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Abstract. The microservices architecture is a software engineering ap-
proach that structures an application as a set of loosely coupled services.
Each microservice manages a small, cohesive, subset of the domain enti-
ties and can be implemented, deployed, and managed independently of
other microservices. An implementation of a microservice may need to
read data items that are managed by another microservice. This can be
achieved by doing remote calls to perform the reads or by reading from a
local cache of remote values, that is updated asynchronously using some
form of publish-subscribe middleware. In any case, this can result in one
microservice reading mutually inconsistent versions of remote data ob-
jects. Inconsistent reads can lead to unexpected states (also known as
anomalies) and, ultimately, to undesirable results. Often, programmers
are required to write code to identify the anomalies and compensating
actions to correct them. In this work, we study middleware mechanisms
that aim at ensuring that microservices always observe mutually consis-
tent versions of remote objects, reducing the amount of compensating
actions required. In particular, we focus on mechanisms that are able to
offer transactional causal consistency to microservices.
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1 Introduction

The microservices architecture is a software engineering approach that struc-
tures an application as a set of loosely coupled services. Each microservice man-
ages a small, cohesive, subset of the domain entities and can be implemented, de-
ployed, and managed independently of other microservices. This approach makes
it easier to evolve an application, as different teams may work and update mi-
croservices independently of each other. Each team can pick the programming
language and the storage services that are most appropriate for each service,
without being constrained by the choices made when implementing other ser-
vices. Finally, when the application is deployed, microservices also ease the task
of provisioning the necessary resources, because different resources can be easily
assigned to different services. These advantages have driven many companies to
adopt this approach when developing new applications and, in some cases, to
refactor legacy monolithic applications as a composition of microservices [1].

Microservices also have a number of disadvantages. In a typical monolithic
application, all modules share a single, common, storage system that supports
transactional access. Also, each functionality of the application is executed as
an atomic transaction, that is isolated from other concurrent invocations of the
same or other functionalities. This ensures that, amongst other desirable prop-
erties, a functionality always has access to a consistent state of the data store
while executing. This guarantee is often not provided to functionalities that ex-
ecute in a microservice architecture. First, a given functionality may need to
interact with multiple microservices. Because microservices are independent of
each other, and can use different storage mechanisms, it is much harder to have
the entire functionality executed as a single transaction [2]. Instead, in most
implementations, the functionality is executed as a composition of multiple in-
dependent transactions (where each transaction involves a single microservice).
This leads to a loss of transactional properties to the functionality as a whole,
as there is no longer an atomic commit across all microservices, leading to a loss
of isolation between concurrent executions [3].

Furthermore, even if a functionality only needs to interact with a given mi-
croservice, that microservice may need to read the value of data objects main-
tained by other microservices. This can be achieved by doing remote calls to
perform the read operations or by reading from a local cache of remote values,
that is updated asynchronously using some form of publish-subscribe middle-
ware. Due to the asynchronous nature of updates, both cases can result in one
microservice reading mutually inconsistent versions of remote data objects. Both
the lack of isolation, and the possibility of reading mutually inconsistent values,
can lead to unexpected states (also known as anomalies) and, ultimately, to un-
desirable results. Often, programmers are required to write code to identify the
anomalies and compensating actions to correct them. The use of compensating
actions is an inelegant solution, as it can be both complex and time-consuming
for the developers to implement. This can lead to longer development times and
increased maintenance costs, which ultimately might affect both the performance
and the sustainability of the system.
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In this work, we study middleware mechanisms that aim at ensuring that
microservices always observe mutually consistent versions of remote objects. In
particular, we focus on mechanisms that are able to offer Transactional Causal
Consistency (TCC) to microservices. Informally, TCC is a consistency model
that guarantees: i) the execution of a functionality reads from a causally consis-
tent snapshot, which represents a view of the domain entities that includes the
effects of all executions that causally precede it and ii) the execution of a func-
tionality that updates multiple entities respects atomicity, i.e., all updates occur
and are made visible simultaneously, or none does. The advantage of TCC over
other stronger consistency models is that it can be implemented in a non-blocking
way (namely, without requiring the use of locks or the execution of consensus
amongst microservices). It can therefore be implemented without compromising
the weak coupling amongst the implementations of different microservices. Hav-
ing microservices observe TCC can reduce substantially the number of anomalies
that need to be compensated.

The rest of the report is organized as follows. Section 2 summarizes the
goals and expected results of our work. In Sections 3 and 4 we present the
existing background in this field of work. In Section 5 we analyze and compare
the related work exposed in the previous section. Section 6 describes the proposed
architecture for the solution to be implemented. Section 7 describes the metrics
we will be using to evaluate our solution. Section 8 presents the scheduling of
future work and, finally, Section 9 presents the conclusions of this report.

2 Goals

This work addresses the problem of offering Transactional Causal Consis-
tency to applications implemented following the microservices architecture pat-
tern. More precisely:

Goals: We aim at studying middleware mechanisms that can be ap-
plied to implementations of the microservices architecture pattern to en-
sure that the execution of a given functionality always observes a state
that respects Transactional Causal Consistency. This means that, even if
a functionality is composed of multiple transactions, executed in differ-
ent microservices, all transactions that are part of the same functionality
read from the same consistent snapshot, respecting causality and write
atomicity.

TCC is a consistency criterion that has been proposed for systems that aim
at offering high-availability. Due to this reason, most implementations avoid
locking data items and, instead, tag data versions with metadata that allows to
identify which versions belong to the same consistent snapshot. To ensure that
microservice implementations remain loosely coupled, we also aim at avoiding
locking data items. As a result, our middleware will also be based on keeping
metadata associated to the object versions. Additionally, we would like to offer
TCC transparently. For that purpose, we aim at building mechanisms to tag data
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version automatically, exchange metadata transparently among microservices,
and keep multiple object versions without requiring programmers to manage
version explicitly. To better understand the tradeoffs involved, we plan to analyze
the current work supporting transactions in microservices architectures, as well
as understand the common data storage systems being used to support these
operations in this architecture.

The project is expected to produce the following results.

Expected results: The work will produce i) a specification of the coor-
dination and metadata services; ii) an implementation of a middleware
layer for a target microservices architecture, iii) an extensive experimen-
tal evaluation of the performance using the developed system.

3 Background

In this section we introduce the main concepts that are relevant to our work,
namely we discuss the key properties of microservice architectures and how these
features may interfere with the task of providing consistent results to clients. To
help us in our exposition, we will use a simple application as an example.

3.1 Example: Tournament Management System

As an illustration, we will use a simple application to manage the schedule of
tournaments. A tournament is an event that is characterized by a unique identi-
fier, a number of players, and a date. Each tournament occurs at a given location,
characterized by a unique identifier, a name, and an address. Figure 1 depicts
the entities managed by the application. Figure 2 depicts the system’s microser-
vices, along with the supported methods. The application supports a number
of functionalities such as createTournament, deleteTournament, etc, which are
listed in Figure 3. Note that some functionalities only access a single entity (such
as the UpdateNumPlayers that only accesses the entity tournament) while oth-
ers, access multiple entities (such as the ScheduleTournament that accesses both
tournament and location). The system contains a single invariant that must not
be violated: there cannot occur more than 1 tournament in a location per day.

Location

ID

Name

Address

Tournament

ID

Date

NumPlayers

Fig. 1: Entities
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TournamentService

- createTournament(Date date)

- updateTournamentDate(ID id, Date date)    

- updateTournamentPlayers(ID id, Int players)

- deleteTournament(ID id)

(a) Tournament Microservice

LocationService

- createLocation(String name, String address)

- updateLocationAdress(ID id, String address)

- updateLocationName(ID id, String name)

- deleteLocation(ID id)

- bookLocation(Tournament tournament,
 Location location)

(b) Location Microservice

Fig. 2: Microservices

3.2 Monolithic and Microservices Architectures

Many applications are implemented today using a three-tier architecture [4].
This architecture includes a presentation tier that handles the communications
with the client, an application tier that runs the business logic, and a data tier
responsible for storing data, typically a database. In this section, we focus on
the structure of the application tier.

The simplest form to organize the business logic of an application is to struc-
ture it as a single executable software component, maintained in a shared code-
base, that is deployed and provisioned as a whole. When the business logic is
structured in this way, the application is said to follow a monolithic architec-
ture [5]. This approach is suitable when the application is small, being developed
and maintained by a small team. However, when the application grows, and more
and more functionalities are added, the codebase tends to become extremely
complex. Also, it becomes difficult to appropriately scale the resources assigned
to the application, due to the fact that it is impossible to scale individually the
resources assigned to each subcomponent of the application.

The microservices architecture is a design approach that consists in dividing
the application into multiple loosely-coupled modules (or services) that can be
developed, maintained, deployed and provisioned independently of each other.
Microservices can simplify the growth of the applications, given that it allows
different teams to be assigned to the development and maintenance of different
services. Also, microservices make it easier to provision the right resources to the
application, since it is possible to scale each service independently. Due to these
reasons, the microservice architecture has gained an increasing acceptance.

The microservice architecture raises a number of challenges, some of which
we aim to address in our work. Given that monolithic applications typically use
a single database, it is easy to implement functionalities as atomic transactions.
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TournamentService

- createTournament(Date date)

LocationService

- bookLocation(Tournament tournament,
 Location location)

(a) ScheduleTournament functionality

TournamentService

- updateTournamentPlayers(ID id, Int players)

(b) UpdateNumPlayers functionality

LocationService

- createLocation(String name, String address)

(c) CreateLocation functionality

Fig. 3: Functionalities

In a microservice architecture, different services often use different databases;
although it is possible to execute functionalities that span multiple services as
a distributed transaction, most microservice deployments opt to run those func-
tionalities as a sequence of independent sub-transactions, breaking the isolation
between concurrent executions. Also, in many microservice architectures, some
services cache values of data items managed by other services, which creates
additional opportunities for reading inconsistent data values.

Typically, in the microservice architecture, systems opt to follow one of two
possible approaches to communication across microservices. These are orchestra-
tion and choreography [6]. Following the orchestration approach, microservices
communicate with each other using a centralized service controller (also known
as the Coordinator) that is aware of all the existing microservices. The con-
troller directs each service to perform the intended function. For functionalities
that span across multiple microservices, the coordinator listens to all events
emitted by the services, triggering the following microservices in the function-
ality. Additionally, the coordinator is also responsible for handling both error
and completion events. Large organizations such as Netflix use orchestration
to coordinate their microservices, which in 2015 comprised over 700 microser-
vices [7]. On the other hand, following the choreography approach, there is no
need for any centralized service controllers. Microservices emit events that are
directly subscribed by the following microservices. This process continues un-
til no microservice emits any event. It is important to note that, following this
communication approach, microservices do not need to know of each other’s ex-
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istence, allowing new microservices to be added to the system without needing
to adapt existing microservices.

Our goal is to design mechanisms to improve the consistency guarantees of-
fered to programmers of microservice applications while keeping the implementa-
tion of different services loosely coupled. We plan to integrate these mechanisms
on systems following the orchestration approach.

3.3 Data Distribution in Microservices

In microservice architectures, for each domain entity, there is a single service
that is responsible for performing updates on its data objects. Typically, these
updates are performed by running transactions that are local to that microservice
and, thus, updates to each item are atomic. However, microservices may need to
read values from data items managed by other microservices. There are two main
approaches to support such accesses: remote invocations and data replication.

When using the first approach, a microservice performs a remote invoca-
tion to another microservice to perform a read. This remote invocation is often
implemented using a REST interface [8].

When using the second approach, a microservice keeps a local replica (or
cache) of data items that are updated by remote microservices, but that are
needed to execute local transactions [9]. Replicas of data items are updated
asynchronously using some form of publish-subscribe service: when a microser-
vice performs a local update to a data item, it publishes an event with the new
value, which is subscribed by all other interested microservices.

By keeping a local replica of data items managed by other microservices, it is
possible to execute all reads required to execute a transaction using local opera-
tions only, avoiding the delays associated with remote readings. Unfortunately,
because replicas are updated asynchronously, local reads may return inconsis-
tent values. We discuss the problem of consistency with replicated data in the
following sections.

3.4 Consistency with Data Replication

In this section, we provide brief explanations over the different consistency
models for data replication. An extended comparison between the different con-
sistency models can be found on [10].

We will start by describing various single-object consistency models, that can
be applied to transactions that execute on a single object. These transactions
include both read and write operations.

One of the weaker consistency models that has been used in practice is Even-
tual Consistency :

Eventual Consistency (EC): this model allows for concurrent updates to
be executed in different replicas and assumes that these updates are propagated
asynchronously to the other replicas. This allows replicas to momentarily be
inconsistent from each other, eventually converging to the same value if the
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workload becomes quiescent. Concurrent updates may either be merged or, if
this is not possible, select deterministically one of the concurrent updates and
discard the others (using criteria such as last writer wins).

Eventual consistency permits executions where a client observes an update
and, subsequently, in future access to another replica, no longer sees that update.
Some of these behaviors can be prevented by using a stronger consistency model,
such as Monotonic Reads and Monotonic Writes.

Monotonic Reads (MR): a consistency model that ensures that if a process
performs a read r1, followed by another read r2, then r2 cannot read a state of
the object older than read in r1.

Monotonic Writes (MW): a consistency model that ensures that if a
process performs a write w1, followed by another write w2, then all processes
will see w1 before w2.

Another consistency models that help systems maintain consistency in single-
object scenarios are Read Your Writes and Writes Follow Reads.

Read Your Writes (RYW): As defined in [11], this consistency model
ensures that, while considering two operations: a read r1 and a write w1 by the
same process, if w1 is executed before r1, then r1 must include the changes made
by w1.

Writes Follow Reads (WFR) also known as session causality implies
that if a process executes a write operation w1, and follows up by executing a
read operation r1 that included the changes made by w1, then any future write
operation w2 must become visible after w1.

By combining these four models’ properties, we can derive a stronger consis-
tency model – Causal Consistency, which ensures that the system maintains a
consistent view of its data and that operations are ordered meaningfully.

Causal Consistency (CC): Steams from Lamport’s definition of happened-
before relation [12]. This relation (denoted:→) is a partial ordering of events that
reflects their causal relationship, such that if an event happens before another,
the result must reflect that. Simply, if events a and b occur on the same process,
a → b if event a precedes b. In another case, if an event a is an event that
sends a message and event b is the event that receives this message, then a → b.
The formal definition for the happened-before relation can be found in [12]. CC
embodies the idea of potential causality by linking successive operations inside
a single process and operations that occurred in other processes but possibly
became visible due to messaging mechanisms. Causal Consistency ensures that
all processes see the same order of causally-related operations.

Despite providing stronger guarantees, Causal Consistency does not ensure
that replicas converge to the same state under concurrent operations [13]. To
guarantee this property, while maintaining the precise guarantees that the state
applications observe, we define Causal+ Consistency as introduced in [14, 15].

Causal+ Consistency (CC+): an extension to Causal Consistency, that
provides the extra guarantee of replica convergence under concurrent operations’
scenario.
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Despite providing a stronger guarantee, Causal+ Consistency only guaran-
tees that operations are executed in a causally consistent order. Linearizability
provides stronger guarantees, at the cost of needing more complex mechanisms.

Linearizability is the strongest single-object consistency model, that im-
plies that if an operation A is completed before another operation B is started,
then the effects of operation A should occur before operation B affects the ob-
ject. This consistency model requires changes to be made atomically. Besides
that, it extends Causal+ Consistency by ensuring that operations are consistent
with the same real-time ordering as they took place.

We continue by exploring the different isolation mechanisms, capable of sup-
porting transactions, i.e., sequences of read and write operations for multiple
objects.

3.5 Isolation in Microservices

Ideally, one would like to have functionalities that are executed concurrently
in a microservice architecture to be isolated from each other. The strongest
isolation level is known as strict serializability (Strict 1SR), defined as:

Strict Serializability (Strict 1SR): The strongest consistency policy. As
defined in [16], this model ensures that the execution of transactions take place
atomically. That is, the sub-operations of a transaction do not appear to inter-
leave with the sub-operations of concurrent transactions, leading to a sequential
execution of the set of transactions. This execution must be one that is consis-
tent with the real-time ordering of the transactions. Simply, if a transaction T1

finishes before a transaction T2 starts, then the transaction T2 must be able to
see the results of the transaction T1 in the serialized order. Strict 1SR implies
both serializability and linearizability.

However, for efficiency reasons, even in monolithic applications, weaker iso-
lation levels are used, such as serializability (1SR), defined as:

Serializability (1SR) Similarly to Strict 1SR, Serializability is also con-
sidered a strong consistency policy. It offers the same guarantees as Strict 1SR,
except for Linearizability’s real-time constraints. In this way, as an example, if
a process P1 completes a write x, a following process P2 is not guaranteed to
observe the write operation performed by A. Serializability implies both Repeat-
able Reads and Snapshot Isolation.

A monolithic application can also offer Snapshot Isolation (SI), which is often
the isolation level offered by default in many commercial databases:

Snapshot Isolation (SI): much like the other stronger consistency mod-
els, in SI transactions operate on an independent, consistent snapshot of the
database. SI guarantees that all reads made in a transaction will always see
the last committed values that existed in the database at the time the trans-
action started. This means that if a transaction T1 writes an object obj1, and
a concurrent transaction T2 commits a write operation to the same obj1 after
transaction T1 began, that will cause T1 to abort on commit time. Unlike serial-
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izability, SI only enforces a partial order, that is, sub-operations of a transaction
can interleave with sub-operations of other concurrent transactions.

It is possible to offer these isolation guarantees in a multi-database scenario
by running distributed transactions. The X/Open XA eXtended architecture[17]
is a standard that allows multiple databases to coordinate the execution of sub-
transactions to achieve global isolation guarantees. However, running distributed
transactions may create undesirable dependencies among microservices. For in-
stance, to provide serializability, a transaction may lock data items in a given
microservice until another microservice is ready to commit. To avoid this type of
dependencies, most microservice deployments do not enforce full isolation among
functionalities that span multiple services. Instead, a functionality is broken into
multiple (sub-)transactions that are executed independently of each other.

It is worth noticing that it is possible to define weaker isolation levels among
concurrent functionalities; some of these levels can be implemented while pre-
serving a loose coupling among different microservices. These include Repeatable
Reads (RR) and Transactional Causal Consistency (TCC):

Repeatable Reads (RR): The definition of Repeatable Reads is broad
and can be ambiguous. For our work, we follow the definition of Repeatable
Reads as defined in [18], which states that transactions read from non-changing
snapshots, over the data items. This means that if a transaction reads the same
data object multiple times, it will always the same value each time.

Transactional Causal Consistency (TCC): This is the strongest model
a system can achieve under high-availability and low-latency [19]. TCC extends
CC+ functionality. In this consistency model, transactions read from a causally
consistent snapshot. This means that transactions read from a view of the data
store that includes all the effects of the transactions that preceded it in the
causal chain. As an example, consider a transaction T1, that writes an object X0

that depends on another object Y0. Now suppose there is a running transaction
T2 that reads X0. When T2 reads the object Y , it must read a version that
has not occurred before Y0, due to X0’s dependencies. T2 can either read Y0, a
concurrent version of object Y or a more recent version. Note that T2 cannot
read a version of object Y that depends on a newer version of X than version
X0 because T2’s snapshot already contains version X0.

We will discuss the potential advantages of using weaker isolation guarantees
in microservice architectures later in the report.

3.6 Anomalies

We also discuss common anomalies that can occur in these models. Each
type of anomaly will be followed by a simple example, based on the scenario
of Figure 2. By understanding the differences between each model and the pit-
falls associated with each of them, it is possible to choose the right consistency
mechanisms that answer the needs of our system.

The lack of isolation in microservices environments results from running func-
tionalities as a sequence of independent transactions and the lack of consistency
of read operations on remote entities. This allows the occurrence of operation
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interleaving in ways that can never occur when functionalities are executed as an
atomic transaction in a monolithic application, also known as anomalies. Here,
we list some of the most relevant anomalies that may cause the functionality to
yield incorrect results.

Dirty Reads: an anomaly that occurs when a transaction reads uncommit-
ted data, created by another concurrent transaction. Considering the example
presented in Figure 2, and Table 1, we consider a scenario where transaction T1

creates a tournament X1, using the TournamentCreator service. Concurrently,
another transaction, T2, is able to read the newly created tournament, before
the writing transaction T1 commits the changes to the database. In this case, T2

reads dirty data.

Fuzzy Reads: in this anomaly, the same transaction reads different values
for the same object at different times, resulting in inconsistent data. As an ex-
ample, consider the scenario presented in Figure 2, and Table 2. A tournament
X has been previously created and has been stored in the database as X1. A
transaction T1 reads X1, while a concurrent transaction T2 updates the number
of players participating in the tournament, writing X2. T1 continues its trans-
action by reading the tournament data again, but this time the data read is
inconsistent with the first Read operation, as T1 now reads X2.

T1 T2

W(X1)

R(X1)

Commit

Table 1: Dirty Reads

T1 T2

R(X1)

W(X2)

Commit

R(X2)

Table 2: Fuzzy Reads

Fractured Reads: an anomaly that occurs usually associated with database
shard replication and weaker consistency policies. As an example, consider the
scenario presented in Figure 2, and Table 3. Transaction T1 creates a tournament
X1 and books the location as Y1. After that, transaction T2 updates both the
number of players participating in the tournament as X2, and the location of
the tournament as Y2. We have a Fractured Read if a transaction T3 reads the
tournament with the updated number of players X2, but on the older location
Y1. In this case, the result only captures partial transactional updates.

Lost Updates: an anomaly that occurs when two concurrent transactions
read the same data and concurrently try to update it with different values. Fol-
lowing these events, one of the updates is lost as it is overwritten by the update
done by the other transaction. Taking in consideration the scenario presented in
Figure 2, and Table 4, transaction T1 reads an existing tournament X1. Concur-
rently, transaction T2 increases by 5 the number of players participating in the
tournament as X2. Transaction T1 then proceeds to increase by 2 the number of
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players participating in the tournament. However, since T1 only considers data
read on X1, the new update of X overwrites the update made by T2.

Write Skew: an anomaly that occurs when two different transactions T1

and T2 concurrently update the entities in each other’s read sets. For example,
if a database guarantees serializability, then either T1 executes first, preventing
T2 from achieving an unexpected state, or vice-versa. However, this is not the
case if the database is under the SI consistency model.

As an example, consider the scenario presented in Figure 2 and Table 5.
Consider that a Transaction T1 reads all the registered locations in the system.
Concurrently, a transaction T2 reads all registered tournaments. Transaction T1

proceeds by registering a new tournament on Location l1. Concurrently, seeing
that no tournament is currently registered in location l1, Transaction T2 deletes
location l1. Depending on the real order that these transactions are executed, we
might observe a violation of the system, that is either registering a tournament
on a non-existing location, or deleting a location that has active tournaments
registered to it.

Real Time Violation: an anomaly that occurs when the execution of trans-
actions does not respect the real-time order of the involved transactions. In a
system that offers Serializability as the Isolation policy, if a process p1 runs a
transaction T1 that executes a write operation w, we are not guaranteed that
a subsequent process p2 will be able to read the operation concluded by T1.
These real-time guarantees are only offered by Strict 1SR. As an example, con-
sider the scenario presented in Figure 2 and Table 6. Consider that we have two
transactions: T1 updates the number of players participating in a tournament
t1, while another process executes a transaction T2, responsible for updating
the date of the tournament t1. For Strict 1SR, we would have an anomaly if we
couldn’t guarantee the exact order by these two transactions occurred, according
to Real-time ordering.

T1 T2 T3

W(X1)

W(Y1)

Commit

W(X2)

W(Y2)

Commit

R(X2)

R(Y1)

Table 3: Fractured Reads

T1 T2

R(X1)

W(X2)

Commit

W(X1 + 2)

Table 4: Lost Updates

T1 T2

R(Y1) R(X1)

W(X2) W(Y2)

Table 5: Write Skew
anomaly

We finish this section by presenting a table that shows which anomalies
are prevented by which consistency models, demonstrating the direct relation
between consistency strength and isolation levels.
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T1 T2

W(X1)

W(X2)

Table 6: Real Time Violation anomaly

Dirty
Reads

Fuzzy
Reads

Fractured
Reads

Lost
Update

Write Skew
Real Time
Violation

EC è ✗ ✗ ✗ ✗ ✗

RR è è ✗ ✗ ✗ ✗

TCC è è è ✗ ✗ ✗

SI è è è è ✗ ✗

1SR è è è è è ✗

Strong 1SR è è è è è è

Table 7: Consistency Models and Isolation Levels: a comparison of Anomaly
Prevention Capabilities. Shields represent protection against the anomaly, check-
marks represent vulnerability to the anomaly.

3.7 Addressing Consistency Problems in Microservices

As depicted in Table 7, only the strongest consistency model prevents the
occurrence of all anomalies presented. Furthermore, the weaker the model, the
more anomalies are allowed. Unfortunately, as we have also discussed, enforc-
ing strong consistency in microservices is expensive and reduces the decoupling
among multiple storage services. Due to the latter, many microservice implemen-
tations do not enforce strong consistency. Instead, functionalities are executed
as a sequence of independent transactions that read from local (possibly incon-
sistent) replicas of data items maintained by other data services. As a result,
programmers have to deal explicitly with anomalies and with the lack of atom-
icity in the executions of functionalities that span multiple services [20].

Sagas[21] is a design pattern that helps programmers to structure the code
in a way that helps in mitigating the effects of anomalies and lack of atomic-
ity. This pattern considers the inclusion of compensating actions that aim at
re-establishing the consistency of an application when an anomaly occurs. For
instance, consider the ScheduleTournament functionality of Figure 3. Consider
that a tournament is created at the Tournament service but that no location is
available when booking takes place; in this case, a compensation action could
delete the tournament, to avoid having tournaments without an associated lo-
cation.

Our work is motivated by the observation that the number of anomalies
that need to be addressed by the programmer (via the implementation of ap-
propriate compensating actions) can be reduced if the runtime can offer some
minimal consistency guarantees (such as TCC), even when the functionality is
split into multiple independent transactions. We hypothesize that consistency
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criteria such as TCC can be offered without breaking the decoupling among the
implementation of different microservices.

4 Related Work

In this section, we analyze multiple systems that offer transactional consis-
tency models in either monolithic or microservice architectures. For each of the
analyzed systems, we provide a brief overview of its characteristics, including
both the isolation levels and the proposed solution. We discuss the key features
and benefits of each system, as well as possible caveats of these approaches.

4.1 Cloud Systems with Support for Transactions

Cure Cure [19] was the first system to implement Transactional Causal Con-
sistency (TCC). Cure considers the existence of multiple datacenters, located in
different geographic regions, each maintaining a full replica of a key-value store.
In each datacenter, the data is partitioned across servers. Cure also assumes that
clients are sticky, i.e., that clients access a single datacenter. In this setting, Cure
supports interactive transactions, i.e., transactions where the read-set and write
set are not known beforehand.

TCC allows concurrent transactions to commit, even if they access the same
data items. Cure assumes that objects are implemented as Conflict-free Repli-
cated Datatypes (CRDTs) [22], such that concurrent updates can be merged
consistently. Updates are propagated asynchronously among datacenters. Fur-
thermore, updates to different data partitions are propagated independently of
each other. Thus, two updates performed in the context of the same transaction
can arrive at different points in time to remote datacenters. Updates are tagged
with metadata that allows to identify which version belongs to a consistent snap-
shot when serving reads.

Cure assumes that nodes are equipped with a physical clock that generates
increasing timestamps and that are loosely synchronized with other clocks. When
a transaction commits, it is assigned a commit time, which is computed as the
highest clock value of all nodes (i.e., partitions) that have been updated by the
transaction. A consistent read snapshot is captured by a vector clock V , with
an entry for each datacenter. The value of each entry V [i] indicates that the
snapshot includes all transactions performed at the datacenter i with commit
time less or equal to V [i]. When a transaction starts at the datacenter j, a
partition is selected as transaction coordinator and a suitable read snapshot is
selected to ensure that TCC is preserved. V [j] is set to the coordinator’s local
clock, such that the newly started transaction observes previous transactions
committed at the datacenter j. The values V [i] for i ̸= j are selected such
that all updates from datacenter i, with timestamp smaller or equal than V [i],
have already been received locally. These values are selected with the help of
a global mechanism, denoted by Globally Stable Snapshot (GSS), that keeps
track of which transactions have been received by each datacenter. Each update
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performed in the context of a given transaction, executed at the datacenter j,
is tagged with a snapshot vector clock (SV C), corresponding to the transaction
GSS, with the local entry for the datacenter (SV C[j]) updated with the commit
time of the transaction.

The vector clocks of the updates are used to enforce that updates are applied
to each datacenter in an order that respects causality.

FlightTracker FlightTracker [23] offers a solution for managing RYW con-
sistency for clients accessing Facebook’s social graph. It offers a system that
preserves the read efficiency, the tolerance for hot spots (objects stored that
are very often read and written to), as well as the high availability of Eventual
Consistency. FlightTracker is built as a family of APIs and a metadata service.
To support RYW, FlightTracker collects the metadata associated with a user’s
recent writes and exposes it as a data type denominated Ticket. Web requests
will always fetch the user’s Ticket before executing any queries on Facebook’s
data stores.

The decision to support a weaker consistency model over Linearizability or
Causal Consistency is justified by the tradeoff analysis made in [23]. It is pro-
posed that even though stronger consistency models prevent more anomalies,
and let developers create mental models more easily, the implementation of the
service becomes more constrained. On a read-intensive system such as Flight-
Tracker, most results for the queries come from the local cache replicas, even if
these replicas are a few seconds behind the desired read timestamp.

FlightTracker decomposes the problem of RYW consistency in 3 parts: the
Ticket data type abstraction; an infrastructure service for providing the Ticket
once per request; and Ticket-inclusive reads, a mechanism used to include the
user’s recent writes in query results.

The Ticket data type serves as a medium to store and expose the user’s
recent writes as metadata. These tickets condense the system-specific details of
a user’s write sets across the components of the system. Such details include
the Transaction ID that is associated with that specific write operation and the
resulting node or edge in the social graph. It is important to note that these
Tickets do not store the updated data itself.

The tickets are exchanged by the different, independently deployed, com-
ponents of the system, and thus are designed to be agnostic to the specific
component handling them, achieving this through encapsulation, extensible de-
sign and forward- and backward-compatibility. After the client writes an object,
the Ticket is asynchronously replicated in the FlightTracker system. Considering
the infrastructure service that provides the Ticket, it offers an API to the client
application, used to request a ticket.

As for Ticket-inclusive reads, data stores must ensure that read operations
include the updates reflected in the Ticket. When a Ticket-inclusive read reaches
a cache, and the cache determines that it does not have the fresher version of the
data required by the Ticket, it is considered to have a consistency miss. To solve
this, the request can be forwarded to another region, where another cache or
database might have the necessary version, although this is highly avoided (only
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fewer than 3% of requests that go across regions are due to consistency misses),
considering the latency impacts associated with doing this. It is important to
note that, when a fresher version of the data is collected, only the exact entry
for that object is fixed in the local cache. This fine-granularity allows the system
to only perform extra work on specific data objects, instead of the entire cache.
There are two other proposals in [23] to handle local staleness, namely delaying
the request and retrying it later, which is a strategy that is not sufficient on its
own but can help avoid frequently executing more costly strategies; or selecting
another nearby replica that might have the necessary version of the object. The
latter strategy can lead to correlated failures, such as thundering herd, and for
this reason it is only considered a viable solution when used for small workloads.

4.2 FaaS Systems with Support for Transactions

FaaSTCC FaaSTCC [24] offers the TCC consistency model to Function-as-
a-Service(FaaS) applications in an environment for multiple independent worker
processes. One of the challenges the system proposes to solve is the need to
overcome the issues inherited from coordinating multiple workers in the FaaS
environment, namely to provide a stronger consistency model such as TCC.
Initially, Cure[19] proposed a system capable of implementing TCC for sticky
client sessions. However, FaaS involves having multiple independent workers and
adapting TCC to this scenario imposes the need for a costly coordination mech-
anism between the workers. This can lead to detrimental overheads.

The solution presented in FaaSTCC rests on two large pillar contributions:
adding a cache layer for each worker and the proposal of a protocol that effi-
ciently utilizes this new layer. The cache layer is implemented as an in-memory
key-value store that stores the most recent version of an object. In the proposed
protocol, the storage system offers a promise to the cache layer, which delimits
the lifespan in which a specific key is to be considered consistent. This decision
is crucial to ensure an adequate use of the cache layer that motivates its use.
Unlike HydroCache [25], another system that provides TCC in the FaaS enviro-
ment using per-key dependencies between workers, FaaSTCC proposes the use
of snapshot intervals. These intervals consist of two timestamps that capture the
versions that can be read by the application. By using these snapshot intervals,
FaaSTCC prevents large amounts of data from traversing the network, which
can lead to impairments to the performance.

Every time a function needs to read or write an object, the client library is
invoked. The client library is responsible for maintaining a copy of all objects
read and written by the function. This component is relevant to guarantee that
even though concurrent transactions might change the values of objects previ-
ously read, the client library still ensures that only causally consistent values are
considered, thus preventing read-only transactions from unnecessarily aborting.

Compositions of executed functions are arranged in a Directed Acyclic Graph
(DAG). When the execution starts, a DAG context is created. This includes
the snapshot interval and the write-set of the transactions to be committed
to storage. When a function finishes its execution, it passes this context to its
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child functions. It is possible that a child function has more than one parent.
In case this happens, the protocol merges the intervals of both parents. It is
possible that the parents read from a mutually incompatible interval, and if
that is the case, the transaction aborts. The updates written along the DAG
are committed to persistent storage only at the end of the DAG, ensuring the
atomicity of transactions.

The caching layer keeps the latest version of the object that were read in local
transactions, and its purpose is ultimately to reduce the number of unnecessary
accesses to remote storage. The updates on data items located in the cache are a
result of using a publish-subscribe system between the cache and the persistent
storage.

4.3 Microservice Systems with Support for Transactions

Enhancing Saga Enhancing Saga [26] tries to solve one of the issues asso-
ciated with the use of the Saga pattern – lack of Isolation. As it was mentioned
previously, the sagas pattern only offers ACD properties (Atomicity, Consis-
tency and Durability) (missing the “I” of Isolation) to distributed transaction
executions. While not providing Isolation, the Saga pattern is susceptible to both
Dirty Reads and Fuzzy Reads anomalies. Enhancing Saga proposes the use of
in-memory data caching to solve the lack of read-isolation presented in the Saga
pattern. The system proposes allocating a quota of the database storage space
to a memory cache server denominated as the Quota Cache. This memory cache
server is responsible for storing the results of CRUD(create, read, update and
delete) operations. Instead of committing the changed objects directly to the
database, as it occurs in the original Sagas pattern, this memory cache server
stores the values until the microservice receives an order to commit to the data
store. This prevents other concurrent transactions from reading uncommitted
values. It is worth noting that microservices that apply the quota cache also
profit from low latency and high throughput, as the results of read operations
to the remote storage are stored in the cache for future reads. The proposed
solution in Enhancing Saga only associates the cache server to microservices
that require the execution of compensating actions in case of transaction abort.
This is motivated by the fact that some microservices either only execute read
operations, or because they execute idempotent operations.

The system uses an orchestrator module to configure every microservice to
their corresponding web-clients. To coordinate the sagas, two approaches are
followed: orchestration and event-choreography. Following the orchestration ap-
proach, a manager controller manages all the communications between the mi-
croservices. On the other hand, the event-choreography approach is used as mi-
croservices finish their local transactions. Following this approach, after a local
transaction completes, the microservice responsible for it produces an event that
is consumed by the following microservices in the functionality.

When all microservices in the functionality finish their local transactions, the
coordinator is ready to begin the commit process. To guarantee that the changes
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are seen atomically, an event is sent to the microservices that updated objects in
that functionality, notifying them that it is safe to commit. These microservices
are then be responsible for running an eventual commit sync service to perform
the commit. This commit sync service is characterized by synchronously holding
the commit decision until it is known whether all local commits succeeded or any
local transaction failed, triggering compensating actions to unwind the changes
made in the caches.

5 Analysis

In this section, we will discuss the advantages and disadvantages of the sys-
tems surveyed in the previous section. Table 8 provides a comparative analysis
of the features of non-microservice systems supporting transactions.

Systems Target Consistency
Metadata

Size
Read
RTT

Commit
RTT

Cure Cloud TCC O(N) 1* 3*

FlightTracker Cloud RYW O(W) ≥ 2 1

FaaSTCC FaaS TCC O(1) 1* 2

Table 8: Cloud and FaaS Systems Comparison. W represents write-set, N repre-
sents the number of partitions, * means that time period might include block-
ing/waiting or aborts.

5.1 Target Environment

In Table 8, we categorize the analyzed systems based on their target envi-
ronment. It is crucial to understand and consider the specific constraints and
challenges that each environment imposes on the solutions proposed. Cloud sys-
tems such as Cure and FlightTracker are designed for environments with a static
number of data centers and partitions. On the contrary, FaaS systems such as
FaaSTCC are designed to facilitate the auto-scaling, and therefore their compo-
nents are bounded to be changed frequently.

5.2 Limitations of Non-Microservice Transaction Systems

The previously discussed systems all contain their own limitations. To the
best of our knowledge, there are currently no systems that actively support
transactions on microservice architectures while also offering the TCC consis-
tency model. Considering the analyzed systems, both Cure and FaaSTCC offer
TCC. While Cure provides TCC for sticky client sessions, FaaSTCC provides

19



TCC for non-sticky client sessions. Considering our scenario, functionalities com-
municate with several microservices in a single transaction. This way, we also
face non-sticky client sessions.

The Cure system inherently supports RYW consistency due to its use of
sticky client sessions. This way, the RYW consistency is not a significant concern
in the Cure system, as the data centers that a client communicates with are
always the same. FaaSTCC on the opposite, requires coordination across multiple
clients, a scenario that is often similar to the challenges we face, as we propose
to offer TCC for multiple microservices, part of functionalities.

In addition, when a client executes a read operation, Cure’s algorithm re-
quires a partition to wait before returning the request until its own clock catches
up with the snapshot vector clock for the transaction. This guarantees that a
read operation always obtains the latest version of the request object with no
newer commit timestamp than the one specified in the snapshot.

The FlightTracker system is suitable for Cloud based systems that support
multiple, often heterogeneous, client systems. Is also only supports region-sticky
user routing. Also, it only offers support for RYW consistency on top of Eventual
Consistency, a decision that is based on the nature of Facebook’s social graph,
and their need to serve most client queries at a local replica, even if these results
are a few seconds stale, or don’t even present all the dependencies required in a
stronger consistency model such as TCC.

The aim of our work targets the lack of systems that offer stronger consistency
models than Eventual Consistency, while still ensuring high availability and the
atomicity and isolation of transactions without incurring major losses to the
system’s performance. We believe that combining Cure’s use of vector clocks
to guarantee TCC, as well as FaaSTCC’s use of snapshot intervals to expand
the limitations of Cure for non-sticky sessions, can help us define the necessary
mechanisms to offer TCC in the microservice architecture.

5.3 Transaction Models in Microservice Architectures

We analyzed two systems capable of offering transaction semantics in the
microservice architecture. Sagas is considered the standard pattern for imple-
menting transaction systems in the microservice architecture due to its capa-
bilities for distributing the often large functionalities of an application across
multiple smaller transactions. It offers atomicity, guaranteeing that either all
transactions are executed, or none does, and compensation mechanisms that
undo the necessary changes. The Sagas pattern suffers from the lack of Isolation
property, something that is solved with Enhancing Sagas, a system that uses
in-memory caches to prevent concurrent transactions from reading partial com-
mitted data from the data store. Both systems stand on Eventual Consistency, a
weak consistency model. Enhancing Sagas, however, does not propose any spe-
cific mechanisms to account for the fact that some microservices might require
data that is not managed locally.
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6 Architecture

In this section, we describe the architecture of the system we propose to
implement. Our approach involves developing a middleware layer, capable of en-
suring that microservices always observe mutually consistent versions of remote
objects. To achieve this, we plan to provide Transactional Causal Consistency to
microservices systems that employ orchestration mechanisms. The middleware
layer will primarily consist of a set of database wrappers that intercept read and
write requests to the database.

6.1 System Components

Orchestration We consider providing TCC to microservices systems that em-
ploy orchestration mechanisms, because we believe that orchestration can help
us maintain the transactional context necessary to offer TCC. The coordinator
will be able to alert relevant microservices when a commit to the database is
required, ensuring the atomicity of the supported functionalities.

Database Wrappers In order to support TCC across different storage systems,
we propose implementing a set of database wrappers that are capable of inter-
cepting read and write operations. Ideally, we would like to follow an approach
similar to FaaSTCC [24], with the use of snapshot intervals to ensure read co-
herency across the functionality. To do so, we plan to support a TCC protocol
at the database level.

To guarantee isolation, and following an approach similar to the one proposed
in Enhancing Sagas [26], we plan to use data caches where write operations are
stored before having authorization from the orchestration coordinator to com-
mit to the different main databases. We plan to develop three distinct wrapper
implementations, for three types of data store systems: a NoSQL database (Mon-
goDB), and two in-memory data caches such as Redis and Memcached.

Considering the supported database and in-memory caches, and while it is
not obligatory that these storage systems provide multi-versioning capabilities,
our system is expected to perform more efficiently in these scenarios. This is due
to the fact that, transactions that require long periods to execute are prone to
struggle to read from the same consistency snapshot they initially read from,
as more recent values are inserted in the database by concurrent transactions.
By working with systems that support multi-versioning, we are able to prevent
unnecessary transaction aborts.

6.2 Data Wrappers Cache Mechanism

Our data store wrappers will contain two different types of data caches: one
responsible for holding updated objects inside the microservice, that wait for
the commit order from the coordinator to commit these stored value to the
data store; and one for storing remote microservices data that is updated in the
microservices that committed their transactions. Note that this last data cache
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values are read asynchronously, and their sole purpose is to improve latency by
reducing the number of remote queries.

6.3 Data Replication

Considering that there are situations in which microservices need to read
data that is not managed locally, we try to minimize the number of remote data
accesses that a microservice is required to do to execute its logic. We also try to
minimize the necessary metadata that needs to be passed across microservices to
ensure that the causal dependencies are respected. To do so, we plan to introduce
two mechanisms: asynchronous data replication across the database wrappers,
and a bitmap tracker of updated objects, allowing microservices to know when
they are required to query remote data in other microservices.
Asynchronous Data Replication: as described before, to improve latency,
microservices asynchronously replicate committed data. Using some form of
publish-subscribe mechanism, microservices that require this remote data sub-
scribe to the events published and cache the values for future use. This allows
services to reduce the number of future remote data accesses and consequent
delays associated with these operations.

However, as it was discussed in Section 3.4, asynchronous data replication by
itself does not guarantee that the cached values are coherent according to the
snapshot being used in the functionality. To guarantee that microservices are
always aware that data was updated inside the current functionality, and thus
need to obtain the new values to guarantee the RYW property, we propose using
some form of a bitmap tracker, capable of identifying updated objects.
Bitmap Tracker: this mechanism allows each microservice inside the function-
ality to know if an object that it plans to access was updated in a previous
microservice. This is an important step to prevent microservices from reading
inconsistent data, preventing unnecessary transaction aborts. When the tracker
identifies an object as having been updated, the microservice can remotely ac-
cess its value by asking the coordinator to contact the microservice that was
responsible for updating the object, retrieving the more recent value.

6.4 Write Operations

To ensure the atomicity property for the functionalities, updates performed
by a client do not immediately become visible in the data storage. Instead, each
wrapper locally stores the updates in memory. These are only committed as
the transaction ends. The wrappers must retain these updates until receiving a
commit instruction from the orchestration coordinator.

6.5 Read Operations

The database wrappers we plan to develop must be able to fetch data accord-
ing to the causal snapshot the client is reading from, as well as any updates made
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to that same data in the current transaction (to guarantee the RYW property).
To guarantee this, we plan to include a vector clock V in each database wrapper
of size N , equal to the number of microservices in the executing functionality,
where for each i ∈ [0, N ] , V [i] corresponds to the latest known updates visible
at the microservice i with commit time less or equal to V [i]. This allows us to
perform consistent read operations.

Following a similar strategy as proposed in FaaSTCC [24], when a transac-
tion is started at the beginning of the functionality, the microservice defines a
snapshot interval that will be used across the entire functionality. It is initialized
using the vector clock defined previously, received by the orchestration coordi-
nator. This vector clock allows the microservice to define the upper bound of the
snapshot interval, as it represents the latest known updates visible at each mi-
croservice. As read operations are executed, this interval can be shortened. The
bounds of this snapshot interval represent the limited timestamps from which
the functionality can read objects, to ensure consistent reads.

6.6 Commit

In order to atomically execute the transaction, the orchestration coordina-
tor must relay the commit order to each of the database wrappers. To decide
on which mechanism to use to implement the commit protocol, we considered
two options: following an approach similar to the Two-Phase Commit proto-
col [27], with the exception that we do not require blocking the transaction, as
it often the case following this approach. This way, upon the completion of the
final microservice, the orchestration coordinator sends a prepare message to the
wrappers. In response, each wrapper proposes its vector clock as the commit
timestamp. After receiving all proposals, the orchestration coordinator chooses
the maximum of each entry of the received vector clocks and directs the wrap-
pers to commit to the database using this selected timestamp. Upon receiving
the request, the wrappers commit the updates executed in the context of the
functionality, which were previously stored in cache. For systems that include
thousands of microservices, this approach might pose some drawbacks related
to the latency, as we require waiting for all microservices to propose their vector
clocks. However, we believe that most functionalities do not span across the en-
tirety of the system’s microservices, and thus, these drawbacks have very limited
bounds.

We also considered as another viable option, letting the orchestration coor-
dinator decide the timestamp for the commit based on the value of a physical
clock. This would imply that all microservices had access to a synchronized
physical clock, and that the coordinator could choose the value of the clock of
the last microservice that executed its logic. It is important to note that, due
to clock skews, the coordinator would have to choose a reasonable value that
encompassed the possible delay.

At this point, we propose using the first option, as we believe it to be the
most adequate to the problem being solved.
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7 Evaluation and Implementation

We plan to implement our system and evaluate its performance using a bench-
marking suite, such as DeathStarBench benchmark [28]. We will compare the
results obtained using various consistency models in order to thoroughly assess
the capabilities of our system. The evaluation will focus on different aspects
of the system performance, such as latency, throughput, and the reduction of
compensating actions executed in the presence of anomalies.

7.1 Benchmarks

DeathStarBench Benchmark This open-source benchmark suite is built with
microservices that include large end-to-end services where we can test the capa-
bilities of our proposed system. This benchmark includes multiple scenarios such
as a social network, a media service, etc. We will focus on the social network
scenario, as it is a commonly used scenario to motivate the usage of TCC. To
evaluate the proposed system, we plan to extend this benchmark, to include an
option to run the desired social network scenario on top of either TCC or EC.
By comparing the results obtained while executing our system with these two
consistency models, we can understand the impacts and benefits of supporting
transactions in the microservice architecture using the TCC consistency model.

Social Network: The Social Network scenario, offered by DeathStarBench
benchmark, simulates a typical social network scenario, where users can read and
write posts from other users. This scenario is implemented using loosely-coupled
microservices, and includes unidirectional follow relationship between users. The
microservices in this scenario communicate with each other via Apache Thrift
RPCs [29]. The system supports a range of actions, such as: Create text post;
Read post; Search database for user or post; Follow/ Unfollow user, etc. The
system includes separate data stores for different service, including a data store
for users, one for posts, and one for the social graph, etc. These databases store
data required by the various microservices.

7.2 Metrics

Latency To evaluate the performance of our system, we will measure the delay
between the time a request is made and the time the response is returned to
the client. We will conduct experiments in which we vary the percentage of read
and write operations, as well as the number of remote objects read (i.e., reads of
objects across microservices). This process is critical for understanding potential
bottlenecks of our system, possibly related to dependency enforcement and the
commit protocol developed.

Throughput We will measure the maximum number of transactions per sec-
ond that the system is able to execute, to understand the amount of load the
system can sustain. We consider that measuring throughput can help us to un-
derstand, even if indirectly, the overhead impact associated with introducing our
mechanisms, to support TCC.
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Reduction of compensating actions We will also measure the impact that
our mechanisms have in reducing the amount of necessary compensating actions
the developers needs to implement in the event of aborting the transaction.
With this measure, we plan to study the relevance of the anomalies prevented
by introducing TCC in systems that implement the microservice architecture.

7.3 Expected results

Considering the two first metrics: Latency and Throughput, ideally we would
like to offer a system that guaranteed high throughput and low latency. How-
ever, we know that, by offering a stronger consistency model such as TCC, we
are bounded to expect worse performance results than systems that provide
weaker consistency models, such as system that follow the Sagas approach. By
comparing the results obtained running the base model and the proposed model,
offering TCC, we expect to minimize the number of aborting transactions, by
reducing the number of anomalies captured by the system.

8 Scheduling of Future Work

Future work is scheduled as follows:

– January 13 - March 29: Detailed design and implementation of the proposed
architecture, including preliminary tests.

– March 30 - May 3: Perform the complete experimental evaluation of the
results.

– May 4 - May 23: Write a paper describing the project.
– May 24 - June 15: Finish the writing of the dissertation.
– June 15 Deliver the MSc dissertation.

9 Conclusions

The microservice architecture makes evolution in applications an easier task,
allowing services to be developed independently of each other, allowing devel-
opers to choose the best-fit programming language and storage system to the
specific service, without being restrained by other services. However, this creates
a challenge to the atomicity and consistency of transactions.

In this report, we surveyed the state-of-the-art FaaS, Cloud and Microservice
systems. We analyzed their consistency guarantees, discussing the benefits and
the caveats of each consistency level and implementation. We proposed a solution
to support stronger consistency levels in microservice systems. Finally, we defined
the evaluation methods and presented the scheduling for future work.
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