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Abstract

The microservices’ architecture is a software engineering approach that structures an application as a

set of loosely coupled services. Each microservice manages a small, cohesive, subset of the domain

entities and can be implemented, deployed, and managed independently of other microservices. The

execution of a microservice may need to read data items that are managed by other microservices.

These read operations can be completed either by doing remote calls or by reading from a local replica

(possibly inconsistent) of the data managed by the other microservices, that is updated using some form

of publish-subscribe middleware. In any case, there is a possibility of the microservice reading mutu-

ally inconsistent versions of data objects, generating consistency anomalies that would never occur in a

monolithic system. To correct the effects of these anomalies, programmers often have to develop com-

pensating actions responsible for restoring the consistency of the system. In this work, we propose and

evaluate a mediating layer, that we designated µTCC, that offers the Transactional Causal Consistency

guarantees for microservices’ architectures. Using a version control mechanism, µTCC guarantees that

different microservices, when executing a given functionality, observe mutually consistent versions of

data, thus reducing the number of anomalies. Our experimental evaluation shows that the proposed so-

lution prevents the occurrence of Transactional Causal Consistency anomalies while reducing the overall

latency of functionalities by 2.63×, thanks to being able to reduce read transaction abortion frequency

and respective re-executions.
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Resumo

A arquitetura de microsserviços é uma abordagem de engenharia de software que estrutura uma

aplicação como um conjunto de serviços fracamente acoplados. Cada microsserviço é responsável pela

gestão de um subconjunto pequeno e coeso das entidades de domı́nio, podendo ser implementado, ex-

ecutado e mantido independentemente dos outros microsserviços. A execução de um microsserviço

poderá requerer a leitura de dados geridos por outros microsserviços. Estas operações de leitura

podem ser concluı́das através da execução de invocações remotas ou lendo a partir de uma réplica

local (possivelmente incoerente) dos dados geridos pelos outros microsserviços, a qual é atualizada

usando algum tipo de camada intermédia de publicação/assinatura. Em qualquer caso, existe a possi-

bilidade do microsserviço ler versões dos dados mutuamente incoerentes, dando origem a anomalias

de coerência que nunca ocorreriam num sistema monolı́tico. Para corrigir os efeitos destas anomalias,

os programadores frequentemente desenvolvem ações de compensação responsáveis por restaurar

a coerência do sistema. Neste trabalho, propomos e avaliamos uma camada de mediação, que de-

signámos por µTCC, que oferece as garantias de Coerência Causal Transacional a arquiteturas de

microsserviços. Utilizando um mecanismo de controlo de versões, o µTCC garante que diferentes

microsserviços, ao executarem uma dada funcionalidade, observam versões dos dados mutuamente

coerentes, reduzindo o número de anomalias. A nossa avaliação experimental mostra que a solução

proposta evita a ocorrência de anomalias Transactional Causal Consistency (TCC) garantindo a redução

da latência global das funcionalidades em 2.63×, graças à diminuição de transações de leitura abor-

tadas e respetivas reexecuções.

Palavras Chave

Microsserviços, Coerência Causal Transacional, Coerência, Isolamento
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This work addresses the problem of offering Transactional Causal Consistency (TCC) to microservice

applications. It describes the design and implementation of a middleware layer that ensures the atomicity

of the results of functionalities that span multiple microservices and that ensures that functionalities

always read versions of data objects that are mutually consistent. The thesis also reports the results of

an experimental evaluation of our middleware layer.

1.1 Motivation

The Microservices Architecture is a software engineering approach that structures an application as

a set of loosely coupled services. Each microservice manages a small, cohesive, subset of domain

entities and can be implemented, deployed, and managed independently of other microservices. This

approach makes it easier to evolve an application, as different teams may work and update microser-

vices independently of each other. Each team can select the programming language and the storage

services that are most appropriate for each service, without being constrained by the choices made

when implementing other services. Finally, when the application is deployed, microservices also ease

the task of provisioning the necessary resources, because different resources can be easily assigned to

different services. These advantages have driven many companies to adopt this approach when devel-

oping new applications and, in some cases, to refactor legacy monolithic applications as a composition

of services [1].

Microservices also have a number of disadvantages. In a typical monolithic application, all modules

share a single, common, storage system that supports transactional access. Also, each functionality of

the application is executed as an atomic transaction, that is isolated from other concurrent invocations of

the same or other functionalities. This ensures that, amongst other desirable properties, a functionality

always has access to a consistent state of the data store while executing. This guarantee is often not

provided to functionalities that execute in a microservice architecture. First, a given functionality may

need to interact with multiple microservices. Because microservices are independent of each other, and

can use different storage mechanisms, it is much harder to have the entire functionality executed as a

single transaction [2]. Instead, in most implementations, the functionality is executed as a composition of

multiple independent transactions (where each transaction involves a single microservice). This leads to

a loss of transactional properties to the functionality as a whole, as there is no longer an atomic commit

across all microservices, leading to a loss of isolation between concurrent executions [3].

Furthermore, even if a functionality only needs to interact with a given microservice, that microservice

may need to read the value of data objects maintained by other microservices. This can be achieved by

doing remote calls to perform the read operations or by reading from a local cache of remote values, that

is updated asynchronously using some form of publish-subscribe middleware. Due to the asynchronous

2



nature of updates, both cases can result in one microservice reading mutually inconsistent versions

of remote data objects. Both the lack of isolation, and the possibility of reading mutually inconsistent

values, can lead to unexpected states (also known as anomalies) and, ultimately, to undesirable results.

The use of the Sagas [4] pattern is one of the approaches to deal with read anomalies, such as

non-repeatable reads and fractured reads, that can occur in microservice systems. This pattern models

a business transaction as a sequence of local transactions. Each one of these transactions runs in the

microservices’ own local database. If a microservice in the Saga needs to abort, due to a violation of a

business invariant, compensating actions are carried out capable of reestablishing the consistency of the

applications, by reversing the effects of update operations committed by previous local transactions. The

use of compensating actions can be both complex and time-consuming for the developers to implement;

it can lead to longer development times and increased maintenance costs, which ultimately might affect

both the performance and the sustainability of the system.

In this thesis, we address the problem of providing transactional consistency guarantees in microser-

vices systems, in order to minimize the consistency anomalies related with the lack of Isolation and

Atomicity. We take particular care to offer the highest consistency guarantees that can be achieved

without jeopardizing the inherent advantages of the use of microservices, namely the high availabil-

ity and low latency promises. In particular, we study the necessary mechanisms to offer TCC to the

microservices architectures.

TCC is a consistency criterion that has been proposed for systems that aim at offering high-availability.

Due to this reason, most implementations avoid locking data items and, instead, tag data versions with

metadata that allows the identification of which versions belong to the same consistent snapshot. To

ensure that microservice implementations remain loosely coupled, we also aim at avoiding locking data

items. As a result, our middleware will also be based on keeping metadata associated to the object

versions. Additionally, we would like to offer TCC transparently. For that purpose, we aim at building

mechanisms to tag data versions automatically, exchange metadata transparently among microservices,

and keep multiple object versions without requiring programmers to manage the version mechanisms

explicitly.

1.2 Contributions

The main contribution of this thesis is:

• The design of a set of coordination mechanisms to support TCC across multiple microservices.

These mechanisms ensure that all invocations to microservices, when performed in the context of

a given functionality, read mutually consistent versions of data objects.

The proposed mechanisms avoid the need for the development of compensating actions to over-

3



come consistency anomalies such as non-repeatable reads and fractured reads that may occur when

executing functionalities that span multiple microservices without coordination mechanisms.

1.3 Results

This thesis has produced the following results:

• A novel middleware layer, named µTCC, which implements the mechanisms required to provide

TCC support in existing applications that follow the microservices architectural pattern.

• An experimental evaluation of µTCC, including the study of the overhead introduced by the use of

the proposed coordination mechanisms and the corresponding impact on the execution of func-

tionalities.

1.4 Research History

This work was developed in the context of the DACOMICO research project, which has, as an ob-

jective, the advancement of the architecture and deployment practices of contemporary cloud-based

applications. By concentrating on the development of middleware extensions to support TCC, where

the work presented in this thesis focuses on, and automated mechanisms for anomaly detection, this

research project aims to provide developers with practical tools and methodologies for breaking down

large monolithic applications into smaller, loosely-coupled microservices. The primary aim of this project

is to address anomalies commonly associated with eventual consistency while preserving a robust level

of microservices decoupling, thereby enhancing the reliability and resilience of cloud-based application

facing escalating complexity and scalability challenges.

Being part of this research project, I benefited from the useful feedback from the research team of

DACOMICO, both from INESC-ID and from LASIGE.

Parts of the work described in this thesis have been published as:

• J. Queirós, R. Soares and L. Rodrigues. Suporte para Coerência Causal Transacional em Sis-

temas de Microsserviços In Actas do décimo quarto Simpósio de Informática (Inforum), Porto

Portugal, September 2023.

This work was supported by national funds through FCT - Fundação para a Ciência e a Tecnologia

as part of the projects with references UIDB/50021/2020 and DACOMICO (financed by the OE with ref.

PTDC/CCI-COM/2156/2021).
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1.5 Structure of the Document

The rest of the thesis is organized as follows: Chapter 2 introduces the key concepts relevant to our

work and provides an overview of the related work; Chapter 3 describes the architecture of µTCC and

its implementation; Chapter 4 reports the results obtained from our experimental evaluation, where we

study the impact and overhead associated with the use of µTCC; Finally, Chapter 5 concludes this

document, highlighting the main findings of this thesis and providing some directions for future work.
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In this chapter, we introduce the core concepts that are relevant to our work. Specifically, we delve

into the fundamental characteristics of microservice architectures and explore how these attributes can

interfere with the challenge of providing consistent results to clients. Section 2.1 commences with the

presentation of a simple application as an illustrative example, enriching our exposition. Section 2.2

proceeds with an examination of the characteristics of both Monolithic and Microservices Architectures.

Subsequently, in Section 2.3 we present a description of the Data Distribution view within microservices,

followed by a description of various consistency models for Data Replication in Section 2.4. We continue

by introducing several Isolation levels in Section 2.5, along with an examination of the diverse types

of Consistency Anomalies stemming from the use of each specific consistency policy in Section 2.6.

Section 2.7 addresses the consistency problems in microservices. In Section 2.8 we present some

previous relevant works that support distributed transactional execution across both Cloud and Function-

as-a-Service (FaaS) environments. Finally, in Section 2.9 we discuss the advantages and challenges of

the surveyed solutions.

2.1 Example: Online Shop System

For illustrative purposes, we will employ a straightforward application mimicking an online store. This

virtual store enables clients to perform various actions such as item searching, adding products to their

shopping baskets, and proceeding with their respective payments. Each item within this application is

distinguished by a unique identifier and, in addition to its descriptive name, it also boasts attributes such

as price and applicable discount. Both the price and the discount properties can be modified during

the application’s execution. Notably, the shopping basket entity is specific to each client, and maintains

references to the selected items. The entities overseen by the application are represented in Figure 2.1.

Shopping Basket
Client ID

List<Product>

Product
Product ID

Name

Price

Discount

Figure 2.1: Online Shop Entities

The architecture of the Online Shop system follows a possible microservices decomposition. Fig-

ures 2.2, 2.3 and 2.4 portray the individual microservices that comprise this system, each accompanied

by a description of the supported methods. Additionally, the system uses a separate microservice, the

Frontend service, that assumes the role of the system’s entry point. It acts as the primary interface,
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facilitating user interactions with the online shop system.

Catalog
- createProduct(Product product)

- readProduct(ID id)

- updateProductPrice(ID productID, int price)    

Figure 2.2: Catalog Microservice

Discount
- createDiscount(ID productID)

- readDiscount(ID productID)

- updateProductDiscount(ID productID, int discount)  

Figure 2.3: Discount Microservice

Shopping Basket
- getBasket(ID basketD)

- updateBasket(CustomerBasket updatedBasket)

- checkout(ID basketID)    

Figure 2.4: Shopping Basket Microservice

The application provides a diverse set of functionalities, including tasks such as updatePriceAndDis-

count, addProductToBasket and readBasket, all of which are enumerated in Figures 2.5 to 2.7.

These functionalities are characterized by the following operations:

• UpdatePriceAndDiscount functionality (Figure 2.5): involves the Frontend, Catalog and Discount

microservices. It is responsible for updating the price and discount properties of a single Product.

To execute this, the functionality sequentially invokes the Catalog and Discount microservices.

• AddProductToBasket functionality (Figure 2.6): involves the Frontend, Catalog, Discount, and

Shopping Basket microservices. It focuses on the addition of a single product to the client’s shop-

ping basket. To do so, the functionality first acquires the necessary information regarding the

product’s current price and discount from both Catalog and Discount services. Subsequently, it

provides the Shopping Basket service with the updated basket information.

• ReadBasket functionality (Figure 2.7): involves the Frontend, Catalog, Discount, and Shopping

Basket microservices. Its function entails retrieving product information for all items within the

client’s shopping basket. To accomplish this, the Shopping Basket service invokes the Catalog

and Discount services to obtain the current values for the product’s dynamic properties, namely

the price and the discount values. The result includes the client’s shopping basket containing all

the product’s information.
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Frontend Catalog

updateProductPrice(id, price)

Ok()

Discount

updateProductDiscount(id, discount)

Ok()

Figure 2.5: UpdatePriceAndDiscount functionality

Frontend Catalog

readProduct(id)

Basket

Product

Discount Shopping
 Basket

readDiscount(id)

Discount

getBasket(basketID)

OK()

updateBasket(updatedBasket)

Figure 2.6: AddProductToBasket functionality
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Frontend Catalog

readBasket(id)

DiscountShopping
 Basket

readProduct(id)

Product

Loop [for each product]

readDiscount(id)

Discount

Basket

Figure 2.7: ReadBasket functionality

2.2 Monolithic and Microservices Architectures

Contemporary applications often adopt the three-tier architecture [5]. This architecture includes a pre-

sentation tier that handles the communications with the client, an application tier responsible for execut-

ing business logic, and a data tier dedicated to data storage, typically in a form of a database. In this

section, our emphasis is directed towards the structure of the application tier.

The simplest form to organize the business logic of an application is to structure it as a single exe-

cutable software component, maintained in a shared codebase, that is deployed and provisioned as a

whole. When the business logic is structured in this way, the application is said to follow a monolithic

architecture [6]. With regard to the separation of concerns, the monolith approach is suitable when

the application is small, being developed and maintained by a small team. However, as the application

expands, in both scope and functionality, the complexity of its codebase tends to escalate [7]. Further-

more, the task of achieving optimal resource scaling for the application becomes more challenging, as it

is impossible to individually scale each subcomponent within the application [8].

The microservices architecture is a design paradigm characterized by the subdivision of an appli-

cation into multiple loosely-coupled modules (or services) that can be developed, maintained, deployed

and provisioned independently of each other. Microservices can typically simplify the growth of the ap-

plications, given that it allows different teams to be assigned to the development and maintenance of

different services. Also, microservices make it easier to provision the right resources to the application,

since it is possible to scale each service independently, according to the specific needs. Consequently,

microservices have earned growing acceptance within the software development community [9], having
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established themselves as an essential part in the architecture of applications developed by prominent

companies such as LinkedIn [10], Netflix [1], Uber [11] or SoundCloud [12].

There are a number of challenges raised by the microservice architecture that we aim to address

in this work. Given that monolithic applications typically use a single database, it is easy to imple-

ment functionalities as atomic transactions. In a microservice architecture, different services often use

different databases; although it is possible to execute functionalities that span multiple services as a

distributed transaction, most microservice deployments opt to run those functionalities as a sequence

of independent sub-transactions, breaking the isolation between concurrent executions. Also, in many

microservice architectures, some services cache values of data items managed by other services, which

creates additional opportunities for reading inconsistent data values.

Typically, in the microservice architecture, systems opt to follow one of two possible approaches to

communication across microservices. These are orchestration and choreography [13]. Following the or-

chestration approach, microservices communicate with each other using a centralized service controller

(also known as the Coordinator ) that is aware of all the existing microservices. The controller directs

each service to perform the intended function. For functionalities that span across multiple microser-

vices, the coordinator listens to all events emitted by the services, triggering the following microservices

in the functionality. Additionally, the coordinator is also responsible for handling both error and com-

pletion events. Large organizations such as Netflix use orchestration to coordinate their microservices,

which in 2015 comprised over 700 microservices [14]. On the other hand, following the choreography

approach, there is no need for any centralized service controllers. Microservices emit events that are

directly subscribed by the following microservices. This process continues until no microservice emits

any event. It is important to note that, following this communication approach, microservices do not

need to know of each other’s existence, allowing new microservices to be added to the system without

needing to adapt existing microservices.

Our goal is to design mechanisms to improve the consistency guarantees offered to programmers

of microservice applications while keeping the implementation of different services loosely coupled. We

plan to integrate these mechanisms on systems following the orchestration approach.

2.3 Data Distribution in Microservices

In microservice architectures, for each domain entity, there is a single service that is responsible for

performing updates on its data objects. Typically, these updates are performed by running transactions

that are local to that microservice and, thus, updates to each item are atomic. However, microservices

may need to retrieve and process data values from multiple sources, either data stores managed by

other microservices or legacy systems, for example. There are two main approaches to support such
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accesses: real-time remote invocations and data replication.

When adopting the first approach, a microservice performs a remote invocation to another mi-

croservice to fetch the required data. Such remote invocations are commonly implemented through

a Representational State Transfer (REST) interface [15] or the gRPC Remote Procedure Call (gRPC)

framework, Google’s high-performance, open source Remote Procedure Call (RPC) framework [16].

When using the second approach, a microservice keeps a local replica (or cache) of data items that

are updated by remote microservices, but that are needed to execute local transactions [17]. Replicas

of data items are updated asynchronously using some form of publish-subscribe service: when a mi-

croservice performs a local update to a data item, it publishes an event with the new value, which is

subscribed by all other interested microservices.

By keeping a local replica of data items managed by other microservices, it is possible to execute

all reads required to execute a transaction using local operations only. Leveraging these caching mech-

anisms allows systems to minimize the latency associated with inter-service communications in mi-

croservices architectures. Unfortunately, due to asynchronous updates of replicas, local reads may

yield inconsistent values. We discuss the problem of consistency with replicated data in the following

sections.

2.4 Consistency with Data Replication

Current microservice-based systems typically enforce weak consistency policies when executing trans-

actions across multiple microservices. In contrast to monolithic applications, where typically a single

logical database if favored for data persistency, microservices often allow individual services to manage

their own database. This flexibility is achieved by deploying multiple instances of the same database

technology, or entirely different database systems (loosely-structured NoSQL databases versus rela-

tional databases, for example), a strategy commonly referred to as Polyglot Persistence [18]. However,

the latter approach introduces new challenges, as the heterogeneous database choices may provide dif-

ferent levels of consistency guarantees. Although not exclusive, this approach is typically more common

in systems that follow the microservices architecture pattern [19].

We will now proceed by analyzing different existing consistency models for data replication, following

the analysis outlined in [20]. We will introduce the most relevant consistency levels commonly employed

in both monolithic and microservice architectures. Our exploration will follow the hierarchy of consis-

tency strength, starting with the less strict consistency models, designed for transactions involving a

single-object, before moving on to examine several multi-object consistency models. The transactions

associated with these consistency models encompass both read and write operations.

One of the weaker consistency models that has been used in practice is Eventual Consistency :
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Eventual consistency: this model allows for concurrent updates to be executed in different replicas

and assumes that these updates are propagated asynchronously to the other replicas. This allows

replicas to momentarily be inconsistent from each other, eventually converging to the same value if the

workload becomes quiescent. Concurrent updates may either be merged or, if this is not possible, select

deterministically one of the concurrent updates and discard the others (using criteria such as last writer

wins).

Eventual consistency permits executions where a client observes an update and, subsequently, in future

access to another replica, no longer sees that update. Some of these behaviors can be prevented by

using a stronger consistency model, such as the following:

Monotonic Reads (MR): a consistency model that ensures that if a process performs a read r1,

followed by another read r2, then r2 cannot read a state of the object older than read in r1.

Monotonic Writes (MW): a consistency model that ensures that if a process performs a write w1,

followed by another write w2, then all processes will see w1 before w2.

Read Your Writes (RYW): as defined in Viotti et al. [21], this consistency model ensures that, while

considering two operations: a read r1 and a write w1 by the same process, if w1 is executed before r1,

then r1 must include the changes made by w1.

Writes Follow Reads (WFR) also known as Session Causality implies that if a process executes a

write operation w1, and follows up by executing a read operation r1 that included the changes made by

w1, then any future write operation w2 must become visible after w1.

Causal Consistency (CC): a combination of the previous four models’ properties. Steams from

Lamport’s definition of happened-before relation [22]. This relation (denoted: →) is a partial ordering of

events that reflects their causal relationship, such that if an event happens before another, the result must

reflect that. Simply, if events a and b occur on the same process, a→ b if event a precedes b. In another

case, if an event a is an event that sends a message and event b is the event that receives this message,

then a → b. The formal definition for the happened-before relation can be found in Lamport [22]. CC

captures the concept of potential causality by establishing connections between consecutive operations

within a single process and operations that occurred in other processes but possibly became visible

due to messaging mechanisms. CC guarantees that all processes perceive the same order of causally-

related operations. In essence, CC guarantees the system’s consistent view of its data maintains and

ensures that operations are ordered meaningfully.
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Despite providing stronger guarantees, CC does not ensure that replicas converge to the same state

under concurrent operations [23]. To guarantee this property, while maintaining the precise guarantees

that the state applications observe, we define a stronger consistency model:

Causal+ Consistency (CC+): as introduced in [24,25], CC+ is an extension to CC, that provides the

extra guarantee of replica convergence under concurrent operations’ scenario.

Despite providing a stronger guarantee, Causal+ Consistency only guarantees that operations are exe-

cuted in a causally consistent order. Linearizability provides stronger guarantees, at the cost of needing

more complex mechanisms.

Linearizability is the strongest single-object consistency model, that implies that if an operation A

is completed before another operation B is started, then the effects of operation A should occur before

operation B affects the object. This consistency model requires changes to be made atomically. Besides

that, it extends CC+ by ensuring that operations are consistent with the same real-time ordering as they

took place.

We continue by exploring the different isolation mechanisms, capable of supporting transactions, i.e.,

sequences of read and write operations for multiple objects.

2.5 Isolation in Microservices

We will now explore various consistency models designed to uphold isolation properties for multi-object

transactions. In contrast to single-object transactions, these consistency levels determine the extent

of isolation guaranteed between transactions. Just as in our examination of single-object transaction

models, we will delve into several consistency models, beginning with the less strict isolation levels. In

microservices architectures, preserving loose coupling often leads to the implementation of weak con-

sistency policies across concurrent functionalities. Common microservice deployments do not enforce

full isolation among functionalities that span multiple services. Instead, a functionality is broken into

multiple (sub-)transactions that are executed independently of each other. Some levels of isolation in

these types of deployments include:

Repeatable Reads (RR): The definition of RR is broad and can be ambiguous. For our work, we

follow the definition of RR as defined in Bailis et al. [26], which states that transactions read from non-

changing snapshots, over the data items. This means that if a transaction reads the same data object

multiple times, it will always the same value each time.
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Transactional Causal Consistency (TCC): This is the strongest model a system can achieve under

high-availability and low-latency [27]. TCC extends CC+ functionality. In this consistency model, trans-

actions read from a causally consistent snapshot. This means that transactions read from a view of the

data store that includes all the effects of the transactions that preceded it in the causal chain. As an

example, consider a transaction T1, that writes an object X0 that depends on another object Y0. Now

suppose there is a running transaction T2 that reads X0. When T2 reads the object Y , it must read a

version that has not occurred before Y0, due to X0’s dependencies. T2 can either read Y0, a concurrent

version of object Y or a more recent version. Note that T2 cannot read a version of object Y that depends

on a newer version of X than version X0 because T2’s snapshot already contains version X0.

Although not common, microservice architectures can enforce stronger isolation policies. This, however,

comes with the cost of efficiency loss, as stronger isolation models require stricter control over concur-

rent functionalities. The next example on the isolation hierarchy is Snapshot Isolation (SI), which is often

the isolation level offered by default inside many commercial databases.

Snapshot Isolation (SI): in this isolation model, transactions operate on an independent, consistent

snapshot of the database. SI guarantees that all reads made in a transaction will always see the last

committed values that existed in the database at the time the transaction started. This means that if a

transaction T1 writes an object obj1, and a concurrent transaction T2 commits a write operation to the

same obj1 after transaction T1 began, that will cause T1 to abort on commit time.

As stated before, SI can be enforced over transactions spanning across multiple services, and in a

multi-database scenario. To do so, it is necessary to execute distributed transactions. The X/Open

XA eXtended architecture [28] is a standard that allows multiple databases to coordinate the execution

of sub-transactions to achieve global isolation guarantees. However, running distributed transactions

may create undesirable dependencies among microservices. Depending on the data criticality of the

functionality executed, monolithic systems may require the enforcement of stronger isolation policies.

For instance, to provide Serializability (1SR), a transaction may lock data items in a given microservice

until another microservice is ready to commit.

Serializability (1SR) this model is considered a strong consistency policy. It ensures that the exe-

cution of transactions take place atomically. That is, the sub-operations of a transaction do not appear

to interleave with the sub-operations of concurrent transactions, leading to a sequential execution of the

set of transactions. In this way, as an example, if a process P1 completes a write x, a following process

P2 is not guaranteed to observe the write operation performed by A. Serializability implies both RR and

SI.
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The strongest isolation policy guarantees that functionalities that are executed concurrently in a mi-

croservice architecture are isolated from each other. This level of isolation is known as Strict Serializ-

ability (Strict 1SR), often referred to as the “golden standard” of distributed transaction semantics [29].

It is defined as follows:

Strict Serializability (Strict 1SR): represents the strongest consistency policy. As defined in Her-

lihy [30], akin to 1SR, this model guarantees that transactions execute atomically. The key distinction

lies in Strict 1SR’s requirement that transactions must align with the real-time ordering of the events,

adhering to Linearizability’s real-time constraints. In simpler terms, if a transaction T1 completes before

a transaction T2 begins, then transaction T2 must be able to observe the results of the transaction T1 in

the serialized order. Strict 1SR implies both Serializability and Linearizability.

We will discuss the potential advantages of using weaker isolation guarantees in microservice archi-

tectures later in the report.

2.6 Anomalies

The lack of isolation in microservices’ environments stems from executing functionalities as a sequence

of independent transactions and the lack of consistency of read operations on remote entities. This

allows the occurrence of operation interleaving in ways that can never occur when functionalities are

executed as atomic transactions in a monolithic application, also known as anomalies.

In the following section, we discuss common anomalies that may cause the functionality to yield

incorrect results, anomalies which can arise within the models introduced earlier. Each anomaly type

will be illustrated with a simple example, based on the functionalities outlined in Figures 2.5 to 2.7. By

discerning the differences between each model and recognizing the associated pitfalls, one can select

the right consistency mechanisms that align with our system’s requirements.

Dirty Reads: an anomaly that occurs when a transaction reads data that has been written but not

yet committed by another concurrent transaction – uncommitted data. This anomaly also identifies the

case where a transaction reads aborted data.

To illustrate, consider the functionalities depicted in Figures 2.5 and 2.7, and a simplified transactional

representation in Table 2.1. Imagine a scenario where transaction T1 updates the Price and Discount

properties of a product X1 in the Catalog and Discount services. Concurrently, another transaction, T2,

is able to read the updated Price and Discount values before the transaction T1 commits the changes to

the database. In this situation, T2 reads data that is, in essence, “dirty”, leading to data inconsistencies.

The scenario in which a transaction T2 reads data that has been aborted by a transaction T1 is illustrated

in Table 2.2.
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T1 T2
W(X1)

R(X1)
Commit

Table 2.1: Dirty Reads anomaly: Read Uncommitted

T1 T2
W(X1)
Abort

R(X1)

Table 2.2: Dirty Reads anomaly: Read Aborted

Fuzzy Reads: in this anomaly, a transaction reads different values for the same object at different

times, leading to inconsistent data.

To illustrate, consider the functionalities depicted in Figures 2.5 and 2.7, and a simplified transac-

tional representation in Table 2.3. Imagine a scenario where transaction T1 reads the Price and Dis-

count properties of product P1, placed in the client’s basket and represented by X1. The basket contains

2 references to product P1, requiring T1 to read product P1’s Price and Discount again. Concurrently,

transaction T2 updates product P1’s Price and Discount values, identified by version X2. When trans-

action T1 reads the second reference to product P1, the data read is inconsistent with the first Read

operation, as T1 now reads X2.

T1 T2
R(X1)

W(X2)
Commit

R(X2)

Table 2.3: Fuzzy Reads anomaly

Fractured Reads: an anomaly that occurs, usually associated with database shard replication and

weaker consistency policies.

For instance, consider the scenario depicted in Figures 2.5 and 2.7, along with a simplified transac-

tional representation in Table 2.4. Imagine a scenario where transaction T1 updates the Price (X1) and

Discount (Y1) properties of product P1. After T1 successfully commits its updates to the data storage,

another transaction T2 updates the Price (X2) and Discount (Y2) properties of the same product P1,

and also successfully commits its updates to the data storage. A Fractured Read anomaly occurs if

a subsequent transaction T3, when reading the Price and Discount properties of product P1, observes

price X2 and discount Y1. In this case, the result only captures partial transactional updates, leading to

inconsistent data states.

Lost Update: an anomaly that occurs when two concurrent transactions read the same data and

subsequently attempt to update it with different values. In this scenario, one of the updates is lost, being

overwritten by the update executed by the other transaction.
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T1 T2 T3
W(X1)
W(Y1)

Commit
W(X2)
W(Y2)

Commit
R(X2)
R(Y1)

Table 2.4: Fractured Reads anomaly

Consider the situation illustrated in Figure 2.6, accompanied by the simplified transactional repre-

sentation in Table 2.5. Imagine a scenario where a transaction T1 executes the AddProductToBasket

functionality, aiming to add a new product P1 to basket X. After obtaining the product’s information,

it reads the current content on basket - X1’s content. Concurrently, and before the transaction T1 can

update the data read on X1, another transaction T2 modifies the same basket with data X2, adding a

new product P2 to the basket’s content. Subsequently, transaction T1 proceeds to add the product P1 to

the basket. However, as T1 only considers data read from X1, the new update on basket X overwrites

the update made by T2. This results in the loss of the update performed by T2.

T1 T2
R(X1)

W(X1 + P2)
Commit

W(X1 + P1)

Table 2.5: Lost Update anomaly

Write Skew: an anomaly that occurs when two different transactions T1 and T2 concurrently update

the entities in each other’s read sets. For example, if a database guarantees serializability, then either

T1 executes first, preventing T2 from achieving an unexpected state, or vice versa. However, this is not

the case if the database is under the SI consistency model.

Consider the microservices outlined in Figures 2.2 and 2.3, along with the simplified transactional

representation in Table 2.6. Picture a scenario where two transactions are concurrently executing Price

and Discount updates in preparation for an upcoming commercial campaign. Transaction T1 reads the

price linked to product P1, identified by version Y0. Concurrently, transaction T2 reads the discount

associated with product P1, marked by version X0. Recognizing the high price, transaction T1 increases

the discount value, leading to an update associated with version X1. Similarly, transaction T2 opts to

reduce the price, due to a low discount, resulting in an update associated with version Y1. Depending

on the real order that these transactions are executed, in the presence of an invariant that mandates a
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T1 T2
R(Y1) R(X1)
W(X2) W(Y2)

Table 2.6: Write Skew anomaly

minimum price after discount for all products, such concurrent transactions might violate the system’s

integrity.

Real Time Violation: an anomaly that occurs when the execution of transactions does not respect

the real-time order of the involved transactions. In a system that offers Serializability as the Isolation

policy, if a process p1 runs a transaction T1 that executes a write operation w, we are not guaranteed

that a subsequent process p2 will be able to read the operation concluded by T1. These real-time

guarantees are only offered by Strict 1SR.

As an example, consider the scenario presented in Figures 2.5 and 2.6 and Table 2.7. Imagine a

scenario where a process executes a transaction T1 that updates the Price (X1) and Discount (Y1) prop-

erties of product P1. Concurrently, another process executes a transaction T2, responsible for adding

the product P1 to the client’s basket. For Strict 1SR, we would have an anomaly if we couldn’t guarantee

the exact order by these two transactions occurred, according to Real-time ordering.

T1 T2
W(X1)

W(X2)

Table 2.7: Real Time Violation anomaly

We conclude this analysis by presenting of a table illustrating the anomalies prevented by specific

consistency models. This highlights a clear connection between the consistency strength and isolation

levels.

Dirty
Reads

Fuzzy
Reads

Fractured
Reads

Lost
Update Write Skew Real Time

Violation
EC è ✗ ✗ ✗ ✗ ✗

RR è è ✗ ✗ ✗ ✗

TCC è è è ✗ ✗ ✗

SI è è è è ✗ ✗

1SR è è è è è ✗

Strong 1SR è è è è è è

(Note: Shields represent protection against the anomaly, checkmarks represent vulnerability to the anomaly.)

Table 2.8: Consistency Models and Isolation Levels: a comparison of Anomaly Prevention Capabilities.
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2.7 Addressing Consistency Problems in Microservices

As depicted in Table 2.8, only the strongest consistency model prevents the occurrence of all anomalies

presented. Furthermore, the weaker the model, the more anomalies are allowed. Unfortunately, as

we have also discussed, enforcing strong consistency in microservices is expensive and reduces the

decoupling among multiple storage services. Due to the latter, many microservice implementations do

not enforce strong consistency. Instead, functionalities are executed as a sequence of independent

transactions that read from local (possibly inconsistent) replicas of data items maintained by other data

services. As a result, programmers have to deal explicitly with anomalies and with the lack of atomicity

in the executions of functionalities that span multiple services [31].

The Saga design pattern, introduced in Garcia-Molina and Salem [4] provides a framework for the

management of data consistency for systems that build their transactional context within a distributed

environment. This design pattern guides programmers in structuring their application code in a way that

helps to mitigate the effects of anomalies and lack of atomicity. To achieve this, the pattern divides a

functionality into a series of local transactions, each executed within individual services. Each participat-

ing service in the Saga is responsible for sending a message or publishing an event upon the completion

of its local transaction, information which is then captured at the next microservice(s) in the microser-

vices graph representing the functionality. This triggers the next local transaction in the Saga sequence.

In any of these local transactions abort due to an anomaly, the Saga pattern initiates a set of compen-

sating actions that aim at re-establishing the consistency of the application [32]. Figure 2.8 illustrates a

typical execution of a functionality modeled following the Saga pattern, showcasing the detection of an

anomaly during a local transaction. This anomaly results in the functionality being aborted, triggering

the execution of corresponding compensating actions.

Microservice 1 Microservice 2 Microservice 3 Microservice 4

Anomaly
Detected: Abort

Compensating
Action

Compensating
Action

Functionality

Figure 2.8: Saga pattern: sample functionality

Let’s consider the UpdatePriceAndDiscount functionality as presented in Figure 2.5. Imagine a sce-

nario where a business campaign is in progress, and the shop administrator intends to raise both the

Price and the associated Discount of an item. Following the Sagas pattern, the functionality is divided
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into two distinct local transactions—one executed in the Catalog microservice, and the other executed

in the Discount microservice. In this context, the first local transaction successfully executes, increas-

ing the Price of a specific product. However, at the Discount service, the system rejects the proposed

Discount, deeming the resulting price after discount unacceptable (violating a pre-defined minimum, for

example). Consequently, the functionality is aborted. In such a scenario, a compensating action is trig-

gered to revert the updated price, ensuring that no product remains registered in the system with an

invalid price/discount combination.

Typically, there are two common saga implementation approaches:

• Choreography: following the choreography approach, the saga participants exchange the mes-

sages and events between each other without a central point of coordination. The local transac-

tions that finish their execution successfully, directly trigger the following transactions.

• Orchestration: following the orchestration approach, a centralized entity personally triggers the

local transactions in each microservice. Each service can still publish a message or event once

it finishes its execution. However, instead of being subscribed by the other services, only the

orchestrator acts upon its receival. The failure recovery through compensating actions is also

coordinated by this centralized entity.

Our work is motivated by the observation that the number of anomalies that need to be addressed

by the programmer (via the implementation of appropriate compensating actions) can be reduced if the

runtime can offer some minimal consistency guarantees (such as TCC), even when the functionality is

split into multiple independent transactions. We hypothesize that consistency criteria such as TCC can

be offered without breaking the decoupling among the implementation of different microservices.

2.8 Exploring Transactional Consistency: Systems Overview

In this section, we analyze several systems that offer transactional consistency models in either mono-

lithic or microservice architectures. Each system analysis includes a concise overview of its features,

including both the isolation levels and the proposed solution. We delve into the key features and advan-

tages of these systems, while also addressing potential limitations and considerations associated with

these approaches.

2.8.1 Cloud Systems with Support for Transactions

2.8.1.1 Cure

Cure [27] was the first system to implement TCC. Cure considers the existence of multiple datacenters,

located in different geographic regions, each maintaining a full replica of a key-value store. In each
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datacenter, the data is partitioned across different servers, where each server stores a non overlapping

subset of the key-space. Cure also assumes that clients are sticky, i.e., that clients access a single

datacenter, for all the operation in a transaction. In this setting, Cure supports interactive transactions,

i.e., transactions where the read-set and write set are not known beforehand.

TCC allows concurrent transactions to commit, even if they access the same data items. Cure

assumes that objects are implemented as Conflict-free Replicated Datatypes (CRDTs) [33], such that

concurrent updates can be merged consistently. Updates are propagated asynchronously among data-

centers. Furthermore, updates to different data partitions are propagated independently of each other.

Thus, two updates performed in the context of the same transaction can arrive at different points in time

to remote datacenters. Updates are tagged with metadata that allows to identify which version belongs

to a consistent snapshot when serving reads.

Cure assumes that nodes (partitions of a datacenter) are equipped with a physical clock that gener-

ates increasing timestamps and that are loosely synchronized with other clocks following a time synchro-

nization protocol such as NTP [34]. When a transaction commits, it is assigned a commit time, which is

computed as the highest clock value of all nodes (i.e., partitions) that have been updated by the trans-

action. A consistent read snapshot is captured by a vector clock V , with an entry for each datacenter.

The value of each entry V [i] indicates that the snapshot includes all transactions performed at the data-

center i with commit time less or equal to V [i]. When a transaction starts at the datacenter j, a partition

is selected as transaction coordinator and a suitable read snapshot is selected to ensure that TCC is

preserved. This means that, if the client has observed a snapshot more recent than the one available

at the local partition, the coordinator is required to retain the transaction. After this condition is ensured,

V [j] is set to the coordinator’s local clock, such that the newly started transaction observes previous

transactions committed at the datacenter j. The values V [i] for i ̸= j are selected such that all updates

from datacenter i, with timestamp smaller or equal than V [i], have already been received locally. These

values are selected with the help of a global mechanism, denoted by Globally Stable Snapshot (GSS),

that keeps track of which transactions have been received by each datacenter. Each update performed

in the context of a given transaction, executed at the datacenter j, is tagged with a snapshot vector clock

(SV C), corresponding to the transaction GSS, with the local entry for the datacenter (SV C[j]) updated

with the commit time of the transaction.

The vector clocks of the updates are used to enforce that updates are applied to each datacenter in

an order that respects causality. Considering that all updates become immediately visible to the client,

in the presence of a network partition between datacenters, only the transactions executed in remote

datacenters are delayed.
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2.8.1.2 FlightTracker

FlightTracker [35] provides a solution for managing RYW consistency for clients accessing Facebook’s

social graph. It offers a system that maintains read efficiency, tolerance for hot spots (frequently read

and updated objects), and high availability akin to Eventual Consistency. FlightTracker is designed as a

set of APIs and a metadata service. To support RYW, FlightTracker collects metadata associated with

a user’s recent writes, presented as a data type denominated Ticket. Web requests always retrieve the

user’s Ticket before executing queries on Facebook’s data stores.

The decision to embrace a weaker consistency model, as opposed to opting for Linearizability or

Causal Consistency, is justified in the tradeoff analysis outlined in [35]. It is proposed that even though

stronger consistency models prevent more anomalies, and let developers create mental models more

easily, these also impose tighter constraints on service implementation. In the context of FlightTracker,

a read-intensive system, the majority of queries results stem from local cache replicas, even if these

replicas are a few seconds behind the desired read timestamp.

FlightTracker decomposes the problem of RYW consistency in 3 parts: the Ticket data type abstrac-

tion; an infrastructure service for providing the Ticket once per request; and Ticket-inclusive reads, a

mechanism used to include the user’s recent writes in query results.

The Ticket data type serves as a medium to store and expose the user’s recent writes as metadata.

These tickets condense the system-specific details of a user’s write sets across the components of

the system. This information allows any generic infrastructure to monitor and recognize writes across

numerous independently deployed systems. Included in these details are the Transaction ID, that is

associated with that specific write operation, and the resulting node or edge in the social graph. It is

important to note that these Tickets do not store the updated data itself.

The tickets are exchanged by the different, independently deployed, components of the system,

and thus are designed to be agnostic to the specific component handling them, achieving this through

encapsulation, extensible design and forward- and backward-compatibility. After the client writes an

object, the Ticket is asynchronously replicated in the FlightTracker system. Considering the infrastructure

service that provides the Ticket, it offers an API to the client application, used to request a ticket.

As for Ticket-inclusive reads, data stores must ensure that read operations include the updates re-

flected in the Ticket. When a Ticket-inclusive read reaches a cache, and the cache determines that it

does not have the fresher version of the data required by the Ticket, it is considered to have a con-

sistency miss. To solve this, the request can be forwarded to another region, where another cache

or database might have the necessary version, although this is highly avoided (only fewer than 3% of

requests that go across regions are due to consistency misses), considering the latency impacts asso-

ciated with doing this. It is important to note that, when a fresher version of the data is collected, only

the exact entry for that object is fixed in the local cache. This fine-granularity allows the system to only
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perform extra work on specific data objects, instead of the entire cache. There are two other proposals

in [35] to handle local staleness, namely delaying the request and retrying it later, which is a strategy that

is not sufficient on its own but can help avoid frequently executing more costly strategies; or selecting

another nearby replica that might have the necessary version of the object. The latter strategy can lead

to correlated failures, such as thundering herd, and for this reason it is only considered a viable solution

when used for small workloads.

2.8.1.3 Clock-SI

Clock-SI [36] introduces a protocol ensuring SI for partitioned data stores. Unlike conventional sys-

tems, which depend on a centralized timestamp authority for deriving database snapshots and commit

timestamps, Clock-SI utilizes loosely synchronized clocks specific to each data store partition. This

design choice eliminates the risks associated with having a single-point of failure and avoids potential

bottlenecks during periods of heavy workloads.

A transaction begins when a client connects to an originating partition, determined by a load balanc-

ing scheme. The originating partition executes the transaction operations sequentially. If the partition

does not store the required data for an operation, it is executed remotely at the appropriate partition.

The originating partition assigns a snapshot timestamp to the transaction using its local clock. During

the commit phase, if the transaction only involved local operations and no write conflicts occurred, the

local clock’s value becomes the commit timestamp. If the transaction spans multiple partitions, a 2-

Phase Commit protocol is initiated, with the originating partition serving as the coordinator. All involved

partitions check for write conflicts before proposing the commit timestamp. If conflicts are detected, the

transaction is aborted. The coordinator selects the highest timestamp as the final commit timestamp,

and all partitions commit the transaction using this selected timestamp.

When executing read operations, a partition may need to temporarily block the transaction. There

are two possible cases where this behavior might occur:

• If a concurrent transaction T ′ is in the process of committing, has updated the data object being

read, and the snapshot timestamp from which the client is reading surpasses T ′’s commit times-

tamp. In this situation, the read operation might need to incorporate the results of the committing

transaction to maintain consistency, so the executing partition blocks the transaction.

• Due to partitions adhering to a loose synchronization protocol such as NTP [34], clock skewing

among involved partitions might occur. If the local clock of the partition executing the read oper-

ating is lower than the transaction’s snapshot timestamp, the partition must block the transaction

until the local clock aligns with the snapshot timestamp. This pause is essential to prevent any

other transactions from being committed between the local clock timestamp and the transaction’s
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snapshot timestamp.

To mitigate the delays caused by transaction blocking, the protocol outlined in Clock-SI proposes that

clients use an older snapshot. This approach involves a trade-off between increasing the likelihood of

transaction aborts, since extending the time gap between the snapshot and commit time provides an

opportunity for other concurrent transactions, updating parts of the same key set, to commit; and mini-

mizing transaction blocking due to time skewing. The analysis presented in Du et al. [36] indicates that

mechanisms that allow clients to use older snapshots are particularly valuable for read-only transactions.

Although allowing clients to use older snapshots reduces the likelihood of delayed transactions, it comes

at a cost: transactions may more frequently encounter stale data, leading to transactional aborts.

2.8.2 FaaS Systems with Support for Transactions

2.8.2.1 Hydrocache

Hydrocache [37] introduces a distributed caching layer capable of simultaneously ensuring low-latency

data access and TCC to FaaS applications. Hydrocache protocol does not rely on membership of the

system and is transparent to the FaaS autoscaling capabilities. To disregard the need for membership,

dependencies are managed at the key level.

When executing in a single node, to achieve both causal snapshot reads and atomic visibility, Hy-

drocache imposes that each cache maintains a single strict causal cut, for which is it stated that if a

key is in the cut, all its dependencies are also in the cut. The strict causal cut is more stringent than

a causal snapshot, as the strict causal cut requires that any concurrent updates cannot enforce their

key dependencies, meaning that for any pair of keys ai,bj , part of the same causal cut, if ak → bj ,

then either ak == ai or ak → ai. Generally, a key dependency must either: happen after all key de-

pendencies associated with other keys in the cut, or be the exact same key version. To ensure Atomic

Visibility, keys updated in the same transaction are made mutually dependent of each other, thus having

the strict causal cut enforce atomicity by include all key dependencies. When executing a transaction

(represented by a Directed Acyclic Graph (DAG)), to ensure that all updates are mutually dependent,

write operations are only performed at the sink function of the DAG, where they are persisted to remote

storage.

Despite being able to offer TCC to individual functions, the protocol described is insufficient for server-

less applications, composed of multiple functions, where each can be executed in a different physical

node. To extend the use of TCC to multiple nodes, Hydrocache proposes 3 protocols: optimistic, con-

servative and hybrid.

The optimistic approach eagerly starts running the functions in a DAG, performing violation checks

of the snapshot property when each function is executed. Before a function is executed, it verifies if
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the available snapshot is compatible with the previous function’s read set metadata. This metadata,

which includes both the read set and the write set of the transaction, is sent across functions. If an

incompatibility is found between the causal cut and the received read set, the executing function can

try to modify the read set to suit the snapshot. This is done including the missing key in the causal

cut, ensuring first that all the fetched key’s dependencies are already included in the cut. However, if

this is not possible, the transaction is aborted. This verification is applied in cases where a function

receives outputs from multiple parallel upstream functions. If the received read sets from the upstream

function are not compatible, the transaction is aborted. By building the snapshot along the execution of

the transaction, without prior coordination, the results show that this approach, albeit prone to aborting

more frequently, achieves low average response times.

The conservative approach instead opts for coordinating all caches involved in a transaction to build

the snapshot to be used, ensuring that the transaction never aborts. This approach introduces additional

efforts, as coordination with all caches in the DAG is required in order to build a distributed snapshot

containing all the function’s read sets. This additional step translates into higher average response times.

The hybrid approach combines the benefits of both the optimistic and conservative approaches.

The process starts with the execution of the optimistic approach, while simultaneously a simulation of

the optimistic dependency checks is performed. This is possible because the optimistic validation only

needs the read set of each function and the local cut at the cache level. Since the simulation does not

require the actual execution of the functions involved in the transaction, and read sets don’t need to be

transmitted along functions, this phase is executed in a much faster manner than in the original optimistic

approach. If the transaction is aborted, the conservative approach is initiated. This approach restricts

Hydrocache to only support transactions where the entire read set is known beforehand.

Throughout the execution of the DAG, updated objects are stored along with metadata that captures

the explicit dependencies of their write transaction. The information regarding read objects is also trans-

mitted across the different nodes of the DAG, in the form of metadata as well. This ensures that all

executed functions observe key versions and their respective dependencies from a consistent causal

cut. This approach can be detrimental to the performance of the system, considering the high volume of

metadata that is transmitted across the different functions.

2.8.2.2 FaaSTCC

FaaSTCC [38] offers the TCC consistency model to FaaS applications in an environment for multiple

independent worker processes. One of the challenges the system proposes to solve is the need to

overcome the issues inherited from coordinating multiple workers in the FaaS environment, namely to

provide a stronger consistency model such as TCC. Initially, Cure [27] proposed a system capable

of implementing TCC for sticky client sessions. However, FaaS involves having multiple independent
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workers and adapting TCC to this scenario imposes the need for a costly coordination mechanism

between the workers. This can lead to detrimental overheads.

The solution presented in FaaSTCC rests on two large pillar contributions: adding a cache layer for

each worker and the proposal of a protocol that efficiently utilizes this new layer. The cache layer is

implemented as an in-memory key-value store that stores the most recent version of an object. In the

proposed protocol, the storage system offers a promise to the cache layer, which delimits the lifespan

in which a specific key is to be considered consistent. This decision is crucial to ensure an adequate

use of the cache layer that motivates its use. Unlike HydroCache [37], that provides TCC in the FaaS

environment, using per-key dependencies between workers, FaaSTCC proposes the use of snapshot

intervals. These intervals consist of two timestamps that capture the versions that can be read by the

application. By using these snapshot intervals, FaaSTCC prevents large amounts of data from traversing

the network, which can lead to impairments to the performance.

Every time a function needs to read or write an object, the client library is invoked. The client library

is responsible for maintaining a copy of all objects read and written by the function. This component

is relevant to guarantee that even though concurrent transactions might change the values of objects

previously read, the client library still ensures that only causally consistent values are considered, thus

preventing read-only transactions from unnecessarily aborting.

Compositions of executed functions are arranged in a DAG. When the execution starts, a DAG con-

text is created. This includes the snapshot interval and the write-set of the transactions to be committed

to storage. When a function finishes its execution, it passes this context to its child functions. It is

possible that a child function has more than one parent. In case this happens, the protocol merges the

intervals of both parents. It is possible that the parents read from a mutually incompatible interval, and if

that is the case, the transaction aborts. The updates written along the DAG are committed to persistent

storage only at the end of the DAG, ensuring the atomicity of transactions.

The caching layer keeps the latest version of the object that were read in local transactions, and its

purpose is ultimately to reduce the number of unnecessary accesses to remote storage. The updates

on data items located in the cache are a result of using a publish-subscribe system between the cache

and the persistent storage.

2.8.3 Microservice Systems with Support for Transactions

2.8.3.1 Antipode

Antipode [39] introduces a bolt-on technique to prevent cross-service violations in distributed applica-

tions. This approach involves propagating lineages of data store operations along end-to-end requests

and within data stores. These lineages capture a tree of events across different services, correspond-
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ing to the branching resulting from each service’s invocations. Alongside the use of lineages, Antipode

introduces the concept of Cross-Service Causal Consistency (XCY) – an extension to existing causality

models, rooted in Lamport’s idea of happened-before relations.

Compared to CC, Antipode extends this model by stipulating that if a read operation b from one lin-

eage reads the results of a write operation a from a different lineage, then any subsequent operations

dependent on b must observe the entire lineage to which operation a belongs, not just operation a. In

summary, XCY consistency restricts Lamport’s causality model by requiring read operations to incorpo-

rate causal dependencies from entire lineages and not just the operations that originated the read data

objects.

To manage dependencies within lineages, Antipode employs the use of two different tracking meth-

ods: Implicit dependency tracking and Explicit dependency tracking. Implicit dependency tracking typi-

cally utilizes context propagation tools for distributed tracking. These tools enable automatic dependency

tracking across traversed service graphs that use message passing for interaction between services.

However, these tools are insufficient for ensuring accurate propagation and tracking of dependencies

through replicated data stores. This limitation arises due to the existence of transactions that involve

read and write operations over the same key set on different partitions. Consider the scenario where an

object is updated in one partition, and before the updated value is persisted on the other homologous

partitions, an older version of the same object is observed by the same transaction. This type of event

can happen because data replication across partitions happens asynchronously.

To tackle this challenge, Antipode proposes a bolt-on approach, where interactions with data stores

exclusively occur through a shim-layer. This approach ensures that data stores remain transparent to

the proposed mechanisms. The shim-layer enables Antipode to capture dependencies across replicas

of the traversed data stores.

The second approach, explicit dependency tracking, allows developers to exceptionally selectively

add or remove dependencies from the lineage context that might not have been automatically detected.

Antipode also introduces additional procedures to control the volume of dependencies transferred be-

tween lineages, including stop and transfer. These procedures let developers manually drop the ongoing

set of dependencies or explicitly transfer the set from one lineage to a subsequent one.

Apart from tracking dependencies, Antipode ensures the enforcement of dependencies across ser-

vices. In conventional systems, these dependencies are typically enforced implicitly, requiring services

to enforce the set of dependencies in every operation. However, this approach introduces a significant

drawback: it necessitates frequent cross-service communications, leading to additional overhead. To

address this, Antipode adopts explicit dependency enforcement, attributing the responsibility of defining

the dependency enforcement locations to the developers. In this manner, developers are tasked with

assigning barrier calls at specific points in their applications. Upon reaching these barriers, the system

29



enforces an order of operations that is consistent with the XCY consistency model. It does so by halting

the execution until all writes contained in the lineage are visible in the underlying data stores. Particu-

larly in systems where user experience is crucial, these mechanisms allow developers to finely balance

dependency enforcement.

Concurrently with the development of this thesis, a related work supported by Antipode’s findings and

aimed at the FaaS environment has been published as Rendezvou [40]. This research strives to enforce

consistent cross-function view of application data. Tailored for a geo-replicated context, Rendezvou

extends the previous work, providing a framework capable of automatically ensuring data consistency

for serverless applications.

2.8.3.2 Enhancing Saga

Enhancing Saga [41] addresses a key drawback of the Saga pattern: lack of Isolation. The Saga pat-

tern, as discussed earlier, only offers ACD properties (Atomicity, Consistency and Durability ), missing

the crucial “I” of Isolation in distributed transaction executions. Without Isolation, the Saga pattern is

susceptible to both Dirty Reads and Fuzzy Reads anomalies.

Enhancing Saga proposes a solution by introducing in-memory data caching to address the lack of

read-isolation inherent in the Saga pattern. The system allocates a quota of the database storage space

to a designated memory cache server, referred to as the Quota Cache. This cache server is responsible

for storing the results of Create, Read, Update and Delete (CRUD) operations. Instead of immediately

committing changed objects to the database, as in the original Saga pattern, this memory cache server

retains the values until the microservice receives an order to commit to the data store. This prevents

other concurrent transactions from reading uncommitted values.

It’s important to note that microservices employing the quota cache benefit from low latency and high

throughput. This is because the results of read operations to the remote storage are stored in the cache

for future reads. The Enhancing Saga solution associates the cache server only with microservices that

require the execution of compensating actions in case of transaction abort. This decision is based on the

observation that some microservices either exclusively perform read operations or execute idempotent

operations.

The system employs an orchestrator module to configure every microservice with its correspond-

ing web clients. Saga coordination is achieved through two approaches: orchestration and event-

choreography. In the orchestration approach, a manager controller oversees all communications among

microservices. On the other hand, the event-choreography approach is employed as microservices com-

plete their local transactions. Following this approach, after a local transaction concludes, the responsi-

ble microservice generates an event consumed by the subsequent microservices in the functionality.

Once all microservices involved in the functionality complete their local transactions, the coordinator
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initiates the commit process. To ensure atomically visibility of changes, an event is dispatched to the

microservices that updated objects in that functionality, indicating that it is safe to commit. These mi-

croservices are then responsible for executing an eventual commit sync service to carry out the commit.

This commit sync service synchronously holds the commit decision until it is confirmed whether all local

commits were successful or if any local transaction failed. If any transaction fails, compensating actions

are triggered to revert the changes made in the caches.

2.9 Analysis

In this section, we discuss the advantages and disadvantages of the systems surveyed in the previ-

ous section. Table 2.9 provides a comparative analysis of the features of non-microservice systems

supporting transactions.

Systems Target Consistency Metadata
Size

Read
RTT

Commit
RTT

FlightTracker Cloud RYW O(W) - -
Antipode Cloud XCY O(W) - -

Cure Cloud TCC O(N) 1* 3*
Clock-SI Cloud SI O(1) 2* 3*

FaaSTCC FaaS TCC O(1) 1* 2
Hydrocache FaaS TCC O(K) 1* 2

(Note: W represents write-set, N represents the number of partitions, K represents the key-space, * means that the
time period might include blocking/waiting or aborts.)

Table 2.9: Cloud and FaaS Systems Comparison.

2.9.1 Target Environment

In Table 2.9, we categorize the analyzed systems based on their target environment. It is crucial to

understand and consider the specific constraints and challenges that each environment imposes on

the solutions proposed. Cloud systems such as Cure, FlightTracker or Clock-SI are designed for envi-

ronments with a static number of data centers and partitions. On the contrary, FaaS systems such as

FaaSTCC or Hydrocache are designed to facilitate the auto-scaling, and therefore their components are

bounded to be changed frequently.

2.9.2 Consistency Guarantees

The analysis illustrated in Table 2.9 organizes the systems based on consistency strength, grouped by

their target environments. Naturally, as the consistency guarantees become stronger, the performance
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of the surveyed systems degrades die to the utilization of stricter coordination mechanisms. These

mechanisms often involve the use of 2-Phase Commit protocols, as is seen in systems like Cure and

Clock-SI. This necessary step introduces one or more additional Round Trip Time (RTT) to the overall

latency of the commit phase.

2.9.3 Limitations of Non-Microservice Transaction Systems

The previously discussed systems all contain their own limitations. To the best of our knowledge, there

are currently no systems that actively support transactions on microservice architectures while also

offering the TCC consistency model. Considering the analyzed systems, both Cure, FaaSTCC and

Hydrocache offer TCC. While Cure provides TCC for sticky client sessions, FaaSTCC and Hydrocache

provide TCC for non-sticky client sessions. Considering our scenario, functionalities communicate with

several microservices in a single transaction. This way, we also face non-sticky client sessions.

The Cure system inherently supports RYW consistency due to its use of sticky client sessions. This

way, the RYW consistency is not a significant concern in the Cure system, as the data centers that a

client communicates with are always the same. FaaSTCC and Hydrocache, on the opposite, require

coordination across multiple clients, a scenario that is often similar to the challenges we face, as we

propose to offer TCC for multiple microservices, part of functionalities. Unlike FaaSTCC, Hydrocache

requires the exchange of large volumes of metadata, kept for each object read or written in a transaction.

In addition, when a client executes a read operation, Cure’s algorithm requires a partition to wait

before returning the request until its own clock catches up with the snapshot vector clock for the trans-

action. This guarantees that a read operation always obtains the latest version of the request object with

no newer commit timestamp than the one specified in the snapshot.

The FlightTracker system is suitable for Cloud based systems that support multiple, often heteroge-

neous, client systems. Is also only supports region-sticky user routing. Also, it only offers support for

RYW consistency on top of Eventual Consistency, a decision that is based on the nature of Facebook’s

social graph, and their need to serve most client queries at a local replica, even if these results are a

few seconds stale, or don’t even present all the dependencies required in a stronger consistency model

such as TCC.

The Clock-SI system ensures SI for partitioned data stores, using loosely synchronized clocks unique

to each data store partition. Transactions span local and remote partitions given the distribution of data,

using a fixed snapshot of the data store to guarantee consistency. The commit protocol employs a

coordination scheme where a single partition selects the commit timestamp for all involved partitions in

the transaction, executed through a 2-Phase Commit protocol.

The aim of our work targets the lack of systems that offer stronger consistency models than Eventual

Consistency, while still ensuring high availability and the atomicity and isolation of transactions without
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incurring major losses to the system’s performance.

2.9.4 Transaction Models in Microservice Architectures

We analyzed two systems capable of offering transaction semantics in the microservice architecture.

The Saga pattern is considered the standard approach for implementing transaction systems in the mi-

croservice architecture, due to its capabilities for distributing the often large functionalities of an applica-

tion across multiple smaller transactions. It offers atomicity, guaranteeing that either all transactions are

executed, or none does, and compensation mechanisms that undo the necessary changes. The Sagas

pattern suffers from the lack of Isolation property, something that is solved with Enhancing Sagas, a

system that uses in-memory caches to prevent concurrent transactions from reading partial committed

data from the data store. Both systems rely on Eventual Consistency, a weak consistency model. En-

hancing Sagas, however, does not propose any specific mechanisms to account for the fact that some

microservices might require data that is not managed locally, failing to guarantee that functionalities al-

ways observe mutually consistent values. To achieve this, it’s vital that all data accessed within each

microservice is consistent (in-service consistency) and that data read from other microservices is also

mutually consistent (inter-service consistency). The Antipode proposal introduces a bolt-on technique

designed to prevent cross-service consistency violations, extending a stronger consistency policy than

Causal Consistency (CC), but weaker than Transactional Causal Consistency (TCC). Ensuring con-

sistency when microservices do not maintain local replicas of data managed by other microservices

mirrors the problem tackled by Clock-SI. If microservices receive updates for replicated data values, and

maintain part of these updated values in a local cache, then the proposed mechanisms introduced both

in Cure and FaaSTCC are also pertinent. In any case, these solutions impose that clients executing a

functionality carry metadata capturing the causal cut of the data store from which they operate to guar-

antee inter-service consistency. The information provided with FlightTracker demonstrates the feasibility

of this, even in large-scale systems with strong performance demands, such as Facebook.

Summary

This chapter addressed the intricate challenges inherent in maintaining specific consistency levels within

the transactional context, in both Cloud and FaaS systems. Typically, microservice-based systems lean

towards weak consistency policies such as Eventual Consistency, as this model ensures high availability

and the desired loose coupling that is often sought after in this architecture. However, this consistency

model is susceptible to consistency anomalies, requiring the executing of compensating actions to re-

store the consistency across the affected services, thereby impacting system performance. Recent

works have been designed to offer stronger consistency models, such as TCC in similar environments
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to the microservice architecture, such is the case of FaaS. To the best of our knowledge, no previ-

ous work has addressed the support of TCC for microservices efficiently. In the following chapter, a

novel system that is capable of extending TCC to the microservice architecture is proposed, aimed at

guaranteeing both high-availability and low latency, qualities intrinsic to this architecture paradigm.
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In this chapter, we present µTCC, a middleware layer that offers Transactional Causal Consistency (TCC)

support for microservice architectures. Section 3.1 describes the goals our system aims to accomplish.

Section 3.2 describes in detail the components that constitute µTCC. Section 3.3 describes the protocols

used by µTCC to offer TCC to microservice applications. Section 3.4 describes the garbage collection

system employed in µTCC. Finally, Section 3.5 explains the necessary efforts to integrate µTCC in

existing microservice applications.
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3.1 Goals

The primary focus of µTCC was to establish the essential mechanisms for enabling TCC in microser-

vice applications. This involved guaranteeing that all values that originated from operations within a

functionality are applied atomically across all microservices and ensuring that within the functionalities,

microservices always read versions of data objects that are mutually consistent. µTCC focuses on deliv-

ering these guarantees while securing both high-availability and low additional overhead, key properties

of the microservice architecture.

3.2 Architectural Details

When developing µTCC, we focused on creating a transparent solution for the application, minimizing

the adaptation of existing microservice systems for its adoption. To achieve this, µTCC was designed

as a middleware layer composed of a set of wrappers intercepting requests between microservices and

requests from microservices to their respective data storage. These wrappers add metadata capable of

maintaining a consistent causal cut during transaction execution. Specifically, as depicted in Figure 3.1,

µTCC consists of: Storage Wrappers, Microservice Wrappers, and Functionality Coordinators. In the

following sections, we describe the functioning and implementation of each of these components.

µTCC
Microservice WrapperMicroservice Wrapper

Microservice 1

Storage
Wrapper

Microservice 2

Storage
Wrapper

Functionality
Coordinator

Figure 3.1: µTCC System Architecture
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3.2.1 Storage Wrappers

Each storage system used in the context of µTCC is encapsulated by a wrapper that mediates all read

and write operations performed by the microservice. To extend Transactional Causal Consistency (TCC)

to microservices, we need to ensure that transactions read from a causally consistent snapshot. To be

able to identify the causal order between transactions, we associate a timestamp for each committed

transaction. The storage wrapper is responsible for this association. The value of the timestamp to

associate with each transaction is decided during the confirmation phase. By associating a timestamp

to a version of a data object, we are able to store multiple versions of the data, even when the underlying

storage system does not support multiversioning natively. Although storing multiple versions of the

same data object is not a requirement of µTCC, it can significantly improve our performance, as it will

be examined in Chapter 4.

During write operations, the storage wrapper is responsible for locally storing all updates made within

the context of a functionality in a local cache, until the functionality is confirmed. Similar to the Enhancing

Saga system, as described in Daraghmi et al. [41], values locally stored in this manner remain visible

only for invocations made within the context of that functionality.

In read operations, based on the metadata associated with a given execution, retrieves from the local

cache or the remote storage system, a version belonging to consistent cut visible for that execution.

During the confirmation phase of a functionality, it negotiates, with the help of the coordinator, the

timestamp that will be associated with the version of the data to be persisted in the remote storage.

During the negotiation process, access to some version might be blocked. If a functionality aborts, the

wrapper simply discards the version kept in the local cache, without ever persisting them.

In this context, a wrapper was implemented specifically for the Microsoft SQL Server storage system,

a relational database management system that employs Structured Query Language (SQL) to construct

relational schemas for each database in the system. Given the extensive set of statements and func-

tions offered by SQL, the developed wrapper focuses only on a fraction of these available statements

and functions, used to evaluate the analyzed system in Chapter 4. This way, the wrapper effectively

manages three fundamental SQL statements: SELECT, INSERT and UPDATE. It also supports several

clauses, including WHERE, ORDER BY, TOP, OFFSET and FETCH NEXT. Additionally, the wrapper

incorporates support for the COUNT aggregation function.

3.2.2 Microservice Wrappers

Besides the lack of Isolation, to extend TCC to the microservice architecture, we need to guarantee

the atomicity of the functionalities. This challenge is notably highlighted by the dilemma concerning a

functionality’s state. Since each microservice is naturally independent of others, it is crucial to deter-
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mine when a functionality concludes and which microservices were involved in its execution to proceed

with the atomic confirmation of the updated data in each microservice. To solve these challenges, we

developed the microservice wrappers.

This microservice wrapper encapsulates all microservices used in the context of µTCC. It mediates

interactions with other microservices and the functionality coordinator. This wrapper is responsible for

interpreting and maintaining the metadata that captures the consistent causal cut visible to a functional-

ity, ensuring that this metadata is kept updated and passed to the storage wrapper transparently to the

application.

Additionally, this wrapper is responsible for passing, between microservice invocations, a token that

captures the fact the functionality is in execution. This token can be fragmented when a microservice

invokes more than one downstream microservice. If a microservice is a leaf in the microservices graph

representing the functionality, token fragmentation does not occur and is sent to the functionality coor-

dinator, which acts as a sink for tokens generated during execution. Along with the token, this wrapper

also informs the coordinator whether the local transaction can commit or has been forced to abort.

3.2.3 Functionality Coordinators

The Functionality Coordinator monitors the execution of a functionality and coordinates the data confir-

mation process when an execution completes successfully. Our system assumes that the coordinator

can operate in microservice-based systems using orchestration or choreography.

Consider a variation of the example presented in Figure 2.5, where the Frontend service acts as the

Coordinator. If the functionality coordinator operates in orchestration mode, all microservice invocations

are made by the coordinator, eliminating the need for a token to detect functionality termination, as is

illustrated by Figure 3.2.

In choreography mode, the execution of a microservice can trigger multiple other microservices. In

this case, tokens are utilized, forwarded to the coordinator at the end of each microservice execution.

The coordinator detects the end of the graph execution after receiving all fragments of the original token,

as is illustrated by Figure 3.3.

In both scenarios, if all microservices have completed their execution and are in a position to confirm

the execution, the coordinator initiates the confirmation process involving all relevant storage wrappers.

If the execution needs to abort, it instructs the storage wrappers to discard the corresponding updates.

The confirmation phase is illustrated in Figure 3.4.
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updateProductDiscount(Id, discount)

Figure 3.2: Update Price And Discount functionality: Orchestration approach

Coordinator Catalog
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Confirmation Phase

Figure 3.3: Update Price And Discount functionality: Choreography approach
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Confirmation()
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Figure 3.4: Update Price And Discount functionality: Confirmation Phase
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3.2.4 Metadata

Leveraging the existing communications between microservices executed within the context of a func-

tionality, µTCC injects metadata to ensure that the consistency of read operations is respected, and

that write operations are identified with a unique timestamp assigned during the confirmation phase.

In addition to the token fraction, the additional information is transmitted. This includes a timestamp,

defining the most recent version of objects that any microservice can read without compromising the

functionality’s consistency. This timestamp is established at the beginning of the functionality, before the

first microservice is invoked.

Furthermore, a unique client identifier, apparent to the system and generated at the onset of the

functionality, is sent. This identifier serves both for read and write operations. Concerning write opera-

tions, it is employed to identify versions not yet confirmed to the client who generated them. Regarding

read operations, the client identifier ensures that versions of objects generated during the functionality,

but not yet persisted in the storage system, remain visible to the client.

3.3 Protocols

In this section, we detail µTCC’s protocols. The algorithms presented during this section include the

pseudocode describing the protocols that are executed in the Microservice and Storage wrappers.

3.3.1 Token Processing

The tokens are used by the microservice wrappers to solve the state of a functionality dilemma. They

are split and transmitted between microservice wrappers and sent to the functionality coordinator once

the microservice finishes its local transaction.

All the algorithms used in µTCC to fragment the Token assume prior knowledge of two parameters:

the maximum branching factor of the functionality execution graph (that is, the maximum number of

invocations a given microservice can make), and the maximum depth of the graph. Based on these

parameters, the root node of the execution graph receives a token with a defined number of fractions

(Alg. 3.1, Line 4).

Algorithm 3.1: Token Initialization Protocol
1 b← #Maximum branching factor
2 d← #Maximum depth
3 function Initialize Token():
4 functionality token← (b+ 1)d

When a microservice is invoked, it receives a fraction of the initial token from its parent. Before

proceeding with the execution of its business logic, the microservice wrapper reserves a fraction of the
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token for itself (Alg. 3.2, Line 3). This step is executed to ensure that, after invoking all microservices,

the invoker microservice can also notify the coordinator about its participation in the functionality. The

remaining fractions of the token are evenly distributed among invocations to other microservices, if any.

For each invoked microservice, the same fragmentation protocol is used, ensuring that enough fractions

of the token are sent to each child. This process of fragmentation and collection of the token fractions are

managed both automatically and transparently by the microservice wrapper. This mechanism is secure

even if the values of the maximum branching factor and maximum depth are estimated incorrectly. If,

during the execution of a functionality, the fractions of the token are exhausted, the functionality is simply

aborted, and a notification is generated to reconfigure the system. Considering the functionality example

present in Figure 2.7, the Maximum Branching Factor = 2 and Maximum Depth = 3, assuming the

existence of a single item in the basket, and thus the initial token is created with 27 fractions.

Algorithm 3.2: Token Subdivision Protocol
1 b← #Maximum branching factor
2 function Subdivision Token(rcv token):

/* invoked microservice stores fractions of the token for itself */

3 fractioned token← rcv token
b+1

Additionally, it’s worth noticing that apart from the proposed use of Tokens, the idea of employing

checklists of microservices associated with each functionality, predetermined and known by the coordi-

nator, was also explored. In this approach, to identify the moment when the functionality was ready for

the confirmation phase, the coordinator would simply verify the completion status of the microservices

on its local checklist. However, this method proved to be error-prone, especially in cases where the

invocation of different microservices depended on runtime check conditions. This approach would re-

quire the coordinator to know beforehand which microservices would be executed in each functionality,

a requirement not necessary in the Token approach.

3.3.2 Write Protocol

During the execution of a functionality, all write operations are stored locally in the storage wrappers

before being confirmed using a two-phase commit protocol. µTCC makes use of synchronized clocks

to associate a timestamp to each new data version. Our storage wrapper intercepts all write operations

executed in the context of the microservice, processing them into local memory until given authorization

to persist to storage.

Upon confirmation, each storage wrapper persists the update versions on the remote data storage. If

the functionality is aborted during the confirmation phase, all new versions written during the execution

of the functionality are discarded by the wrapper.
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3.3.3 Read Protocol

A functionality observes the consistent state of the system at the timestamp defined in the beginning of

the functionality. When reading an object, the storage wrapper retrieves a local version not yet confirmed

if the client has performed writes within the current functionality context (Alg. 3.3, Line 7), or a version

of the data belonging to the consistent cut of the used timestamp (Alg. 3.3, Line 13). Naturally, since

the timestamps used in the read operations are defined using synchronized clocks, there is a chance for

clock skewing between microservices. Just like in Clock-SI [36], a read operation may temporarily block

due to the clock skew, in this case between microservices in the same functionality (Alg. 3.3, Line 4). To

avoid this overhead, our protocol allows for the client to choose an older timestamp, sacrificing freshness

for lower chances of read operation blocking. When trying to read data objects, the access to them might

also be blocked during the confirmation timestamp negotiation phase, depending on the read timestamp

of the functionality. If the read operation timestamp is higher than the timestamp proposed locally for

the concurrent write operation, the read operation must wait for the final decision until the microservice

confirms the new version of the object (Alg. 3.3, Line 12).

Algorithm 3.3: Read Protocol
1 function Read Data(key, tx TS, non persisted writes, client id, proposing clients):
2 conc write set← ∅

/* accounts for possible clock skew */

3 if tx TS > Clock() then
4 WAIT tx TS ≤ Clock()
5 for ⟨ k, val, cli id ⟩ ∈ non persisted writes do

/* check the non-persisted write set to ensure Read Your Writes (RYW) */

6 if k == key ∧ cli id == client id then
7 return val
8 else

/* get all concurrent writes for the same key with lower timestamp */

9 conc tx TS← proposing clients.GetTimestamp(cli id)
10 if conc tx TS ≤ tx TS then
11 conc write set← conc write set ∪⟨ cli id, conc tx TS ⟩
12 WAIT ∄⟨ cli id, prepare timestamp ⟩ ∈ concurrent write set
13 return remote storage.get(key, tx TS)

3.3.4 Commit Protocol

As each microservice completes its execution, it sends its assigned token fraction, its client ID, its ad-

dress, and an indication of whether it performed write operations during its execution to the functionality’s

coordinator. If the microservice has executed write operations, it should be contacted at the of the func-

tionality to confirm its updates (Alg. 3.4, Line 7). On the coordinator’s side, a structure associating
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each client’s unique identifier and the received token fractions is kept in memory. After retrieving all

token fractions, the coordinator contacts all microservices involved in the transaction that executed write

operations, asking each one to propose a confirmation timestamp for the functionality (Alg. 3.4, Line 10).

At this stage, each microservice proposes the current value of its physical clock as a confirmation

proposal for the functionality. Alternatively, if any business logic invariants are violated, it informs the

coordinator of its intention to abort the transaction. Furthermore, each microservice marks the updated

objects present in the storage wrapper as objects in the process of being persisted. Access to these

objects might be blocked during the confirmation timestamp negotiation phase, depending on the read

timestamp of concurrent functionalities attempting to read their value.

Note that, due to the clocks not being perfectly synchronized, it’s possible for a microservice to re-

ceive a message with a timestamp from the future, meaning a value higher than its own local clock. In

such cases, the system delays the processing of that message until its clock is aligned with the mes-

sage’s timestamp. This procedure is used in most systems employing physical clocks [36, 42]. If any

microservice signals the need for an abort, the coordinator instructs the microservices to discard the ver-

sions present in the storage wrapper associated with the respective client identifier. If all microservices

confirm the execution, after receiving the clock values from all involved microservices, the coordinator

computes the maximum clock value and sends it back to the microservices along with a confirmation

order for the in-memory versions associated with the client identifier (Alg. 3.4, Line 16).

3.4 Garbage Collection in µTCC

As previously discussed, storage wrappers assign timestamps to each version of a written data object,

enabling the establishment of a multiversioning scheme even in data storage systems lacking native

multiversioning support. To handle the introduced overhead of storing multiple versions of the same

object with unique timestamps, each storage wrapper employs an independent worker responsible for

issuing delete commands to the remote storage. Periodically, for each data object in the remote storage,

if the total number of versions N surpasses K, where K is a pre-configured limit of versions for each

data object, the worker issues the deletion of the oldest N − K versions. This approach presents a

tradeoff: limiting the number of versions per data object enhances performance by reducing the dataset

size in remote storage but increases the risk of read operation failures due to a lack of a consistent

version in storage. Based on the experimental analysis outlined in Chapter 4, the data storage worker

restricts each data object to 25 versions.
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Algorithm 3.4: Commit Protocol
/* State kept by the coordinator */

1 coord.tokens← ∅
2 coord.participating micro addresses← ∅
3 coord.proposals← ∅

4 function Receive Token(token, client id, address, read Tx flag):
/* Increments the fractions of the token received */

5 coord.tokens← coord.tokens + token
6 if read Tx flag == False then

/* Adds the address to the list of participants */

7 coord.participating micro addresses← coord.participating micro addresses ∪ address
8 if coord.tokens == total fractions then

/* Sends Proposals request to all participants */

9 for all service address ∈ coord.participating micro addresses do
10 Send(⟨GetProposal⟩, client id) to service address

11 function Receive Proposals(TS, client id):
/* Receives proposals from participants */

12 while number of coord.proposals ̸= number of coord.participating micro addresses do
13 coord.proposals← coord.proposals ∪ TS
14 commit TS← max(coord.proposals)

/* Issues commit order to participants */

15 for all service address ∈ coord.participating micro addresses do
16 Send(⟨Commit⟩, client id, commit TS) to service address

3.5 Cost of Adopting µTCC

The implementation of µTCC requires minimal adaptations to the base code of each microservice.

Specifically, this includes adapting the database context class to include our storage wrapper and in-

tegrating our microservice wrapper into the existing stack of wrappers used by the original system.

These adaptions can be automated. It is important to note that the microservice wrapper is independent

of the nature of the original application and can be automatically generated. Therefore, the adoption

cost of µTCC is primarily associated with the development of storage wrappers, which are specific to

each persistence system and/or database.

Using the Cloc tool [43], we quantified the size, in lines of code, of the implemented wrappers and

any related data structures responsible for managing metadata transmitted between wrappers. Every

microservice wrapper, written in C#, consists of 193 lines of code, a constant value across all microser-

vice wrappers due to the wrapper’s agnostic view over the service’s business logic. The storage wrap-

per, also written in C#, comprises 1749 lines of code. This value remains constant regardless of the

microservice business logic’s complexity, being correlated solely with the number and type of remote

storage systems associated with each microservice. Specifically, the storage wrappers developed inter-

cepted requests directed to a single SQL-based datastore. Additionally, we assessed the lines of code
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in the implemented garbage collection mechanisms utilized by microservices that use storage wrappers.

Each of these garbage collection mechanisms comprises 47 lines of code.

Summary

µTCC extends the transaction support for TCC to microservice applications through the integration of

microservice and storage wrappers, along with functionality coordinators. Utilizing the proposed write

protocol, these mechanisms ensure that all updates are applied atomically across the microservices

involved in the functionality that originated the updates. Additionally, the proposed read protocol allows

clients to read mutually consistent versions of data objects within functionalities. µTCC focuses on

delivering these features while ensuring high-availability and low additional overhead.
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In this chapter, we evaluate the performance of µTCC. Section 4.1 describes the main goals of the eval-

uation analysis. Section 4.2 describes the workload and workbench used to test µTCC, along with the

reference application where we introduced µTCC. Section 4.3 depicts the test scenarios approached to

evaluate the system. Section 4.4 demonstrates how effectively µTCC is able to prevent TCC anomalies.

Section 4.5 introduces the overhead costs of using µTCC in pre-existing applications.

4.1 Experimental Goals

The goal of the evaluation is to assess the implications of integrating µTCC into microservice-based

applications. Specifically, we seek to comprehend the advantages and limitations associated with ex-
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tending Transactional Causal Consistency (TCC) to microservice-based systems, when contrasted with

weaker consistency models such as Eventual Consistency. The evaluation of µTCC revolves around

several key questions:

• To what extent do TCC consistency anomalies occur, and how effectively does µTCC prevent

them?

• What impact does the introduction of µTCC have on the performance of microservice-based ap-

plication?

4.2 Experimental Workbench

Our evaluation is based on the executions of the eShopOnContainers [44] application when running on

µTCC. This application is composed of a suite of microservices, each running within a Docker container.

For the experiments reported in this article, we deployed all containers on a single physical server

equipped with an Intel Xeon Silver 4314 CPU with 32 logical cores, 197 GB of RAM, and 100 GB of SSD

storage. The clients of our application were also run on the same server.

The eShopOnContainers application simulates an online store that allows customers to search for

items, add products to shopping carts, and proceed with their payments. The application consists of var-

ious components, primarily implemented using ASP.NET Core 7, which can be categorized as follows:

infrastructure services, web applications, and business microservices. Infrastructure services include

a SQL Server (maintaining business data for microservices), a REDIS server (storing shopping cart

information), and RabbitMQ (used in payment process management and order finalization). Business

microservices encompass a Catalog Microservice (that allows registration of new items, price updates,

and product queries), an Order Microservice (allows management of client orders), a Shopping Cart

Microservice (enables shopping cart reading, adding new products, cart deletion, etc.), and an Identity

Microservice (responsible for customer identification management). Additionally, we extended the appli-

cation by implementing a new Discount Management Microservice to enhance the analyzed case study.

The architecture of the used application is similar to the example used in Section 2.1.

4.3 Test Case

This study considers the scenario where an administrator updates the price and discount of a product

simultaneously while it is in a customer’s shopping cart. In this scenario, a TCC consistency violation

occurs when concurrently, the administrator updates the data associated with a product, and a customer

reads their shopping cart. Since a product’s data update occurs in the Catalog and Discount microser-
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vices, a customer is prone to reading an altered price alongside an unchanged discount if their reading

occurs during the product update. µTCC resolves this inconsistency through the protocol described

in Chapter 3. Specifically, a customer will never be able to read an altered price with an unchanged

discount within the same functionality, and vice versa. µTCC ensures that product updates occur atom-

ically for the customer. Therefore, we developed and tested wrappers for the Catalog, Discount, and

Shopping Cart microservices. Clients were configured to generate an 80/20 read/write ratio. For exper-

iments, we varied the number of requests per second made by clients (in increments of 40 requests per

second). Tests were conducted for reads/writes in low/high contention contexts (set of 22 items and 1

item, respectively). To evaluate µTCC, we varied the number of versions maintained for each object in

the storage system, ensuring that the percentage of aborts due to the lack of a consistent version always

remains below a predefined value. As an example, we set this value to 4%. It is worth noticing that the

abort rate is not the only criterion used to choose the most adequate number of versions per data object

in remote storage, as we will see during the evaluation assessment of µTCC.

During the evaluation, our emphasis was on preventing anomalies stemming from the absence of

Atomicity in functionalities spanning multiple microservices. While anomalies can arise from the lack

of Atomicity, they can also emerge due to the disregard for causality. It’s important to note that within

the functionalities of the eShopOnContainers application described previously, there’s never a breach

of causality between operations. Therefore, the aborted functionalities are solely caused by anomalies

related to the lack of Atomicity.

4.4 Prevention of TCC Anomalies

We begin by measuring the prevalence of read operation anomalies between the base system and

µTCC in Figure 4.1. Every time an anomaly is detected (and the transaction is aborted), due to clients

requesting causal cuts whose values have been removed by automatic memory recycling, we impose

the transaction’s re-execution. We observe that, on average, for a load of 520 requests per second in a

highly contended scenario, the percentage of read operations where violations of the TCC model occur

is 73.13%. For the same test, analyzing the data obtained with µTCC while maintaining 25 versions

for each data object in remote storage, we found that only 0.97% of transactions are aborted. This

discrepancy is motivated by the need for the base system to re-execute transactions more frequently

in the event of clients requesting causal cuts whose values have been removed by automatic memory

recycling.

To understand the impact of maintaining multiple versions of each data object in remote storage, we

continue by assessing the occurrences of read anomalies captured by the TCC model during system

execution with µTCC. We conduct two similar tests, changing the contention context of the data set used
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Figure 4.1: Average Abort Rate for Read Operations
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Figure 4.2: Average Abort Rate for Read Operations — Version Study under High Contention

in each scenario, as described previously.

In Figure 4.2, we illustrate the impact of increasing the number of versions maintained for each

data object in a highly contended scenario. On average, for a load of 640 requests per second, the

percentage of aborted read operations due to a lack of consistent version in remote storage is minimum

when remote storage maintains the 40 most recent versions per data object, namely 1.45%. As we

decrease the number of versions for each data object, the abort rate value increases.
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4.5 Overhead introduced by µTCC

4.5.1 Latency Performance Analysis

We continue by evaluating the latency overhead introduced by µTCC, for read-only transactions, write-

only transactions, and mixed operation transactions following the 80/20 read/write ratio.

4.5.1.1 Read-only Transactions: Read Shopping Cart Functionality

Figure 4.3 illustrates the latency overhead for the 95th percentile of functionalities executed, in a test

scenario where no TCC anomalies are present. This means that transactions only require a single

round to read consistent values across the functionality. We observe that both systems present an

increase in latency, as the load of the system increases, as expected. On average, for a load of 640

requests per second in a highly contended scenario, µTCC presents a latency 1.16× higher than the

results obtained for the same test in the base system.

Considering the low contention scenario, the results obtained by µTCC reveal a similar pattern. On

average, for a load of 640 requests per second in a lowly contended scenario, µTCC presents a latency

1.26× higher than the results obtained for the same test in the base system.

These results obtained in both contention contexts are explained by the fact that no data consistency

anomalies captured by the TCC model are visible, and thus, no transaction requires re-execution to

read consistent values. The additional latency overhead present in the µTCC is associated with both the

execution of the microservice wrappers, where we consider two important aspects: the mechanisms that

inject the metadata that captures the causal cut being used, and the communication with the coordinator,

to where all microservices that participated in the read transaction send their tokens; and the storage

wrappers, where remote storage queries are intercepted and rearranged for the fetching of a version

consistent with the causal cut being used in the transaction.

To study the impact in read-only transactions of the communication between the microservice wrap-

per and the coordinator to where the tokens are sent, we tested an optimized version of µTCC, where

read-only transactions are marked from the beginning, and thus do not require the execution of the com-

mit phase with the coordinator. Figure 4.4 demonstrates the result improvements when comparing with

the results presented earlier. On average, for a load of 640 requests per second in a highly contended

scenario, µTCC presents a latency 1.09× higher than the results obtained for the same test in the base

system.

Considering the low contention scenario, the results obtained by µTCC reveal a similar pattern. On

average, for a load of 640 requests per second in a lowly contended scenario, µTCC presents a latency

1.15× higher than the results obtained for the same test in the base system.

Using the results obtained from both the non-optimized and optimized versions of µTCC, we can
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Figure 4.3: Latency of Read-only Functionalities: Read Shopping Cart functionality
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Figure 4.4: Latency of Read-only Functionalities: Read Shopping Cart functionality (Optimized)

estimate that the process of sending the commit tokens to the coordinator represents 40.0% of the

additional overhead in µTCC for both the high contention and low contention scenarios, when compared

with the base system. Similar optimizations to the ones proposed have been introduced in systems such

as Corbett et al. [42].

4.5.1.2 Write-only Transactions: Update Price and Discount Functionality

Figure 4.5 illustrates the overhead latency for the 95th percentile of write-only functionalities executed.

We observe that both systems exhibit an increase in latency, as the load of the system increases, as

expected. On average, for a load of 320 requests per second in a highly contended scenario, µTCC

presents a latency 1.37× higher than the results obtained for the same test in the base system.

Considering the low contention scenario, the results obtained by µTCC reveal a similar pattern. On
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Figure 4.5: Latency of Write-only Functionalities: Update Price and Discount functionality

average, for a load of 320 requests per second in a lowly contended scenario, µTCC presents a latency

1.26× higher than the results obtained for the same test in the base system.

The additional latency overhead present in the µTCC is associated with both the execution of the

microservice wrappers, where we consider two important aspects: the mechanisms that inject the meta-

data that captures the causal cut being used, and the communication with the coordinator, regarding the

commit phase; and the storage wrappers, where versions of data objects are temporarily stored until the

commit order is issued for persistence.

4.5.1.3 Mixed Transactions

The mixed transactions tested in this scenario include both Read Shopping Cart and Update Price and

Discount functionalities. Figure 4.6 shows the impact on latency for the 95th percentile of functionalities

executed until consistent data is read, for the various test cases described above, when comparing the

base system, and µTCC configured to maintain the 25 most recent versions for each data object. As

we can observe, both systems experience an increase in latency with the system load, as expected.

As it can be seen, considering the highly contended scenario with a load of 640 requests per second,

µTCC exhibits a latency 2.63× lower than the results obtained with the base system. These results are

supported by µTCC’s ability to satisfy most read operations consistently in just one round, whereas in

the base system, due to the frequency of aborted transactions, a read operation might require multiple

rounds to read consistent values.

Regarding the low contention scenario, the results obtained by µTCC show a slight reduction in

latency for tests with a load of 640 requests per second, specifically 1.04× lower than the result obtained

for the base system. This value suggests that the penalty introduced by the wrapping mechanism used

in µTCC, associated with the extra effort to filter data access in order to obtain a version that is consistent
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Figure 4.6: Latency (95th percentile) of Mixed Operation Functionalities: Update Price and Discount + Read Shop-
ping Cart functionalities
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Figure 4.7: Latency (median) of Mixed Operation Functionalities: Update Price and Discount + Read Shopping
Cart functionalities

with the client’s state, is outweighed by the need for the base system, in turn, to perform multiple rounds

to read consistent values.

Besides measuring the tail latency, in Figure 4.7 we measure the median latency for both systems

under the same contention scenarios. As it is possible to observe, for a load of 600 requests per second,

in high contended scenario, µTCC achieves a median latency 1.32× lower than the result obtained for

the base system. Regarding the low contention scenario, for the same load of 600 requests per second,

µTCC achieves a median latency 1.15× lower than the result obtained for the base system.

The difference between the results for the two systems mainly arises due to the versioned data

storage in µTCC. While the base system maintains only one version in its storage, µTCC keeps, for

each of the application, the 25 most recent versions written by the clients.
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Figure 4.8: Latency of Mixed Operation Functionalities: Update Price and Discount + Read Shopping Cart func-
tionalities over different Versions per Data Object Policies

We follow by studying the impact on latency overhead in µTCC, introduced by increasing the number

of versions maintained for each data object. In Figure 4.8, we can observe the impact on latency for the

95th percentile of functionalities executed until consistent data is read, in a highly contended scenario.

As we can observe, for a load of 640 requests per second, µTCC, when configured to store the 25 most

recent versions per data object, demonstrates the best latency performance, out of all the configurations

tested, namely 1.03× lower than the second best-performing configuration (µTCC when configured to

maintain the 40 most recent versions per data object).

When taking in consideration the abort rate results as well as the latency overhead introduced in

µTCC, it is possible to understand the tradeoff between limiting the number of versions per data object

for performance gains (by reducing the dataset size in remote storage) and increasing the risk of read

operation failures due to a lack of a consistent version in storage. While configurations for µTCC that

store a smaller number of versions per data object typically perform better in terms of latency (while

disregarding transaction re-execution), the test results show that, as a consequence of the higher abort

rates, transactions require re-execution more frequently, hindering the latency performance gains men-

tioned earlier.

Generally, we observe that increasing the number of versions stored per data object leads to a per-

formance decrease due to heightened complexity in the storage wrapper when fetching a specific con-

sistent version from remote storage, performance which is then compensated by the lack of transaction

re-execution in order for the client to read consistent values.

Pursuing the goal of maintaining an abort rate due to lack of a consistent version in remote storage

under 4%, we proceed to evaluate the memory overhead introduced by µTCC with 25 versions main-

tained for each data object. This configuration of µTCC introduces the lowest latency overhead while
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Figure 4.9: Memory Usage of Mixed Functionalities under Low Contention — Catalog Service

guaranteeing that the percentage of aborted transactions remains lower or equal than 4%.

4.5.2 Memory Performance Analysis

Figures 4.9 and 4.10 illustrate the memory usage overhead for a test scenario consisting of both Read

Shopping Cart and Update Price and Discount functionalities. This test is executed for the low contention

scenario. As it is possible to observe, both services experience an increase in memory usage with the

system load, as expected. The memory usage difference when comparing the base system and µTCC

is associated with both the microservice and storage wrappers. On average, for a load of 640 requests

per second, the memory usage for the Catalog Service using µTCC is 1.15× higher when compared to

the base system memory usage. On the Discount Service case, for the same load test, the results show

that µTCC’s memory usage is 1.18× higher than the results obtained for the base system.

The similar results obtained for the Catalog and Discount services are explained by the architecture

and functionalities tested affecting these services. Both store unconfirmed versions of data objects

locally until the coordinator confirms the transaction.

Figure 4.11 illustrates the memory usage overhead for a similar test scenario, focused on the Shop-

ping Cart service’s memory usage. Similarly to the previous results obtained for the Catalog and Dis-

count services, it is possible to observe an increase in memory usage with the system load, as expected.

The memory usage difference when comparing the base system and µTCC is associated with the mi-

croservice wrapper. The Shopping Cart service does not store data objects, neither locally nor remotely.

This way, the Shopping Cart service does not require the usage of a storage wrapper. On average, for a

load of 640 requests per second, the memory usage for the Shopping Cart Service using µTCC is 1.06×

higher when compared to the base system memory usage.
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Figure 4.10: Memory Usage of Mixed Functionalities under Low Contention — Discount Service
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Figure 4.11: Memory Usage of Mixed Functionalities under Low Contention — Shopping Cart Service
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Summary

This chapter discussed the evaluation goals set to answer. The results demonstrated that µTCC can

efficiently extend TCC support for microservice architectures. It captured all TCC anomalies in read

operations, without incurring in prohibitive latency and memory overheads. Our experiments revealed

that, despite the introduced overhead latency in each individual operation, µTCC is able to compensate

for this by reducing the overall transaction latency by 2.63×. This improvement stems from µTCC’s

ability to execute functionalities in a single round, effectively reducing transaction abortion probabilities

and subsequent re-executions.
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5.1 Conclusions

In this thesis, we addressed the problem of offering Transactional Causal Consistency (TCC) to mi-

croservice applications. In particular, we studied mechanisms that both ensure the atomicity of the

results of functionalities that span multiple microservices and ensuring that functionalities always read

versions of data objects that are mutually consistent. We have designed and evaluated a mediation

layer, that we have named µTCC, that is capable of providing these guarantees. This layer uses wrap-

pers that encapsulate microservices and storage systems, allowing for the seamless provision of the

desired consistency guarantees in the implementation of microservices. The results show that µTCC

can prevent the occurrence of TCC anomalies, eliminating the need to execute compensating actions,

while ensuring both high-availability, low latency, and low memory overhead.
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5.2 Future Work

Our prototype uses a very simple strategy to eliminate obsolete versions of data objects. Namely, a

garbage collection thread is run periodically to purge old versions of each data object. It would be

interesting to explore more sophisticated strategies, that could exploit idle periods to perform garbage

collection.

The current version of µTCC uses physical clock values to totally order update transactions. When

evaluating µTCC, we have considered a scenario where all microservices execute in a single datacenter,

that have their clocks synchronized with a negligible skew. It would be interesting to extend the evaluation

to geo-replicated scenarios, where the clock synchronization skew can be larger. In particular, it would

be interesting to assess how likely it is that a read operation is temporarily blocked due to the clock skew

(this may occur when the clock of a given service is in the past of the read snapshot).

Finally, many microservice architectures use a combination of shared memory and event based

communication to coordinate multiple services. The problem of defining a suitable consistency model

that integrates both shared memory and event based communication only recently started to be investi-

gated [45]. Augmenting µTCC with support for novel consistency criteria, that can take into account the

use of event-based platforms, such as publish-subscribe systems, is an interesting avenue of research.
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[21] P. Viotti and M. Vukolić, “Consistency in non-transactional distributed storage systems,” ACM

Comput. Surv., vol. 49, no. 1, June 2016. [Online]. Available: https://doi.org/10.1145/2926965

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Commun. ACM,

vol. 21, no. 7, p. 558 –565, July 1978. [Online]. Available: https://doi.org/10.1145/359545.359563

62

https://engineering.linkedin.com/blog/2020/continuous-integration
https://engineering.linkedin.com/blog/2020/continuous-integration
https://www.uber.com/en-PT/blog/microservice-architecture/
https://www.uber.com/en-PT/blog/microservice-architecture/
https://developers.soundcloud.com/blog/microservices-and-the-monolith
https://developers.soundcloud.com/blog/microservices-and-the-monolith
https://netflixtechblog.com/netflix-at-aws-re-invent-2015-2bc50551dead
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://cloud.google.com/blog/products/gcp/grpc-a-true-internet-scale-rpc-framework-is-now-1-and-ready-for-production-deployments
https://aws.amazon.com/blogs/architecture/data-caching-across-microservices-in-a-serverless-architecture/
https://aws.amazon.com/blogs/architecture/data-caching-across-microservices-in-a-serverless-architecture/
https://martinfowler.com/bliki/PolyglotPersistence.html
https://martinfowler.com/bliki/PolyglotPersistence.html
https://doi.org/10.14778/3484224.3484232
https://jepsen.io/consistency
https://jepsen.io/consistency
https://doi.org/10.1145/2926965
https://doi.org/10.1145/359545.359563


[23] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto, “Causal memory: definitions,

implementation, and programming,” Distributed Computing, vol. 9, pp. 37 –49, March 1995.

[Online]. Available: https://doi.org/10.1007/BF01784241

[24] P. Mahajan, L. Alvisi, M. Dahlin et al., “Consistency, availability, and convergence,” University of

Texas at Austin Tech Report, vol. 11, p. 158, 2011.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t settle for eventual: Scal-

able causal consistency for wide-area storage with cops,” in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, 2011, pp. 401 –416.

[26] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, “Highly available

transactions: Virtues and limitations,” vol. 7, no. 3, p. 181 –192, November 2013. [Online].

Available: https://doi.org/10.14778/2732232.2732237

[27] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro,

“Cure: Strong semantics meets high availability and low latency,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), June 2016, pp. 405 –414.

[28] T. Little. (2022, October) Ensuring data consistency in microservice based applica-

tions. Accessed: 18/12/2022. [Online]. Available: https://blogs.oracle.com/database/post/

ensuring-data-consistency-in-microservice-based-applications

[29] T. Eldeeb, X. Xie, P. A. Bernstein, A. Cidon, and J. Yang, “Chardonnay: Fast and

general datacenter transactions for on-disk databases,” in 17th USENIX Symposium on

Operating Systems Design and Implementation, OSDI 2023, Boston, MA, USA, July 10-12,

2023. Boston, MA: USENIX Association, July 2023, pp. 343 –360. [Online]. Available:

https://www.usenix.org/conference/osdi23/presentation/eldeeb

[30] M. Herlihy, Linearizability. Boston, MA: Springer US, 2008, pp. 450 –453. [Online]. Available:

https://doi.org/10.1007/978-0-387-30162-4 203
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