gember, Itzhaky, Karbyshev, Sagiv, Schapira, and Valadarsky 2014; McKeown

2011).

Furthermore, traditional network protocols, in particular routing protocols, have been designed to be

highly decentralized and to be able to operate without a unique point of failure. This decentralization has

advantages but also makes hard to reason about the behavior of the system in face of dynamic changes

to the workload, re-configurations, faults, and asynchrony. Finally, traditional networking components



are vertically integrated, i.e., they combine data forwarding functions with control functions in a way that

makes hard to analyze each of these aspects in isolation. In addition to the complexity referred above,

this vertical integration leads to high upgrade cost (because updating software implies buying new and

expensive hardware) and very slow pace of innovation due to larger hardware development cycles (when

compared to software development cycles) (Ball, Bjørner, Gember, Itzhaky, Karbyshev, Sagiv, Schapira,

and Valadarsky 2014; McKeown 2011).

A key step to solve the complexity problem identified above is to break the vertical integration. This

can be achieved by splitting the network functionality in two main planes: the control plane and the data

plane. The control plane is responsible for deciding how traffic should be handled, in other words, it is

in charge of populating the devices’ forwarding tables. The data plane is responsible for forwarding the

traffic according to the rules installed by the control plane.

Software Defined Networking (SDN) is an emerging paradigm that makes this separation possible.

Given the strong potential of SDN to simplify network management, the paradigm has gain significant

support and adoption from many large companies such as Google, AT&T and Yahoo. In an SDN network,

the network devices can be simplified, becoming simple packet forward elements with a common open

interface to upper layers (e.g. OpenFlow), and all the control logic is pulled to a logically centralized point

of the network. Software Defined Networking is defined by three main abstractions (Shenker 2011): the

forwarding abstraction, the distribution abstraction, and the configuration abstraction. To illustrate these

abstractions and the SDN planes we use Figure 2.1 that is extracted from (Kreutz, Ramos, Verissimo,

Esteve Rothenberg, Azodolmolky, and Uhlig 2014). The interfaces used and offered by the control plane

are referred, respectively, as southbound API and northbound API.

• The goal of the forwarding abstraction is to hide vendor specific details of each individual equip-

ment from the upper abstractions of the SDN architecture. This can be achieved by having all

devices exporting a common and open API (a southbound API) to be used by the upper layer, the

Network Operating System. OpenFlow is a typical example of this API.

• The goal of the distribution abstraction is to hide from the upper layer the number and locations of

SDN controllers, giving the illusion that a logically centralized controller is in charge of implement-

ing the control plane. The choice of whether or not make it distributed through multiple controllers

(and how to distribute it) in order to meet specific requirements (e.g. scalability or fault tolerance)

is up to the programmer instead of an inherent characteristic of a network.

• Finally, the goal of the configuration abstraction (also refered as specification abstraction, or net-

work abstraction in the figure) is to simplify network configuration by converting the global network

view that is managed by the controller into an abstract model. By doing so, the control program

should be able to specify its desired behavior in an abstract network topology.
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Figure 2.1: SDN architecture and its fundamental abstractions (picture taken from (Kreutz, Ramos,
Verissimo, Esteve Rothenberg, Azodolmolky, and Uhlig 2014))

2.2 OpenFlow

OpenFlow is one of the most used southbound APIs (see Figure 2.1). As stated in (McKeown,

Anderson, Balakrishnan, Parulkar, Peterson, Rexford, Shenker, and Turner 2008), when the OpenFlow

idea was developed, the main goal was to allow researchers to experiment new ideas for network proto-

cols in existing network equipment (typically from different vendors) by providing a standardized interface

to manipulate the devices’ forwarding tables. Vendors could provide this interface without exposing the

internal working of their devices. This fact is relevant because vendors would not easily open their algo-

rithms and protocols since just by opening them they would lower the barrier to entry for new competitors,

for example.

Not only the goal previously described was achieved, and SDN has emerged as a very useful

research aid, but it has also emerged in production networks as well, as it was mentioned in the previous

section.

An OpenFlow switch is a switch that can be managed by a remote controller through the OpenFlow
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protocol. First we will briefly describe how the data plane functionality is achieved and after that we

introduce the OpenFlow protocol.

The data plane functionality is implemented through a set of flow tables and a group table. Each

entry in a flow table has a matching rule and a set of actions. Each entry in a group table has a group

identifier and multiple sets of actions. Examples of actions are forwarding the packet to a given output,

or modify some header field. When a packet reaches the switch, it is matched against the entries of the

first flow table. If there is a match, the corresponding actions are applied, and the packet may continue

being matched to other flow tables (also specified in the entry). One of the possible actions specifies that

the packet should be processed through a specified group in the group table. In this case, sets of actions

are selectively applied, depending on the group type of the table entry. e.g., multicasts are implemented

by applying all sets of actions, where each of these sets will modify the header fields accordingly so that

the packet eventually reaches the desired destination, and forward the modified packet to the respective

port. If at some point the packet does not match any entry of the flow table being matched, a default

action is applied. Typically this default action is either (1) sending this packet to the controller, asking

what actions to apply, or (2) dropping the packet.

In order to be managed remotely by a controller, an OpenFlow switch must implement a a secure

channel connecting itself to the controller, and also implement the OpenFlow protocol. This channel has

the purpose of exchanging OpenFlow messages, i.e., messages that belong to the OpenFlow protocol.

This protocol specifies a number of events that the switches should report (e.g., modification of the

status of a port, or receiving a packet that does not match any rule) and commands that the controller

can issue to the switch. The protocol specifies how the switch should react to these commands (e.g.,

some commands specify that the switch should add a new rule to a forwarding table). Figure 2.2 (taken

from (McKeown, Anderson, Balakrishnan, Parulkar, Peterson, Rexford, Shenker, and Turner 2008))

represents this model of an OpenFlow switch. These switches may be either dedicated OpenFlow

switches or OpenFlow-enabled switches. We now describe these two types of switch.

A Dedicated OpenFlow switch is a dumb device that has only data link layer functionality imple-

mented, i.e. it routes packets according to a flow table. Each entry of this table is a pair (rule, action). If

a packet matches the rule, the respective action will be applied to it. Examples of possible actions are

described below. The flow table is populated by means of commands sent to switches from a remote

controller, that implements the functionality of the above layers of the network protocols stack. Com-

munication between the controller and the switch is done by a secure channel, using the OpenFlow

Protocol. The required actions in a dedicated OpenFlow switch are:

• drop the packet, e.g., for security reasons;

• forward the packet to a given port. Particularly, there is one specific logical port (required by the
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Figure 2.2: Idealized OpenFlow switch (figure taken from (McKeown, Anderson, Balakrishnan, Parulkar,
Peterson, Rexford, Shenker, and Turner 2008)). For simplicity, only one flow table is represented.

OpenFlow specification) that is used to encapsulate the packet and forward it to the controller as

an OpenFlow message. This is typically used as the default action, when a packet does not match

any rule and corresponds to asking the controller where the packet should be sent to;

• process the packet through a specified group of the group table.

An OpenFlow-enabled switch is a regular switch that has extended functionality to implement the

behavior of a dedicated OpenFlow switch, but maintaining the upper layers of network protocols stacks

(and thus being smarter devices). These switches should provide the additional functionality without

losing the previous ones. This allows traffic from a production network to be routed using standard and

tested protocols, and research traffic to be routed with experimental protocols. In order to achieve this,

switches should have an additional action:

• forward packet to the normal processing pipeline (layers above data link layer in the network pro-

tocols stack). This is also achieved by the action previously described as “forward to a given port”,

using a specific logic port. However, this is an optional port in the OpenFlow switch specification,

since not all switches must implement it.
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The actions that were briefly described here are detailed in the OpenFlow switch specification (Con-

sortium et al. 2009), along with the OpenFlow protocol. We now describe the most relevant types of

messages of the protocol:

• packet in: sent from switches to the controller when a received packet that does not match any

rule, or the matched rule specifies an output action to the controller;

• packet out : sent from the controller to switches when the controller has to send a packet through

the data plane;

• flow mod : sent from the controller to switches. Used to update a flow table entry (add, modify or

delete);

• port status: sent from switches to controller to inform about a port that was added, modified or

removed.

By using these messages, the controller can be programmed to react to switch events by performing

changes in its own state and responding with commands that manipulate their flow tables, or with indi-

vidual packets that will be sent through the network.

2.3 Common errors in SDN and their causes

We list below the main errors that can affect the operation of SDN networks. These errors can be

caused by a combination of misconfigurations, software, and hardware faults. While misconfigurations

may potentially be avoided by using offline validation tools, that check the correctness of the configu-

rations before they are applied, software and hardware faults may occur in run-time and the resulting

errors require online techniques to be detected.

• Forwarding loops: are always undesirable because it means that packets are traveling around

and will not reach any destination. There are some situations, though, that networks might tolerate

loops during a state transition.

• Black holes: are bugs that lead to packet loss because the packets do not match any rule.

• Access control violations: happens when a host can connect to another host in a separate

VLAN.

• Anomalous forwarding: these errors are characterized by the fact that packets are not being

correctly forwarded according to the specification. This might occur, for example, because a for-

warding rule is not correctly installed. A special case of this error is one called suboptimal routing.
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It happens when packets are reaching their destination, but being incorrectly forwarded, traversing

different paths than the expected ones.

While these errors are not exclusive of SDN, we can leverage the layered architecture of SDN to

identify the causes of errors. Figure 2.3 further divides the SDN planes mentioned in Section 2.1 into

layers of the SDN control stack and presents examples of bugs that can make each pair of layers in-

coherent. The figure is borrowed from (Heller, Scott, McKeown, Shenker, Wundsam, Zeng, Whitlock,

Jeyakumar, Handigol, McCauley, Zarifis, and Kazemian 2013), which describes how one can use mul-

tiple tools to systematically find the layer of a bug and then localize it within the layer. Each state layer

of the SDN control stack fully specifies network behavior. In a correct network, every layer is always

correctly mapped to every other layer. Most errors in the SDN control stack result in mistranslations

between these layers. If this is not the case and all layers match while there is an error, either the policy

or the hardware is broken.

Figure 2.3: SDN stack and examples of errors that cause mismatch between the layers (picture taken
from (Heller, Scott, McKeown, Shenker, Wundsam, Zeng, Whitlock, Jeyakumar, Handigol, McCauley,
Zarifis, and Kazemian 2013))
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2.4 Helper tools for SDN development

Prototyping, testing, verification, and debugging play important roles in software development, and

this is no different in the development in SDN. These activities are so important and recurrent that there

are multiple tools available to automate parts of them. Examples of these tools will be described in detail

in Sections 2.4.1 to 2.4.3. The remainder of this section will briefly introduce each of these activities.

Prototypes are faster and cheaper ways to validate ideas than full implementations. To evaluate

SDN program prototypes, it would be better in many situations to use an emulated environment rather

than a real network, because it is faster to configure software in a single computer than setup hundreds

of real devices, and also because these devices might be running production software that operators

will probably not like to stop. Note that using emulated networks is useful for evaluating prototypes of

network applications but also prototypes of testing tools, online verification tools and debugging tools.

Emulated networks are also useful for performing the tests, verifications and debugging themselves,

for the same reasons mentioned above. Consider, for example, that a bug is reported in production: if

the network is still operational, debugging could be performed in a separate (emulated) network without

having to shutdown the production network or use additional network devices. Section 2.4.1 will present

an example of such emulation tool.

Testing is unavoidable, since there is no way to know if a system works as expected without testing

it. Testing can target functional requirements or system qualities (such as performance or availability).

Despite being helpful, typically testing cannot guarantee the absence of bugs (even if it is exhaustive).

When software testing is not enough, it is possible to apply verification, i.e., verify if the implementation

satisfies the specification. In the particular case of SDN, each translation of state layers of the SDN

control stack is implemented by a code layer. The specification states that every layer must always

map to every other layer. This is particularly relevant for testing and verification tools, because each

state layer of the SDN control stack (Figure 2.3) fully specifies network behavior, and having a logically

centralized controller facilitates the observation of these layers. Thus, testing and verification tools end

up searching for mistranslations between distinct layers automatically, in order to locate the code layers

responsible for errors, i.e., the code layer that performs this wrong translation.

Section 2.4.2 will present correctness testing and verification of SDN control programs. Testing and

verification can be performed either in offline mode or in online mode. Offline tools check target network

invariants before deployment, in a set of possible topologies, or in all admissible topologies. Online tools

perform this check in run time, before each forwarding rule is updated (added, modified or deleted).

Testing/Verification and debugging are closely related since the former are means to find software

failures (also called bugs, defects, problems, errors, and other terms) and the latter is the process of

finding the cause(s) of these failures in order to fix them. Debugging happens during development and
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during production, since deploying software without bugs is, in most cases, an utopic goal, specially

when software starts growing in complexity. Section 2.4.3 will present examples of tools that aid the

debugging activity by recording, processing and replaying traces of events and packet flows in an SDN

network.

2.4.1 Emulation

Emulation plays an important role in SDN programs’ development. This is also true for developing

tools that aid in testing and debugging. An example where emulation shows its importance in debugging

is the ability to replay a buggy trace in an emulated network, maintaining live the (partially) functioning

production network. The replay debugging process can be executed without interfering with the pro-

duction network. As for the tools development, or more generically, the SDN programs’ development,

emulation is important because it might allow for faster prototyping iterations. Because configuring an

emulated environment is faster than configuring a physical one, especially when it has multiple nodes.

MiniNet (Lantz, Heller, and McKeown 2010) was designed aiming to enable a prototyping workflow

that is flexible (adding new functionality and changing among network topologies should be simple),

deployable and realistic (there should be no need to change a functional prototype that runs on an

emulated network to run it on a physical network), interactive (network should be managed and ran in

an interactive manner just like a physical network), scalable (it should allow to emulate networks with

thousands of nodes), and shareable (collaboration should be easy so that other developers could use

one’s experiments and modify them).

Previously available solutions are not affordable by most developers or not realistic. A network

of Virtual Machines (VMs) would meet almost all previously mentioned goals, but since using system

virtualization for every switch and host uses significant resources, this approach becomes too heavy

(does not scale). MiniNet emulates the whole network instead, sharing resources between virtualized

nodes to achieve a scalable solution. To accomplish this, MiniNet uses software OpenFlow switches,

and operating-system-level virtualization to virtualize the hosts. Controllers can be placed anywhere as

long as the machine where the switches are running has IP-level connectivity to them.

Each host is a shell process placed in a different linux network namespace, which is a container

for network state. A network namespace has its own exclusive set of network interfaces and routing

tables. With this approach, different hosts could be running servers listening to eth0 interface, both on

the same port, because these interfaces are private to each network namespace. However, resources

that do not need to be virtualized (like the filesystem) are shared among hosts, thus massively reducing

the overhead when compared to virtualizing a full machine for each host. The links between nodes are

realized through virtual Ethernet pairs, which act like wires connecting two virtual interfaces.
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Network devices and the topology they form can be managed through a command line interface

and python scripts. In order to interact with hosts through a command line interface, the process that

runs it is connected to the host processes using pipes.

MiniNet has helped the development of many useful prototypes, as reported in (Lantz, Heller, and

McKeown 2010). Benchmarks performed by its authors show that a single laptop can be used to emulate

networks with thousands of hosts, and even in these largest topologies each host or switch starts in less

than one second each, which is reasonable, and faster than booting hardware devices. The software

under test can be deployed on real networks without modification and the network can be shared with

others using a single VM image, facilitating peer collaboration. It has been also extended to improve

aspects such as device isolation and monitoring (Handigol, Heller, Jeyakumar, Lantz, and McKeown

2012). Currently, MiniNet cannot exceed the resources of a single machine, i.e., we cannot use mul-

tiple machines to distribute the load of emulating a huge network. However, this is a limitation of the

implementation and not of the design.

2.4.2 Testing and Verification of Software Defined Networks

Ideally, one would like to deploy a network that would not present any failures in production. Un-

fortunately, this is an almost utopian goal to achieve in practice, due to the enormous state space of

SDN applications. In addition to the state of the controller program, one has also to take into account

the state of the devices encompassed by the network, namely the switches and the end hosts. As such,

the state space of an SDN application can grow along three dimensions: i) space of input packets (SDN

applications must be able to handle a large variety of possible packets), ii) space of switch and end

hosts states (e.g. switches have their own state that includes packet-matching rules, as well as counters

and timers), and iii) space of network event orderings (e.g. events such as packet arrivals and topology

changes that can occur in the network in a non-deterministic fashion).

Despite the challenge of dealing with the growth of the state space, testing and verifying SDNs’

correctness is of paramount importance to reduce the likelihood of failures after deployment. In fact,

performing tests and verification allow not only to improve the reliability of the SDN, but also help de-

velopers to fix the underlying bug in a more timely manner, by providing concrete traces of packets that

trigger errors. Therefore, different tools have been recently developed, targeting different types of errors

and therefore approaching this state explosion issue in different ways.

Recall that testing can refer to multiple properties such as correctness, performance, availability

or security. We now overview some tools that aim at testing SDN control software for correctness.

Essentially, these tools check the consistency between layers of state layers of the SDN control stack

(represented in Figure 2.3).
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2.4.2.1 Static checking

Part of the testing and verification tools operate prior to the deployment of the network. These are

called static checking or offline checking tools. We now describe some of the recent work in this area.

2.4.2.1.1 NICE

NICE (Canini, Venzano, Perešı́ni, Kostić, and Rexford 2012) has the goal of finding errors in SDN ap-

plications via automatic testing. As input, it receives a controller program, a network topology (with

switches and end hosts) and a specification of correctness properties for this network.

NICE views the network (i.e. the devices and the controller program) as a unique system, and

applies model checking to systematically explore the possible states of this system while checking cor-

rectness properties in each state. The state of the network is modeled as the union of the individual

states of its components. In turn, the state of a component is represented by an assignment of values to

a given set of variables. Components change their state via transitions (e.g. send or receive a message)

and, at any given state, each component keeps a list of its possible transitions. A system execution is,

thus, a sequence of transitions among component states.

For each state, NICE checks if a given correctness property is violated. If there is such violation,

the tool can, at this point, output the sequence of transitions that triggers the violation. Otherwise, if no

such sequence is found, the search ends without finding a bug and the system passes the test.

In terms of scalability issues, NICE addresses the state space of input packets by applying symbolic

execution to identify relevant inputs in the controller program. Symbolic execution allows executing a

program with some variables marked as symbolic, meaning that they can have any value. In a branching

point, the symbolic execution engine will assign these variables with values that will allow the program

to explore both branch outcomes and exercise multiple code paths.

Since the controller program consists of a set of packet-arrival handlers, NICE leverages symbolic

execution to find equivalence classes of packets (i.e. sets of packets that exercise the same code path in

the controller program). In this way, NICE can model check different network behaviors by simply adding

a state transition that injects a representative packet from each class in the network.

NICE copes with the state space of the switches and end hosts by using simplified models for these

components and the transitions between them. The simplified models ignore unnecessary details of

these devices, therefore reducing their state space.

Finally, to efficiently search the space of network event orderings, NICE employs a number of

domain-specific heuristics that favor the exploration of event interleavings that are more likely to expose

bugs. For instance, one of the heuristics focuses on discovering race conditions by installing rules in
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switches with unusual or unexpected delays. In turn, another heuristic imposes a bound on the number

of packets sent by end hosts, with the goal of reducing the search space of possible transitions.

As a remark, to specify these correctness properties, the programmer can either use NICE’s library

of common correctness properties or write their custom properties. NoForwardingLoops and NoBlack-

Holes are two examples of properties already offered by NICE.

2.4.2.1.2 VeriCon

VeriCon (Ball, Bjørner, Gember, Itzhaky, Karbyshev, Sagiv, Schapira, and Valadarsky 2014) verifies SDN

programs at compile time, validating their correctness not only for any admissible topology, but also for all

possible (infinite) sequences of network events. VeriCon has the advantage of providing the guarantee

that a given SDN program is indeed free of errors. This contrasts to NICE (and other finite state model-

checking tools), which are able to identify bugs, but not their absence. Furthermore, VeriCon scales

better than NICE to large networks because it encodes the network and the correctness conditions as

first-order logic formulas, which can be efficiently solved by theorem solvers.

VeriCon receives as input: an SDN program and first-order logic formulas describing both the con-

straints on the network topology and the correctness condition (expressed as network invariants). To

help defining these formulas and write easily-verifiable SDN programs, the authors of VeriCon designed

a simple imperative language called Core SDN (CSDN). CSDN programs operate on a single kind of

data structures – relations. Relations in CSDN represent the state of the network, by modeling the net-

work topology, switch flow tables and the SDN program internal state. CSDN commands are then used

to query and manipulate relations (by adding or removing tuples from them) as a response to events

such as a packet arrival. Since updates to relations are expressible using Boolean operations, CSDN

programs ease significantly VeriCon’s verification task.

VeriCon verifies correctness by validating if the invariants are preserved after arbitrary events on

switches and on the controller, on an arbitrary topology that respects the topology constraints. In order

for an invariant to hold, it must i) be satisfied at the initial state of the network, and ii) be inductive, i.e.

the invariant must hold after an arbitrary sequence of events.

Writing inductive invariants is not straightforward because one has to specify the sets of states

after an arbitrary sequence of events. However, VeriCon provides an utility that uses iterated weakest

preconditions to produce inductive invariants from simpler invariants specified by the developer. This

approach works as follows. Given an invariant and an event handler, a new condition will be added to

the invariant. This condition is the weakest precondition that guarantees that the previous invariant is

true after the execution of the event handler. According to the authors, at least for simple SDN programs,

this approach can produce inductive invariants with few iterations.

16



Having the inductive invariants, VeriCon performs the verification by sending the first-order logic

formulas (the invariants, the constraints on the topology and the CSDN program transformed in first-

order logic formulas) to a theorem prover. The solver will then either output a concrete example that

violates the invariants or confirm that the program is correct.

A drawback of VeriCon is that it only supports the verification of safety invariants and assumes that

rules are installed atomically, thus ignoring out-of-order installation problems.

2.4.2.1.3 Systematic OpenFlow Testing (SOFT)

SOFT (Kuzniar, Peresini, Canini, Venzano, and Kostic 2012) is a tool designed to find bugs in OpenFlow

implementations or interoperability problems among different switch vendors. Unlike the first testing and

verification tools referenced, it does not take for granted that all OpenFlow switches work the same

way, targeting firmware bugs or differences in the behaviors of switches from different vendors, caused

by ambiguities in the OpenFlow specification. The approach taken by SOFT is to combine symbolic

execution with constraint solving to generate sets of inputs (e.g., fields in OpenFlow messages) that

generate different outputs from one OpenFlow implementation to another.

2.4.2.1.4 Header Space Analysis / Hassel

The Header Space Analysis (HSA) framework (Kazemian, Varghese, and McKeown 2012) is a general

framework, not specific to SDN. We present it in this section because the first implementation of this

framework was a library of static analysis tools (called Hassel). HSA models the network behavior in

a geometric model. Packets are just points in the {0, 1}L space (the header space), where L is the

header length. The network space is the cross product of the header space with the switch-port space

(the space of ports in all switches), i.e., {0, 1}L × {0, .., P} where P is the number of different ports in

the network. The networking boxes such as Network Address Translation (NAT) boxes are modeled by

transfer functions that convert points or subspaces of the network space into other points or subspaces.

Multihop packet traversal is modeled through composition of transfer functions. HSA defines an header

space algebra that can be used to mathematically analyze the network with respect to policies such as

reachability.

Hassel retrieves information from routers such as MAC-Address table, ARP table and IP forwarding

table to generate the network transfer functions. Then, using this network algebra and optimizations

such as lazy evaluation of transfer functions and lazy subtraction it performs reachability tests, loop

detections, and slice isolation checks.
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2.4.2.2 Dynamic checking

Tools that check network programs at run-time are often called dynamic/online checking/monitoring

tools. We will now head to the description of examples of such tools.

2.4.2.2.1 VeriFlow

VeriFlow (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013) analyses the data plane state of a live

SDN network and checks for invariant violations before every forwarding rule is inserted, updated, or

deleted. While previous tools that perform offline invariant checks would be closer to the goal of not

deploying buggy control software, the execution times of those tools are at timescales of seconds to

hours. Moreover, they cannot detect or prevent bugs as they arise.

To perform online verification, VeriFlow intercepts the communications between the controller and

network devices to monitor all network state update events (i.e. events that insert, modify or delete

rules). However, to cope with the problem of state space explosion, VeriFlow confines the checks for

invariant violations solely to the subpart of the network where these events will produce forwarding state

changes.

VeriFlow computes equivalence classes (EC) of packets in order to find the subparts of network

that are affected by a given rule. Here, just like in NICE, an EC corresponds to a set of packets that are

equally forwarded across the network. For each EC, VeriFlow generates a forwarding graph where each

vertex represents the EC in a given network device, and each edge represents the forwarding decision

taken by this device for packets belonging to that EC. Thus, this graph gives us the expected flows in

a physical network view (rather than in an abstract view) as it is constructed directly from information

retrieved from the data plane through the OpenFlow API. After generating these graphs, VeriFlow will run

queries that will be used to verify network invariants after a rule update is intercepted. If the invariants

are not violated, the rule will be sent to the devices. Otherwise, VeriFlow will perform a pre-defined

action, such as blocking the rule and firing an alarm or just fire the alarm without blocking the rule, in

case the invariant violation is not dramatically severe (e.g. packet loss might be tolerable for a while, but

ACL violations might not).

VeriFlow was designed to be transparent for OpenFlow devices. The authors have implemented two

prototypes: one that is a proxy between the controller and the network, being controller independent.

the second one is integrated with the NOX OpenFlow controller (Gude, Koponen, Pettit, Pfaff, Casado,

McKeown, and Shenker 2008) for performance improvement reasons.

The downside of performing online invariant checks approaches with respect to offline approaches

is that they degrade the performance of the network, regarding rule updates. In particular, the results

in (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013) show that VeriFlow incurs 15.5% performance
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overhead on average (delay on rule update), which the authors argue to be tolerable in practice. Even

though one of the components of our prototype is based on VeriFlow, it does not have the same overhead

necessarily, because we do not need to check invariants. We only need the forwarding graphs.

2.4.2.2.2 Automatic Test Packet Generation (ATPG)

ATPG (Zeng, Kazemian, Varghese, and McKeown 2012) is a framework that automatically generates

test packets from network configurations (using the Header Space framework (Kazemian, Varghese,

and McKeown 2012)), proactively testing reachability policies and performance health. It generates the

minimal set of packets to test the liveness of the underlying topology, and the congruence between

data plane state and configuration specifications, i.e., if the policies specified by the network operators

correspond to the actual network behavior. ATPG can exercise every link in the network (minimally) or

exercise every rule in the network (maximally), therefore reducing the scope of a bug to a single link

or forwarding entry. However, because this tool generates test packets for certain classes of packets, it

does not target errors in which different packets of the same class are forwarded differently (which is an

error). e.g., lets say that for a given class, EC, ATPG generates a test packet T . If a switch incorrectly

forwards two packets A and B belonging to EC to different ports, this is an error. Although, because

ATPG only tested the generated test packet T , the error remains undetected. Error like this are caused

by certain faults in the hardware or software running on the switches.

2.4.2.2.3 Monocle

Monocle (Perešı́ni, Kuzniar, and Kostić 2015) targets bugs in switch software and hardware specifically

regarding OpenFlow rule updates, using automatically generated probes to check if switches are cor-

rectly updating their forwarding tables. For this purpose, Monocle formulates switches’ forwarding tables

logic using a Boolean satisfiability (SAT) problem, and dynamically updates this model as network state

changes. It first creates probes in the abstract space to test newly modified rules and then generates

the real probes, comparing the output in the model with the output observed in actual behavior. In order

to obtain this result, prior to sending probes, Monocle uses specific bits in a specific packet header only

for probes (to avoid misinterpreting production packets with probes and vice-versa) and installs probe-

catching rules in neighbor switches that forward probes back to the controller. Doing this, it identifies the

outcome of each rule and can then compare it with the expected outcome in the model.

Monocle suffers from the same problem as ATPG because it uses generated test packets (probes).

We have no knowledge of testing or verification tools that can guarantee that all packets of a class will

actually be forwarded to the same port, if we allow switch arbitrary faults in our fault model.
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2.4.3 Debugging SDN networks

Testing and verification tools for SDN applications have shown promising results and are undoubt-

edly useful to improve the overall quality of these applications by reducing the likelihood of errors. How-

ever, all these tools rely on models of the network behavior, hence cannot handle firmware and hardware

unpredictable bugs, that occur at run-time, and produce non-deterministic behavior or behavior that can-

not be related to network models in any way. e.g., because we have no knowledge of the internal working

of a switch, and it varies depending on the model, we do not have a guarantee that packets from the

same equivalence class will be forwarded equally as expected. To address problems stemming from this

kind of bugs (as well as other bugs that might have not been uncovered during the testing/verification

phase), SDN debugging tools are still required.

Typical tools used to debug traditional networks include ping, traceroute, tcpdump and SNMP

statistics (Handigol, Heller, Jeyakumar, Mazières, and McKeown 2014; Handigol, Heller, Jeyakumar,

Maziéres, and McKeown 2012). Unfortunately, these tools are often not enough to find the root cause

of bugs, or provide little aid in this task, because they are still very time consuming.

SDN facilitates the development of better tools for network debugging, since the control software is

logically centralized and hardware transparent. Furthermore, these centralized control programs have a

global network view, and write the network state changes directly into the switch forwarding tables using

a standard API. (Handigol, Heller, Jeyakumar, Maziéres, and McKeown 2012)

In this section, we overview some tools designed to help developers debug errors in SDN networks.

2.4.3.1 NetSight

NetSight (Handigol, Heller, Jeyakumar, Mazières, and McKeown 2014) is an extensible platform de-

signed to capture and reason on packet histories. Packet histories can be extremely helpful to debugging

because one can ask questions such as where the packet was forwarded to and how it was changed,

instead of having to manually inspect forwarding rules. The authors have implemented on top of it four

network analysis tools for network diagnosis showing NetSight’s usefulness. Among these tools, we are

particularly interested in ndb (Handigol, Heller, Jeyakumar, Maziéres, and McKeown 2012) which is an

interactive debugger for networks, with functionalities similar to gdb.

NetSight offers an API to specify, receive, and act upon packet histories of interest. The packet

histories are obtained by means of a regular-expression-like language, called Packet History Filters

(PHFs). More concretely, PHFs consist of regular expressions used to process and filter postcards.

Postcards, in turn, are records created whenever a packet passes by a switch.
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Postcards contain the following information: the switch id, output ports, and the version of switch

forwarding state (i.e. a counter that is incremented every time a flow modification message is received).

NetSight generates postcards by duplicating each packet that enters a switch and truncating the dupli-

cated packet to the minimum packet size. This packet, i.e. the postcard, is then forwarded to a pre-

determined NetSight server, which are responsible for processing the postcards and generate packet

histories.

To monitor the behavior of the switches, NetSight uses a process called flow table state recorder (or

recorder, for short) placed in between the controller and the switches. The recorder intercepts all flow

modification rules sent to the switches and stores them in a database. In addition, NetSight augments

each rule with instructions to create the corresponding postcard, namely the destination of the NetSight

server which the postcard should be forwarded to.

Naturally, recording postcards for every packet hop and processing them in order to build packet

histories imposes scalability challenges. To address these challenges, NetSight uses one or more ded-

icated hosts to receive and process postcards, employs aggressive packet header compression and

relies on a carefully optimized code.

The authors have implemented a prototype of NetSight and tested it on both physical and emulated

networks, with multiple unmodified OpenFlow controllers and diverse topologies. According to the results

reported in (Handigol, Heller, Jeyakumar, Mazières, and McKeown 2014), NetSight scales linearly with

the number of servers.

2.4.3.2 OFRewind

OFRewind (Wundsam, Levin, Seetharaman, and Feldmann 2011) is a debugging tool that allows

the record and replay of packets in SDN networks. As stated before in this section, standard tools used

for network debugging are in many situations not enough to find the root cause of a problem. The

behavior of black-box components (switches with proprietary code) cannot be understood by analytical

means alone. In such situations, repeated experiments are needed. Therefore, it would be useful for

developers to replay the sequence of events that led to an observed problem. OFRewind was designed

to achieve this goal. The evaluation results shown in (Wundsam, Levin, Seetharaman, and Feldmann

2011) show that OFRewind can be enabled by default in production networks.

One of the key factors that allows OFRewind to be always on is the possibility of partial recording:

even though it is possible to record the full set of packets, this is infeasible in an entire production

network. Most of the times, it is enough to record just a small subset of the traffic, such as just the

control messages or just the packet headers. The ability to replay different subsets of traffic, multiple
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times, allows to reproduce the error and, throughout these repeated replays, isolate the component or

traffic causing the error.

2.4.3.3 SDN Troubleshooting System (STS)

STS (Scott, Wundsam, Raghavan, Panda, Or, Lai, Huang, Liu, El-Hassany, Whitlock, Acharya,

Zarifis, and Shenker 2014) aims at reducing the effort spent on troubleshooting SDN control software,

and distributed systems in general, by automatically eliminating from buggy traces the events that are not

related to the bug. This curated trace, denoted Minimal Causal Sequence (MCS), contains the smallest

amount of inputs responsible for triggering the bug.

The minimization process consists of two tasks: i) searching through subsequences of the logged

external events (e.g. link failures) and ii) deciding when to inject external events for each subsequence

so that, whenever possible, an invariant violation is triggered again, during replay.

For the first task, STS applies delta debugging, which is an algorithm that takes as input a sequence

of events and iteratively selects subsequences of it. STS also receive as an input the invariant that was

violated by the execution of this sequence of events. If a subsequence successfully triggers the invariant

violation, the other subsequences are ignored and the algorithm keeps refining that one until it has found

the MCS. Note that, using this approach, an MCS is not necessarily globally minimal.

In order to keep the network state consistent with the events in the subsequence, STS treats fail-

ure events and its corresponding recovery events as pairs and prunes them simultaneously. Also, STS

updates the hosts’ initial positions when pruning host migration events to avoid inconsistent host posi-

tioning.

For the second task (deciding when to inject external events), STS uses an interposition layer that

allows delaying event delivery to make sure that the replayed sequence of events obeys to the original

“happens-before” order.

STS has the advantage of creating an MCS without making assumptions about the language or

instrumentation of the software under test.

In terms of limitations, STS is not guaranteed to always find an MCS due to partial visibility of

internal events, as well as non-determinism (although not finding is a hint for the type of bug). Also, per-

formance overhead from interposing on messages may prevent STS from minimizing bugs triggered by

high message rates. Similarly, STS’s design may prevent it from minimizing extremely large traces. Fi-

nally, bugs outside the control software (for instance, misbehaving routers or link failures) are considered

to be out of the scope of this system.
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2.4.3.4 DiffProv

DiffProv (Chen, Wu, Haeberlen, Zhou, and Loo 2016), similarly to STS, aims at automatically min-

imizing the event trace that is known to trigger a bug in a distributed system. DiffProv is based on the

concept of network provenance (Zhou, Sherr, Tao, Li, Loo, and Mao 2010), which is a way to describe

the causal relationships between network events. Having logged the faulty event, the key idea is to use

a reference event to improve the diagnosis. This reference event is one that, unlikely the faulty one, has

produced the desired outcome for the network operator. Aside from that, a good reference is as similar

as possible to the faulty event. This way, DiffProv algorithm will likely identify a small set of changes

needed to transform the “bad” event into the “good” event, i.e., the set of changes to fix the network

misconfiguration.

Regarding SDN, DiffProv accepts as input a controller program and two packets: one that was

forwarded as intended, and one that was not. DiffProv then uses a replay mechanism so that the

algorithm can find a local minimum of events that triggers the difference between these two packets.

Thus, like STS, bugs outside the control software are considered to be out of the scope of this system.

Summary

In this chapter we introduced the concept of Software Define Networking, its objectives and archi-

tecture. We also introduced the mostly well known API for switch configuration in SDN, OpenFlow. After,

we started describing some of the tools that leverage SDNs’ architecture to improve network reliability,

which is our objective.

Regarding reliability, we approached these systems dividing them in two big categories: SDN testing

and verification (Section 2.4.2) and SDN debugging (Section 2.4.3). In one hand we have tools that strive

for finding networks errors before they arise, e.g., checking for congruence between layers in the SDN

stack and present either counter-examples of packets for network invariants, the whole set of packets

that violates the invariants or problematic forwarding rules. On the other hand we have tools that are

tailored to help network operators to find bugs after they occur, either in cases where the previous set of

tools was not able to fulfill its job or in cases that they cannot guarantee correctness (non deterministic

bugs or unpredictable behavior). These tools rely in instrumentation and event logging, typically so that

one can either analyze them or reproduce them repeatedly and partially in order to consecutively narrow

down the event list and isolate the root cause of the error. Since this manual inspection is usually very

time-consuming, it is usually preferred to take the latter approach, but even this one is often a daunting

task, and is not adequate for non-deterministic bugs.

With these ideas in mind, we propose a tool that could help network operators, helping to automate
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part of the network debugging task (finding the faulty switch) and can deal with unpredictable and non

deterministic bugs. The next chapter will introduce the architecture and implementation details of our

system.
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3NetSheriff

This chapter describes the design of our system - NetSheriff and the implementation of our pro-

totype. We start by providing an overall description of NetSheriff’s architecture and components (Sec-

tion 3.1). We then show how NetSheriff uses features from model checking tools to compute the ex-

pected path of a packet (Section 3.2), as well as tracing mechanisms to efficiently obtain the respective

observed path (Section 3.3). After, we describe the main steps for building our prototype (Section 3.4).

We conclude the chapter by presenting a list of categories of errors identified by NetSheriff (Section 3.5).

3.1 Overview

NetSheriff is a system that detects mismatches between the expected path of a packet and its

observed path, and automatically pinpoints the network device responsible for the network misconfigu-

ration. NetSheriff comprises four components: the seer, the instrumenter, the collector, and the checker.

The seer produces a forwarding graph for each equivalence class of packets. The instrumenter appends

actions to controller’s commands, instrumenting switches to create a postcard when a packet traverses

it. The collector assembles postcards generated by the same packet, creating a packet history. The

checker receives both the packet histories and the forwarding graphs and produces the differential anal-

ysis, finding the faulty switch, if there is one. Our implementation uses a component of NetSight as

instrumenter, and modified versions of another component of NetSight as collector and VeriFlow as

seer. The modifications introduced were made to communicate with our new component, the checker.

Before detailing each component, let us note that we have considered the possibility of postcard drops,

but we will abstract away from this scenario until Section 4.4, that describes how we deal with this

problem.

The aforementioned components, depicted in Figure 3.1, are described as follows.

3.1.1 Seer

The seer component in NetSheriff is responsible for computing the expected path for each equiv-

alence class of packets in real time. To this end, the seer models the network’s behavior as a set of
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Figure 3.1: Overview of NetSheriff. 1) The seer builds forwarding graphs, which are a representation
of how packets should be forwarded in the network. 2) The instrumenter intercepts the controller’s
commands and modifies them, so that they additionally instruct switches to create postcards of packets
traversing them. 3) The collector collects postcards from the switches, and assembles them into packet
histories, which correspond to the actual packet flows observed at runtime. 4) Finally, the checker is
responsible for comparing the expected forwarding behavior of a packet (indicated by the forwarding
graph) against the observed path (indicated by the packet history), in an effort to find inconsistencies,
which reveal errors in the switches.

forwarding graphs (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013). A forwarding graph is a repre-

sentation of how packets belonging to the same equivalence class (i.e., packets that exhibit the same

forwarding action for any network device) should traverse the network. In other words, it represents the

expected path of these packets. Vertices in forwarding graphs represent switches, and edges indicate

forwarding decisions between two switches. For instance, let F be the forwarding graph of an equiva-

lence class EC. An edge A → B in F indicates that switch A forwards all packets within EC to switch

B.

Concretely, the seer intercepts all the commands sent by the controller to the switches (e.g., rule

insertion or deletion). Then, it generates new forwarding graphs for the equivalent classes that are

affected by these commands. Finally, the seer sends the updated forwarding graphs to the checker,

which will later use them to perform the differential analysis between the expected and the observed
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paths of packets. Quickly computing these graphs in execution time in order to allow their analysis in

a short time span might be a challenge. In Section 3.2, we describe how NetSheriff addresses this

challenge.

3.1.2 Instrumenter

The instrumenter component has the goal of triggering the record of the necessary information to

rebuild the paths taken by each packet in the network. For this purpose, the instrumenter leverages the

SDN architecture, intercepting messages between the controller and every switch (note that both the

seer and the instrumenter are transparent for the switches and the controller).

In particular, the instrumenter extends each rule sent by the controller, appending actions that first

modify the packet so that it carries additional information (detailed below) and after that forwards this

duplicate packet so that it will reach the collector. The original packet is sent unmodified to the specified

output port in the rule. The duplicated packet, which we will call postcard just like in (Handigol, Heller,

Jeyakumar, Mazières, and McKeown 2014), contains the essential packet information as well as the id

of the switch that has recorded it, the version of the switch flow table (a counter incremented when this

table is modified), and the input and output ports.

3.1.3 Collector

The collector component consists in a server (centralized or distributed) that receives the postcards

sent from the switches and reorganizes them with the purpose of creating multiple distinct collections,

designated by packet histories, as in (Handigol, Heller, Jeyakumar, Mazières, and McKeown 2014).

Each packet history corresponds to the set of all postcards generated while a packet traverses the

network. The packet history thus allows to build the path taken by this packet and infer the possible

header modifications performed by each switch.

3.1.4 Checker

The checker component is responsible for signaling an unexpected network behavior regarding

forwarding decisions, pinpointing the faulty switch that caused such misbehavior. To this end, the checker

leverages both the forwarding graphs generated by the seer and the packet histories assembled by the

recorder.

The checker performs the differential analysis by projecting the histories against the graphs and

detecting possible divergences. If the projection of the expected path and the actual path yields a perfect
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match, then the packet was correctly forwarded across the network and NetSheriff does not report any

anomaly. Conversely, when there is a mismatch between the expected path and the observed path,

NetSheriff reports the incorrect forwarding and indicates the switch where the divergence first occurred,

i.e., the switch responsible for the fault. In this latter case, different patterns in the projection can also

give further information about the switch problem.

As a simple example, consider the scenario in Figure 3.2, which depicts an SDN with five switches:

A,B,C,D, and E. Now let us consider that one wants to send a packet from A to E and that the packet

is expected to be forward along the route A → D → B → E (Figure 3.2b). However, the actual path of

the packet ends to be A → D → E (Figure 3.2c). When the checker performs the differential analysis

between these two paths, it verifies that there is a mismatch in switch D. As a result, NetSheriff reports

a fault in the SDN and identifies switch D as the source of the problem.

In more complex scenarios, there are the possibilities of multicasts or broadcasts, which means

that, in certain points, the paths can be split in multiple branches. Furthermore, switches might modify

the packet headers (e.g., in presence of Network Address Translation (NAT) boxes). These modifica-

tions must be taken into account when performing the differential analysis, because when the header is

modified, the “new” packet might belong to a different EC, therefore having a different forwarding graph.

NetSheriff deals with this problem by merging the multiple possible graphs for a given packet history. The

merged graph is then projected against the postcards of the corresponding packet histories. If there is a

divergence between the expected and the observed paths, the error can be categorized according to the

characteristics of the projection. The differential analysis algorithm is described in detail in Section 3.4.

3.2 Computing Forwarding Graphs

As mentioned in the previous section, NetSheriff’s Seer component is based in forwarding graphs,

which represent the paths that each equivalence class of packets is expected to follow. NetSheriff

computes forwarding graphs while the network state is being altered, recomputing the graphs only for

equivalence classes that are affected by the intercepted rules issued by the controller, since in the

presence of large and complex networks, it becomes impractical to compute forwarding graphs for the

whole network every time a new forwarding rule is changed.

NetSheriff’s seer component is built on top of part of VeriFlow (Khurshid, Zou, Zhou, Caesar, and

Godfrey 2013), leveraging its ability to efficiently compute the forwarding graphs. In particular, we do

not need to verify network invariants, but we need the rest of its functionality to compute the graphs.

We modified it so it sends to the checker component the links of the forwarding graphs that are mod-

ified, along with the respective EC. The checker will then reconstruct the forwarding graphs using this

information.
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Figure 3.2: Differential analysis performed by NetSheriff’s checker. The checker projects the ex-
pected path (3.b) against the observed path (3.c) in order to find potential mismatches in the packet flow
and pinpoint the faulty switch (3.d).

The seer maintains a trie (i.e., a prefix tree) that associates the forwarding rules installed in the

switches to the prefixes of the packet header fields that they match. Using this structure, the n-th level in

the trie represents the n-th bit of the packet header field matched by a forwarding rule. Nodes in the trie

(apart from the root and the leaves) contain one of the three possible values for that specific bit in the

packet header, namely 0, 1, and wildcard (represented by ∗). Hence, each node in level n − 1 spawns

three child nodes, corresponding respectively to the three values that the n-th bit of the header can have.

Leaves in the trie store pairs of type (s, r), meaning that the switch s contains a forwarding rule r that

matches packets with prefixes given by the path between that leaf and the root of the tree.

When the controller issues a command to one of the switches, the seer traverses each level of the

trie to find all packet headers that are affected by the incoming rule. In particular, the search outputs the

set of leaves whose rules overlap with the new forwarding decision. Note that, by having each dimension

representing a bit of the packet header, the trie allows the seer to perform the lookup very efficiently (as

it only searches along the branches that fall within the address range of the new rule).

Next, the seer computes affected ECs (i.e., ECs affected by the updated rule) as follows. For the set

of overlapping rules, the seer computes a group of disjoint ranges (starting from the most generic rule

to the least generic one), such that no range can be further divided. Each EC will then be defined by a

unique, individual range. As an example of this procedure, let us consider a switch with a rule matching
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packets having IP addresses with prefix 10.1.1.0/24. Now consider that the switch installs a new rule

(with higher priority) affecting packets within the address space 10.1.0.0/16. Since the two rules overlap

(the latter rule is more restrict than the former and has higher priority), NetSheriff’s seer will identify three

different ECs for this case, corresponding to the three following ranges: [10.1.0.0, 10.1.0.255], [10.1.1.0,

10.1.1.255], and [10.1.2.0, 10.1.255.255]. A more detailed description on how to compute ECs can be

found in Veriflow’s paper (Khurshid, Zou, Zhou, Caesar, and Godfrey 2013).

Finally, NetSheriff’s seer generates the forwarding graphs for the new ECs and sends them to the

checker, as referred in Section 3.1.

3.3 Computing the Observed Path

NetSheriff’s obtains packet histories by assembling the postcards generated by the switches which

the packets passed through. To this end, the collector has to gather all postcards corresponding to

each individual packet, which may correspond to a large amount of data. To build packet histories in an

efficient and scalable way, we used two components of NetSight (Handigol, Heller, Jeyakumar, Mazières,

and McKeown 2014). NetSight is a tool for generating, capturing and processing postcards. For large

networks, it allows the usage of multiple servers that collect postcards. Our instrumenter is NetSight’s

Flow Table State Recorder (FTSR), and we our collector is a NetSight server that sends all the packet

histories to our checker component.

3.3.1 Generation and capture

NetSight implements the mechanism for packet duplication described in Section 3.1. The propaga-

tion of postcards can be performed in two different modes: using the production network (in-band) and

therefore consuming part of the available bandwidth but avoiding the use of additional switches only for

this purpose, or opposingly, using a different subnetwork to avoid bandwidth overhead at the cost of hav-

ing dedicated switches for this purpose, that will connect the remaining switches to NetSight servers. As

it was already stated, in either of these two situations it is possible to use multiple servers, dispersed in

the network. This will minimize the traffic that is essential for this phase. Using multiple servers requires

another phase that will guarantee that postcards generated by the same packet will eventually be stored

in the same server.
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3.3.2 Processing

To ensure load balancing, NetSight distributes the packets across the servers. Servers periodically

exchange batches of postcards among them, such that postcards corresponding to the same packet

are assembled by the same server. To guarantee packet locality, NetSight uses the packet ID (which is

an hash of the packet contents) as index, and associates servers with packet index ranges. Moreover,

to reduce both the storage space and the network bandwidth, postcards are compressed before being

exchanged by the servers.

Each server maintains a path table, where it stores postcards belonging to different packet flows.

The path table is a key-value data structure that maps a unique packet ID to the group of postcards

observed for that packet.

NetSight’s coordinator receives user queries, called packet history filters, for filtering user’s packet

histories of interest. This allows network operators to look at packet histories that match specific pat-

terns which they want to analyze, e.g., packets that traverse two specific switches (or any other number).

Matched packet histories become available to applications built on top of NetSight, along with the re-

spective matched filter. NetSheriff performs the task of setting filters automatically, setting filters for

affected equivalence classes after the seer component computes these classes.

NetSheriff requires packet histories to be ordered in order to be able to perform the differential

analysis. However, due to delays in the network, postcards from switches can arrive to the servers in

an out-of-order fashion. To cope with this issue, the collector relies on topology information (namely

information regarding the switch IDs and output ports) to correctly sort the postcards. A packet history

thus corresponds to a sorted list of postcards. Once assembled, packet histories are sent to the checker,

as described in Section 3.1.

3.4 Implementation

As it is mentioned in Sections 3.2 and 3.3, NetSheriff’s seer and collector components are small

modification of VeriFlow and of NetSight server, respectively. The modifications add the necessary

logic to project packet histories in forwarding graphs, by sending the data to our checker component.

Our instrumenter component is NetSight’s flow table state recorder (FTSR). This NetSight component

originally acts as a proxy between an OpenFlow controller and the switches of the network, as it happens

with VeriFlow. Thus, we connected these two proxies to each other so that VeriFlow acts as a proxy

between the controller and FTSR, and this latter acts as a proxy between VeriFlow and the switches.

NetSight servers listen to specific ports of host machines called logger hosts. In the specific case of
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our prototype, we launched a server listening to a port created by the network emulator MiniNet (Lantz,

Heller, and McKeown 2010), which was the chosen environment to test and evaluate our prototype.

Despite the checker not being an extension to either of these systems, but rather a component

whose inputs are generated by their extensions, in our prototype the checker’s code was added to

NetSight server’s code to avoid an extra communication flow and another program being executed, thus

easing the development and tests. The changes performed to the original versions of VeriFlow and

NetSight were the following.

• Upon receiving a flow mod message, VeriFlow computes the affected Equivalence Classes of

packets and the respective Forwarding Graphs. In NetSheriff, we leverage this fact to generate

the expected path of a packet from the forwarding graphs created by VeriFlow. Concretely, we

extended VeriFlow to send the forwarding graphs to NetSight server as a sequence of connections,

which are pairs of switch identifiers. This simpler version of forwarding graph is sent through an

operation that we added to NetSight server’s API - change_path_request - that receives a pair

〈equivalence class, forwarding graph〉, in the form of text;

• NetSight server was extended to process the pair mentioned above through the following steps.

When the pair is received, NetSight server reconstructs the equivalence class and the respective

forwarding graph (received as text). Then it installs a packet history filter that matches packets

belonging to this equivalence class. Since, by definition, packets cannot belong to more than one

equivalence class, we have guaranteed that this filter results (i.e., matched packet histories) are

uniquely matched by one filter. In other words, the packet history returned by matching a filter will

be associated to only one expected path, and is ready for differential analysis.

3.4.1 Differential analysis algorithm

Having available the packet histories and the respective expected paths (forwarding graphs), the

checker can proceed to differential analysis to check if the observed paths match the expected ones.

The checker component reconstructs the forwarding graphs using the same method of ordering as

the topological order arranged by NetSight. Therefore, when it receives a packet history, it can assume

that as as soon as a difference in the paths is detected, this difference exists, without having to analyze

the remaining postcards. For this reason, the checker performs a breadth-first search in order to detect

faults as soon as possible in the path. This fact is relevant because a fault in a switch might cause that

a packet would then belong to a different equivalence class, if the headers are modified differently than

expected, invalidating the rest of the graph from that point onwards. For this reason, the graph should

be analyzed starting in the source rather than arbitrarily.
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The divergences are found by comparing the vertices from the forwarding graph and the id of the

switch associated to the next postcard popped out of the packet history. Before processing each vertex,

the checker analyses the data stored in the postcards to verify if there were any modifications to the

packet header during its network traverse. In case of any modifications, the graphs corresponding to

the equivalence classes of the different headers are merged. After that, the checker compares each

neighbor vertex in the forwarding graph with the id of the switch associated to the next postcard, until it

finds a mismatch, marking the edges throughout the search. If all the graph is traversed and there are

not more postcards in the packet history, we have a perfect match and the check passes. Otherwise an

error is reported.

This is semantically equivalent to performing a projection of two graphs (expected and observed

paths). We classify edges of the projection as expected or unexpected. An expected edge is an edge

that belongs to the merged forwarding graph (i.e., the edge represents a portion of the expected path of

the packet in the network). On the other hand, an unexpected edge is an edge that did not belong to the

merged forwarding graph but is created by projection a vertex in the graph and the switch associated

to the next postcard in the history. In other words, an unexpected edge means that the packet was

forwarded to an unexpected switch, according to the network configuration.

In summary, when the network is behaving correctly, corresponding to its configuration, all expected

edges in the projection graph are marked by the checker. Also, there are not unexpected edges in the

projection graph. On the other hand, in case of errors, these conditions are not verified simultaneously.

Additionally to identifying the faulty switch, we can also categorize the error, using the criteria defined in

Section 3.5.

3.5 Error categories

Below we categorize switch configuration errors according to the characteristics of the projection

graph when the mismatch is found and what problems they could raise in the network.

• Total unexpected forwarding

Description: Switch forwards a packet that should be dropped.

Examples of possible problems raised: Access control violations.

Detection: One or more unexpected edges have origin in vertices without expected exiting edges.

• Partial unexpected forwarding

Description: Switch forwards a packet to additional ports other than the expected in the configu-

ration.

Examples of possible problems raised: Network congestion, access control violations.
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Detection: At least one expected edge exits from vertices with at least one marked expected

edge.

• Unexpected partial drop

Description: Switch forwards a packet only to a (non-empty) smaller subset of the expected ports.

Examples of possible problems raised: Availability downgrade (less fault tolerance).

Detection: A source vertex contains one or more marked expected edges, alongside one or more

unmarked expected edges.

• Unexpected total drop

Description: Switch unexpectedly drops a received packet.

Examples of possible problems raised: No reachability.

Detection: All the expected edges exiting from a vertex are unmarked.

• Suboptimal routing

Description: Combinations of the above cases, but the packets reach their correct destinations.

Examples of possible problems raised: Network congestion.

Detection: Possible combinations of the aforementioned cases where it is possible to traverse the

projection graph from the source to the final vertices (i.e., the ones that have no exiting edges)

through expected marked edges and the unexpected edges calculated by NetSheriff.

Summary

In this chapter we have presented the design and implementation of NetSheriff. Leveraging the

ability of others tools to efficiently create and maintain forwarding graphs for each equivalence class of

packets (VeriFlow) and to create, store and process records of the packets’ network traversals (NetSight)

we built a system that is able to perform a differential analysis with the expected paths of packets and with

the respective observed paths, in order to locate the responsible switch for a network misconfiguration.

Our differential analysis algorithm works by creating a projection of the packet histories provided by our

Instrumenter and Collector components (built on top of NetSight) in the forwarding graphs provided by

the Seer components (built on top of VeriFlow). During this task, the algorithm classifies the edges in

a way that it can then provide more information about the error, being able to classify it among five non

disjoint categories.

In the next chapter we present the experimental evaluation made using this prototype.
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4Evaluation

This chapter describes the experimental evaluation that we performed for NetSheriff. We will start

with the details of the base experimental setup for each of the evaluated case studies (Section 4.1). We

will then analyze five simple case studies that serve the purpose of demonstrating that NetSheriff can

identify the faulty switch in errors from the five categories presented in the end of the previous chapter

(Section 4.2). After that, we will see slightly more complex cases, yet more realistic (Section 4.3). Finally,

we discuss the system’s accuracy (Section 4.4) and network overhead (Section 4.5).

4.1 Experimental setup

We evaluated NetSheriff’s prototype mainly targeting its efficacy in identifying faulty switches, as

well as its ability to differentiate multiple types of errors in an SDN. With this in mind, we performed

experiments with multiple types of errors that might appear in these networks. The experiments were

performed using MiniNet (Lantz, Heller, and McKeown 2010), version 2.2.1, in an Intel i7-720QM with

8GB RAM DDR3, 250 GB SSD and Ubuntu 14.04.

Fault injection: To evaluate NetSheriff’s efficacy in detecting errors in SDNs, we injected different

faults in switches so that the multiple types of errors enumerated in Section 3.5 were generated. More

concretely, to inject faults in switches we changed the flow tables using the command:

sudo ovs-ofctl mod-flows <switch-id> <flow>

This command changes a flow table of the Software OpenFlow Switch being used by MiniNet, mod-

ifying an entry. Concretely, we use it to modify the actions associated to a given entry. For example, if we

want to inject a fault of dropping a packet that should be forwarded to port 1, we copy the entry, retrieved

with the command sudo ovs-ofctl dump-flows <switch-id>, and substitute the action output:1 by

output:0 (which means drop).

Using this approach, NetSheriff does not change the forwarding graphs, since the forwarding rules

are not being modified by the controller. We can also simulate that a switch fails to install, modify

or delete one or more rules by recording entries in the flow table of that switch before the controller



issues the commands and then restore these entries using the aforementioned method. This way, the

forwarding graphs will change but the switch will keep forwarding like it did not receive any commands.

Network configurations: The first experiments were performed using the simple topologies and

network configurations presented in Section 4.2. By applying different faults on these topologies,, we

recreated the different error categories listed in Section 3.5. We then made tests in fat-trees using more

realistic network configurations.

To perform these experiments, we first modified a POX controller so that it would configure the

network according to the expected paths for each case. We then manipulated the flow tables of the

”faulty” switch in order to simulate that a controller command was ignored by that switch, a command

that would result in the expected configuration. We modify the corresponding entry so that packets are

forwarded along the observed paths represented in the figure.

We also performed additional experiments, using the POX and NOX unmodified controllers in larger

fat-trees and linear topologies of multiple sizes, to evaluate the operation of NetSheriff in multiple different

situations, when possible (for example, some controllers do not allow physical loops in the network,

independently of using NetSheriff or not). NetSheriff also operated correctly in these experiments.

Applications: For our tests we used ICMP pings, iperf and a python web server.

4.2 Simple case studies

To better understand and assess the limitations of NetSheriff, we first tested our prototype with

five simple configurations that produce the categories of errors previously described when we injected

specific faults. Recall that these categories are not disjoint sets.

We also tried different variations of each case and verified that NetSheriff was able to identify the

faulty switch and the type of error in all cases, except when we consider dropped postcards. In this

situation, there were cases where our system can extrapolate the missing part of the observed path

(i.e., the dropped postcard), and others where it can only identify that one of two switches is failing, or

multiple pairs of adjacent switches are failing. This is not our ideal objective, but it is still very good to

be able to narrow down an error to pairs of switches, specially considering the number of switches on

typical datacenters (hundreds to thousands). This issue of postcard drops and accuracy is explored in

Section 4.4
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4.2.1 Unexpected forwarding

The first two cases are errors in which a switch forwards a certain class of packets through more

ports than those that it was expected to. Recall that this type of errors is detected by NetSheriff when

unexpected edges are found, and that an unexpected edge is an edge that is found in the projection of

a packet history in a forwarding graph of the respective equivalence class of packets, but is not present

in the original forwarding graph.

The distinction between the two cases (presented below) is relevant because, as we have seen in

Section 3.5, these two types of error may have different consequences, and also because one may be

harder to detect with other tools than the other. Therefore, it seems logical that we check if NetSheriff

can locate the error automatically in both situations and also if they are correctly identified.

4.2.1.1 Total unexpected forwarding

Figure 4.1 represents this case. We can see that there is a difference between the expected path

and the observed path for packets of a certain EC. Particularly, switch D should drop all packets of this

EC, although, we can observe that it is forwarding packets through the link D −→ E. NetSheriff detected

this case correctly.

A B C D E

F

G

Faulty switch 
Expected path 
Observed path

Figure 4.1: Total unexpected forwarding. Switch forwards a packet that should be dropped.

4.2.1.2 Partial unexpected forwarding

This case is represented by Figure 4.2. Now, comparing the represented expected and the observed

paths, we are looking at a slightly different type of error: now the switch should not drop the packets.
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Instead, the switch is expected to forward the packets to some ports, but the injected fault makes it

forward packets through additional ports. Concretely, switch B should forward packets only to links

B −→ C and B −→ F . Despite that, not only switches C and F receive these packets, but also switch

G.

A DCB E

F

G

Faulty switch 
Expected path 
Observed path

Figure 4.2: Partial unexpected forwarding. Switch forwards a packet to additional ports other than the
expected in the configuration.

4.2.2 Unexpected drops

The next two cases are errors in which a switch drops packets that were expected to be forwarded.

As it was mentioned in the previous chapter, this type of errors is detected if the differential analysis

algorithm finishes with unmarked edges in its projection.

Again, the distinction between these two cases is relevant because these two types of error may

have different consequences (identified in Section 3.5), and also because one may be harder to detect

with other tools than the other, depending on the policies defined by the network operator. For example,

if five servers are receiving the same packets, it is reasonable to consider that one would detect a total

drop faster than a partial drop. The first case is a reachability problem, while the first is just an availability

downgrade (some replicas receive the packets).

4.2.2.1 Unexpected partial drop

In Figure 4.3 we can see that the error corresponds to a switch dropping packets on some ports

where it was expected to forward them, while maintaining the correct behavior in other ports. Namely, in

this case, switch B forwards the packets only to switch F , when it was expected to forward them also to

switch C.
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A DCB E

F

G

Faulty switch 
Expected path 
Observed path

Figure 4.3: Unexpected partial drop

4.2.2.2 Unexpected total drop

Figure 4.4 represents the case where a switch just drops all the packets of an EC. In this case we

can see that none of the links B −→ C or B −→ F is followed.

A DCB E

F

G

Faulty switch 
Expected path 
Observed path

Figure 4.4: Unexpected total drop

4.2.3 Suboptimal routing

Figure 4.5 shows a case where a switch forwards the packets incorrectly, but they still reach their

destination. Of course, this is still undesirable and could trigger multiple problems, being performance

degradation (i.e., bottlenecks in the network) the most obvious. Particularly, in this example, switch B
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should forward packets to switches F and G. Instead, it forwards them to switches F and C. Because of

the state of the forwarding tables of the other switches, packets will still reach F , following another path.

Note that, despite switch B not being expected to forward the packets to C, we still represented the path

from C to G to avoid confusion, but recall that even if the rules are not yet installed, the path could be

followed without errors if the controller then sends the respective commands. The problem here is that

switch B had a rule in its forwarding table to match those packets and output them to switches B and G

only, so switch C should not receive it (and G should, but from B).

Errors like this could be triggered by a switch that does not install a rule or a set of rules (in this case,

switch B). They are special instances of cases where the ir both unexpected forwarding and unexpected

drops.

A DCB E

F

G

Faulty switch 
Expected path 
Observed path

H
Figure 4.5: Suboptimal routing

4.3 Case studies in Fat-Trees

We now present two network configurations on a very common baseline for datacenter topologies,

the fat-tree (Al-Fares, Loukissas, and Vahdat 2008), along with possible errors that could occur and their

respective possible causes. Both topologies of the examples are fat-trees with k = 4 (the simplest fat-

tree), since this simplifies the presentation and comprehension, but they can be adapted to larger and

more realistic values of k. As with the simple case studies, we are for now ignoring the issue of dropped

postcards. That will be discussed in Section 4.4.
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4.3.1 Ignored commands during load balancing

The first fat-tree configuration, represented in Figure 4.6, is based on a load balancer similar to one

that uses Equal-cost multi-path routing (ECMP), where traffic between two hosts is split among the best

paths that have an equal cost. A specific path is chosen based on a 5-tuple hash for each packet (the

protocol number, the IP addresses and the TCP or UDP source and destination port numbers).

Consider, in this case, communications between H1 to H8. Each packet can be forwarded through

one of four different paths. These four paths are enumerate in the caption of Figure 4.6. Every time there

are different branching possibilities, the links are represented with thiner lines, and when the traffic from

two different switches is merged to only one output, the line gets thicker. For example, packets arriving

to switch A1 from switch E1 could be output to switch C1 or to switch C2, depending on the hash result.

Ideally, half of the packets would be routed through sub-paths represented with full lines, and the other

half would be routed through the others, represented with dashed lines. Also, we will consider that the

controller logic is fault tolerant against path breaks, meaning that if a switch that is used for full-line

paths (but not for dashed-line paths) crashes, the corresponding traffic should be now routed through

dashed-line paths. Switches that meet these conditions are A1 and A3. Only one of these needs to fail

in order for the traffic to be redirected. Also, if C1 and C2 fails, the result would be the same, although

this is more unlikely compared to the previous scenario. Note that in bigger topologies there would be

more paths and more switches would meet these conditions. Also note that this type of crashes is not

rare in big datacenters, hence the fault tolerance mechanism, which can be implemented by using heart

beats or regularly checking switches’ port status (ping/echo).
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Figure 4.6: Load balancing in a fat-tree. Ideally, the traffic would be equally (in ECMP) splited among
the different equal (lowest) cost paths. Between hosts H1 and H8, these paths (with hosts excluded)
are: E1 → A1 → C1 → A3 → E4 ; E1 → A1 → C2 → A3 → E4 ; E1 → A2 → C3 → A4 → E4 and
E1→ A2→ C4→ A4→ E4

The situation that might happen not so often, but is also way harder to detect, is the one where a
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switch is not behaving as specified, failing in a not so clean manner. One example of such a failure is

ignoring new commands from the controller. Failing to install new rules in switch E1 at this point would

cause packets from currently installed flows to keep being routed through dashed-line paths, even when

the full-line paths could be followed again, after the crashed switch is recovered. At this point, there is a

misconfiguration in the network, causing an error that is not always detected, since packets are reaching

their expected destination, without delays while the path is not congested. If this was a transient fault in

switch E1 the full-line path will be used by other classes of packets and detecting the error will get even

harder, let alone identifying the responsible device. NetSheriff can be used to detect such problems, as

we verified experimentally with this case.

4.3.2 Anomalous forwarding in a actively replicated server

The second example on fat-trees is a configuration that implements an actively replicated server

using network level packet duplication. Consider an edge switch that was configured to replicate certain

packets to k − 1 servers, each connected to a different pod. In this case, where k = 2, this would be

3 servers. We set a network to have this behavior, represented in Figure 4.7, and then injected faults

to drop packets, partially or totally, reproducing a behavior similar to the unexpected packet drops in

the simpler examples (Sections 4.2.2.1 and 4.2.2.2). Concretely, H1 is sending packets to H5. Switch

C1 replicates these packets as they arrive, redirecting copies to H9 and H13. The replication could be

done in other switches and use multiple paths in a ECMP like fashion. In this particular case, the faults

injected made switch C1 send the packet only through 2 or 1 ports instead of 3, or simply drop it. Again,

NetSheriff was able to identify the switch responsible for the errors and determine the category of the

error.
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Figure 4.7: Replication in a fat-tree
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4.4 Postcard drops and accuracy

The results of the experiments show that NetSheriff was able to correctly detect all the tested error

scenarios, except when we injected faults to drop postcards. However, we cannot assume that postcards

are not dropped, because that would defeat the purpose of our system, as we are mainly aiming at

locating faulty switches, targeting hardware faults and faults in software running on switches. Thus we

must find ways of detecting postcard drops or at least suspect of these drops.

We address this problem by trying to reconstruct the observed path (or the branch) when we miss a

postcard. Because postcards carry information about the output ports, when we cannot proceed in the

graph search we know the switch of the missing postcard (using the topology information). Postcards

also carry information about the input port. Thus, we can check which switch sent the packet that

generated the available postcards to the switches that generated them. If we find a match against

the switch of the missing postcard, we can reconstruct the path and even proceed with the differential

analysis. This worked for all tested examples of a single failing switch if the error was an unexpected

forward (variations of the previous presented case studies).

The harder case is when normal packets are unexpectedly dropped. We should be able to distin-

guish a normal packet being dropped from a postcard drop, or at least warn the user about the possibility.

In practice, in some cases we can say that a packet is being dropped: cases when we try the above

method and it still can not mark all the edges, being the number of unmarked edges not very low. This is

an heuristic, but we can better see this intuition by looking at Figure 4.8. This is how NetSheriff sees two

of the tested variations of the case presented in Section 4.3.2: one where switch C1 does not forward

the packets to any of the switches A3, A5 and A7 (but sends the postcard, hence the marked edge

A1→ C1), and other where all switches A3, A5 and A7 do not forward packets to the next switches (E3,

E5 and E7, respectively) and also do not forward the respective postcards. Recall that observed paths

are constructed from postcards, so if C1 drops the packet but not the postcard, we will see the path

E1 → A1 → C1 (hosts excluded), and if A3, A5 and A7 drop the packet and the postcards we will see

the same result. If they did not drop the packet, but only the postcards, we would see postcards from

switches A3, A5 and A7 and could reconstruct the incomplete branches.

Since the accumulation of errors is way bigger in the latter case than in the former, it is safe to say

that it is more likely that switch C1 is the faulty one. Despite that, since it is not guaranteed that the

latter case will not happen, we keep the output of NetSheriff to list the unmarked edges in such cases

(of when we cannot extrapolate the observed path in case of possible dropped postcards) and leave this

conclusion of what is the most likely scenario for the network operator using NetSheriff.

Table 4.1 summarizes these findings. In the cases where NetSheriff presents pairs of switches

instead of just one, we say it has high accuracy. This is because we are not pointing a single switch, but
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Figure 4.8: One total drop or three different total drops (plus postcard drops)?

still we know that one of those in the pair is the faulty switch, thus we can say we have high accuracy. In

the other cases we say it has maximum accuracy.

Another issue is that NetSheriff currently generates false positives in multiple switches in presence

of link congestions along a path, due to packet loss (either normal packets or postcards). We consider

that this is a error that is easier to diagnose with other tools and therefore did not resolve the issue, but

we might consider in future work the task of differentiating these cases from the other types of error.

Error Accuracy
Total unexpected forwarding Maximum
Partial unexpected forwarding Maximum
Unexpected partial drop High
Unexpected total drop High
Suboptimal routing High

Table 4.1: NetSheriff’s accuracy for different error types, considering the possibility of postcard drops.

4.5 Network overhead

The network overhead induced by postcard collection, as well as the cost associated to their pro-

cessing, was extensively evaluated by NetSight’s authors, and can be consulted in (Handigol, Heller,

Jeyakumar, Mazières, and McKeown 2014), and thus we omit that analysis in this dissertation. We let

for future work the evaluation of overhead produced by introducing a proxy between the controller and

the switches, since that evaluation is only relevant in real networks, and not in the simulated environment

we used in this evaluation.
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Summary

In this chapter we described the experimental evaluation we made to NetSheriff and its results,

detailing the experiments that showed its efficacy in pinpointing the devices responsible for errors in a

network. We tested our prototype in an emulated environment and created five simple case studies, each

being a different type of error. These experiments have shown that NetSheriff was correctly identifying

the error and the responsible switch, assuming that postcards were not dropped. We then proceeded

to test more complex cases - error situations in more realistic network configurations. Again, NetSheriff

passed these tests. We then relaxed the assumption of no postcard drops, and found that it is sometimes

possible to extrapolate the observed path even when postcards are missing. In the remaining situations,

we can still narrow down the network error to pairs of switches that have at least one misbehaving switch.

Considering that datacenter networks usually have hundreds to thousands of switches, we think that this

is still a useful result.

The next chapter finishes this thesis by presenting the conclusions regarding the work developed

and also introduces some directions in terms of future work.
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5Conclusions

5.1 Conclusions

In this thesis we proposed and evaluated NetSheriff, an automatic debugging tool for software de-

fined networks. NetSheriff combines formal validation techniques (to obtain the expected paths of pack-

ets) and packet recording mechanisms (to obtain the observed paths) with the goal of performing a

differential analysis, that allows to identify exactly in which device a fault occurs. We experimentally

evaluated NetSheriff with different types of errors, that exercise different aspects of the differential anal-

ysis. The results have shown that NetSheriff was able to pinpoint the faulty switch and categorize the

error in all tested scenarios, except in some cases of packet drops. Although, even in these cases

NetSheriff could detect that it was either one switch dropping packets unexpectedly or other switch(es)

dropping both the packets and the respective postcards. Based in these findings, we think this work,

with a few further improvements, can be useful to detect and to help in debugging unpredictable faults

in hardware and software running in the switches in production networks.

5.2 Future Work

There are a few issues that we have in mind for NetSheriff’s improvement in future work.

Although this was not explored in the current prototype, one can extend NetSheriff to validate prop-

erties of the paths during a reconfiguration process. As stated before, the postcards generated by

NetSight carry a version number of the switch when the packet was forwarded. This allows NetSheriff to

associate the observed paths to the corresponding versions of the expected paths, and by doing so we

could perform the validations during reconfigurations.

• Currently, link congestions along a path are generating alerts for errors in multiple switches, due

to packet loss (either normal packets or postcards). This type of error could be treated differently,

leveraging NetSheriff to also deal with excessive packet loss, although it is the less prioritized task

for now, since this distinction should be better dealt with other types of tools.



• A cause of network errors is that switches sometimes do not respond correctly to commands,

failing to add, modify or delete rules. After detecting the faulty switch, NetSheriff could check the

switch’s forwarding table and automatically try to resend the command in order to not only detect

the error and the faulty switch, but also correcting it.

• The most important, yet more challenging, future work would be to find a way to maintain NetSheriff

functionality while reducing network overhead from postcards. After that, the prototype must be

evaluated in real networks.
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Handigol, N., B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown (2012). Where is the debugger

for my software-defined network? In Proceedings of the First Workshop on Hot Topics in Software

Defined Networks, HotSDN ’12, New York, NY, USA, pp. 55–60. ACM.

Handigol, N., B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown (2014). I know what your packet

did last hop: Using packet histories to troubleshoot networks. In Proceedings of the 11th USENIX

Conference on Networked Systems Design and Implementation, NSDI’14, Berkeley, CA, USA, pp.

71–85. USENIX Association.

Heller, B., C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng, S. Whitlock, V. Jeyakumar,

N. Handigol, J. McCauley, K. Zarifis, and P. Kazemian (2013). Leveraging sdn layering to system-

48



atically troubleshoot networks. In Proceedings of the Second ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking, HotSDN ’13, New York, NY, USA, pp. 37–42. ACM.

Jain, S., A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou,

M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat (2013, August). B4: Experience with a globally-

deployed software defined wan. SIGCOMM Comput. Commun. Rev. 43(4), 3–14.

Kazemian, P., G. Varghese, and N. McKeown (2012). Header space analysis: Static checking for

networks. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’12, Berkeley, CA, USA, pp. 9–9. USENIX Association.

Khurshid, A., X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey (2013). Veriflow: Verifying network-

wide invariants in real time. In Presented as part of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13), Lombard, IL, pp. 15–27. USENIX.

Kreutz, D., F. M. V. Ramos, P. Verissimo, C. Esteve Rothenberg, S. Azodolmolky, and S. Uhlig (2014,

June). Software-Defined Networking: A Comprehensive Survey. ArXiv e-prints.

Kuzniar, M., P. Peresini, M. Canini, D. Venzano, and D. Kostic (2012). A soft way for openflow switch in-

teroperability testing. In Proceedings of the 8th International Conference on Emerging Networking

Experiments and Technologies, CoNEXT ’12, New York, NY, USA, pp. 265–276. ACM.

Lantz, B., B. Heller, and N. McKeown (2010). A network in a laptop: Rapid prototyping for software-

defined networks. In Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks,

Hotnets-IX, New York, NY, USA, pp. 19:1–19:6. ACM.

McKeown, N. (2011, October). How SDN will shape networking. Available at https://www.youtube.

com/watch?v=c9-K5O_qYgA.

McKeown, N., T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and

J. Turner (2008, March). Openflow: Enabling innovation in campus networks. SIGCOMM Comput.

Commun. Rev. 38(2), 69–74.

Miranda, J., N. Machado, and L. Rodrigues (2016, September). Isolamento de falhas em redes

definidas por software. In Actas do oitavo Simpósio de Informática (Inforum), Lisboa, Portugal.
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