
Efficient Free-rider Detection using Symmetric
Overlays

(extended abstract of the MSc dissertation)

João Bruno Rodrigues Roque e Silva
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisor: Professor Luı́s Rodrigues

Abstract—Edge-computing is one of the most promising tech-
niques to leverage the excess capacity that exists at users’
premises. Unfortunately, edge-computing may be vulnerable to
free-riding, i.e., to nodes that attempt to benefit from the
infrastructure without providing any service in return. In this
paper we address free-riding in the context of edge-assisted
streaming and propose the use of carefully crafted symmetric
overlays to support message dissemination and efficient free-rider
detection. The topology maintenance procedures of our overlay
encourage nodes to maintain stable symmetric links. Leveraging
the topological properties of the resulting symmetric overlay,
simple and efficient tit-for-tat mechanisms allow to detect free
riders without the signalling overhead of approaches that target
at arbitrary topologies.

I. INTRODUCTION

Decentralised peer-to-peer systems are a powerful tool to
explore the unused capacity at the edges of the network. Un-
fortunately, it has been observed [1], [2], [3] that a significant
fraction of nodes may free-ride by not contributing to the
system, while still benefiting from the cooperation of a suffi-
ciently large fraction of nodes that cooperate unconditionally,
known as altruistic nodes. This not only puts an unfair load on
altruistic nodes, but also degrades the performance of the tasks
executed at the edge. Mechanisms that can detect free-riders
and prevent them from dominating the system operation are
therefore extremely relevant.

We address edge-assisted live-streaming. The usefulness of
edge-computing to support live streaming has been demon-
strated by several large scale real-life deployments, including
PPLive[4] among others[5]. In this context, existing work [6],
[7], [8] has addressed free-riding by assuming that nodes are
rational. That is, nodes do not contribute because they aim
at maximising a utility, which decreases with the amount of
resources provided to other nodes. This assumption has two
main drawbacks. First, because rational nodes can deviate from
the protocol in an arbitrary fashion, sophisticated incentives
are necessary, which are generally costly or require some
degree of centralised control. Second, it is unreasonable to
expect any node to be capable of calculating the optimal
strategy that maximises its utility.

Therefore, we make the following assumption that, we
believe, characterises most realistic settings. First, we assume
that a significant fraction of nodes is altruistic. Second, we
assume that the majority of nodes that deviate are free-riders.

These nodes adopt the simple behaviour of never forwarding
the stream. Third, we admit a small fraction of nodes that are
rational and may adopt a more sophisticated behaviour. In this
setting, it suffices to ensure that: i) free-riders are detected and
expelled efficiently; ii) altruistic nodes have a way to detect
that the assumptions have been violated (for instance, in the
case where, against the expectations, there is a large fraction of
rational nodes among the population), and can trigger a system
adaptation to use more robust (but also more costly) incentive
mechanisms; and iii) rational nodes still need to contribute to
the system with a reasonable amount of resources in order to
receive the stream.

Like most live-streaming implementations, we require nodes
to join an overlay network in order to participate/receive the
video broadcast. Instead of attempting to support arbitrary
topologies, our overlay maintenance protocols include incen-
tives for nodes to keep stable symmetric links with a small set
of neighbours. As a result, it becomes possible to use simple
tit-for-tat mechanisms to detect free-riders, instead of complex
distributed monitoring and reputation mechanisms that may
incur in a large signalling overhead. Based on these principles,
we propose FastRank, an integrated topology management and
peer-monitoring scheme that can effectively and efficiently
minimize the impact of free-riders in live streaming appli-
cations. FastRank implements a ranking system that allows
altruistic nodes to remain in the overlay and connect with other
altruistic nodes, while free-riders are quickly penalised for not
contributing to the system. Interestingly, we also show that
the approach is robust to more sophisticated behaviour from
rational nodes, such as attempts to manipulate the topology
in their benefit, white-washing attacks, or contribution with
just enough resources to avoid being marked as free-riders. In
particular, we show that for these deviations to be profitable,
the attackers still have to contribute with a reasonable amount
of resources to the system. Furthermore, we show that, if the
fraction of rational nodes is large, this can be detected by
altruistic nodes that can trigger a system reconfiguration and
commute to use more robust incentive mechanisms.

FastRank has been extensively evaluated. Our experimental
results show that FastRank is able to keep altruistic nodes con-
nected to each other, while isolating free-riders and denying
them access to the stream. We also show that nodes adopting

1

a more sophisticated behaviour receive a limited benefit and
that, if their fraction is large, their presence can be detected
by altruistic nodes.

The rest of the paper is structured as follows. Section II sur-
veys related work. Section III presents the model. Section IV
describes FastRank architecture and algorithms. Section VI
reports on our experimental results. Finally, Section VII con-
cludes the paper.

II. RELATED WORK

There are two main approaches to support live-streaming
in large scale systems: one is to build multicast dissemination
trees and the other is to rely on gossip protocols. In optimal
conditions, i.e. with minimal churn and a negligible number of
free-riders, tree based approaches are a natural and efficient
structure to spread information as they avoid any redundant
message delivery. However, in an uncontrolled environment
like the Internet, the performance of tree-vbased approaches
degrades rapidly because tree need to be reconstructed when-
ever a node disconnects or does not conform with the protocol.
Gossip protocol do not suffer from this limitation.

A gossip dissemination protocol can be decomposed in two
components. The membership component is responsible for
the definition and maintenance of the overlay topology. Chal-
lenges are in the definition of a topology that is simultaneously
resilient, in order to mitigate the effects of churn, and efficient,
presenting a small signalling cost even for a large number
of participants. Two protocols that address this problem are
SCAMP [9] and HyParView [10]. The second component of
gossip is the dissemination strategy, which makes use of the
overlay network to disseminate data. Message dissemination
typically follows an epidemic style data dissemination, with
nodes working on rounds, and selecting fanout nodes to relay
data items in each round. This data distribution approach has
shown to be effective and resilient to failures as long as non-
failed nodes follow the protocol. However, the redundancy of
gossip does not apply if nodes do not follow the protocol and
avoid forwarding messages.

To mitigate the impact of nodes that do not follow the
protocol, BAR Gossip [6] relies on a Balanced Exchange
mechanism. In an interaction between two nodes n1 and n2,
data relayed from n1 to n2 is encrypted before being sent
and n1 only releases the encryption key after receiving a
comparable amount of data from n2. The Balanced Exchange
mechanism can be seen as a stronger implementation of the tit-
for-tat approach that can be found in BitTorrent [2]. Although
efficient, encryption imposes a considerable overhead, which
is amplified in live content streaming due to the large number
of packets exchanged and their timely delivery requirement.

FlightPath [7] contributes to attenuate the overhead of the
brute-force approach proposed by BAR gossip in two ways.
On one hand, it uses a flow control mechanism, where nodes
negotiate in advance the exchange of packets. Flow control
permits to balance evenly the traffic on each round and de-
crease redundancy. Secondly, FlightPath creates a balance ac-
count between pairs of nodes, which substitutes BAR Gossip’s
by a more efficient mechanism where some nodes may fall
behind others although within previously agreed thresholds.

LiFTinG [8] implements a distributed mechanism for de-
tecting rational nodes in asymmetric environments, i.e. when
it is expected that a node sends more data to another node
than it receives from him. LiFTinG requires nodes to track
others nodes behaviour by cross-checking the history of their
previous interactions. The randomness of node selection plays
a key role in LiFTing by preventing colluding behaviour,
where nodes can choose to send information always to the
same subset of third parties, possibly uncovering a group’s
misbehaviour. However, cross-checking information incurs a
non-negligible overhead.

III. SYSTEM MODEL

We focus on the problem of disseminating a stream in a
gossip fashion from a source to all the nodes of a peer-to-peer
overlay network. The source first partitions the stream into
multiple frames and sends them to a subset of nodes. Then
nodes cooperate to disseminate the stream by forwarding each
received frame to a subset of nodes selected at random. Each
node n has an identifier and a view of the system, i.e., a subset
of identifiers of other nodes to which n forwards frames. The
nodes from the view of n are called the neighbors of n. The
number of neighbours that n has in its view is the out-degree
of n, and the number of neighbours that have n in their views
is the in-degree of n. A view of n is symmetric if every node
in that view has n in its view.

We assume that the source is trusted and never fails. On
the other hand, nodes may not follow the protocol, either
because they fail by crashing or because they gain from it.
More precisely, we consider that nodes fall into one of three
types: atruistic, free-riders, and rational. Altruistic nodes al-
ways follow the specified protocol. Free-riders always deviate
from the protocol by never forwarding frames of the stream.
Rational nodes strive to maximise a utility function, defined
as the difference between the benefit of receiving the stream
and the costs of executing the protocol, which comprise both
communication costs and costs of performing computationally
heavy computations. The benefit of receiving the stream is
either (i) 0 if the reliability of the stream is not sufficiently
high, or (ii) is a value larger than the costs of following the
protocol. This definition embodies the assumption that rational
nodes prefer to incur the costs of the protocol and receive the
stream with minimum quality than to leave the system.

A strategy of node n can be deconstructed into (1) a
forwarding strategy, specifying a probability distribution over
the nodes from the view of n to which n forwards each
previously received frame from the stream, (2) a view strategy,
specifying the set of nodes that n keeps in its view, and (3) an
identity strategy, specifying the set of different identities that n
uses to participate in the system, in particular, n may perform
White-washing and Sybil attacks by using many different
identifiers [11], [12].

IV. FASTRANK

We now describe FastRank, a peer-to-peer streaming service
that is resilient to free-riders and to a fraction of rational nodes.
FastRank has three main components: an overlay network
construction and maintenance protocol, a localised neighbour
ranking mechanism, and a dissemination mechanism. These

2

components cooperate in a synergetic manner to ensure that
free-riders are promptly identified and shunned by their neigh-
bors, so that they stop receiving the stream. In particular, the
overlay maintenance mechanisms require nodes to preserve
a small stable symmetric view. This, in turn, forces pairs of
nodes to engage in long-term interactions called relationships.
These interactions can be easily monitored locally, without
requiring the dissemination of signalling traffic. Localised
monitoring becomes then very efficient: nodes attribute a
rank to each neighbour and expel from their view neighbours
that have a low rank, i.e., which appear to be free-riders.
Since rational nodes maximise their utility by avoiding being
expelled by their neighbours, this encourages them to forward
at least a fraction of the stream, ensuring a good streaming
quality even in the presence of a significant fraction of rational
nodes. Rational nodes may also attempt to keep a large view,
to maximize the opportunities to receive new data. To prevent
this, the overlay mechanisms make sure that the creation of
new relationships incurs some utility loss. The same approach
is used to prevent rational nodes from significantly increasing
their utility by adopting new identifiers.

A. Overlay Network
The key idea behind FastRank is to leverage from the

use of stable overlays with symmetric links to support the
message dissemination. After establishing a link, two altruistic
nodes will preserve it until one of them fails. The number of
neighbours of each node is deliberately small (i.e, logarithmic
with regard to the system size) [13], such that neighbours are
required to interact frequently during the message dissemina-
tion process. As we will see, this allows to detect free-rider
behaviour quickly and efficiently.

HyParView[10] is a peer-to-peer protocol that constructs
and maintains an overlay with the properties required to
implement our approach. Furthermore, the authors of Hy-
ParView have shown experimentally that their overlay could
effectively support reliable muticast[14]. Unfortunately, we
could not use HyParView as a black box while developping
FastRank. In fact, HyParView appears to have been designed
under the assumption that all nodes are altruistic. Moreover,
it provides no support to prevent a node from constantly
changing neighbours. Given that nodes will require some time
to identify a new neighbour as a free-rider, the free-rider will
receive some packets before it is disconnected. If the free-rider
can create new links at the same pace it looses old ones, it will
still be able to receive the stream. Therefore, FastRank imple-
ments a variant of HyParView. This adaptation of HyParView,
that we call Constrained HyParView, implements mechanisms
that constrain the pace at which a node can establish new
relationships.

1) Constrained HyParView: Constrained HyParView is a
redesign of the original HyParView protocol that we have
developed to meet the requirements of FastRank. This variant,
includes mechanisms that constrain the rate at which a node
can establish new relationships in the overlay. For this purpose,
when a node i contacts another node j, to create a new
relationship between i and j, node i is given a time-consuming
task that it needs to perform before the relationship request
is accepted. This, in practice, introduces a quarantine period

before the establishment of a new relationship. The quarantine
period should be long enough such that multiple frames are
lost and white washing becomes unappealing. Furthermore,
the task given to node i should be such that more than one
task cannot be performed in parallel by a singe node during
a given quarantine period, i.e., if a node attempts to establish
two new relationships, it should be forced to “pay” the cost
of waiting two quarantine periods.

To achieve the goals above, in FastRank, we have opted to
use crypto-puzzles. More precisely, when a node i contacts
node j to establish a new relationship, node j prepares a
crypto-puzzle that needs to be solved by i in order for j
to accept the relationship. The crypto-puzzle is such that the
estimated average time to solve it is the pre-defined quarantine
period, even if the entire computing resources of a node are
devoted to the task. Several examples of crypto-puzzles with
these guarantees have been described in the literature[15], [16],
[17]; in FastRank we have opted to use [18].

A node joining the Constrained HyParView overlay contacts
a target number of neighbours, gets a challenge from them,
solves the crypto-puzzles and provides the answers to all
neighbours simultaneously. In this way, it is likely that the
joining node is accepted by a number of neighbours that is
large enough to initiate its operation without risking being
marked as free-riders (because it does not receive enough in-
formation to forward). A significant advantage of this approach
is that a node attempting to join the network is constrained by
its own resources, no matter how many different nodes it tries
to contact or how many identities it attempts to use, since the
number of tasks it may perform by unit of time is limited by
the finite hardware resources of the node. Therefore, FastRank
also mitigates the impact of White-washing and Sybil attacks.

The reader should notice that the mechanism above is asym-
metric: while the node that attempts to establish a relationship
has to solve the crypto-puzzle, the node accepting the relation-
ship does not. The reason for this is that FastRank is designed
to detect, and isolate, free-riders in the overlay. Rational nodes
that are isolated will likely attempt to join again, by contacting
different nodes. We aim at minimising the negative effect that
this behaviour has on altruistic nodes, while still allowing new
altruistic nodes to join the overlay at any moment. Also, if a
node receives multiple relationship requests concurrently, it
will submit a different crypto-puzzle to each node attempting
to establish a relationship and then it will only connect to the
first node to complete the task. Thus, if a free-rider attempts to
solve multiple crypto-puzzles at the same time, and competes
with altruistic nodes for relationships, it may risk not to be
accepted, given that nodes that devote all resources to solving a
single crypto-puzzle are more likely to respond first and obtain
the relationship. Furthermore, a node is forced to engage in
repeated interactions with its neighbours immediately after
the relationship is established. A free-rider, that will only
consume frames from a relationship will be detected and
see the relationship ended before it is able to acquire a new
relationship.

In HyParView a node pro-actively attempts to maintain
his active view full. Therefore, if a neighbour crashes, it
immediately attempts to establish a new relationship to refill
its active view. However, in Constrained HyParView, actively

3

attempting to establish a new relationship is costly. Further-
more, if very few nodes have empty slots in their active views,
it is likely that multiple nodes concurrently compete for that
entry (and only one will succeed). This further exacerbates
the cost of joining an overlay where all nodes pro-actively
attempt to fill their views as soon as possible. On the other
hand, an altruistic node can opt to wait and refill its active
view by accepting relationships from nodes attempting to join
the network. If all altruistic nodes do this, not only they avoid
the costs of initiating relationships but also they make the
joining procedure easier for new altruistic nodes that want
to be part of the overlay. In Constrained HyParView we use
a low watermark threshold, denoted baseview, that needs to
be reached before the node pro-actively looks for neighbours.
If some relationships end but the size of the active view is
above baseview, the node simply waits for join requests, and
will accept relationships until maxview is reached. This is a
safety mechanism that allows nodes to ensure that newcomers
have the possibility to join the system. When a node n has in
its view maxview relationships and n receives a join request,
n will request the new node to solve a crypto-puzzle. The first
node to complete it will replace the node with the lowest rank
in its view.

Finally, in FastRank, the source of the stream is treated
differently from every other node. The source does not keep
an explicit active view to a fixed set of nodes. Instead, it uses
a large passive view to select a number of contact points
at random for each frame it sends. Nodes always receive
frames sent directly by the source and altruistic nodes forward
the frames to the neighbours in their active view (a detailed
description is provided below). The goal is to distribute the
load evenly among the members of the overlay, such that there
is not a fixed set of nodes that is close to the source (and
always has to forward frames) and another set of nodes that
permanently act as leafs (and just receive frames).

B. Ranking Algorithm
FastRank leverages from the topological properties of Con-

strained HyParView to implement an efficient localised mon-
itoring mechanism that can effectively detect and, ultimately,
expel free-riders from the active view of nodes. The mecha-
nism is based on the observation that, in steady relationships,
two altruistic nodes roughly send the same amount of frames
to each other. If the balance of exchanged frames is highly
asymmetric, this is a sign that the node that is receiving but not
forwarding frames is likely a free-rider or a failed node, and
thus may be expelled from the view. The fact that Constrained
HyParView keeps symmetric views plays a crucial role in this
mechanism, since it ensures that altruistic nodes have a small
set of neighbours with whom they interact repeatedly. This
allows to detect any unbalance quickly.

The balance of the exchanges with a neighbour is captured
by FastRank as a numeric rank[19]. Each node i maintains, for
each neighbour j in its active view a separate rankij . The rank
of a new neighbour is initiated to a predefined value, denoted
the baserank and then maintained using a very simple rule
that consists of incrementing the rank of the neighbour by one
unit every time a frame is received from that neighbour and by
decrementing the rank also by one unit when a frame is sent

to the neighbour. In FastRank, the value of baserank is simply
0. This means that a neighbour that sends more frames than
it receives keeps a positive score, and a free-rider will have
negative score. Furthermore, the ranking algorithm also defines
a minimum threshold for the rank, denoted minrank, below
which a node is expelled from the view. In Section VI, we
discuss how an appropriate value for minrank can be selected.

C. Dissemination Mechanism

Frame dissemination is implemented as follows. The stream
source selects, for each frame, a number f of contact points
among the entire set of members of the overlay (this is
achieved by keeping a large passive view) and then sends the
frames to those nodes. When a node receives a frame, directly
from the source or from one of its neighbours, first checks if
the frame is a duplicate (for this purpose, each node keeps a
record with the identifiers of the last frames it has received).
Duplicate frames are simply discarded and never forwarded to
any neighbour.

If the frame is new, the node will forward the frame to
each of its neighbours with a probability that is a function
of the rank of that neighbour. The size of the active views
of the overlay constructed by the Constrained HyParView
are deliberately small but still large enough to tolerate a
large fraction of faulty nodes. As a result, if all nodes are
altruistic, the use of flooding in the overlay may generate many
redundant messages. Therefore, an altruistic node forwards a
message to other altruistic nodes with a probability lower than
1 that is called the base forwarding probability (or simply
bfp). The value of bfp is selected such that the reliability of
the dissemination is still ensured but with a much smaller cost
than that incurred when flooding is used. Naturally, the value
of the bfp depends on the size of the active view. In Section VI
we discuss how bfp can be configured for optimal results.

Notice that, prior to forwarding any frame, all nodes in the
active view have a rank above minrank. Frames are forwarded
to nodes that have a rank above baserank with the probability
bfp, and are forwarded with a probability lower than bfp but
still larger than 0 for the members of the view whose rank is
above minrank. More precisely, FastRank uses the following
formula to compute the forwarding probability from node i to
a neighbour j, denoted fpi(j):

fpi(j) =

{
bfp if rankij ≥ baserank

bfp
∣∣∣minrank−rankij

minrank

∣∣∣ if baserank> rankij ≥ minrank

This guarantees that the forwarding probability to neigh-
bours with a rank lower than minrank decreases with the rank,
thus decreasing the expected benefit of rational nodes that
forward frames with probabilities lower than what is specified
by the protocol. Such decrease persuades rational nodes to
forward frames with a probability strictly higher than the
smallest possible probability required for keeping its rank in
other neighbours above minrank.

V. CONSIDERED BEHAVIOURS

FastRank has been designed for systems where most of
the nodes are altruistic and only a small fraction of nodes
are free riders or rational. The case where all nodes are

4

rational is outside the scope of this paper. As discussed in the
related work section, this scenario requires considerably more
expensive protocols. In the evaluation section we analyse the
performance of the system for different fractions of nodes in
the population that deviate from the protocol (misbehaving
nodes), considering that nodes can belong to one of the
following categories.

- Altruistic nodes: An altruistic node follows the specified
protocol without ever deviating from the specification.

- Free-Riders: Are nodes that never forward packets. They
receive information from neighbours until they are expelled.
Furthermore, they try to maximize the number of neighbours
they have.

- Rational Nodes: Nodes that attempt to deviate in order to
maximize their utility. We discuss the behaviour of rational
nodes below.

A. Rational Behaviour

We consider that a rational node obtains a benefit every
time it receives a new packet and incurs in a cost every time
it sends a packet or solves a crypto-puzzle. Thus, to maximize
its utility, a rational node aims to increase the ratio between
received and sent packets. It is clear from the description of the
algorithm that, if a node does not keep a balanced exchanged
of information with a neighbour, it is eventually detected as a
free-rider and expelled by that neighbour. There are then two
main possible strategies that a rational node may follow to
increase its utility:

- Shrinking the active view: A rational node may opt to
reduce the size of its active view, such that it receives the
stream but has to forward packets to as few neighbours as
possible. Still, it behaves as an altruistic node to the nodes that
it keeps as its neighbours. Thus, when deviating in this way,
the node appears to be altruistic to its neighbours, that have
no way to detect that it is using a reduced fanout. Note that
more sophisticated algorithms (e.g. LiFTinG [8]), that do not
rely exclusively on localised information, have been designed
to detect this attack.

- Slowdown (maintaining the score strictly above the water-
mark level): A rational node may also reduce the rate at which
it forwards packets in such a way that it is able to maintain its
score above minrank and, therefore, never be expelled from
the active view of altruistic nodes. Furthermore, it may try
to get as much neighbours as possible. The ideia is that if it
keeps enough neighbours, it may still receive the stream with
good quality, despite forwarding messages only seldom.

We will show that, in face of the deviations above, FastRank
exhibits the following interesting properties: i) the quality
experienced by altruistic nodes is only mildly affected, even
for large fractions of misbehaving nodes; ii) rational nodes still
have to contribute with a reasonable amount of resources to
the system in order to get the stream with a minimal quality.
As a result, the unbalance between the resources committed by
altruistic nodes and misbehaving nodes is not large (10% less,
at most); iii) if a large fraction of misbehaving nodes exist
among the population, this can be detected by the altruistic
nodes.

VI. EVALUATION

In this section, we provide an extensive evaluation of
FastRank. All experiments were performed using the PeerSim
Framework [20]. Simulations used 1000 nodes and consisted
in the dissemination of 20000 frames, each injected in the
network by the streamer using 7 peers randomly chosen.
Results presented in this section are the average of 100
independent runs using the same configuration.

The evaluation is divided into four different parts. In the
first part, we support the choice of values selected for the
different parameters of the system. The second part illustrates
the operation of the system when all nodes are altruistic. The
third part discusses the effects of free-riders and the fourth
part the effect of rational nodes in the system.

A. Configuring FastRank

The parameters that affect the operation of FastRank are
the following: the size of the active view and of minview;
the parameter of the ranking procedure (minrank); the base
forward probability bfp used in the dissemination process; and
the average length of the quarantine period (i.e., the average
time needed to solve the crypto-puzzle when creating a new
relationship). Table I presents the default configuration values
of FastRank. We discuss the rationale for configuration of
these different parameters in the following subsections. Unless
stated otherwise, the discussion applies to a network of 1000
nodes (the setup that has been used for the graphs depicted in
the paper).

value
maxview 15
baseview 12
minrank -15
bfp 0.4
quarantine period (frames) 220

Table I
DEFAULT CONFIGURATION OF FASTRANK

1) View Size: We first discuss how the size of the active
view is selected. For now, lets assume that flooding is used
to propagate the messages in the overlay (in the next section,
we discuss why flooding is not used in FastRank). As long as
the network of altruistic nodes remains connected, all correct
nodes will receive all the messages. Therefore, the baseview
size must be selected such that the likehood of an altruistic
node to become isolated in the presence of faulty nodes is
very small. We have opted to configure FastRank such that
at least 30% of faulty nodes can be tolerated with minimum
effect on the altruistic nodes. Figure 1(a) shows the percentage
of altruistic nodes that becomes isolated from the primary
components of the overlay (the primary component is the
largest connected subgraph in the overlay) for different sizes of
the active view, after 30% of simultaneous failures. As it can
be seen, if the baseview is equal or larger than 11, only 0.1%
of altruistic nodes are isolated. Such a small value motivated
us for using the conservative approach of selecting 12 as the
default value for baseview. We have opted to add 3 additional
slots to facilitate the inclusion of joining nodes, for a maxview
size of 15.

5

2) Forward Probability: We now explain the rationale
for selecting the message base fowarding probability bfp. In
the spirit of gossip protocols, we avoid this redundancy by
forwarding messages with a given probability smaller than 1.
By fixing the baseview to 12, Figure 1(b) depicts the reliability
of the streaming protocol on a FastRank overlay, as a function
of the dissemination probability and Figure 1(c) depicts the
resulting redundancy. As it can be observed, by selecting a
forward probability of 0.4 on an overlay where thebaseview
is 12, one can still achieve a very high reliability with a
significant reduction in the redundancy of the dissemination
procedure.

3) Rank Maintenance: The goal of the rank mechanism is
to detect free-riders by equating a rank below minrank with
free-riding behaviour. However, due to random fluctuations of
dissemination, it is possible that the rank of altruistic nodes
also drops below minrank, a situation that we call a false
positive. Our goal is then to promptly detect free-riders while
minimising false positives. Therefore, the value of minrank
should weigh this trade-off. Figure 2(b) shows the fluctuation
of the rank among two altruistic nodes. From these graphs it
is clear that minrank should not be higher than −15. However,
note that the lower the value of minrank, the less likely it is
to generate a false positive but also the longer it would take
to detect a free-rider, as shown in Figure 2(c). Since we aim
at a fast detection of free riders, we have opetd to use the
maximum value that ensures a small faction of false positives,
i.e, the value of −15.

4) Quarantine Time: As discussed before, the goal of
the quarantine time is to ensure that nodes cannot replace
relationships faster than they are ended. From Figure 2(c) it
can be observed that the last free-rider was detected after 110
frames for a minrank of -15. Therefore, the join procedure
should use a crypto-puzzle that takes, on average, a time
that is longer than the time it takes to forward that number
of frames. Since we also aim at penalizing free-riders, we
have selected a quarentine period of twice the detction time
(i.e, corresponding to 220 frames). In this way, free-riders
that continuously attempt to replace old neighbours by new
neighbours miss 50% of the frames.

B. Failure-free Operation

In this subsection, we provide some additional insights on
the operation of FastRank in a failure-free scenario, i.e., in
a setting where all nodes are altruistic and do not fail. For
this, we consider a stream of 24 frames per second, generated
by one single stream source, during a complete session with
14 minutes. The session starts with 1000 nodes and in the
middle of the stream (at minute 7), 100 additional nodes join
the stream (i.e., at that momento we induce an 10% increase in
the overlay population). With this setting, we show: the time it
takes to setup the FastRank overlay, the reliability experienced
by a node; the average number of retransmissions per frame
received during the streaming session; the percentage of false-
positives during the session; the amount of crypto-puzzles
solve by each node during the session; and, finally, the time
it takes for a new node to join an ongoing streaming session
with 90% reliability. The results are depicted in Table II.

Initial network size 1000
Joining nodes 100
False positives 0.03
Global reliability 0.999
Newcomers reliability 0.995
Newcomers average puzzles 12.2
Worst case time to join stream (frames) 3116

Table II
OPERATION IN ABSENCE OF MISBEHAVIOUR

As it can be seen, the amount of cripto puzzles solved by
joining members, 12.2, is slightly above the minimum (we
note that a joining members must establish baseview, i.e., 12,
neighbours). The difference is due to the contention for the free
slots in the views of nodes that already belong to the overlay.
But even in the worst case (for the last node to join) the time
corresponds to solving 14 crypto puzzles, just 2 above the
minimum. This contention is minimal and shows that having
a maxview above baseview is quite effective at helping new
members to join the overlay. It can also be observed that the
joining of new members does not affect the reliability of the
stream nor the accuracy of the free-rider detection mechanism.

C. Tolerating Free-Riders

In this section, we provide some additional insights on the
operation of FastRank in the presence of free-riders. In this
experiments we let the system run with 100% altruistic nodes
until a point where a fraction of all nodes adopts the behaviour
of a free-rider. Figure 3 shows the evolution of the composition
of the active views of nodes after the fault is injected. The
figure shows that after 110 frames, free-riders are detected and
the system starts to reconfigure. After 2500 frames the system
stabilizes in a configuration where 95% of the members in
the active view of an altruistic node are other altruistic nodes.
Consequently, free-riders have become disconnected from the
network.

We have also measured how many crypto-puzzles altruistic
nodes and free-riders have solved during the reconfiguration,
for 30% free-riders in the system. Since the baseview is 12,
with 30% free-riders, after the attack an altruistic node must,
on average, replace 4 members in its view. However, in this
experiment, an altruistic node has to solve 6.75 crypto-puzzles
before it stabilizes its active view with other altruistic nodes,
i.e., almots 3 more puzzles than in the ideal case. This is due to
the fact that this experiments captures an extreme case, where
all free-riders act simultaneously, and also keep continuously
solving crypto-puzzles to replace their broken relationships,
thus generating a significant contention for the free slots in
the view of altruitic nodes.

D. Tolerating Rational Nodes

Given that rational nodes only obtain a benefit for receiving
the stream with sufficiently high reliability, this shows that
they do not have incentives to free-ride. In this subsection, we
provide some additional insights on the operation of FastRank
when a fraction of nodes is rational and deviates following
strategies that maximise their utility. Recall that the utility is
the difference between the benefits and the costs of executing
the protocol. We consider that the only significant costs of

6

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2 4 6 8 10 12

Is
ol

at
ed

 n
od

es

Active view size

Amount of isolated nodes

'isolatedNodes'

(a) Isolated nodes after 30% failures. (b) Reliability. (c) Redundancy.

Figure 1. Baseview and Forward Probability (reliability vs redundancy)

(a) False positives. (b) Rank fluctuation. (c) Detection Time.

Figure 2. Ranking

Figure 3. Recovering from free-riders

our protocol are those of forwarding frames and computing
crypto-puzzles. We also assume that the fraction of rational
nodes is constant.

1) Strategies: Recall also a strategy of a rational node can
be decomposed into the forwarding, view, and identity strategy.
We fix the identity strategy to one identity per node. Later, we
discuss the effect of strategies that use multiple identities per
node. Regarding the forwarding strategy, nodes can adopt a
free-riding strategy by not forwarding anything, may follow
an altruistic strategy by following the protocol, or may follow
a minimum forwarding strategy, by forwarding the minimum
number of frames required to avoid losing relationships. This
covers all relevant possibilities. First, forwarding frames to
more nodes on average only increases the cost. Second, a

rational node does not benefit from forwarding a number of
frames lower than the minimum required to keep relationships
but not to free-ride. Finally, the minimum forwarding strategy
models the worst-case scenario where the utility decrease due
to nodes not maintaining a rank above baserank does not
dissuade them from deviating. Regarding the view, the only
possibilities are the enlarged view, the shrunk view, and the
same view strategies.

We have seen that the same view or shrunk view strategies
in combination with a free-riding strategy should not provide
any gain, since the reliability of the stream drops significantly.
Moreover, an altruistic strategy combined with an enlarged
view increases the costs of performing crypto-puzzles without
increasing the benefit, since the reliability of the stream re-
mains roughly the same. Hence, we can focus on the following
five deviations: free-riding with enlarged view, altruistic with
shrunk view, and minimal forwarding with same, shrunk, and
enlarged views.

We evaluate these strategies according to two main criteria:
(1) impact on the reliability of rational nodes and (2) impact
on the reliability of altruistic nodes when a fraction of rational
nodes deviate. We show that, whenever rational nodes may in-
crease their utility, FastRank exhibits the following interesting
properties: (i) the reliability experienced by altruistic nodes is
only mildly affected, even for large fractions of rational nodes;
(ii) rational nodes still have to contribute with a reasonable
amount of resources to the system in order to get the stream
with a minimal reliability; as a result, the unbalance between
the resources committed by altruistic nodes and rational nodes
is not large (10% less, at most); and (iii) if the fraction
of rational nodes is large, then this can be detected by the

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2 2.5 3

R
el

ia
bi

lit
y

Quarantine period (as a function of detection time)

Effect of quarantine period

'altruistic'
'freeRiders'

Figure 4. Effect of quarantine period

Rational nodes’ active view size - 3 4 5 6
Max hop ratio 1 1.27 1.45 1.37 1.09
Avg hop 1 1.07 1.08 1.13 1.11
Altruistic reliability 0.99 0.99 0.99 0.99 0.99
Rational reliability - 0.03 0.06 0.67 0.88

Table III
EFFECT OF ALTRUISTIC WITH SHRUNK VIEW STRATEGY (30% OF

RATIONAL NODES)

altruistic nodes.
2) Free-riding with Enlarged View Strategy: The main

gain of this strategy may stem from avoiding the costs of
forwarding frames while avoid becoming isolated. This may
be an optimal strategy if the cost of executing crypto-puzzles is
lower than that of forwarding frames and the quarantine period
is not sufficient to prevent the node from receiving the stream
with minimum reliability. Figure 4 shows the reliability expe-
rienced by a rational node adopting this behaviour. Knowing
that, while on quarantine, a node is unable to search for another
relationship, the figure depicts reliability values for different
quarantine times. It can be observed that if the quarantine time
is larger than the detection time, then the proportion of frames
received by the free-riders, drops significantly. This shows that,
with the right choice of the quarantine time, rational nodes do
not increase their utility by adopting this behaviour.

3) Altruistic with Shrunk View Strategy: This strategy is
more beneficial to rational nodes when the cost of com-
puting crypto-puzzles dominates communication costs, such
that nodes aim at minimising the number of relationships,
while still keeping the streaming reliability to a minimum.
In Table III, we show the composition of the views of both
altruistic and rational nodes, the reliability of the stream after
the deviation, and the increase in message latency caused by
the deviation. Since rational nodes consistently end a fraction
of their relationships, altruistic nodes tend to replace those
relationships. Therefore, the network remains connected and
the reliability is not significantly affected by the deviation.
On the other hand, since a fraction of nodes has a smaller
out-degree, the latency of the dissemination increases. With
a sufficiently large fraction of rational nodes, the increase in
the latency is noticeable. This open the door for an adaptive
solution, where we can trigger a change from FastRank to
a more costly protocol that detects and punishes rational
behaviour (e.g. LiFTinG [8]).

Reliability of altruistic nodes after the deviation 0.97
Reliability of rational nodes after the deviation 0.50
Fraction of frames sent by rational nodes 0.2

Table IV
EFFECT OF MINIMAL FORWARDING WITH SAME VIEW STRATEGY (30% OF

RATIONAL NODES)

Rational active view size 12 20 25 30 35 40
Ratio of solved crypto puzzles 1 19 22 42 45 49
Average frame ratio 0.24 0.40 0.50 0.59 0.66 0.80
Reliability of rational 0.71 0.80 0.86 0.98 0.99 0.99

Table V
EFFECT OF MINIMAL FORWARDING WITH ENLARGED VIEW STRATEGY

(FOR ONE RATIONAL NODE)

4) Minimal Forwarding with Same and Shrunk View Strate-
gies: The advantage of these strategies is that if a node keeps
enough relationships, it may still receive the stream with
sufficiently high reliability, despite forwarding frames only
seldom. Table IV show the effect of the minimal forwarding
with same view strategy. As it can be seen, it is severely
penalized, as its perceived reliability drops significantly. On
the other hand, even for 30% of rational nodes, this deviation
has no negative impact on the reliability experienced by
altruistic nodes. Since the reliability only drops by shrinking
the view, rational nodes clearly do not gain from following
the minimal forwarding with shrunk view strategy, so we opt
to omit the evaluation of this strategy.

5) Minimal Forwarding with Enlarged View Strategy: The
previous results showed that a minimal forwarding strategy
is harmful due to a significant decrease in the reliability. A
rational node may circumvent this problem by enlarging the
view. Table IV shows how long it takes for such a node to
receive the stream with the same reliability of an altruistic
node. It can be observed that a node with a score of minrank
on all of its incoming links, needs to have a constant active
view of size at least 25 to approximate the reliability of an
altruistic node. Thus, it need to solve 22 times more crypto-
puzzles than altruistic nodes to achieve that state. Furthermore,
since it needs to keep all these relationships, it still needs to
forward frames, but approximately 80% of that of an altruistic
node. Therefore, this strategy is less profitable than altruistic
with shrunk view, because with this deviation a rational nodes
has the same forwarding effort than a node that shrinks its
view, with the penalty of performing more crypto-puzzles.

E. White-washing and Sybil Attacks
To obtain a relationship, a node must solve a crypto-puzzle,

which takes more time than the time it takes to detect it as
a free rider. Thus, a node cannot replace relationships fast
enough to sustain the reception of the stream with sufficiently
high quality. This mechanism is completely independent of
the identity a node opts to present to its neighbours. Also,
nodes do not maintain any record of past interactions based
on identifiers, and a node that fails to maintain a relationship
active is punished with a crypto-puzzle every time it attempts
to replace that relationship, regardless of the identity it opts
to present. Given this, a strategy where a node uses multiple
identifiers is equivalent to enlarging the view. This implies that

8

White-washing and Sybil attacks are no more effective than
strategies where a node employs a single identifier and keeps
an enlarged view.

VII. CONCLUSIONS

In this paper we have presented FastRank, a peer-to-peer
streaming protocol that relies on an overlay network with
symmetric links to mitigate the effect of free riders in an
efficient and effective manner. FastRank includes overlay
construction mechanisms that encourage nodes to perform
repeated interactions with a small number of nodes and then
leverages from this property to implement efficient localised
scoring mechanisms that can be used to detect and expel free
riders. The resulting system can tolerate up to 30% of free
riders without decreasing the reliability of the stream. As a
result, it allows for an optimised operation in the case where
free riders or rational nodes are residual (which happens often
in practice). FastRank is in contrast with more robust solutions,
that tolerate wider range of attacks at a much higher cost.
Interestingly, FastRank can also tolerate a fraction of more
sophisticated rational behaviour, with small but detectable
impact on the perceived streaming process. This open the
door for adaptive solutions, where FastRank is used while
the number of misbehaving nodes is small, and the operation
reverts to more expensive solutions such as Lifting when the
number or the sophistication of attackers increases.

ACKNOWLEDGMENTS

This work was partially supported by Fundação para a
Ciência e Tecnologia (FCT) via the INESC-ID funding with
reference UID/CEC/50021/2013 and via the project PEPITA
(PTDC/EEI-SCR/2776/2012). Parts of this work have been
performed in collaboration with other members of the Dis-
tributed Systems Group at INESC-ID, namely, Prof. Hugo
Miranda and Xavier Vilaça.

REFERENCES

[1] E. Adar and B. Huberman, “Free riding on gnutella,” First
Monday, vol. 5, no. 10, Oct. 2000. [Online]. Available:
http://firstmonday.org/issues/issue5˙10/adar/index.html

[2] B. Cohen, “Incentives build robustness in bittorrent,” in Workshop on
Economics of Peer-to-Peer systems, 2003, pp. 68–72.

[3] D. Hughes, G. Coulson, and J. Walkerdine, “Free riding on gnutella
revisited: The bell tolls?” IEEE Distributed Systems Online, vol. 6, no. 6,
pp. 1–, Jun. 2005.

[4] Y. Huang, T. Fu, D.-M. Chiu, J. Lui, and C. Huang, “Challenges, design
and analysis of a large-scale p2p-vod system,” SIGCOMM Comput.
Commun. Rev., vol. 38, no. 4, pp. 375–388, 2008.

[5] X. Liao, H. Jin, Y. Liu, L. Ni, and D. Deng, “Anysee: Peer-to-peer live
streaming.” in INFOCOM, vol. 25, 2006, pp. 1–10.

[6] H. Li, A. Clement, E. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin,
“Bar gossip,” in OSDI, 2006, pp. 191–204.

[7] H. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison, L. Alvisi,
and M. Dahlin, “Flightpath: Obedience vs. choice in cooperative ser-
vices.” in OSDI, vol. 8, 2008, pp. 355–368.

[8] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, and S. Prusty,
“Lifting: lightweight freerider-tracking in gossip,” in Middleware, 2010,
pp. 313–333.

[9] A. Ganesh, A.-M. Kermarrec, and L. Massouli, “Scamp: Peer-to-peer
lightweight membership service for large-scale group communication.”
Springer-Verlag, 2001, pp. 44–55.

[10] J. Leitão, J. Pereira, and L. Rodrigues, “Hyparview: A membership
protocol for reliable gossip-based broadcast,” in IEEE DSN, 2007, pp.
419–428.

[11] J. Douceur, “The sybil attack,” in Peer-to-peer Systems. Springer, 2002,
pp. 251–260.

[12] P. Resnick et al., “The social cost of cheap pseudonyms,” Journal of
Economics & Management Strategy, vol. 10, no. 2, pp. 173–199, 2001.

[13] A.-M. Kermarrec, L. Massoulié, and A. J. Ganesh, “Probabilistic reliable
dissemination in large-scale systems,” IEEE Trans. on Parallel and
Distributed Systems,, vol. 14, no. 3, pp. 248–258, 2003.

[14] J. Leitão, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in
IEEE SRDS, Beijing, China, Oct. 2007, pp. 301–310.

[15] X. Wang and M. Reiter, “Defending against denial-of-service attacks
with puzzle auctions,” in Security and Privacy. IEEE, 2003, pp. 78–
92.

[16] R. Merkle, “Secure communications over insecure channels,” Comm. of
the ACM, vol. 21, no. 4, pp. 294–299, 1978.

[17] N. Borisov, “Computational puzzles as sybil defenses,” in IEEE P2P
2006, 2006, pp. 171–176.

[18] W.-C. Feng, E. Kaiser, and A. Luu, “Design and implementation of
network puzzles,” in IEEE INFOCOM 2005, vol. 4, 2005, pp. 2372–
2382.

[19] M. Karakaya, I. Korpeoglu, and O. Ulusoy, “Free riding in peer-to-peer
networks,” Internet Computing, IEEE, vol. 13, no. 2, pp. 92–98, 2009.

[20] A. Montresor and M. Jelasity, “Peersim: A scalable p2p simulator *.”

9

