
Transactional Causal Consistency For Microservices Architectures
(extended abstract of the MSc dissertation)

João Queirós
joao.miguel.queiros@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa
Advisor: Professor Luís Rodrigues

ABSTRACT
The microservices’ architecture is a software engineering approach
that structures an application as a set of loosely coupled services.
Each microservice manages a small, cohesive, subset of the domain
entities and can be implemented, deployed, and managed indepen-
dently of other microservices. The execution of a microservice may
need to read data items that are managed by other microservices.
These read operations can be completed either by doing remote
calls or by reading from a local replica (possibly inconsistent) of
the data managed by the other microservices, that is updated us-
ing some form of publish-subscribe middleware. In any case, there
is a possibility of the microservice reading mutually inconsistent
versions of data objects, generating consistency anomalies that
would never occur in a monolithic system. To correct the effects of
these anomalies, programmers often have to develop compensat-
ing actions responsible for restoring the consistency of the system.
In this work, we propose and evaluate a mediating layer, that we
designated 𝜇TCC , that offers the Transactional Causal Consis-
tency guarantees for microservices’ architectures. Using a version
control mechanism, 𝜇TCC guarantees that different microservices,
when executing a given functionality, observe mutually consistent
versions of data, thus reducing the number of anomalies. Our exper-
imental evaluation shows that the proposed solution prevents the
occurrence of Transactional Causal Consistency anomalies while
reducing the overall latency of functionalities by 2.63×, thanks
to being able to reduce read transaction abortion frequency and
respective re-executions.

KEYWORDS
Microservices, Transactional Causal Consistency, Consistency, Iso-
lation

1 INTRODUCTION
The Microservices Architecture is a software engineering approach
that structures an application as a set of loosely coupled services.
Each microservice manages a small, cohesive, subset of domain
entities and can be implemented, deployed, and managed indepen-
dently of other microservices. This approach makes it easier to
evolve an application, as different teams may work and update mi-
croservices independently of each other. Each team can select the
programming language and the storage services that are most ap-
propriate for each service, without being constrained by the choices
made when implementing other services. Finally, when the appli-
cation is deployed, microservices also ease the task of provisioning
the necessary resources, because different resources can be easily
assigned to different services. These advantages have driven many

companies to adopt this approach when developing new applica-
tions and, in some cases, to refactor legacy monolithic applications
as a composition of services [1].

Microservices also have a number of disadvantages. In a typ-
ical monolithic application, all modules share a single, common,
storage system that supports transactional access. Also, each func-
tionality of the application is executed as an atomic transaction,
that is isolated from other concurrent invocations of the same or
other functionalities. This ensures that, amongst other desirable
properties, a functionality always has access to a consistent state
of the data store while executing. This guarantee is often not pro-
vided to functionalities that execute in a microservice architecture.
First, a given functionality may need to interact with multiple mi-
croservices. Because microservices are independent of each other,
and can use different storage mechanisms, it is much harder to
have the entire functionality executed as a single transaction [2].
Instead, in most implementations, the functionality is executed as
a composition of multiple independent transactions (where each
transaction involves a single microservice). This leads to a loss of
transactional properties to the functionality as a whole, as there is
no longer an atomic commit across all microservices, leading to a
loss of isolation between concurrent executions [3].

Furthermore, even if a functionality only needs to interact with
a given microservice, that microservice may need to read the value
of data objects maintained by other microservices. This can be
achieved by doing remote calls to perform the read operations or
by reading from a local cache of remote values, that is updated
asynchronously using some form of publish-subscribe middleware.
Due to the asynchronous nature of updates, both cases can result in
one microservice reading mutually inconsistent versions of remote
data objects. Both the lack of isolation, and the possibility of reading
mutually inconsistent values, can lead to unexpected states (also
known as anomalies) and, ultimately, to undesirable results.

The use of the Sagas [4] pattern is one of the approaches to deal
with read anomalies, such as non-repeatable reads and fractured
reads, that can occur in microservice systems. This pattern models
a business transaction as a sequence of local transactions. Each
one of these transactions runs in the microservices’ own local
database. If a microservice in the Saga needs to abort, due to a
violation of a business invariant, compensating actions are carried
out capable of reestablishing the consistency of the applications, by
reversing the effects of update operations committed by previous
local transactions. The use of compensating actions can be both
complex and time-consuming for the developers to implement; it
can lead to longer development times and increased maintenance
costs, which ultimately might affect both the performance and the
sustainability of the system.

1



JoãoQueirós

In this thesis, we address the problem of providing transactional
consistency guarantees in microservices systems, in order to mini-
mize the consistency anomalies related with the lack of Isolation
and Atomicity. We take particular care to offer the highest consis-
tency guarantees that can be achieved without jeopardizing the
inherent advantages of the use of microservices, namely the high
availability and low latency promises. In particular, we study the
necessary mechanisms to offer Transactional Causal Consistency
(TCC) to the microservices architectures.

TCC is a consistency criterion that has been proposed for sys-
tems that aim at offering high-availability. Due to this reason, most
implementations avoid locking data items and, instead, tag data ver-
sions with metadata that allows the identification of which versions
belong to the same consistent snapshot. To ensure that microservice
implementations remain loosely coupled, we also aim at avoiding
locking data items. As a result, our middleware will also be based
on keeping metadata associated to the object versions. Addition-
ally, we would like to offer TCC transparently. For that purpose,
we aim at building mechanisms to tag data versions automatically,
exchange metadata transparently among microservices, and keep
multiple object versions without requiring programmers to manage
the version mechanisms explicitly. In this work, we experimen-
tally show that the proposed solution can efficiently extend TCC
support for microservice architectures, by capturing all TCC anom-
alies in read operations, without incurring in prohibitive latency
and memory overheads. The results also reveal that, despite the
introduced overhead latency in each individual operation, 𝜇TCC
is able to compensate for this by reducing the overall transaction
latency by 2.63×, a feat supported by 𝜇TCC ’s ability to execute
functionalities in a single round, effectively reducing transaction
abortion probabilities and subsequent re-executions.

2 RELATEDWORK
2.1 Transactional Support in Cloud Computing
ClockSI [5] is a system that allows for the execution of transactions
with snapshot isolation in a partitioned data center (where differ-
ent items can be maintained by different servers). One of the key
aspects of this system is allowing a client to decide which consis-
tent snapshot it wants to read from without explicitly coordinating
with a centralized entity or multiple partitions to determine the
most recent versions. This is possible because the system relies on
synchronized clocks to define transaction commit times, enabling
the client to read from a single synchronized clock to define the
capture to read. The read protocol includes mechanisms to handle
potential clock desynchronization. In particular, if a node needs
to process a read with a timestamp higher than its own clock, the
node postpones this operation until the local clock catches up in
the future.

Cure [6] was the first system to offer Transactional Causal Con-
sistency across partitioned and georeplicated data centers. The
system assumes that each client interacts with only one data center.
However, this is not enough to ensure consistency because updates
made by a single transaction in different partitions can become visi-
ble at different times, both in the data center where the transaction
was executed and in remote data centers. Furthermore, updates
received from remote data centers can arrive at a data center in

an order that violates causality. Cure proposes a set of coordina-
tion mechanisms, during data writes and reads, that ensure clients
always observe consistent states.

In summary, Cure uses the following mechanisms to guarantee
consistency: all writes of a given transaction are marked with the
same timestamp, higher than any timestamp assigned to client
transactions that confirmed in the past. These writes are applied
using a two-phase commit protocol that ensures all writes executed
during the transaction are atomically persisted in the database. The
consistent state observed by a transaction is characterized by a
vector clock 𝑉 , with an entry for each data center 𝑖 , where 𝑉 [𝑖]
indicates the last confirmed transaction in 𝑖 that is visible to the
client. The vector clocks are used by each data center to locally
apply transactions initiated in remote data centers in an order that
respects causality. To read consistent data in the local data center,
the corresponding entry for the local data center in the vector clock
is replaced by the synchronized physical clock of a given partition,
reading the most recent values using the ClockSI protocol.

FlightTracker [7] is a system that ensures clients always observe
their own writes across a series of interactions with the system, a
property known as Read-Your-Writes (RYW), despite the compo-
nents being replicated across multiple geographical regions and
replicas only ensuring eventual consistency. In a system with these
characteristics, in the absence of additional coordination mecha-
nisms, a client can write to one replica and later try to read from
another replica where its own write has not yet been applied. To
provide RYW guarantees, FlightTracker requires clients to carry a
ticket that includes metadata about the writes they have made in
the past.

Each ticket includes a collection of records, composed of a union
of representations per database, one for each component where
a write was performed. Each record is opaque, and its internal
structure is known and interpretable only by the component that
generated it. By separating the internal structure and the interfaces
exposed in the ticket, FlightTracker ensures flexibility, compatibility,
and the possibility of optimizing the internal structure of the ticket,
transparently to the components that use it. FlightTracker simply
collects and shares these records during a sequence of interactions
between a client and the system. If a client contacts a replica that
does not yet have the updates indicated in the record, the system
opts for one of three hypotheses: forward the request to another
replica in the same region, where the desired version might already
be visible; delay the request, wait for the asynchronous propagation
of the client’s write to become locally visible (an effective option but
potentially deteriorating to the system’s performance); or forward
the read request to another region.

This system demonstrates that it is feasible to maintain meta-
data to offer stronger consistency guarantees, even in large-scale
systems.

2.2 Transactional Support in FaaS Systems
FaaSTCC [8] is a system that provides Transactional Causal Con-
sistency guarantees for clients running applications (modeled as
a directed acyclic graph of functions) in a computing system that
follows the Function-as-a-Service (FaaS) paradigm. Specifically,
FaaSTCC ensures that all functions executed within a given graph

2



Transactional Causal Consistency For Microservices Architectures

observe a consistent cut of the system, even when they run on mul-
tiple nodes, each with its own storage system cache. Unlike Cure,
the client can execute functions that access different replicas of
data (in this case, caches), and the number of replicas is extremely
dynamic due to elastic resizing policies of the number of executing
nodes. Similar to the Cure system, all writes of a given transaction
are timestamped with a common logical clock, higher than any
previous writes serialized in the past.

However, unlike Cure, in FaaSTCC, the consistent cut is not
defined at the beginning of the transaction, nor does it rely on
the use of vector clocks. FaaSTCC associates a consistent interval
with each transaction, capturing a range of logical clock values
within which the transaction can read with consistency guarantees.
This interval is adjusted as the transaction reads objects, based on
the versions present in the caches of each node involved in the
transaction. FaaSTCC also uses a coordination protocol between
the storage service and caches, allowing a node to verify if a given
version of an object, confirmed at time 𝑡 , is still valid at a given
time 𝑡 ′, where 𝑡 ′ > 𝑡 .

2.3 Transactional Support in Microservices
As mentioned, many microservice-based systems use the Saga pat-
tern, which does not guarantee isolation between functionalities,
allowing various consistency anomalies to occur. The "Enhancing
Sagas" system [9] proposes an extension to this pattern to avoid
Partial Reads and Dirty Reads. For this purpose, the writes per-
formed by the various transactions that implement a functionality
are stored in temporary memory, not visible to other concurrent
executions, until the functionality completes and is confirmed. The
system uses a coordinator responsible for verifying that all microser-
vices involved in the execution of a functionality have successfully
completed before persisting the writes stored in temporary memory
to the storage system.

2.4 Discussion
The Enhancing Sagas system prevents the reading of updates made
by functionalities that abort. However, this system does not guaran-
tee that functionalities always read mutually consistent values. To
achieve this goal, it is necessary to ensure that the data accessed by
each microservice is consistent (intra-service consistency) and that
the data read by different microservices in the context of the same
functionality is also consistent (inter-service consistency). The chal-
lenge of maintaining intra-service consistency, when microservices
do not replicate each other’s data, is quite similar to the problem
addressed by ClockSI. If microservices receive updates from data
maintained by other microservices and keep some of these updates
in cache, the mechanisms proposed by Cure and FaaSTCC are also
relevant. In either case, these solutions require clients executing
a functionality to carry metadata capturing the consistent cut in
which they operate to address the challenge of inter-service con-
sistency; experience with FlightTracker shows that this is feasible,
even in large-scale systems with high-performance requirements,
such as Facebook.

3 𝜇TCC
When developing 𝜇TCC , our focus was on creating a transparent
solution for the application, minimizing the adaptation of existing
systems for its adoption. To achieve this, 𝜇TCC was designed as a
set of wrappers that intercept requests between microservices and
requests from microservices to their respective storage systems,
adding metadata capable of maintaining a consistent causal cut
during the execution of a transaction. Specifically, as illustrated
in Figure 1, 𝜇TCC consists of: Storage Wrappers, Microservice
Wrappers, and Functionality coordinators. In the following sections,
we describe the functioning and implementation of each of these
components.

µTCC
Microservice WrapperMicroservice Wrapper

Microservice 1

Storage
Wrapper

Microservice 2

Storage
Wrapper

Functionality
Coordinator

Figure 1: 𝜇TCC System Architecture

3.1 Storage Wrappers
Each storage system used in the context of 𝜇TCC is encapsulated
by a wrapper that mediates all read and write operations performed
by the microservice. To extend TCC to microservices, we need
to ensure that transactions read from a causally consistent snap-
shot. To be able to identify the causal order between transactions,
the storage wrapper associates a timestamp for each committed
transaction. The value of this timestamp is decided during the con-
firmation phase. By associating a timestamp to a version of a data
object, we are able to store multiple versions of the data, even when
the underlying storage system does not support multiversioning
natively. Although storing multiple versions of the same data ob-
ject is not a requirement of 𝜇TCC , it can significantly improve our
performance, as examined in Section 4.

During write operations, the storage wrapper is responsible for
locally storing all updates made within the context of a functionality
in a local cache, until the functionality is confirmed. Similar to
the Enhancing Saga system, values locally stored in this manner
remain visible only for invocations made within the context of that
functionality.

In read operations, based on the metadata associated with a
given execution, retrieves from the local cache or the remote stor-
age system, a version belonging to consistent cut visible for that
execution.

3



JoãoQueirós

During the confirmation phase of a functionality, it negotiates,
with the help of the coordinator, the timestamp that will be asso-
ciated with the version of the data to be persisted in the remote
storage. During the negotiation process, access to some version
might be blocked. If a functionality aborts, the wrapper simply
discards the version kept in the local cache, without ever persisting
them.

In our prototype, we implemented one storage wrapper for the
Microsoft SQL Server storage system, a relational database man-
agement system that uses SQL to construct the relational schemas
for each database in our system.

3.2 Microservice Wrappers
Besides the lack of Isolation, to extend TCC to the microservice ar-
chitecture, we need to guarantee the atomicity of the functionalities.
This challenge is notably highlighted by the dilemma concerning
a functionality’s state. Since each microservice is naturally inde-
pendent of others, it is crucial to determine when a functionality
concludes and which microservices were involved in its execution
to proceed with the atomic confirmation of the updated data in
each microservice. To solve these challenges, we developed the
microservice wrappers.

This microservice wrapper encapsulates all microservices used in
the context of 𝜇TCC . It mediates interactions with other microser-
vices and the functionality coordinator. This wrapper is responsible
for interpreting and maintaining the metadata that captures the
consistent causal cut visible to a functionality, ensuring that this
metadata is kept updated and passed to the storage wrapper trans-
parently to the application.

Additionally, this wrapper is responsible for passing, between
microservice invocations, a token that captures the fact the func-
tionality is in execution. This token can be fragmented when a
microservice invokes more than one downstream microservice. If a
microservice is a leaf in the microservices graph representing the
functionality, token fragmentation does not occur and is sent to the
functionality coordinator, which acts as a sink for tokens generated
during execution. Along with the token, this wrapper also informs
the coordinator whether the local transaction can commit or has
been forced to abort.

3.3 Functionality Coordinators
The Functionality Coordinator monitors the execution of a func-
tionality and coordinates the data confirmation process when an
execution completes successfully. Our system assumes that the
coordinator can operate in microservice-based systems using or-
chestration or choreography.

In orchestration mode, all microservice invocations are made
by the coordinator itself, so there is no need to rely on a token to
detect the completion of a functionality.

In choreography mode, the execution of a microservice can trig-
ger multiple other microservices. In this case, tokens are used and
forwarded to the coordinator at the end of each microservice ex-
ecution. The coordinator detects the end of the graph execution
after receiving all fragments of the original token.

In both scenarios, if all microservices have completed their ex-
ecution and are in a position to confirm the functionality, the co-
ordinator initiates the confirmation process involving all relevant
storage wrappers. If the execution needs to abort, it instructs the
storage wrappers to discard the corresponding updates.

3.4 Metadata
Leveraging the existing communications between microservices
executed within the context of a functionality, 𝜇TCC injects meta-
data to ensure that the consistency of read operations is respected,
and that write operations are identified with a unique timestamp
assigned during the confirmation phase. In additions to the token
fraction, the additional information is transmitted. This includes
a timestamp, defining the most recent version of objects that any
microservice can read without compromising the functionality’s
consistency. This timestamp is established at the beginning of the
functionality, before the first microservice is invoked.

Furthermore, a unique client identifier, apparent to the system
and generated at the onset of the functionality, is sent. This identi-
fier serves both for read and write operations. Concerning write
operations, it is employed to identify versions not yet confirmed
to the client who generated them. Regarding read operations, the
client identifier ensures that versions of objects generated during
the functionality, but not yet persisted in the storage system, remain
visible to the client.

3.5 Protocols
We proceed by detailing 𝜇TCC ’s protocols. The algorithms pre-
sented include the pseudocode describing the protocols that are
executed in the Microservice and Storage wrappers.

The tokens are used by the microservice wrappers to solve the
state of a functionality dilemma. They are split and transmitted
between microservice wrappers and sent to the functionality coor-
dinator once the microservice finishes its local transaction.

All the algorithms used in 𝜇TCC to fragment the Token assumes
prior knowledge of two parameters: the maximum branching factor
of the functionality execution graph (that is, the maximum number
of invocations a given microservice can make), and the maximum
depth of the graph. Based on these parameters, the root node of
the execution graph receives a token with a defined number of
fractions (Alg. 3.1, Line 4).

Algorithm 3.1: Token Initialization Protocol
1 b← #Maximum_branching_factor
2 d← #Maximum_depth
3 function Initialize_Token():
4 functionality_token← (𝑏 + 1)𝑑

When a microservice is invoked, it receives a fraction of the
initial token from its parent. Before proceeding with the execution
of its business logic, the microservice wrapper reserves a fraction of
the token for itself (Alg. 3.2, 3). This step is executed to ensure that,
after invoking all microservices, the invoker microservice can also
notify the coordinator about its participation in the functionality.
The remaining fractions of the token are evenly distributed among

4



Transactional Causal Consistency For Microservices Architectures

invocations to other microservices, if any. For each invoked mi-
croservice, the same fragmentation protocol is used, ensuring that
enough fractions of the token are sent to each child. This process
of fragmentation and collection of the token fractions are managed
both automatically and transparently by the microservice wrap-
per. This mechanism is secure even if the values of the maximum
branching factor and maximum depth are estimated incorrectly. If,
during the execution of a functionality, the fractions of the token
are exhausted, the functionality is simply aborted, and a notification
is generated to reconfigure the system.

Algorithm 3.2: Token Subdivision Protocol
1 b← #Maximum_branching_factor
2 function Subdivision_Token(rcv_token):

/* invoked microservice stores fractions of

the token for itself */

3 fractioned_token← 𝑟𝑐𝑣_𝑡𝑜𝑘𝑒𝑛
𝑏+1

Additionally, it’s worth noticing that apart from the proposed
use of Tokens, the idea of employing checklists of microservices
associated with each functionality, predetermined and known by
the coordinator, was also explored. In this approach, to identify the
moment when the functionality was ready for the confirmation
phase, the coordinator would simply verify the completion status
of the microservices on its local checklist. However, this method
proved to be error-prone, especially in cases where the invocation
of different microservices depended on runtime check conditions.
This approach would require the coordinator to know beforehand
which microservices would be executed in each functionality, a
requirement not necessary in the Token approach.

3.5.1 Write Protocol. During the execution of a functionality, all
write operations are stored locally in the storage wrappers before
being confirmed using a two-phase commit protocol. 𝜇TCC makes
use of synchronized clocks to associate a timestamp to each new
data version. Our storage wrapper intercepts all write operations
executed in the context of the microservice, processing them into
local memory until given authorization to persist to storage.

Upon confirmation, each storage wrapper persists the update
versions on the remote data storage. If the functionality is aborted
during the confirmation phase, all new versions written during the
execution of the functionality are discarded by the wrapper.

3.5.2 Read Protocol. A functionality observes the consistent state
of the system at the timestamp defined in the beginning of the
functionality. When reading an object, the storage wrapper re-
trieves a local version not yet confirmed if the client has performed
writes within the current functionality context (Alg. 3.3, Line 7), or
a version of the data belonging to the consistent cut of the used
timestamp (Alg. 3.3, Line 13). Naturally, since the timestamps used
in the read operations are defined using synchronized clocks, there
is a chance for clock skewing between microservices. Just like in
Clock-SI [5], a read operation may temporarily block due to the
clock skew, in this case between microservices in the same function-
ality (Alg. 3.3, Line 4). To avoid this overhead, our protocol allows
for the client to choose an older timestamp, sacrificing freshness

for lower chances of read operation blocking. When trying to read
data objects, the access to them might also be blocked during the
confirmation timestamp negotiation phase, depending on the read
timestamp of the functionality. If the read operation timestamp
is higher than the timestamp proposed locally for the concurrent
write operation, the read operation must wait for the final deci-
sion until the microservice confirms the new version of the object
(Alg. 3.3, Line 12).

Algorithm 3.3: Read Protocol
1 function Read_Data(key, tx_TS, non_persisted_writes,

client_id, proposing_clients):
2 conc_write_set← ∅

/* accounts for possible clock skew */

3 if tx_TS > Clock() then
4 WAIT tx_TS ≤ Clock()
5 for ⟨ k, val, cli_id ⟩ ∈ non_persisted_writes do

/* check the non-persisted write set to

ensure Read-Your-Writes */

6 if k == key ∧ cli_id == client_id then
7 return val
8 else

/* get all concurrent writes for the

same key with lower timestamp */

9 conc_tx_TS←
proposing_clients.GetTimestamp(cli_id)

10 if conc_tx_TS ≤ tx_TS then
11 conc_write_set← conc_write_set ∪⟨ cli_id,

conc_tx_TS ⟩
12 WAIT �⟨ cli_id, prepare_timestamp ⟩ ∈

concurrent_write_set
13 return remote_storage.get(key, tx_TS)

3.5.3 Commit Protocol. As each microservice completes its execu-
tion, it sends its assigned token fraction, its client ID, its address,
and an indication of whether it performed write operations during
its execution to the functionality’s coordinator. If the microservice
has executed write operations, it should be contacted at the of the
functionality to confirm its updates (Alg. 3.4, Line 7). On the coor-
dinator’s side, a structure associating each client’s unique identifier
and the received token fractions is kept in memory. After retriev-
ing all token fractions, the coordinator contacts all microservices
involved in the transaction that executed write operations, asking
each one to propose a confirmation timestamp for the functionality
(Alg. 3.4, Line 10).

At this stage, each microservice proposes the current value of
its physical clock as a confirmation proposal for the functional-
ity. Alternatively, if any business logic invariants are violated, it
informs the coordinator of its intention to abort the transaction.
Furthermore, each microservice marks the updated objects present
in the storage wrapper as objects in the process of being persisted.
Access to these objects might be blocked during the confirmation
timestamp negotiation phase, depending on the read timestamp of
concurrent functionalities attempting to read their value.

5



JoãoQueirós

Algorithm 3.4: Commit Protocol
/* State kept by the coordinator */

1 coord.tokens← ∅
2 coord.participating_micro_addresses← ∅
3 coord.proposals← ∅
4 function Receive_Token(token, client_id, address,

read_Tx_flag):
/* Increments the fractions of the token

received */

5 coord.tokens← coord.tokens + token
6 if read_Tx_flag == False then

/* Adds the address to the list of

participants */

7 coord.participating_micro_addresses←
coord.participating_micro_addresses ∪ address

8 if coord.tokens == total_fractions then
/* Sends Proposals request to all

participants */

9 for all service_address ∈
coord.participating_micro_addresses do

10 Send(⟨GetProposal⟩, client_id) to
service_address

11 function Receive_Proposals(TS, client_id):
/* Receives proposals from participants */

12 while number of coord.proposals ≠ number of
coord.participating_micro_addresses do

13 coord.proposals← coord.proposals ∪ TS
14 commit_TS← max(coord.proposals)

/* Issues commit order to participants */

15 for all service_address ∈
coord.participating_micro_addresses do

16 Send(⟨Commit⟩, client_id, commit_TS) to
service_address

Note that, due to the clocks not being perfectly synchronized, it’s
possible for a microservice to receive a message with a timestamp
from the future, meaning a value higher than its own local clock. In
such cases, the system delays the processing of that message until
its clock is aligned with the message’s timestamp. This procedure is
used in most systems employing physical clocks [5, 10]. If any mi-
croservice signals the need for an abort, the coordinator instructs
the microservices to discard the versions present in the storage
wrapper associated with the respective client identifier. If all mi-
croservices confirm the execution, after receiving the clock values
from all involved microservices, the coordinator computes the max-
imum clock value and sends it back to the microservices along with
a confirmation order for the in-memory versions associated with
the client identifier (Alg. 3.4, Line 16).

3.6 Garbage Collection in 𝜇TCC
As previously discussed, storage wrappers assign timestamps to
each version of a written data object, enabling the establishment

of a multiversioning scheme even in data storage systems lacking
native multiversioning support. To handle the introduced over-
head of storing multiple versions of the same object with unique
timestamps, each storage wrapper employs an independent worker
responsible for issuing delete commands to the remote storage.
Periodically, for each data object in the remote storage, if the total
number of versions 𝑁 surpasses 𝐾 , where 𝐾 is a pre-configured
limit of versions for each data object, the worker issues the deletion
of the oldest 𝑁 −𝐾 versions. This approach presents a tradeoff: lim-
iting the number of versions per data object enhances performance
by reducing the dataset size in remote storage but increases the risk
of read operation failures due to a lack of a consistent version in
storage.

3.7 Cost of Adopting 𝜇TCC
The implementation of 𝜇TCC requires minimal adaptations to the
base code of each microservice. Specifically, this includes adapt-
ing the database context class to include our storage wrapper and
integrating our microservice wrapper into the existing stack of
wrappers used by the original system. These adaptions can be au-
tomated. It is important to note that the microservice wrapper is
independent of the nature of the original application and can be
automatically generated. Therefore, the adoption cost of 𝜇TCC is
primarily associated with the development of storage wrappers,
which are specific to each persistence system and/or database.

We quantify the size, in lines of code, of the implemented wrap-
pers and any related data structures responsible for managing meta-
data transmitted between wrappers. Every microservice wrapper,
written in C#, consists of 193 lines of code, a constant value across
all microservice wrappers due to the wrapper’s agnostic view over
the service’s business logic. The storage wrapper, also written in C#,
comprises 1749 lines of code. This value remains constant regardless
of the microservice business logic’s complexity, being correlated
solely with the number and type of remote storage systems asso-
ciated with each microservice. Specifically, the storage wrappers
developed intercepted requests directed to a single SQL-based datas-
tore. Additionally, we assessed the lines of code in the implemented
garbage collection mechanisms utilized by microservices that use
storage wrappers. Each of these garbage collection mechanisms
comprises 47 lines of code.

4 EVALUATION
In this section, we evaluate the performance of 𝜇TCC . We as-
sess 𝜇TCC in terms of anomaly prevention and performance by
integrating it into a reference application developed by Microsoft,
specifically the eShopOnContainers application [11]. We structure
our evaluation around two key questions: first, how prevalent are
TCC consistency violations, and how effectively does 𝜇TCC prevent
them? Second, what is the impact on performance when introduc-
ing the use of 𝜇TCC in the base application?

4.1 Experimental Workbench
The eShopOnContainers application is composed of a suite of mi-
croservices, each running within a Docker container. For the ex-
periments reported in this article, we deployed all containers on a
single physical server equipped with an Intel Xeon Silver 4314 CPU

6



Transactional Causal Consistency For Microservices Architectures

with 32 logical cores, 197 GB of RAM, and 100 GB of SSD storage.
The clients of our application were also run on the same server.

The eShopOnContainers application simulates an online store
that allows customers to search for items, add products to shopping
carts, and proceed with their payments. The application consists of
various components, primarily implemented using ASP.NET Core
7, which can be categorized as follows: infrastructure services, web
applications, and business microservices. Infrastructure services
include a SQL Server (maintaining business data), a REDIS server
(storing shopping carts), and RabbitMQ (used in payment process
management). Business microservices encompass a Catalog Mi-
croservice (that allows registration of new items, price updates, and
product queries), an Order Microservice, a Shopping Cart Microser-
vice (enables shopping cart reading, adding new products, etc.), and
an Identity Microservice (customer identification management).
Additionally, we extended the application by implementing a new
Discount Management Microservice to enhance the analyzed case
study.

4.2 Test Case
In the evaluation process, we focused on the scenario where an
administrator updates the price and discount of a product simulta-
neously while it is in a customer’s shopping cart. In this scenario, a
TCC consistency violation occurs when concurrently, the adminis-
trator updates the data associated with a product, and a customer
reads their shopping cart. Since a product’s data update occurs
in the Catalog and Discount microservices, a customer is prone
to reading an altered price alongside an unchanged discount if
their reading occurs during the product update. 𝜇TCC guarantees
that a customer will never be able to read an altered price with
an unchanged discount within the same functionality, and vice
versa. 𝜇TCC ensures that product updates occur atomically for the
customer. Therefore, we developed and tested wrappers for the
Catalog, Discount, and Shopping Cart microservices. Clients were
configured to generate an 80/20 read/write ratio. For experiments,
we varied the number of requests per second made by clients (in
increments of 40 requests per second). Tests were conducted for
reads/writes in low/high contention contexts (set of 22 items and
1 item, respectively). To evaluate 𝜇TCC , we varied the number of
versions maintained for each object in the storage system, ensur-
ing that the percentage of aborts due to the lack of a consistent
version always remains below a predefined value. As an example,
we set this value to 4%. It is worth noticing that the abort rate is
not the only criterion used to choose the most adequate number of
versions per data object in remote storage, as we will see during
the evaluation assessment of 𝜇TCC .

4.3 Prevention of TCC Anomalies
We begin by measuring the prevalence of read operation anomalies
between the base system and 𝜇TCC in Figure 2. Every time an
anomaly is detected (and the transaction is aborted), due to clients
requesting causal cuts whose values have been removed by auto-
matic memory recycling, we impose the transaction’s re-execution.
We observe that, on average, for a load of 520 requests per second
in a highly contended scenario, the percentage of read operations
where violations of the TCC model occur is 73.13%. For the same

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

0

10

20

30

40

50

60

70

Ab
or

t R
at

e 
(%

)

µTCC: High Contention
µTCC: Low Contention
Base System: High Contention
Base System: Low Contention

Figure 2: Average Abort Rate for Read Operations

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

0

2

4

6

8

10

12

Ab
or

t R
at

e 
(%

)

µTCC: 5 Versions
µTCC: 10 Versions
µTCC: 25 Versions
µTCC: 40 Versions

Figure 3: Average Abort Rate for Read Operations — Version
Study under High Contention

test, analyzing the data obtained with 𝜇TCC while maintaining 25
versions for each data object in remote storage, we found that only
0.97% of transactions are aborted. This discrepancy is motivated by
the need for the base system to re-execute transactions more fre-
quently in the event of clients requesting causal cuts whose values
have been removed by automatic memory recycling.

To understand the impact of maintaining multiple versions of
each data object in remote storage, we continue by assessing the
occurrences of read anomalies captured by the TCC model during
system execution with 𝜇TCC . We conduct two similar tests, chang-
ing the contention context of the data set used in each scenario, as
described previously.

In Figure 3, we illustrate the impact of increasing the number
of versions maintained for each data object in a highly contended
scenario. On average, for a load of 640 requests per second, the
percentage of aborted read operations due to a lack of consistent
version in remote storage is minimum when remote storage main-
tains the 40 most recent versions per data object, namely 1.45%. As
we decrease the number of versions for each data object, the abort
rate value increases.

4.4 Latency overhead introduced by 𝜇TCC
4.4.1 Read-only Transactions: Read Shopping Cart Functionality.
Figure 4 illustrates the latency overhead for the 95𝑡ℎ percentile of
functionalities executed, in a test scenario where no TCC anomalies
are present. Thismeans that transactions only require a single round
to read consistent values across the functionality. We observe that

7



JoãoQueirós

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

40

50

60

70

80

La
te

nc
y 

(9
5t

h 
pe

rc
en

til
e)

µTCC: High Contention
µTCC: Low Contention
Base System: High Contention
Base System: Low Contention

Figure 4: Latency of Read-only Functionalities: Read Shop-
ping Cart functionality

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

40

45

50

55

60

65

70

75

La
te

nc
y 

(9
5t

h 
pe

rc
en

til
e)

µTCC: High Contention
µTCC: Low Contention
Base System: High Contention
Base System: Low Contention

Figure 5: Latency of Read-only Functionalities: Read Shop-
ping Cart functionality (Optimized)

both systems present an increase in latency, as the load of the system
increases, as expected. On average, for a load of 640 requests per
second in a highly contended scenario, 𝜇TCC presents a latency
1.16× higher than the results obtained for the same test in the base
system.

Considering the low contention scenario, the results obtained
by 𝜇TCC reveal a similar pattern. On average, for a load of 640
requests per second in a lowly contended scenario, 𝜇TCC presents
a latency 1.26× higher than the results obtained for the same test
in the base system.

These results obtained in both contention contexts are explained
by the fact that no data consistency anomalies captured by the TCC
model are visible, and thus, no transaction requires re-execution to
read consistent values. The additional latency overhead present in
the 𝜇TCC is associated with both the execution of the microservice
wrappers, where we consider two important aspects: the mecha-
nisms that inject the metadata that captures the causal cut being
used, and the communication with the coordinator, to where all
microservices that participated in the read transaction send their
tokens; and the storage wrappers, where remote storage queries are
intercepted and rearranged for the fetching of a version consistent
with the causal cut being used in the transaction.

To study the impact in read-only transactions of the communi-
cation between the microservice wrapper and the coordinator to
where the tokens are sent, we tested an optimized version of 𝜇TCC ,
where read-only transactions are marked from the beginning, and

40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360
Functionalities / s

30

40

50

60

70

80

La
te

nc
y 

(9
5t

h 
pe

rc
en

til
e)

µTCC: High Contention
µTCC: Low Contention
Base System: High Contention
Base System: Low Contention

Figure 6: Latency of Write-only Functionalities: Update Price
and Discount functionality

thus do not require the execution of the commit phase with the
coordinator. Figure 5 demonstrates the result improvements when
comparing with the results presented earlier. On average, for a load
of 640 requests per second in a highly contended scenario, 𝜇TCC
presents a latency 1.09× higher than the results obtained for the
same test in the base system.

Considering the low contention scenario, the results obtained
by 𝜇TCC reveal a similar pattern. On average, for a load of 640
requests per second in a lowly contended scenario, 𝜇TCC presents
a latency 1.15× higher than the results obtained for the same test
in the base system.

Using the results obtained from both the non-optimized and
optimized versions of 𝜇TCC we can estimate that the process of
sending the commit tokens to the coordinator represents 40.0% of
the additional overhead in 𝜇TCC for both the high contention and
low contention scenarios, when compared with the base system.
Similar optimizations to the ones proposed have been introduced
in systems such as Corbett et al. [10].

4.4.2 Write-only Transactions: Update Price and Discount Function-
ality. Figure 4 illustrates the overhead latency for the 95𝑡ℎ percentile
of functionalities executed. We observe that both systems exhibit
an increase in latency, as the load of the system increases, as ex-
pected. On average, for a load of 320 requests per second in a highly
contended scenario, 𝜇TCC presents a latency 1.37× higher than the
results obtained for the same test in the base system.

Considering the low contention scenario, the results obtained
by 𝜇TCC reveal a similar pattern. On average, for a load of 320
requests per second in a lowly contended scenario, 𝜇TCC presents
a latency 1.26× higher than the results obtained for the same test
in the base system.

The additional latency overhead present in the 𝜇TCC is associ-
ated with both the execution of the microservice wrappers, where
we consider two important aspects: the mechanisms that inject the
metadata that captures the causal cut being used, and the commu-
nication with the coordinator, regarding the commit phase; and the
storage wrappers, where versions of data objects are temporarily
stored until the commit order is issued for persistence.

4.4.3 Mixed Transactions. The mixed transactions tested in this
scenario include both Read Shopping Cart and Update Price and
Discount functionalities. Figure 7 shows the impact on latency for

8



Transactional Causal Consistency For Microservices Architectures

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

50

100

150

200

250

300

La
te

nc
y 

(9
5t

h 
pe

rc
en

til
e)

µTCC: High Contention
µTCC: Low Contention
Base System: High Contention
Base System: Low Contention

Figure 7: Latency of Mixed Operation Functionalities

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

40

60

80

100

120

140

La
te

nc
y 

(9
5t

h 
pe

rc
en

til
e)

µTCC: 5 Versions
µTCC: 10 Versions
µTCC: 25 Versions
µTCC: 40 Versions

Figure 8: Latency of Mixed Operation Functionalities over
different Versions per Data Object Policies

the 95𝑡ℎ percentile of functionalities executed until consistent data
is read, for the various test cases described above, when comparing
the base system, and 𝜇TCC configured to maintain the 25 most re-
cent versions for each data object. As we can observe, both systems
experience an increase in latency with the system load, as expected.
As it can be seen, considering the highly contended scenario with
a load of 640 requests per second, 𝜇TCC exhibits a latency 2.63×
lower than the results obtained with the base system. These results
are supported by 𝜇TCC ’s ability to satisfy most read operations
consistently in just one round, whereas in the base system, due
to the frequency of aborted transactions, a read operation might
require multiple rounds to read consistent values.

Regarding the low contention scenario, the results obtained by
𝜇TCC show a slight reduction in latency for tests with a load of
640 requests per second, specifically 1.04× lower than the result
obtained for the base system. This value suggests that the penalty
introduced by the wrapping mechanism used in 𝜇TCC , associated
with the extra effort to filter data access in order to obtain a version
that is consistent with the client’s state, is outweighed by the need
for the base system, in turn, to perform multiple rounds to read
consistent values.

The difference between the results for the two systems mainly
arises due to the versioned data storage in 𝜇TCC . While the base
system maintains only one version in its storage, 𝜇TCC keeps, for
each of the application, the 25 most recent versions written by the
clients.

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

0

100

200

300

400

500

600

700

M
em

or
y 

Us
ag

e 
(M

iB
)

Base System
µTCC

Figure 9: Memory Usage of Mixed Functionalities under Low
Contention — Catalog Service

We follow by studying the impact on latency overhead in 𝜇TCC
, introduced by increasing the number of versions maintained for
each data object. In Figure 8, we can observe the impact on latency
for the 95𝑡ℎ percentile of functionalities executed until consistent
data is read, in a highly contended scenario. As we can observe, for
a load of 640 requests per second, 𝜇TCC , when configured to store
the 25 most recent versions per data object, demonstrates the best
latency performance, out of all the configurations tested, namely
1.03× lower than the second best-performing configuration (𝜇TCC
when configured to maintain the 40 most recent versions per data
object).

When taking in consideration the abort rate results as well as
the latency overhead introduced in 𝜇TCC , it is possible to under-
stand the tradeoff between limiting the number of versions per data
object for performance gains (by reducing the dataset size in re-
mote storage) and increasing the risk of read operation failures due
to a lack of a consistent version in storage. While configurations
for 𝜇TCC that store a smaller number of versions per data object
typically perform better in terms of latency (while disregarding
transaction re-execution), the test results show that, as a conse-
quence of the higher abort rates, transactions require re-execution
more frequently, hindering the latency performance gains men-
tioned earlier.

Generally, we observe that increasing the number of versions
stored per data object leads to a performance decrease due to height-
ened complexity in the storage wrapper when fetching a specific
consistent version from remote storage, performance which is then
compensated by the lack of transaction re-execution in order for
the client to read consistent values.

Pursuing the goal of maintaining an abort rate due to lack of
a consistent version in remote storage under 4%, we proceed to
evaluate the memory overhead introduced by 𝜇TCC with 25 ver-
sions maintained for each data object. This configuration of 𝜇TCC
introduces the lowest latency overhead while guaranteeing that the
percentage of aborted transactions remains lower or equal than 4%.

4.5 Memory overhead introduced by 𝜇TCC
Figure 9 illustrates the memory usage overhead for a test scenario
consisting of both Read Shopping Cart and Update Price and Dis-
count functionalities. This test is executed for the low contention
scenario. As it is possible to observe, the service experiences an

9



JoãoQueirós

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640
Functionalities / s

0

50

100

150

200

250

M
em

or
y 

Us
ag

e 
(M

iB
)

Base System
µTCC

Figure 10: Memory Usage of Mixed Functionalities under
Low Contention — Shopping Cart Service

increase in memory usage with the system load, as expected. The
memory usage difference when comparing the base system and
𝜇TCC is associated with both the microservice and storage wrap-
pers. On average, for a load of 640 requests per second, the memory
usage for the Catalog Service using 𝜇TCC is 1.15× higher when
compared to the base system memory usage.

Figure 10 illustrates the memory usage overhead for a similar
test scenario, focused on the Shopping Cart service’s memory us-
age. Similarly to the previous results obtained for the Catalog and
Discount services, it is possible to observe an increase in memory
usage with the system load, as expected. The memory usage differ-
ence when comparing the base system and 𝜇TCC is associated with
the microservice wrapper. The Shopping Cart service does not store
data objects, neither locally nor remotely. This way, the Shopping
Cart service does not require the usage of a storage wrapper. On
average, for a load of 640 requests per second, the memory usage
for the Shopping Cart Service using 𝜇TCC is 1.06× higher when
compared to the base system memory usage.

5 CONCLUSIONS AND FUTUREWORK
In this thesis, we addressed the problem of offering TCC to mi-
croservice applications. In particular, we studied mechanisms that
both ensure the atomicity of the results of functionalities that span
multiple microservices and ensuring that functionalities always
read versions of data objects that are mutually consistent. We have
designed and evaluated a mediation layer, that we have named
𝜇TCC , that is capable of providing these guarantees. This layer
uses wrappers that encapsulate microservices and storage systems,
allowing for the seamless provision of the desired consistency guar-
antees in the implementation of microservices. The results show
that 𝜇TCC can prevent the occurrence of TCC anomalies, eliminat-
ing the need to execute compensating actions, while ensuring both
high-availability, low latency, and low memory overhead.

6 FUTUREWORK
Our prototype uses a very simple strategy to eliminate obsolete
versions of data objects. Namely, a garbage collection thread is run
periodically to purge old versions of each data object. It would
be interesting to explore more sophisticated strategies, that could
exploit idle periods to perform garbage collection.

The current version of 𝜇TCC uses physical clock values to totally
order update transactions. When evaluating 𝜇TCC , we have con-
sidered a scenario where all microservices execute in a single data-
center, that have their clocks synchronized with a negligible skew.
It would be interesting to extend the evaluation to geo-replicated
scenarios, where the clock synchronization skew can be larger. In
particular, it would be interesting to assess how likely it is that a
read operation is temporarily blocked due to the clock skew (this
may occur when the clock of a given service is in the past of the
read snapshot).

Finally, many microservice architectures use a combination of
shared memory and event based communication to coordinate mul-
tiple services. The problem of defining a suitable consistency model
that integrates both shared memory and event based communi-
cation only recently started to be investigated [12]. Augmenting
𝜇TCC with support for novel consistency criteria, that can take into
account the use of event-based platforms, such as publish-subscribe
systems, is an interesting avenue of research.

ACKNOWLEDGMENTS
This work was supported by national funds through FCT - Fundação para a
Ciência e a Tecnologia as part of the projects with references UIDB/50021/2020
and DACOMICO (financed by the OE with ref. PTDC/CCI-COM/2156/2021).

REFERENCES
[1] T. Mauro, February 2015. Accessed: 28/12/2022.
[2] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo. Microservices in

practice: A survey study. In VI Workshop on Software Visualization, Evolution
and Maintenance, pages 75 –82, 2018.

[3] J. F. Almeida and A. R. Silva. Monolith Migration Complexity Tuning Through
the Application of Microservices Patterns. In Software Architecture, pages 39
–54, Cham, 2020. Springer International Publishing.

[4] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data, SIGMOD ’87,
page 249 –259, New York, NY, USA, December 1987. Association for Computing
Machinery.

[5] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-si: Snapshot isolation
for partitioned data stores using loosely synchronized clocks. In 2013 IEEE
32nd International Symposium on Reliable Distributed Systems (SRDS), pages
173 –184, Los Alamitos, CA, USA, October 2013. IEEE Computer Society.

[6] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao
Li, Tyler Crain, Annette Bieniusa, Nuno Preguiça, and Marc Shapiro. Cure:
Strong semantics meets high availability and low latency. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), pages
405 –414, June 2016.

[7] Xiao Shi, Scott Pruett, Kevin Doherty, Jinyu Han, Dmitri Petrov, Jim Carrig, John
Hugg, and Nathan Bronson. FlightTracker: Consistency across read-optimized
online stores at Facebook. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 407 –423, November 2020.

[8] Taras Lykhenko, Rafael Soares, and Luis Rodrigues. Faastcc: Efficient transac-
tional causal consistency for serverless computing. In Proceedings of the 22nd
International Middleware Conference, Middleware ’21, page 159 –171, New York,
NY, USA, December 2021. Association for Computing Machinery.

[9] Eman Daraghmi, Cheng-Pu Zhang, and Shyan-Ming Yuan. Enhancing saga
pattern for distributed transactions within a microservices architecture. Applied
Sciences, 12, June 2022.

[10] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. Spanner: Google’s globally distributed database.
ACM Trans. Comput. Syst., 31(3), August 2013.

[11] eShopOnContainers: .NET microservices sample reference application. Accessed:
05/06/2023.

[12] Benoît Martin, Laurent Prosperi, and Marc Shapiro. Transactional-turn causal
consistency. In Euro-Par 2023: Parallel Processing, pages 578 –591, Cham, 2023.
Springer Nature Switzerland.

10


	Abstract
	1 Introduction
	2 Related Work
	2.1 Transactional Support in Cloud Computing
	2.2 Transactional Support in FaaS Systems
	2.3 Transactional Support in Microservices
	2.4 Discussion

	3 microTCC
	3.1 Storage Wrappers
	3.2 Microservice Wrappers
	3.3 Functionality Coordinators
	3.4 Metadata
	3.5 Protocols
	3.6 Garbage Collection in microTCC
	3.7 Cost of Adopting microTCC

	4 Evaluation
	4.1 Experimental Workbench
	4.2 Test Case
	4.3 Prevention of TCC Anomalies
	4.4 Latency overhead introduced by microTCC
	4.5 Memory overhead introduced by microTCC

	5 Conclusions and Future Work
	6 Future Work
	Acknowledgments
	References

