
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Run-Time Switching Between Total Order

Algorithms

José Carlos Vitório Mocito

MESTRADO EM INFORMÁTICA

2006

Run-Time Switching Between Total Order Algorithms

José Carlos Vitório Mocito

Dissertação submetida para obtenção do grau de

MESTRE EM INFORMÁTICA

pela

Faculdade de Ciências da Universidade de Lisboa

Departamento de Informática

Orientador:

Luís Eduardo Teixeira Rodrigues

Júri:

Rodrigo Miragaia Rodrigues

José Manuel de Sousa de Matos Rufino

Luís Manuel Pinto da Rocha Carriço

2006

Resumo

Os protocolos de ordem total são elementos fundamentais na construção de muitas

aplicações distribuídas e tolerantes a faltas. Infelizmente, a sua implementação

pode ser dispendiosa, quer no número de passos de comunicação, quer na quan-

tidade de mensagens trocadas. Este problema é ainda mais evidente em redes de

grande-escala, onde o desempenho do algoritmo pode ser limitado pela presença

de ligações com latência elevada. Para reduzir este problema foram propostos

diversos protocolos de ordem total optimistas. No entanto, os serviços prestados

por cada um destes protocolos divergem entre si, e cada protocolo oferece desem-

penhos distintos consoante as propriedades da rede onde se executa.

Esta dissertação apresenta uma descrição das várias aproximações optimis-

tas e estabelece uma caracterização das suas propriedades e adequação a vários

ambientes de execução.

Um protocolo adaptativo que permite a comutação dinâmica entre diferentes

algoritmos de ordem total é proposto e avaliado. O protocolo possibilita a exe-

cução do algoritmo mais favorável a cada momento, permitindo obter o melhor

desempenho possível. Os resultados experimentais mostram que a solução pro-

posta permite a troca de algoritmos com uma interferência desprezável na comu-

nicação.

PALAVRAS-CHAVE: Ordem Total, Ordem Total Optimista, Algoritmo A-

daptativo.

Abstract

A total order protocol is a fundamental building block in the construction of many

distributed fault-tolerant applications. Unfortunately, the implementation of such

a primitive can be expensive both in terms of communication steps and of num-

ber of messages exchanged. This problem is exacerbated in large-scale systems,

where the performance of the algorithm may be limited by the presence of high-

latency links. Optimistic total order protocols have been proposed to alleviate

this problem. However, different optimistic protocols offer quite distinct services.

Moreover, there are certain algorithms that perform better in specific scenarios

and given network properties.

This dissertation provides an overview of different optimistic approaches and

establishes a characterization of their properties and suitability to different execu-

tion environments.

An adaptive protocol that is able to dynamically switch between different total

order algorithms is proposed and evaluated. The protocol allows to achieve the

best possible performance by supporting the reconfiguration such that, in each

moment, the algorithm that is most appropriate to the present network conditions

can be executed. Experimental results show that, using our protocol, adaptation

can be achieved with negligible interference in the data flow.

KEY WORDS: Total Order, Optimistic Total Order, Adaptive Algorithm.

Acknowledgments

My first acknowledgment goes to my professor and supervisor, Professor

Luís Rodrigues, for his dedication to all the aspects that surrounded the

execution of this work. His prosecution for excellence has been a continu-

ous inspiration and challenge.

To my parents and grandparents my biggest acknowledgment, for the

infinite support I always received. May this work reflect all the confidence

you showed in my capabilities, and fill your hearts with great joy.

To my other half, Mónica, I thank the objectiveness she provides to my

life and the permanent incentive I received every single day in the course

of this past months. Thank you for always believing in me.

I thank all my family, in which I obviously include the Ribeiro family,

for the friendship and confidence they always demonstrated.

To all my friends, with no exception, I am grateful for all the great

relaxing moments we shared.

I thank all my colleagues at LaSIGE, and particularly the members of

the DIALNP research group, with whom I shared lots of interesting dis-

cussions that contributed significantly to the outcome of this dissertation.

Finally, this work was partially supported by the IST project GORDA

(FP6-IST2-004758). I would also like to thank the LaSIGE research unit and

the Department of Informatics at FCUL, for the working conditions they

provided for the prossecution of this dissertation.

Lisboa, June 2006

José Carlos Vitório Mocito

Ao meu Avô Francisco.

Contents

Contents i

List of Figures v

List of Tables vii

Listings ix

1 Introduction 1

1.1 Objectives . 2

1.2 Results and Main Contributions 3

1.3 Research History . 3

1.4 Dissertation Structure . 4

2 Total Order Broadcast 7

2.1 Specifications . 8

2.1.1 Regular Total Order 8

2.1.2 Uniform Total Order 8

2.1.3 Optimistic Total Order 9

2.2 Total Order Algorithms . 10

2.2.1 Sequencer-based Total Order 11

2.2.2 Token-site Total Order 11

i

2.2.3 Symmetric-based Total Order 12

2.2.4 Uniform Versions . 12

2.3 Optimistic Total Order Algorithms 13

2.3.1 Spontaneous Total Order 13

2.3.2 Statistically Estimated Total Order 13

2.3.3 Optimistic Regular Total Order 15

2.4 Adaptive Total Order Protocols 15

2.4.1 Renesse et al., 1998 . 18

2.4.2 Liu & Renesse , 2000 21

2.4.3 Chen et al., 2001 . 23

2.4.4 Rutti et al., 2006 . 25

2.5 Summary . 28

3 Ranking Total Order Deliveries 29

3.1 Experimental Results . 32

3.2 Summary . 35

4 Run-time Switching Protocol 37

4.1 Overview . 37

4.2 Algorithm . 39

4.3 On Failure Detection . 41

4.4 Summary . 42

5 Implementation 45

5.1 Appia . 45

5.2 Design Issues . 47

5.3 Failure Detection Assumptions 47

5.4 Implementation Assumptions 48

5.5 Stack organization . 48

ii

5.6 Switching protocol . 50

5.6.1 Initialization . 50

5.6.2 Message Handling . 51

5.6.3 Message Processing 52

5.6.4 Null Message Handling 54

5.6.5 Buffer Cleanup . 54

5.6.6 Termination . 55

5.7 Summary . 56

6 Evaluation and Optimization 57

6.1 Experimental Environment 57

6.2 Performance Evaluation . 58

6.2.1 Switching Overhead 58

6.2.2 Comparative Analysis 60

6.3 Implementation Optimization 62

6.3.1 Performance Evaluation 63

6.4 Summary . 64

7 Conclusions 65

7.1 Future Work . 66

Bibliography 67

iii

iv

List of Figures

2.1 Sequencer-based total order algorithm. 11

2.2 A network with local and wide-area links. 14

2.3 Renesse et al. switch protocol 20

3.1 Network with 5 nodes. 29

3.2 A run. 30

3.3 Optimism rank. 31

3.4 Network used in the simulation. 33

3.5 Error Rate in SETO Delivery 35

4.1 Adaptive protocol. 38

4.2 Adaptive Total Order algorithm (Part 1) 39

4.3 Adaptive Total Order algorithm (Part 2) 40

4.4 Wait-condition choice spectrum. 42

5.1 Appia stack example. 46

5.2 Appia shared session example. 46

5.3 Communication stack organization. 49

5.4 Coordination layer. 50

6.1 Simulation scenario. 58

6.2 TO throughput in non-adaptive and adaptive algorithms . . 59

v

6.3 TO throughput in adaptive and stop algorithms 59

6.4 Latency in Adaptive TO . 61

6.5 Latency in RABP . 61

6.6 Inter-arrival time in Adaptive TO 61

6.7 Inter-arrival time in RABP . 61

6.8 Delivery rate in Adaptive TO 62

6.9 Delivery rate in RABP . 62

6.10 Total Order service throughput vs message send rate 63

vi

List of Tables

2.1 Regular total order properties 8

2.2 Uniform total order properties 9

2.3 Adaptation smoothness values. 18

2.4 Characteristics of adaptive total order protocols. 28

3.1 Error Rate in Stable Network 34

3.2 Type of TO Delivery vs Time of Delivery 35

vii

viii

Listings

5.1 Switchover initialization. 51

5.2 Main loop. 52

5.3 Message processing (current TO algorithm). 53

5.4 Message processing (next TO algorithm). 53

5.5 Null message production. 54

5.6 Null message handling. 55

5.7 Buffer cleanup. 55

5.8 Protocol termination. 56

ix

x

Chapter 1

Introduction

A total order broadcast protocol is a fundamental building block in the

construction of many distributed fault-tolerant applications (Powell, 1996).

Informally, the purpose of such a protocol is to provide a communication

primitive that allows processes to agree on the set of messages they deliver

and, also, on their delivery order. Uniform total order broadcast is partic-

ularly useful to implement fault-tolerant services by using software-based

replication (Guerraoui & Schiper, 1997).

Unfortunately, the implementation of such a primitive can be expen-

sive both in terms of communication steps and number of messages ex-

changed. This problem is exacerbated in large-scale systems, where the

performance of the algorithm may be limited by the presence of high-

latency links. Several total order protocols have been proposed that use

different strategies to offer good performance (Défago et al., 2004). There

is, however, no protocol that outperforms all others in all scenarios: each

protocol offers best results under different load profiles and/or network

conditions.

To allow for faster execution of services that rely on total order algo-

1

2 CHAPTER 1. INTRODUCTION

rithms an early estimation of the final order can be determined. This es-

timation, which we will refer to as optimistic delivery, can be used condi-

tionally, to allow progress of the computation in parallel with the commu-

nication steps. However, an inaccurate estimation may lead to expensive

rollback operations, thus voiding the advantage of delivering early.

The estimation accuracy of such optimistic algorithms depends greatly

on the characteristics of the network where they execute. Even if the al-

gorithm is chosen appropriately, these conditions may not hold for some

periods of time. This motivates for the importance of executing the most

suitable algorithm at any given time. Several solutions have been pro-

posed to allow a component to change its behavior based on the execution

environment. Some of these methods were applied to total order algo-

rithms, however as we will show, they exhibit some limitations that may

render them useless in critical applications, where significant disruptions

in the commucation flow may be unacceptable.

1.1 Objectives

The first objective of this dissertation is to establish the usefulness of con-

sidering different types of optimistic deliveries and provide results that

substantiate the impact of the different assumptions these protocols make

in the timeline of these deliveries.

The second objective is to describe and evaluate a total order protocol

that combines different algorithms and adapts itself to the running envi-

ronment. The protocol is modular, preserving the total order semantics of

the underlying algorithms and allowing its execution on top of existing

total order broadcast implementations, without modifications.

1.2. RESULTS AND MAIN CONTRIBUTIONS 3

1.2 Results and Main Contributions

During the course of accomplishing the abovementioned objectives the

following results where obtained:

• An implementation of the adaptive total order protocol;

• The integration of the protocol in a simulation environment to allow

faster experimentation and evaluation tests;

• A detailed performance evaluation of the adaptive total order proto-

col.

The main contributions of the dissertation are the following:

1. Identifies and classifies previously published works on total order as

different degrees of “optimism” for the same final and authoritative

total order broadcast service;

2. Proposes a novel adaptive total order protocol that combines differ-

ent algorithms and adapts itself to the running environment, in a

non-disruptive fashion to the ongoing communication.

1.3 Research History

This MSc dissertation is the result of a year’s work as a researcher in the

IST project GORDA (FP6-IST2-004758). The primary goal of the project is

to develop an open database replication architecture. The database state-

machine approach was chosen to give such support. In this approach, a

group communication total order primitive is used to broadcast messages

between replicas. The work in this dissertation fulfills a significant part of

4 CHAPTER 1. INTRODUCTION

the optimized group communication support required by the project. This

optimized infrastructure will make use of the most suitable optimistic total

order protocol to offer improved performance. For that we need a switch-

ing protocol that is able to switch between optimistic implementations,

which is one of the main contributions of this dissertation.

Parts of the work described have been previously published in peer-

reviewed international conferences. More specifically, parts of Chapter 3

have been published in the proceedings of the 21st Annual ACM Sympo-

sium on Applied Computing (Rodrigues et al., 2006). Also, parts of Chap-

ters 4, 5 and 6 have been accepted for publication in the proceedings of

the Euro-Par 2006, Parallel Processing, 12th International Euro-Par Con-

ference (Mocito & Rodrigues, 2006).

Meanwhile, some further progress as been made after the conclusion

of the work discussed here, and we have already submitted for review a

paper that provides the formal mechanisms to optimize sequencer-based

optimistic total order protocols and proposes a practical algorithm that

outperforms competing approaches.

1.4 Dissertation Structure

This dissertation is structured as follows.

Chapter 2, “Total Order Broadcast”, overviews the related work re-

garding total order broadcast protocols. It introduces the specifications of

the different variations of these protocols, with particular focus on the op-

timistic variations, presents the most common implementations and sur-

veys the state-of-the-art in adaptive total order protocols.

Chapter 3, “Ranking Total Order Deliveries”, discusses the usefulness

1.4. DISSERTATION STRUCTURE 5

of combining different optimistic deliveries to provide better overall sys-

tem performance. Several evaluation results are provided to support the

discussed claims.

Chapter 4, “Run-time Switching Protocol”, describes an adaptive total

order protocol with a complete specification and an informal explanation

of all the algorithm steps.

Chapter 5, “Implementation”, provides a complete description of an

implementation of the switching protocol.

Chapter 6, “Evaluation and Optimization”, presents and discusses the

results from the performance evaluation tests performed and briefly de-

scribes an implementation level optimization.

Chapter 7, “Conclusion”, concludes the dissertation with an overall

analysis of the major contributions and provides some insights on planned

future research efforts.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Total Order Broadcast

Informally, total order broadcast is a group communication primitive that

ensures that messages sent to a set of processes are delivered by all those

processes in the same order. Such a primitive is useful, for example, in

the implementation of fault-tolerant services (Powell, 1996), for instance,

using the state machine approach (active replication) (Schneider, 1990).

This chapter focuses on three different aspects of total order broadcast. In

Section 2.1 we present the properties of total order broadcast algorithms.

Three widely used algorithms are described in Section 2.2, and Section 2.3

presents three different optimistic approaches for total order. Finally, in

Section 2.4, we provide a survey on adaptive protocols that can be applied

to total order algorithms.

7

8 CHAPTER 2. TOTAL ORDER BROADCAST

RTO1 - Regular Total order: Let m1 and m2 be two messages that are RTO-broadcast.
Let pi and p j be any two correct processes that RTO-deliver(m1) and RTO-deliver(m2).
If pi RTO-delivers(m1) before RTO-delivers(m2), then p j RTO-delivers(m1) before RTO-

delivers(m2), and we note m1 < m2.

RTO2 - Agreement: If a correct process in Ω has RTO-delivered(m), then every correct
process in Ω eventually RTO-delivers(m).

RTO3 - Termination: If a correct process RTO-broadcasts(m), then every correct pro-
cess in Ω eventually RTO-delivers(m).

RTO4 - Integrity: For any message m, every correct process RTO-delivers(m) at most
once, and only if m was previously RTO-broadcast by some process p ∈Ω.

Table 2.1: Regular total order properties

2.1 Specifications

2.1.1 Regular Total Order

Regular total order broadcast is defined on a set of processes Ω by the

primitives (1) RTO-broadcast(m) which issues message m to Ω, and (2) RTO-

deliver(m) which is the corresponding delivery of m. When a process pi ex-

ecutes RTO-broadcast(m) (resp RTO-deliver(m)), we say pi “RTO-broadcasts

m” (resp “RTO-delivers m”). The total order primitive characterized by the

properties listed in Table 2.1 is known as regular total order. Informally,

a regular total order protocol ensures that two correct processes (i.e., pro-

cesses that never crash) deliver exactly the same set of messages in the

same order.

2.1.2 Uniform Total Order

A stronger version, called uniform total order (Défago et al., 2004), can also

be defined. It can be obtained by replacing properties RTO1 and RTO2 by

2.1. SPECIFICATIONS 9

UTO1 - Uniform Total order: Let m1 and m2 be two messages that are UTO-broadcast.
Let pi and p j be any two processes that UTO-deliver(m1) and UTO-deliver(m2). If
pi UTO-delivers(m1) before UTO-delivers(m2), then p j UTO-delivers(m1) before UTO-

delivers(m2), and we note m1 < m2.

UTO2 - Uniform Agreement: If a process in Ω (correct or not) has UTO-delivered(m),
then every correct process in Ω eventually UTO-delivers(m).

Table 2.2: Uniform total order properties

properties UTO1 and UTO2 presented in Table 2.2. Uniform total order

is stronger as it ensures that, if a processes pi delivers two messages in a

given order, all processes will deliver the same messages in that order, even

if pi fails. Uniform total order is the desired consistency criteria in applica-

tions such as database replication, given that certain messages may cause

a transaction to be aborted or committed. If the delivery of a message to

a process causes this process to commit a transaction before crashing, all

other processes need also to deliver the same message to ensure a consis-

tent outcome of the transaction.

2.1.3 Optimistic Total Order

The level of coordination required by regular and uniform total order pro-

tocols often makes them utterly expensive. Still, this service is required by

many distributed systems. To circumvent performance limitations some

authors have proposed optimistic approaches. An optimistic protocol pro-

vides early estimations of the final total order with the purpose of allow-

ing applications to execute some steps in parallel with the communica-

tion steps of the total order protocol. These processing steps can later be

committed or aborted when the final definitive order is established. Nat-

10 CHAPTER 2. TOTAL ORDER BROADCAST

urally, the earlier the optimistic delivery can be provided, the more steps

can be executed in parallel. However, the speedup gains obtained from

this parallelism, can be compromised by the need to abort steps, when the

estimate proves to be inaccurate.

An optimistic total order protocol includes an additional primitive TO-

opt-deliver(m). When a process pi executes TO-opt-deliver(m), we say that pi

“TO-opt-delivers m”. The order by which a process p TO-opt-delivers mes-

sages is an estimate of the order by which p will TO-deliver the same mes-

sages. Note that in some cases the estimate may be wrong, i.e., the order by

which messages are TO-opt-delivered may differ from the order by which

they are TO-delivered (although in stable periods it is desirable that it is the

same). Note also that it is possible that a message is directly TO-delivered

without ever being TO-opt-delivered.

2.2 Total Order Algorithms

Many algorithms exist to implement total order. To give the reader an

insight on the possible alternatives we briefly introduce three of the most

used ones, namely the sequencer (Kaashoek & Tanenbaum, 1991), the token-

site (Chang & Maxemchuck, 1984) and the symmetric (Peterson et al., 1989;

Dolev et al., 1993) approaches.

Several other alternatives exist. For a comprehensive survey, the reader

is referred to (Défago et al., 2004). However, from the three examples be-

low, it should be clear that it is interesting to have a protocol that can

dynamically adapt to changes in the operation envelope by switching, in

run-time, from one algorithm to another.

2.2. TOTAL ORDER ALGORITHMS 11

Token

Site

m2

m1

seq(m2)

seq(m2)

seq(m1)

seq(m1)

q

p

Figure 2.1: Sequencer-based total order algorithm.

2.2.1 Sequencer-based Total Order

In the sequencer-based approach (see Figure 2.1) one process is responsi-

ble for ordering messages on behalf of the other processes in the system.

This process works as a sequencer of all messages and is often called the

sequencer process. Sequencer-based algorithms are appealing because they

are relatively simple and provide good performance when message transit

delays are small (they are particularly well suited for local area networks).

However, in a sequencer-based algorithm, a message sent by a process

other than the sequencer experiences a delivery latency close to 2D, where

D is the message transit delay between two system processes (i.e., the time

to disseminate the message plus the time to obtain an order number from

the sequencer). Thus, sequencer-based approaches are inefficient in face

of large network delays.

2.2.2 Token-site Total Order

It is possible to design solutions where the sequencer role is rotated among

processes. The main motivation for such solutions is to provide load-

balancing among processes. These algorithms are often called token-site

approaches, because at each moment in time only one process in the com-

munication group holds the token. This process acts as a sequencer until it

12 CHAPTER 2. TOTAL ORDER BROADCAST

transmits the token to another process. The delivery latency of such algo-

rithms is very close to the sequencer-based approach however, depending

on how quickly the token rotates, it may equal the time to disseminate the

message plus the time to obtain the token from another process.

2.2.3 Symmetric-based Total Order

In the symmetric approach, ordering is established by all processes in a de-

centralized way, using information about message stability. This approach

usually relies on logical clocks (Lamport, 1978) or vector clocks (Birman &

Joseph, 1987b; Peterson et al., 1989): messages are delivered according to

their partial order and concurrent messages are totally ordered using some

deterministic algorithm. Symmetric protocols have the potential for pro-

viding low latency in message delivery when all processes are producing

messages. In fact, symmetric protocols can exhibit a latency close to D+ t,

where t is the largest inter-message transmission time (Rodrigues et al.,

1996). Unfortunately, this also means that all (or at least a majority (Dolev

et al., 1993)) processes must send messages at a high rate to achieve low

protocol latency.

2.2.4 Uniform Versions

All the algorithms described provide a regular total order service. How-

ever, obtaining the uniform version of the algorithms is not difficult. To

preserve uniformity each process must be certain that a majority of the

total number of processes in the gorup has received the message and is

capable of delivering it to the application. For this to happen every pro-

cess in the majority must already possess the regular order for that given

2.3. OPTIMISTIC TOTAL ORDER ALGORITHMS 13

message.

In practice, ensuring uniformity translates in an added communication

step, where processes share with each other the set of messages they have

regularly ordered. When enough information is shared to reach a majority

for a given set of messages, those messages can be delivered uniformly.

2.3 Optimistic Total Order Algorithms

2.3.1 Spontaneous Total Order

The notion of optimistic total order was first proposed in the context of

local-area broadcast networks (Pedone & Schiper, 1998). In many of such

networks, the spontaneous order of message reception is the same in all

processes. Moreover, in sequencer-based total order protocols the total or-

der is usually determined by the spontaneous order of message reception

in the sequencer process. Based on these two observations a process may

estimate the final total order of messages based on its local receiving or-

der and, therefore, provide an optimistic delivery as soon as a message is

received from the network.

2.3.2 Statistically Estimated Total Order

Spontaneous total order is, however, improbable in wide area networks.

The long latency in wide-area links causes different processes to receive

the same message at different points in time. Consider the topology de-

picted in Figure 2.2. Assume that process a multicasts a message m1 and

that, at the same time, the sequencer s multicasts a message m2. Clearly,

the sequencer will receive m2 < m1, given that m1 would require 12ms to

14 CHAPTER 2. TOTAL ORDER BROADCAST

s

2 ms
a b

10 ms

Figure 2.2: A network with local and wide-area links.

reach the sequencer. On the other hand, process b will receive m1 < m2,

as m1 will take only 2ms to reach b while m2 will require 12ms. From this

example, it should be obvious that the spontaneous total order provided

by the network at b is not a good estimate of the observed order at the

sequencer.

To address the problem above, (Sousa et al., 2002) proposed to intro-

duce artificial delays in the message reception to compensate for the dif-

ferences in the network delays. It is easier to describe the intuition of the

protocol by using a concrete example. Consider again the network of Fig-

ure 2.2. Assume also that we are able to provide to each process an esti-

mate of the network topology and of the delays associated with each link.

In this case, b could infer that message m1 would take 10ms more to reach s

than to reach b. By adding a delay of 10ms to all messages received from a,

it would mimic the receive order of a’s messages at s. A similar reasoning

could be applied to messages from other processes.

Informally, the algorithm consists in predicting the order by which the

sequencer process receives messages from the network by exploiting local

clocks and the stability in network transmission delays. The basic mech-

anism behind the solution is to observe both the spontaneous order and

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 15

the order received from the sequencer, and adjust the optimistic delivery

of future messages accordingly. Each process only needs the information

about the time between two consecutive messages and the time between

their respective sequencer messages, to determine which messages need

to be delayed in order to provide an order similar to the one observed in

the sequencer process.

2.3.3 Optimistic Regular Total Order

Another type of optimistic delivery can be accomplished by any regular

total order algorithm, as the ones presented in Section 2.2, as long as the

desired final order is uniform. In this scenarios, regular total order al-

ways happens before the uniform one, because the later needs one extra

communication step. The regular order is however optimistic, because it

is possible that some failed process has delivered the message, without

it being delivered by the remaining correct processes (and thus violating

uniform agreement).

2.4 Adaptive Total Order Protocols

In distributed systems where a total order service must provide good per-

formance, choosing the most suitable protocol is crucial. However, the

choice of the most appropriate protocol may vary with certain conditions,

like network delays, congestion or processing capacity. It is thus possi-

ble that, in a given environment, different total order algorithms provide

better performance at different moments in time.

Adaptive total order protocols provide the ability to execute the more

suitable algorithm at any given moment, by providing the mechanisms to

16 CHAPTER 2. TOTAL ORDER BROADCAST

switch from one algorithm to the other in a straightforward matter and

ideally, independent from the application layer.

To better understand such protocols, one needs to realize the chal-

lenges involved in their construction:

• The adaptation phase should be transparent to the application. This

allows for proper modularization, making this protocols useful to

virtually all applications that use common total order services;

• The switching phase should provide the less disruption possible, al-

lowing for faster transitions with minimal impact in ongoing com-

munication;

• Adaptation should provide consistent states in all elements of the

communication group at all time. The same is to say that all group

members must be executing the same or compatible total order algo-

rithms;

• The previous goal is only feasible with some degree of coordina-

tion, which raises scalability issues. This coordination also raises

efficiency problems, so it must be kept to a minimum.

Several adaptive total order protocols have been proposed to tackle

the above challenges. Each protocol follows a different approach which

differentiates it from the others. In order to establish a comprehensive

comparison between them, a careful organization of their characteristics

is presented in this section.

The next four sections describe each protocol in detail, highlighting

the most important facts about each solution. Each section starts with an

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 17

overview of the protocol followed by an informal explanation of its behav-

ior. In the end, a short discussion of the algorithm is provided along with

a list of comparable characteristics. The last section summarizes all the

information provided in the former sections by providing an organized

view of each protocols characteristics.

Each protocol will be analyzed using five different vectors: implemen-

tation, scope of the adaptation, reconfiguration unit, level of coordination

and adaptation smoothness. The implementation vector refers to the soft-

ware execution environment where the protocol has been implemented.

The scope of the adaptation relates to the potential of each solution to

work with different kinds of services/protocols, i.e. if it suits only sin-

gle services like total order protocols, or if it suites a broader range of

services, like for instance distributed agreement protocols. The reconfig-

uration unit defines the subject of intervention when the adaptation takes

place, i.e. the organizational unit that is the focus of adaptation. The level

of coordination deals with the functional aspect of the adaptation proce-

dure and defines the potential of scalability of each solution. The more

decentralized/distributed the solution, the more scalable it is. Finally,

the adaptation smoothness defines the level of communication disruption

produced by the switching protocol. The possible values for this metric

are explained in Table 2.3.

At this point the reader should be advised that each of these vectors is

analyzed in the specific scenario of adaptive total order. Several of the fol-

lowing protocols are generic adaptive protocols that can be used to adapt

services other than total order. When used with those services the char-

acteristics described may not prevail. For instance, the switching proto-

col may include optional steps that may be skipped in certain conditions,

18 CHAPTER 2. TOTAL ORDER BROADCAST

Value Description

Disruptive Explicit traffic stoppage; often implies a
message stabilization step

Semi-smooth Implicit traffic stoppage or delay; often
implies buffering

Smooth Perfectly smooth in certain conditions; no
buffering, only traffic delays

Perfect Perfectly smooth in all conditions

Table 2.3: Adaptation smoothness values.

which may produce totally different results.

2.4.1 Renesse et al., 1998

Overview

The first solution analyzed was proposed by Renesse et al. in (van Renesse

et al., 1998). Their work describes a generic methodology to build adaptive

systems on top of Ensemble (Hayden, 1998).

Ensemble is a protocol composition and execution framework that has

been tailored to support group communication. The framework provides

the facilities necessary for the development highly specialized protocols

(called micro-protocols) that can be grouped in communication stacks. These

protocols interact with each other using events, that flow up or down in

the stack.

Although this system promotes the development of highly modular

protocols, like for instance a total order protocol built on top of a virtually-

synchronous group communication service, the adaptation approach does

not allow for the isolated substitution of these entities. Instead, the whole

stack must be replaced by a new one, that contains the new, more suitable

protocols.

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 19

Protocol

The protocol switching protocol is based on a simple two-phase-commit

approach. The protocol assumes that both stacks involved in the adapta-

tion procedure may not be compatible in respect to the message headers

they process. For this reason each stack is uniquely identified by a Protocol

Stack Instance Identifier (PSI-ID). Also, this assumption enforces the stabi-

lization of all the pending activities in the old stack, which also requires

some form of coordination. This coordination is performed by the node

with the lowest network address.

In general terms, the protocol can be defined by this tree steps:

1. Distribute and instantiate the new stack in each participant

2. Finalize the micro-protocols in the old stack

3. Start using the new stack

First, the coordinator broadcasts a FINALIZE message containing the

description of the new stack, the group membership and the new PSI-ID.

This message is received by all group members, including the coordina-

tor. Upon reception each node instantiates the new stack and registers the

new PSI-ID to allow new messages to be handled by the new stack. The

FINALIZE event is put on top of the stack and is sent down, traversing

all the layers. Each layer must hold the FINALIZE event until it stops

sending messages. When this happens it passes the event to the layer be-

low. When it reaches the end of the stack a FINALIZE-ACK is sent to

the coordinator, signaling the finalization of the old stack. When all the

FINALIZE-ACK messages are received from all members of the group the

coordinator broadcasts a START message to the new stack. When each

20 CHAPTER 2. TOTAL ORDER BROADCAST

node receives such message it discards the old stack and restarts the nor-

mal execution using the new stack. Figure 2.3 illustrates these interactions.

FINALIZE−ACK

START

FINALIZE

Figure 2.3: Renesse et al. switch protocol

Discussion

This protocol has the obvious advantage of relying in a very clean tech-

nique that provides a generic enough mechanism to support most kinds

of adaptations. However, by relying on a single coordinator this approach

is prone to scalability issues. The efficiency of the protocol is also limited

by the slowest node in the communication group. Another important neg-

ative fact is the finalization procedure that promotes a drastic disruption

in the communication flow. All traffic must be stopped in the old proto-

col before the new one can be used, which does not allow a very smooth

adaptation.

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 21

Characteristics

Implementation: Ensemble

Scope: Generic adaptive protocol

Reconfiguration unit: Whole communication stack

Level of coordination: Centralized coordinator

Adaptation smoothness: Disruptive

2.4.2 Liu & Renesse , 2000

Overview

In a brief announcement (Liu & van Renesse, 2000) Liu & Renesse describe

an algorithm that provides a fast protocol transition in a distributed envi-

ronment. The negative aspects of two-phase-commit algorithms as the one

described in the previous section motivated this proposal, which performs

protocol switching with little overhead and works in a decentralized fash-

ion.

The solution relies on the assumption that for two protocols derived

from the same abstract specification AS, there exists two converting func-

tions that transform the state of one protocol to the other. This makes

possible for the existence on one hybrid protocol that makes adaptations

between algorithms that derive from the same AS.

Protocol

To allow for smooth adaptation this protocol uses a buffering mechanism

and a fast transition procedure. The algorithm work in three steps:

1. One process initiates the switching procedure by broadcasting a spe-

cial “switch” message

22 CHAPTER 2. TOTAL ORDER BROADCAST

2. When a “switch” message is received a process stops the current pro-

tocol and starts buffering application messages. It also sends out all

the information required for all processes to convert their local states

3. When all the needed information is gathered, each process converts

its local state to that of the new protocol and starts using it

The proposal also describes the application of this algorithm to the

switching between two types of total order broadcast: sequencer-based

S and token-based T protocols. In this context the algorithm works as fol-

lows. The state of S consists of a buffer holding the messages still to be

ordered by the sequencer. In T the state is a buffer containing the mes-

sages to be sent when in possession of the token. To switch from S to T

the sequencer broadcasts the identifiers of messages already ordered from

all processes. All the processes then copy the messages in the buffer on S

to the buffer on T . In the inverse operation, from T to S, the process that

holds the token sends the ordered information to the sequencer, while all

the other processes copy messages from the buffer on T to the one on S

and send them to be sequenced.

Discussion

The adaptive algorithm has the main advantage of being completely de-

centralized. Also, the state conversion procedure can be performed very

fast when compared to communication stabilization procedures. On the

downside, the adaptation procedure is tightly coupled with the conver-

sion functions, which must exist for every supported protocol. Most im-

portantly, it still requires some stoppage in the message flow, due to the

buffering methodology.

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 23

Characteristics

Implementation: Not available

Scope: Generic adaptive protocol

Reconfiguration unit: Protocol

Level of coordination: Totally distributed

Adaptation smoothness: Semi-smooth

2.4.3 Chen et al., 2001

Overview

Chen et al. have also proposed a protocol (Chen et al., 2001) with the clear

goal of providing a graceful adaptation mechanism, where the underlying

adaptive process is completely hidden and transparent to the application.

The proposal is also generic, as it applies to every distributed algorithm

and not specifically to total order.

Like the Renesse et al. method described in Section 2.4.1, the proto-

col assumes a distributed system model where the software contained in

every node consists of multiple modular components grouped in layers.

However, it clearly distinguishes itself by allowing the adaptation to hap-

pen at the layer level, instead at the whole stack. This allows for finer-

granularity in the adaptation process and does not halt message exchange

during the switch between algorithms.

The algorithm was implemented using Cactus (Hiltunen & Schlicht-

ing, 2000) which, like Ensemble, allows the development of highly con-

figurable services through the composition of modular entities that inter-

act with each other using events. A service is defined by a set of micro-

protocols that are grouped in a stack and define a set of event handlers

that they use to interact with other micro-protocols or with the Cactus

24 CHAPTER 2. TOTAL ORDER BROADCAST

run-time system.

One difference to Ensemble is that Cactus provides binding (and un-

binding) mechanisms that allow a protocol to register (or unregister) its

event handlers at execution time, thus allowing the dynamic activation

(or deactivation) of these entities.

Protocol

The protocol that provides the adaptation procedure is, once more, quite

simple and involves three steps:

1. Preparation of the new protocol

2. Application level starts using the new protocol to send messages

3. Incoming messages start being processed by the new protocol

Each step executes several actions before terminating. The prepara-

tion step consists of instantiating the new protocol and execute a global

synchronization barrier to guarantee that all nodes have completed the in-

stantiation. In the second step, if required or useful, some state may be

transferred between the old and new protocols. The new protocol is then

registered for handling outgoing messages from the application, instead

of the old one. At this point, if necessary, the new protocol starts buffering

outgoing messages, to preserve the ordering properties of the messages

exchanged. The step finishes when all pending actions related to the old

protocol are completed. Finally, in the last step the new protocol processes

all its buffered outgoing messages (if they exist) and the system resumes

its normal execution.

The application of this algorithm to total order is straightforward. The

first and last steps are executed as described. The intermediate step must

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 25

have the buffering action properly activated because we are dealing with a

protocols that must preserve message ordering. Before terminating it must

ensure that all messages sent using the old protocol are properly ordered.

Only then the last step is executed.

Discussion

This protocol has the clear advantage of allowing the adaptation to occur

in a single layer instead of in all the stack. It also provides several de-

grees of flexibility during the switchover, like the optional state transfer or

buffering of outgoing messages, that in some cases can be omitted and al-

low for faster termination. Nevertheless, for the specific case of total order

protocols, the algorithm still induces a stoppage in the message flow, as

the buffering needs to take place to preserve the ordering properties of the

service.

Characteristics

Implementation Cactus

Scope Generic adaptive protocol

Reconfiguration unit Protocol

Level of coordination Global synchronization barrier

Adaptation smoothness Semi-smooth

2.4.4 Rutti et al., 2006

Overview

All the above approaches are generic enough to support all kinds of tran-

sitions between distributed protocols. However, their application to adap-

tive total order protocols always results in stoppages in the communica-

26 CHAPTER 2. TOTAL ORDER BROADCAST

tion flow, due to the necessity of first terminating the old algorithm before

using the new one. In the paper (Rutti et al., 2006) Rutti et al. proposed a

dynamic protocol update algorithm for switching between distributed agree-

ment protocols. This work defines a common set of properties that must

remain unchanged during every reconfiguration process.

The system model proposed defines an architecture that allows for

transparent application execution despite the adaptive characteristics of

the underlying system. Each protocol implements a service, and several

services can be combined in communication stacks. Each service can be

implemented by several protocols, which may or may not be bound to

the service. The binding of protocols to services can be done dynamically,

however unbinding a protocol does not remove it from the stack. It just

“disconnects” it from the service, but remains in the stack for future “con-

nections”. The protocols interact with each other by calling services, which

implicitly corresponds to calling the above or bellow protocols that imple-

ment those services. As you can see this model has some similarities with

the ones used in the algorithms of Sections 2.4.1 and 2.4.3, although with

some nuances, like for instance allowing a straightforward binding and

unbinding of protocols in a stack.

Protocol

The approach followed in this proposal is to define replacement modules

that contain the adaptation logic for specific services. The protocols that

implement these services are required to maintain valid a static set of prop-

erties, which allows these replacement modules to handle every protocol

that implements such service. These modules also serve as an intermedi-

ary between the underlying protocols and the above applications or ser-

2.4. ADAPTIVE TOTAL ORDER PROTOCOLS 27

vices, impersonating the role of the underlying protocols to allow trans-

parency.

In the paper the dynamic protocol replacement was illustrated by two

algorithms, one for replacing consensus protocols and the other for re-

placing atomic broadcast protocols. Atomic broadcast is a communication

primitive equivalent to uniform total order. In the context of this survey

we will thus describe the former replacement algorithm.

In the algorithm every node keeps track of messages it sent but have

not been ordered. To initiate the adaptation process a control message is

broadcast to all processes to initiate the reconfiguration. When a node re-

ceives this message it substitutes the old protocol with the new one with

the unbinding and binding operations described. It then checks for mes-

sages it sent but have not yet been ordered and re-broadcasts them using

the new protocol. After this point all the messages received in the old

protocol are simply discarded and the normal execution is resumed.

Discussion

As you can see this algorithm has the clear advantage of not requiring

any centralized coordination, and most importantly of allowing an imme-

diate transition to the new protocol without any buffering required. The

negative aspect of this algorithm is that the average latency during the

switching phase increases. The magnitude of this increase depends on the

send-rate of the node and its consequent accumulated messages that are

still to be delivered in order. In certain load conditions this effect may

clearly translate into a perceptible stoppage in the communication flow.

28 CHAPTER 2. TOTAL ORDER BROADCAST

Characteristics

Implementation: SAMOA

Scope: Distributed agreement protocols

Reconfiguration unit: Protocol

Level of coordination: Totally distributed

Adaptation smoothness: Smooth

2.5 Summary

The previous sections provided a detailed explanation of each protocol

and highlighted several important characteristics of each one. However,

such information is spread across the description of the protocols in a non-

organized way. In Table 2.4 we provide a summary of this information in

a straightforward and comprehensive way. In each column is represented

a protocol and is analyzed following the evaluation vectors considered

throughout this chapter: implementation, adaptation scope, unit of recon-

figuration, level of coordination and adaptation smoothness.

Renesse Liu Chen Rutti

Implementation Ensemble N/A Cactus SAMOA
Scope Generic Generic Generic Agreement Prot.
Reconf. unit Stack Protocol Protocol Protocol
Coordination Centralized Distributed Sync. Barrier Distributed
Smoothness Disruptive Semi-smooth Semi-smooth Smooth1

Table 2.4: Characteristics of adaptive total order protocols.

1Depends heavily on the message load. With sufficient heavy load can be significantly disrup-
tive.

Chapter 3

Ranking Total Order Deliveries

To illustrate the trade-offs involved in an optimistic total order protocol,

we will use the most intuitive algorithm to establish total order: the se-

quencer based algorithm. Note that a similar discussion could be made

using other total order algorithms, but the simplicity of the sequencer ap-

proach makes the text more clear. In a sequencer based algorithm, one of

the processes in the system, designated the sequencer, has the onus of as-

signing a sequence number to every message it receives. All processes, in-

cluding the sequencer, deliver messages according to these sequence num-

bers.

To better describe the steps involved in an uniform total order proto-

p1

p2

p3

p4
2ms 2ms

3ms

5ms

2ms
2ms

3ms

6ms

p5

Figure 3.1: Network with 5 nodes.

29

30 CHAPTER 3. RANKING TOTAL ORDER DELIVERIES

col, we will use the network illustrated in Figure 3.1. The figure shows

a network with five nodes p1− p5 connected by point-to-point links. The

average delay of each link is also depicted (for instance, the average delay

in the link p1− p3 is 5ms).

Let us now consider a particular run using the network above. This

run is depicted in Figure 3.2. At time t0 = 0 process p2 sends a message

m2 and process p3 sends a message m3. Assume that process p4 receives

message m3 at time t3 = 3 and message m2 at time t6 = 6. We name the

order by which messages are received at each process from the underlying

transport protocols the spontaneous order (SO).

p1 p2 p3 p4 p5

0

1

2

3

4

5

6

7

8

9

10

m2 m3

m2 m3

m3

m3

m3

m2

m2

m2

sn(m2)

sn(m3)

Figure 3.2: A run.

In the same example, assume that m2 is received by process p1, the se-

quencer, at time t2 = 2 and m3 at time t5 = 5. Assume that the sequencer as-

signs sequence number to messages in the order it receives them. Clearly,

31

UTO−broadcast

SO SETO RTO UTO

UTO−deliver

UTO−opt−deliver

Figure 3.3: Optimism rank.

in this example, the spontaneous order observed at p4 would be differ-

ent than the final order as assigned by the sequencer. Sequence numbers

assigned by the sequencer will be received at process p4 at times t7 = 7

and t10 = 10. In this case, as soon as the sequence number is received we

have assured regular total order (RTO). Note that if both p1 and p4 fail, it

is still possible that the remaining processes assign a difference order to

messages m2 and m3.

The final uniform total order (UTO) can only be guaranteed when p4 is

sure that the sequencer numbers have been received by all the remaining

processes (or, at least, a majority). In our example this would happen at

time t13 = 13.

Note that, if p4 can estimate that the delay between p1 and p3 is 3ms

higher than the delay between p1 and p2, it could attempt to reproduce

the order by which the sequencer receives messages m2 and m3 by artifi-

cially delaying the delivery of m3 by a delta of 6ms (i.e., by delivering m3 at

time t9 = 9). A clever scheme inspired in this insight has been proposed to

establish a statistically estimated total order (SETO) before the regular total

order is known (Sousa et al., 2002).

Figure 3.3 shows a timeline of total order delivery. Naturally, sponta-

neous order occurs first in the timeline and uniform total order occurs last.

32 CHAPTER 3. RANKING TOTAL ORDER DELIVERIES

The question now is to decide which of the intermediate orders should be

used to support optimistic delivery.

Clearly, spontaneous total order is only an accurate indication of the

final delivery if all nodes use the same local area network segment, as as-

sumed in (Pedone & Schiper, 1998). On the other hand, the statistically es-

timated total order is a good choice in stable networks, where the network

delays have small variance and can be accurately estimated. In unsta-

ble networks, regular total order is the best choice for optimistic delivery,

as it only provides inaccurate information in the rare cases where a node

crashes.

3.1 Experimental Results

We have performed a number of experiments to validate the compara-

tive behavior of Statistically Estimated Total Order (SETO) and Regular Total

Order (RTO) protocols. The experiments were made using the SSFNet net-

work simulator (Nicol et al., 2003). The network topology used consists on

a wide area network with two clouds, connected by one link. Each cloud

contains one router that is used to connect the clouds. The other nodes

form a group membership. Figure 3.4 shows the network used in the ex-

periments.

The average latency in the long-haul connecting the two networks is

20ms; this is the major source of latency in this experimental setting. In

order to simulate instability in the network the standard deviation of the

transmission delays of the long-haul link is made variable between 0% to

10%.

Every node in the simulation receives messages from the sending group

3.1. EXPERIMENTAL RESULTS 33

WAN

���
���
���
���
���
���

���
���
���
���
���
���

Network A

���
���
���
���
���
���

���
���
���
���
���
���

Network B

Figure 3.4: Network used in the simulation.

members. Senders transmit messages at a variable, uniformly distributed

rate. In Network A we have two nodes that actively send messages while

in Network B there is only one sender. The sequencer is located in Net-

work A. All values depicted in the figures and tables below were mea-

sured at a node located in Network B.

This configuration was chosen to illustrate the behavior of SETO pro-

tocol in particular conditions. As said before, spontaneous order is only

accurate when all nodes execute on the same local area network segment.

By having sender nodes on both networks the spontaneous delivery will

become an inaccurate estimation of the final delivery. This scenario thus

make the case for other types of optimistic deliveries. The second aspect

that we want to illustrate is the impact of the variation in the transmission

delays in the performance of the SETO protocol. By having two senders

in Network A we will be able to observe that some messages sent by these

nodes will exchange their delivery order when traversing the long-haul

link in their way to Network B producing, once more, an inaccurate esti-

mation of the final delivery at B.

As described in Section 2.1.3, optimistic delivery is only useful if highly

34 CHAPTER 3. RANKING TOTAL ORDER DELIVERIES

Type of Delivery Error Rate

Spontaneous 66%
SETO 13%

Table 3.1: Error Rate in Stable Network

accurate, i.e., if the application is not required to rollback the execution

steps performed optimistically very often. Table 3.1 clearly shows that in

heterogeneous networks (i.e., in networks were nodes have different dis-

tances to the sequencer) the spontaneous order in an unacceptable source

for optimistic delivery, as the error rate is extremely high even in a sta-

ble network where the standard deviation is 0%. On the other hand, the

SETO approach, in a stable network, can provide a significantly smaller

error rate and provides an interesting source of optimistic delivery.

In Figure 3.5, we show the impact of network instability on the accu-

racy of SETO. As can be seen, an increase in the standard deviation of the

transmission delay in the long haul link makes the error rate of the SETO

protocol increase, reaching 40% for a σ = 10%. These results confirm the

results published in (Sousa et al., 2002) and clearly show that SETO accu-

racy is highly dependent on the network stability.

Table 3.2 shows the timeline of deliveries in our experiment. The val-

ues are averages of all messages received by our target node in Network

B. Naturally, spontaneous order provides the smaller latency, given that

messages are delivered as soon as they are received from the network. The

value depicted in the table can be explained as follows. We recall that the

measurements are made in a received in Network B. There are two senders

in Network A and their messages suffer and average delay of 20ms. The

messages from sender located in Network B suffer a negligible delay. Since

all senders transmit at approximately the same average rate, the average

3.2. SUMMARY 35

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10

E
rr

o
r

R
a
te

 i
n
 S

E
T

O
 D

e
liv

e
ry

 (
%

)

Standard Deviation of Transmission Delay (%)

Figure 3.5: Error Rate in SETO Delivery

Type of Delivery Time of Delivery

Spontaneous 13429 µs

SETO 20891 µs

Regular 40835 µs

Uniform 42528 µs

Table 3.2: Type of TO Delivery vs Time of Delivery

delay becomes approximately 13ms. A similar reasoning explains the fig-

ures depicted in the remaining rows. The interesting aspect is that SETO

offers significantly less latency than regular delivery. Therefore, in stable

networks SETO is the source of choice for providing optimistic delivery.

Also, regular delivery is still faster than the final uniform delivery and

provides room for optimistic execution of application steps.

3.2 Summary

In this chapter we showed how the SETO protocol provides a fast and

accurate estimation of the final total order in stable networks. Unfortu-

nately, in unstable networks, SETO delivery is highly inaccurate, produc-

36 CHAPTER 3. RANKING TOTAL ORDER DELIVERIES

ing a very high rate of rollbacks. In such networks a RTO delivery is better

suited, because of its robustness regarding variability in the transmission

delays.

Chapter 4

Run-time Switching Protocol

In this chapter we describe a run-time switching protocol that allows a

smooth transition between total order algorithms. We provide the motiva-

tional context that resulted in the development of the protocol and present

in detail the algorithm.

4.1 Overview

By now it should be clear that every algorithm proposed for switching be-

tween total order protocols may result in communication disruption dur-

ing the reconfiguration phase. The motivation behind our proposal is to

develop an algorithm that does not suffer from this problem, or at least

avoids it in specific conditions.

We now propose a protocol that is able to switch from a total order al-

gorithm to another total order algorithm in response to changes in the op-

eration envelope (such as changes in the workload, network conditions,

number of participants, etc). In this dissertation we do not focus on the

conditions that trigger adaptation, as these are highly application depen-

37

38 CHAPTER 4. RUN-TIME SWITCHING PROTOCOL

TO−A TO−N

ADAPTIVE TO

. . .

Figure 4.1: Adaptive protocol.

dent (for a concrete scenario, see (Rodrigues et al., 2006)). Instead, we are

interested in finding a generic switching procedure that can switch from

one algorithm to the other with minimum interference in the data flow.

Such protocol can be built from scratch using a monolithic approach

where all the functionality of every total order algorithm is embedded in

a single unity. A more modular (and generic) way of reaching the same

goal is to (re-)utilize independent implementations of total order algo-

rithms and build the adaptive behavior on top of them as depicted in Fig-

ure 4.1. In steady-state, the adaptive protocol would simply receive TO-

broadcast/TO-deliver requests/indications and forward them to the most

appropriate algorithms.

As described in Section 2.4, previous works on dynamic adaptation re-

quires messages to be buffered during the reconfiguration (Liu & van Re-

nesse, 2000), the message flow to be stopped in the current protocol (van

Renesse et al., 1998), or some communication delay to be imposed during

the transition between protocols (Rutti et al., 2006). Here we describe a

generic transition protocol that does not require the traffic to be stopped,

allowing a smooth adaptation to changes in the underlying network.

To be able to effectively transition from one algorithm to the other, all

nodes need to agree on the point in the message flow where they switch.

The rational behind our proposal is to start broadcasting messages using

both total order algorithms, even before the switching point is reached in

4.2. ALGORITHM 39

1: Initialization:
2: deliv← /0

3: undeliv← /0

4: curAlg← TO-A {current algorithm}
5: newAlg← /0 {next alg.}
6: switching← false
7: check[1..n]← false

8: upon changeAlgorithm(newTO) do

9: rBroadcast(switch,newTO)

10: upon rDeliver(switch,newTO) do

11: newAlg← newTO

12: switching← true
13: TO-broadcast(curAlg,(flag,null,myself))

14: upon TO-deliver(curAlg,(flag,null,sender)) do

15: check[sender] ← true

16: upon check[1..n] = true do

17: endSwitch()

Figure 4.2: Adaptive Total Order algorithm (Part 1)

every process. By using both algorithms simultaneously, no stoppage in

the message flow is necessary.

4.2 Algorithm

The protocol listed in Figures 4.2 and 4.3 works as follows. Let us as-

sume that the adaptation protocol is using algorithm TO-A to order mes-

sages and wants to switch to algorithm TO-B. The transition protocol works

as follows. A control message is broadcast to all processes to initiate the

reconfiguration (lines 8–9). When a node receives this message (line 10) it

starts broadcasting messages using both total order algorithms. Also, the

first message it broadcasts using algorithm TO-A is flagged. If no mes-

sage is to be sent, then a flagged special null message is broadcast using

40 CHAPTER 4. RUN-TIME SWITCHING PROTOCOL

18: upon TO-broadcast(msg) do

19: TO-broadcast(curAlg,msg)
20: if switching = true then

21: TO-broadcast(newAlg,msg)

22: upon TO-deliver(alg,msg) do

23: if alg = curAlg ∧ msg /∈ deliv then

24: deliver(msg)
25: deliv← deliv ∪ {msg}
26: else if msg /∈ deliv then

27: undeliv← undeliv ∪ {msg}

28: procedure endSwitch()
29: for all msg ∈ undeliv ∧ msg /∈ deliv do

30: deliver(msg)
31: deliv← deliv ∪ {msg}
32: undeliv← /0

33: check[i..n]← false
34: curAlg← newAlg

35: switching← false

Figure 4.3: Adaptive Total Order algorithm (Part 2)

TO-A, to allow faster protocol termination (flagged first message is not

represented in the algorithm to preserve clarity). When a process starts

receiving messages from both TO algorithms it performs the following

steps (lines 22–27): messages received from TO-A are delivered as nor-

mally; messages received from TO-B are buffered in order. As soon as a

flagged message is received from each and every node (line 15) the tran-

sition is concluded using the following “sanity” procedure (lines 28–35).

Firstly, all messages received from TO-B that have not yet been delivered

by TO-A are delivered in order. Finally, from this point on, all messages

received from TO-A are simply discarded and no further message is sent

using TO-A (until a new reconfiguration is needed). The TO-B algorithm

is then used to broadcast and receive all the messages to be delivered.

Note that, after the transition is concluded, messages received from

4.3. ON FAILURE DETECTION 41

TO-B are delivered only if they have not been already received and deliv-

ered from TO-A (line 23). This is a necessary safeguard as the two total

order algorithms do not necessarily deliver messages in the same order,

nor at the same time. So there is a possibility that a message that has al-

ready been delivered from TO-A is received after the termination of the

reconfiguration procedure from TO-B.

Also, the protocol presented does not allow concurrent adaptations.

For one adaptation to happen, the previous (if any) should always have

concluded.

4.3 On Failure Detection

To simplify the description of our protocol, in previous sections we have

not addressed the issue of failure detection. Namely, we have stated that

the protocol moves to the sanity step when it receives a flag from every par-

ticipant (Figure 4.2, line 16). Without further changes, the protocol would

simply block in the presence of a single failure. We now discuss how our

protocol can be adapted to operate under different failure models. Our

algorithm can operate in asynchronous systems augmented with failure

detectors (Chandra & Toueg, 1996).

We start by discussing the operation of the protocol in a system aug-

mented with a Perfect Failure Detector (P) (Chandra & Toueg, 1996), i.e.,

a system where processes fail by crashing and crashes can be accurately

detected by all correct processes. In this model, the transition condition

should be set to “a flag is received by all correct processes”. This model is

actually used in all of our implementations, where the failure detection is

encapsulated by a view-synchronous interface (Birman & Joseph, 1987a).

42 CHAPTER 4. RUN-TIME SWITCHING PROTOCOL

The protocol can also be modified to operate in an asynchronous sys-

tem augmented with an unreliable failure detector (such as the ⋄S failure

detector proposed in (Chandra & Toueg, 1996)) as long as a majority of

processes do not fail (naturally, in this case, the underlying total order

algorithms must also be designed for such a model). In this model, the

transition condition should be set to “a flag is received by a majority of

processes”. However, in this configuration, correct processes that do not

belong to the majority may be required to retransmit some messages.

It is interesting to observe that the strategy proposed before for the

P detector (perform the switch when a flag is received from all correct

processes) and the strategy proposed in (Rutti et al., 2006) (perform the

switch when the first flag is received) can be seen as extreme points of a

spectrum (see Figure 4.4). Between these extreme cases, there is a range of

alternative switching points, from which the “majority of processes” is the

one that ensures less disruption in ⋄S model.

◊S

Wait−for−ALL Wait−for−MAJORITY Wait−for−ONE

P

Figure 4.4: Wait-condition choice spectrum.

4.4 Summary

In this chapter we presented a run-time switching algorithm that provides

support for switching between different total order algorithms with re-

duced impact in the communication flow. A specification of the algorithm

4.4. SUMMARY 43

is provided along with an informal explanation of its execution. Finally,

we discussed the failure detection assumptions of the algorithm and pro-

vided some modifications that allow its execution with an unreliable fail-

ure detector.

44 CHAPTER 4. RUN-TIME SWITCHING PROTOCOL

Chapter 5

Implementation

In order to validate the switching protocol we implemented it in Java us-

ing the Appia middleware framework. This chapter provides an introduc-

tion to this framework followed by a description of the switching protocol,

which includes both organizational diagrams and excerpts from the source

code of the most significant parts of the implementation.

5.1 Appia

Appia (Miranda et al., 2001) is a framework that supports the implemen-

tation and execution of modular protocol compositions (see Figure 5.1).

Each Appia module is a layer, i.e., a micro-protocol responsible for provid-

ing a particular communication service. These layers are independent and

can be combined. A combination of layers constitutes a protocol stack that

offers a given quality of service, QoS for short (in the broad sense of QoS,

encompassing reliability, security, etc).

Once a QoS has been defined, by composing the appropriate layers, it

is possible to create one or more communication channels. To each chan-

45

46 CHAPTER 5. IMPLEMENTATION

TCP

Group Communication

(View Synchrony)

Total Order

Application

Figure 5.1: Appia stack example.

nel is associated a stack of sessions: for each protocol layer there is a session

responsible for maintaining the state required for the execution of the cor-

responding protocol. Two channels that share a given layer may share

the same session (see Figure 5.2). In this case, the protocol may correlate

events exchanged in different channels with the help of the state main-

tained by the shared session. For instance, if two different channels share

a session of a causal order protocol, messages exchanged by these channels

are ordered among each other.

TCP

Group Communication

(View Synchrony)

Application

Audio Video
CompressionCompression

Figure 5.2: Appia shared session example.

Layers interact through the exchange of events. Events are typed and

each layer is responsible for declaring which types of events it wants to

process and which type of events the layer creates. Using this information

the Appia system automatically optimizes the flow of events in the stack.

5.2. DESIGN ISSUES 47

The Appia distribution provides an out of the box reliable group commu-

nication protocol suite. Available group communication services include

membership services, reliable multicast services, view-synchrony, order-

ing services (causal and total order), among others.

5.2 Design Issues

The implementation of the switching protocol in Appia took into account

the following design issues:

1. Be compatible with all the total order protocols already bundled with

Appia;

2. Be transparent to the above applications and/or protocols;

3. Comply with the specification of the algorithm as described in Sec-

tion 4.2.

5.3 Failure Detection Assumptions

As discussed in Section 4.3, the proposed run-time switching protocol as-

sumes the presence of a perfect failure detector. The implementation of the

protocol that we describe in this chapter makes use of a view-synchronous

group communication service to abstract this assumption. Each failure in

the system is reported to the protocol as a view change, where the new

view contains only the correct processes in the group.

48 CHAPTER 5. IMPLEMENTATION

5.4 Implementation Assumptions

Because the focus of this research is the switching procedure, some as-

sumptions were made during the implementation in order to simplify the

problem and to allow a faster assessment of the evaluation results. Firstly,

the implementation is limited to the switching between two fixed total or-

der algorithms. Secondly, we assume that these algorithms are provided

in advance, and not provisioned during the adaptation phase.

None of the above assumptions is relevant to the validation or eval-

uation of the switching procedure. They are both tightly related to the

coordination of the adaptation process, in particular with the components

that provide the decisions for when and what to reconfigure, which are

not the subject of analysis in this dissertation.

5.5 Stack organization

The communication stack we used to validate and evaluate the switching

protocol is depicted in Figure 5.3. The top-level application is simply illus-

trative and may, or may not be part of the stack. However, its presence in

the stack simplifies development and testing.

The stack consists of two different channels, with some sessions shared

between them, namely the application, coordination, group communica-

tion, NakFIFO and UDP sessions. Each channel holds one different total

order session. The group communication suite is a set of micro-protocols

that implements the functionality of a view-synchronous group commu-

nication service. NakFIFO is a protocol that implements FIFO order using

negative acknowledgments. The bottom layer is an implementation of the

UDP protocol. The layer that remains unexplained is the switching proto-

5.5. STACK ORGANIZATION 49

NakFIFO

UDP

Switching Protocol

Application

Group Communication

Protocol Suite

Total Order A Total Order B

Figure 5.3: Communication stack organization.

col which implements the run-time switching protocol that is described in

Chapter 4.

All the sessions other than the switching protocol may, or may not be

shared between the channels. They are shared for resource optimization

reasons, but it is not mandatory. However, the switching session must be

shared among both channels so it can coordinate the adaptation process

and redirect the application events to the proper total order protocol.

Despite the fact that the focus of research was not on the coordination

of the reconfiguration, a simple protocol that signaled the switching proto-

col to initiate a switchover had to be implemented in order to experiment

with the switching protocol. Such protocol was positioned between the

application and the switching protocol, as depicted in Figure 5.4. Its im-

plementation is rather irrelevant to the main focus of discussion and so we

will not delve any further into this subject.

50 CHAPTER 5. IMPLEMENTATION

Application

Coordination

Switching Protocol

. .
 .

Figure 5.4: Coordination layer.

5.6 Switching protocol

In this section we will give a detailed explanation of the implementation of

the switching protocol. We will use small source code snippets extracted

from the actual implementation, usually comprising a single method, to

guide the reader through the whole description.

Some of the code presented is a stripped down version of the actual im-

plementation. The purpose of this deliberate omission is to allow a better

understanding of the core features of the implementation, and not distract

the reader with implementation details that are not related in any way

with the actual protocol specification.

5.6.1 Initialization

We start by presenting the first part of the algorithm, the switchover ini-

tialization. As described in the algorithm presented in Section 4.2, one

process is responsible for broadcasting a control message that signals the

beginning of the switching procedure. When this message is received the

initialization method startReconfiguration() is called (see Listing 5.1).

In lines 2–7 all the properties related to the switchover are properly re-

set to their initial values. Next, a timer associated with the null message

5.6. SWITCHING PROTOCOL 51

1 p r i v a t e vo id s t a r t R e c o n f i g u r a t i o n () {
2 s w i t c h i n g = t rue ;
3 checked = 0 ;
4 check = new boolean [vs . view . l e n g t h] ;
5 i s F i r s t M s g = t rue ;
6 n u l l F i r s t = f a l s e ;
7 m s g F i r s t = f a l s e ;
8
9 Nul lE ven tT im er n u l l t = new Nul lE ven tT im er (NULL_TIMEOUT, " Nul lE ven tT im er " ,

10 c u r r e n t C h a n n e l , D i r e c t i o n .DOWN, t h i s , E v e n t Q u a l i f i e r .ON) ;
11 n u l l t . go () ;
12 }

Listing 5.1: Switchover initialization.

processing is created (lines 9–11). The meaning of this timer is properly

clarified in Section 5.6.4.

5.6.2 Message Handling

The main part of the protocol is the message handling code. The method

invoked when a message is received is handleGroupSendableEvent(...)

(see Listing 5.2) which is divided in two parts: dispatching outgoing mes-

sages (lines 2–26) and processing of incoming messages (lines 27–37).

We start describing the first part. The local sequence number is ap-

pended to every outgoing message (line 3) along with a flag stating if

it is the first message (lines 5–11). If the protocol is in the middle of a

switchover then a copy of the message must be sent using the second

channel (lines 13–19). Finally, the message is directed to the proper to-

tal order algorithm by setting the associated channel (lines 20–23), and the

local sequence number is incremented (line 25).

The second part starts by extracting the flag that identifies the first

message (line 28). Then a condition is fired that will select the method

that should process the message according to the channel where it was

52 CHAPTER 5. IMPLEMENTATION

received (lines 29–32). After the message is processed, if the termination

condition is reached, the switchover ends (lines 34–35).

1 p r i v a t e vo id hand leGro up Se n d ab l e E v e n t (GroupSendab leE ven t e v e n t) {
2 i f (e v e n t . g e t D i r () == D i r e c t i o n .DOWN) {
3 e v e n t . ge tMessage () . pushLong (loca lSN) ;
4
5 i f (s w i t c h i n g && i s F i r s t M s g && ! n u l l F i r s t) {
6 e v e n t . ge tMessage () . pushBoolean (t rue) ;
7 i s F i r s t M s g = f a l s e ;
8 m s g F i r s t = t rue ;
9 }

10 e l s e

11 e v e n t . ge tMessage () . pushBoolean (f a l s e) ;
12
13 i f (s w i t c h i n g) {
14 GroupSendab leE ven t c l o n e = (GroupSendab leE ven t) e v e n t . c l o n e E v e n t () ;
15 c l o n e . s e t C h a n n e l (o t h e r C h a n n e l) ;
16 c l o n e . s e t S o u r c e (t h i s) ;
17 c l o n e . i n i t () ;
18 c l o n e . go () ;
19 }
20 e v e n t . s e t C h a n n e l (c u r r e n t C h a n n e l) ;
21 e v e n t . s e t S o u r c e (t h i s) ;
22 e v e n t . i n i t () ;
23 e v e n t . go () ;
24
25 loca lSN ++;
26 }
27 e l s e { / / DIRECTION UP

28 boolean f l a g = e v e n t . ge tMessage () . popBoolean () ;
29 i f (e v e n t . g e t C h a n n e l () == c u r r e n t C h a n n e l)
30 p r o c e s s C u r r e n t (even t , f l a g) ;
31 e l s e i f (e v e n t . g e t C h a n n e l () == o t h e r C h a n n e l)
32 p r o c e s s O t h e r (e v e n t) ;
33
34 i f (s w i t c h i n g && checked >= a c t i v e s)
35 endSwi tch () ;
36 }
37 }
38 }

Listing 5.2: Main loop.

5.6.3 Message Processing

The incoming message processing is performed in two distinct methods,

one for the messages received in the channel that contains the current total

5.6. SWITCHING PROTOCOL 53

1 p r i v a t e vo id p r o c e s s C u r r e n t (GroupSendab leE ven t even t , boolean f l a g) {
2 E v e n t C o n t a i n e r c o n t = new E v e n t C o n t a i n e r (e v e n t . o r i g ,
3 e v e n t . ge tMessage () . peekLong () , n u l l) ;
4 i f (s w i t c h i n g && f l a g) {
5 check [e v e n t . o r i g] = t rue ;
6 checked ++;
7 }
8
9 t r y D e l i v e r (even t , f l a g) ;

10
11 i f (o t h e r L i s t . c o n t a i n s (c o n t))
12 o t h e r L i s t . remove (c o n t) ;
13 }

Listing 5.3: Message processing (current TO algorithm).

1 p r i v a t e vo id p r o c e s s O t h e r (GroupSendab leE ven t e v e n t) {
2 E v e n t C o n t a i n e r c o n t = new E v e n t C o n t a i n e r (e v e n t . o r i g ,
3 e v e n t . ge tMessage () . popLong () , e v e n t) ;
4
5 i f (c o n t . sn > l a s t D e l i v e r e d [e v e n t . o r i g])
6 o t h e r L i s t . add (c o n t) ;
7 }

Listing 5.4: Message processing (next TO algorithm).

order protocol (processCurrent(...)), and the other for the ones received

in the channel containing the next total order protocol (processOther(...)).

The first method (see Listing 5.3) starts by checking if the message is

flagged, and increasing an internal counter accordingly (lines 4–7). It then

delivers the message to the application (line 9) and removes any buffered

copy of the message that might have been previously stored (lines 11–12),

in case the message was first received in the other channel.

The second method (see Listing 5.4) simply checks if the message has

already been delivered by the first method, otherwise it stores the message

in a buffer for future delivery (lines 5–6).

54 CHAPTER 5. IMPLEMENTATION

1 p r i v a t e vo id h a n d l e N u l l E v e n t T i m e r (Nul lE ven tT im er t i m e r) {
2 i f (s w i t c h i n g && ! m s g F i r s t) {
3 N u l l E v e n t nu l lE ven tA = new N u l l E v e n t (c u r r e n t C h a n n e l , D i r e c t i o n .DOWN, t h i s ,
4 vs . group , vs . i d) ;
5 nu l lE ven tA . go () ;
6 n u l l F i r s t = t rue ;
7 }
8 }

Listing 5.5: Null message production.

5.6.4 Null Message Handling

As the reader already knows, null messages are special messages used in

the protocol to provide faster termination in situations where there are no

application messages to be broadcast. In Section 5.6.1 we made reference

to the creation of a timer that was associated with this kind of messages.

When that timer expires, the method handleNullTimer(...) is invoked

(see Listing 5.5). This method creates a null message and broadcasts it to

the communication group (lines 3–5).

Every process in this group receives this message and invokes method

handleNullEvent(...) (see Listing 5.6), which is responsible for process-

ing this kind of messages. If a null message is received during the switch-

ing procedure, the internal counter associated with the origin of the mes-

sage is updated (lines 2–4) and the termination condition is tested and may

produce the protocol finalization (lines 6–7).

5.6.5 Buffer Cleanup

During the finalization of the protocol, a sanity procedure is required to

clean up the messages that were kept buffered, because they were received

in the second channel, rather than in the one currently in use. This proce-

dure is implemented by the cleanBuffers() method (see Listing 5.7). The

5.6. SWITCHING PROTOCOL 55

1 p r i v a t e vo id h a n d l e N u l l E v e n t (N u l l E v e n t e v e n t) {
2 i f (s w i t c h i n g) {
3 check [e v e n t . o r i g] = t rue ;
4 checked ++;
5
6 i f (checked == vs . view . l e n g t h)
7 endSwi tch () ;
8 }
9 }

Listing 5.6: Null message handling.

1 p r i v a t e vo id c l e a n B u f f e r s () {
2 I t e r a t o r i t = o t h e r L i s t . i t e r a t o r () ;
3 whi le (i t . hasNex t ()) {
4 E v e n t C o n t a i n e r c o n t = (E v e n t C o n t a i n e r) i t . n e x t () ;
5 c o n t . e v e n t . s e t C h a n n e l (a p p l C h a n n e l) ;
6 c o n t . e v e n t . s e t S o u r c e (t h i s) ;
7 c o n t . e v e n t . i n i t () ;
8 c o n t . e v e n t . go () ;
9 l a s t D e l i v e r e d [c o n t . s o u r c e] = c o n t . sn ;

10 }
11 }

Listing 5.7: Buffer cleanup.

list of stored (undelivered) messages is traversed and each message is de-

livered to the application in the proper order (lines 3–10).

5.6.6 Termination

When the termination condition is reached during the switchover, the fi-

nalization method is invoked (see Listing 5.8). This method works by

switching over the references to the currently selected channel and the

secondary channel (lines 3-10). After this the switching is terminated (line

12) and the protocol continues executing as normally.

56 CHAPTER 5. IMPLEMENTATION

1 p r i v a t e vo id endSwi tch () {
2 c l e a n B u f f e r s () ;
3 i f (c u r r e n t C h a n n e l == d e f a u l t C h a n n e l) {
4 c u r r e n t C h a n n e l = secondChanne l ;
5 o t h e r C h a n n e l = d e f a u l t C h a n n e l ;
6 }
7 e l s e {
8 c u r r e n t C h a n n e l = d e f a u l t C h a n n e l ;
9 o t h e r C h a n n e l = secondChanne l ;

10 }
11
12 s w i t c h i n g = f a l s e ;
13 }

Listing 5.8: Protocol termination.

5.7 Summary

In this chapter we described an implementation of the proposed algorithm

in the Appia protocol composition and execution framework that served

the purpose of validating the functional properties of the algorithm and

as the subject of the evaluation experiments described in the next chapter.

Chapter 6

Evaluation and Optimization

To evaluate the performance of our switching protocol we devised an ex-

perimental environment where we performed several tests. This chapter

describes this environment and provides all the results obtained, along

with a detailed discussion. In the end we present an optimization that

allows the protocol to overcome some of the limitations identified in the

experiments.

6.1 Experimental Environment

All the experiments described were conducted in the SSFNet (Nicol et al.,

2003) network simulator. A single network scenario was used and con-

sists of a five node cluster, where all nodes are connected to each other by

100Mbps bi-directional links, as depicted in Figure 6.1.

The implementation of the adaptive protocol used is the one described

in Chapter 5, which uses the Appia protocol composition and execution

framework.

57

58 CHAPTER 6. EVALUATION AND OPTIMIZATION

���
���
���
���
���
���

���
���
���
���
���
���

Cluster

p q r s

seq

Figure 6.1: Simulation scenario.

6.2 Performance Evaluation

We evaluate the performance of our adaptive protocol from two differ-

ent perspectives. First, we evaluate the overhead of the switching proce-

dure. Then, we provide a comparative analysis on how different switching

strategies interfere with the traffic flow during the reconfiguration.

6.2.1 Switching Overhead

To evaluate the switching overhead of our adaptive protocol we compare

the performance of a system that always uses the same total order algo-

rithm, with that of a system that is periodically switching between two al-

gorithms. To make the comparison as fair as possible, we made our proto-

col switch between two instances of the same total order algorithm, which

is also used as the non-adaptive protocol. Also, the network topology and

working conditions did not change during the tests. In this way, we can

isolate the cost of the switching procedure given that all the remaining

factors remain unchanged.

Two runs of the same experiment were performed: (A) one using a

single total order protocol (non-adaptive), (B) and another using the pro-

6.2. PERFORMANCE EVALUATION 59

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 100 200 300 400 500 600 700

T
o

ta
l
O

rd
e

r
s
e

rv
ic

e
 t

h
ro

u
g

h
p

u
t

(m
s
g

/s
)

Load (msgs/s)

AdaptiveTO
SingleTO

Figure 6.2: TO throughput in non-
adaptive and adaptive algorithms

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 100 200 300 400 500 600 700

T
o

ta
l
O

rd
e

r
s
e

rv
ic

e
 t

h
ro

u
g

h
p

u
t

(m
s
g

/s
)

Load (msgs/s)

AdaptiveTO
AdaptiveStopTO

Figure 6.3: TO throughput in adaptive
and stop algorithms

posed adaptive total order protocol, which is forced to switch periodically.

Each run consists of every node broadcasting 5000 messages of 5KB in to-

tal order. The experiment ends when all nodes receive all the broadcast

messages. The values presented are averages of the measurements con-

ducted in each node.

Figure 6.2 presents the overall throughput results when the send rate is

made variable. As depicted, both total order algorithms perform the same

until they reach approximately 400 msg/s. After this point, the through-

put of the non-adaptive protocol continues to grow while its value stabi-

lizes for the adaptive protocol. This behavior is explained by the overhead

introduced by the switching phase in the adaptive protocol. During this

phase, the same set of messages is being broadcast by two total order algo-

rithms at the same time, leading to an increase (approximately double) in

the bandwidth usage. If the send rate is too high, the available bandwidth

can be exhausted, leading to the stagnation observed in the throughput.

Thus, we can conclude that our switching protocol offers negligible

overhead as long as there is enough network bandwidth to support the

transmission of data in parallel during the reconfiguration. When the pro-

tocol operates close to the available bandwidth, the switching procedure

60 CHAPTER 6. EVALUATION AND OPTIMIZATION

introduces an overhead. This limitation can be addressed at the imple-

mentation level, by sending the payload of the messages using just one of

the two algorithms. This optimization is described in Section 6.3.

6.2.2 Comparative Analysis

Most switching protocols require the message flow to be stopped in or-

der to terminate the reconfiguration process. By not imposing a gap in

the message flow, our protocol provides smooth transitions between al-

gorithms, thus allowing applications that rely in its services to normally

execute, even during the switching phase. Therefore, it should offer bet-

ter overall throughput, as long as enough bandwidth is available to cope

with the demand imposed by the transmission of messages using two al-

gorithms at the same time. The same experiment described in 6.2.1 was

conducted using a protocol that stops the message flow. This protocol

operates by sending a stop request to all nodes and awaiting for a confir-

mation from each of these nodes. After confirming the stop request a node

does not send further messages until the switch is complete. The perfor-

mance of such protocol when compared to our proposal can be observed

in Figure 6.3, which clearly shows that our approach always performs bet-

ter.

Other protocols that try to minimize the cost of switching between al-

gorithms have also been proposed. A previous work (Rutti et al., 2006),

described in Section 2.4.4, proposes a solution that has some similarities

with our protocol, but differs from it by not requiring every node to wait

for a “special” (in our algorithm the term is “flagged”) message from ev-

ery other node, and also for not making any assumptions about the failure

model where it is executing (see Section 4.3). In (Rutti et al., 2006), a special

6.2. PERFORMANCE EVALUATION 61

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 2000 4000 6000 8000 10000 12000 14000

A
v
g

.
la

te
n

c
y
 (

m
s
)

Time (ms)

Figure 6.4: Latency in Adaptive TO

 400

 450

 500

 550

 600

 650

 700

 750

 800

 0 2000 4000 6000 8000 10000 12000 14000

A
v
g

.
la

te
n

c
y
 (

m
s
)

Time (ms)

Figure 6.5: Latency in RABP

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000

A
v
g

.
in

te
ra

rr
iv

a
l
ti
m

e
 (

m
s
)

Simulation time (ms)

Figure 6.6: Inter-arrival time in Adaptive
TO

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000

A
v
g

.
in

te
ra

rr
iv

a
l
ti
m

e
 (

m
s
)

Simulation time (ms)

Figure 6.7: Inter-arrival time in RABP

reconfiguration message is broadcast in total order. When a node receives

such message, it stops the flow in the current algorithm, and re-issues all

his undelivered messages in the next algorithm. It then starts using it to

broadcast messages in total order. We will refer to this protocol by RABP

(Replacement of the Atomic Broadcast Protocol).

The RABP strategy has the advantage of requiring less bandwidth dur-

ing the switching phase. However, some delay is imposed to the message

flow during the retransmission of the undelivered messages. To observe

this side effect, the experiment was now conducted using our protocol and

the RABP protocol. In Figures 6.4 and 6.5 we can observe how both com-

pare in terms of latency. The spikes depicted correspond to the switching

phases, in the timeline of the experiment.

62 CHAPTER 6. EVALUATION AND OPTIMIZATION

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000 14000

M
e

s
s
a

g
e

s
 d

e
liv

e
re

d

Time period (ms)

Figure 6.8: Delivery rate in Adaptive TO

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000 12000 14000

M
e

s
s
a

g
e

s
 d

e
liv

e
re

d

Time period (ms)

Figure 6.9: Delivery rate in RABP

The inter-arrival time of messages was also measured and its evolution

is shown in Figures 6.6 and 6.7. Finally, the number of messages delivered

by a fixed period of time (10 ms) was also observed and the comparative

results are depicted in Figures 6.8 and 6.9.

This experiment clearly showed that our proposal is able to keep a sus-

tained delivery rate during the switching phase and performs similarly to

RABP during the remaining time. By not significantly delaying the mes-

sage flow, our protocol can best suit environments where application stop-

page, due to significant communication delays, is not desirable.

6.3 Implementation Optimization

When enough bandwidth is available, the (non-optimized) version of our

protocol already implements the switching procedure with negligible over-

head in the message flow. However, the experimental results provided in

Section 6.2 showed that during the switching phase, when both protocols

are being used to broadcast the same set of messages, the available band-

width can be exhausted when the send rate and/or message payload is

too high.

To overcome this problem we now describe an optimization to reduce

6.3. IMPLEMENTATION OPTIMIZATION 63

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 100 200 300 400 500 600 700

T
o
ta

l
O

rd
e
r

s
e
rv

ic
e
 t
h
ro

u
g
h
p
u
t
(m

s
g
/s

)

Load (msgs/s)

AdaptiveTO
AdaptOptimizedTO

Figure 6.10: Total Order service throughput vs message send rate

the amount of data being transmitted by the adaptive protocol during this

phase. The optimization consists of broadcasting using the first (and cur-

rent) algorithm only the identifiers of the messages being transmitted. The

messages payload is only transmitted using the second algorithm. In this

manner, the amount of redundant information transmitted over the wire

is reduced substantially. This optimization has a minor drawback: the

protocol cannot deliver a message to the application until it is received by

both total order algorithms. However, since both algorithms are executed

in parallel, the impact of this feature is negligible.

6.3.1 Performance Evaluation

The same experiment as described in Section 6.2.1 was performed using

the optimized implementation of the switching protocol. Figure 6.10 shows

that the optimization allows the protocol to continue increasing its through-

put after the point where the non-optimized version stabilizes (approxi-

mately 400 msg/s), showing a behavior similar to the non-adaptive proto-

col.

64 CHAPTER 6. EVALUATION AND OPTIMIZATION

6.4 Summary

This chapter provided evaluation results of several experiments designed

to assess the benefits of our proposal in respect to related approaches.

The overall results from the evaluation experiments are whithin the ex-

pectations, however, some performance deterioration was identified due

to shortages in the available bandwidth. To reduce this effect an optimiza-

tion technique was proposed and a brief evaluation was presented.

Chapter 7

Conclusions

Total order broadcast protocols implement an important service required

by several fault-tolerant distributed applications. Several different strate-

gies that implement such service have been proposed, that may perform

better in specific environments and/or working conditions.

The expensive nature of these protocols motivated for the development

of optimistic alternatives, that rely on quite different assumptions about

the execution environment, and allow the existence of early deliveries that

are estimates of the final total order delivery of a common total order pro-

tocol.

This dissertation described the characteristics and assumptions of the

currently available optimistic total order protocols, and established an ab-

stract timeline for the different optimistic deliveries, that motivates the

design and use of adaptive protocols.

We also presented an adaptive total order protocol that is able to switch

in run-time between different total order algorithms (not just optimistic

ones). When the environment is dynamic, this allows the system to use

the ordering strategy that is most favorable.

65

66 CHAPTER 7. CONCLUSIONS

If one is not careful, the procedure to switch between algorithms can

disrupt the message flow. Our work tackles with this issue by proposing

a novel switching strategy that performs the reconfiguration with negli-

gible impact on the observed delivery rate. We have implemented and

evaluated our protocol in isolation and compared it with competing ap-

proaches. The results show a negligible interference in the message flow

as long as enough bandwidth is available to cope with the demand of the

switching protocol. Even in scenarios where enough bandwidth is not

available, a simple optimization is described that requires less bandwidth

at the cost of a possible increase in the switching procedure duration.

7.1 Future Work

Part of the motivation for this research was the possibility of using adap-

tive total order algorithms to improve the performance of database repli-

cation services based on the state machine approach (Schneider, 1990). We

plan to embed our adaptive algorithm in a database replication service be-

ing implemented in the context of the IST project GORDA (GORDA Con-

sortium, 2005), and perform the required performance analysis to assess

the benefits of using such approach.

Also related to database replication services, the study of the optimal

switching point where reconfiguration should be performed amongst dif-

ferent optimistic total order protocols is a planned objective.

Bibliography

BIRMAN, K., & JOSEPH, T. 1987a (Feb.). Exploiting Virtual Synchrony in

Distributed Systems. Tech. rept. 87-811. Department of Computer Science,

Cornell University, Ithaca, New York.

BIRMAN, K., & JOSEPH, T. 1987b. Reliable communication in the presence

of failures. ACM, Transactions on Computer Systems, 5(1).

CHANDRA, T., & TOUEG, S. 1996. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2), 225–267.

CHANG, J., & MAXEMCHUCK, N. 1984. Reliable broadcast protocols.

ACM, Transactions on Computer Systems, 2(3).

CHEN, W.-K., HILTUNEN, M., & SCHLICHTING, R. 2001. Constructing

Adaptive Software in Distributed Systems. Page 635 of: ICDCS ’01: Pro-

ceedings of the The 21st International Conference on Distributed Computing

Systems. Washington, DC, USA: IEEE Computer Society.

DÉFAGO, X., SCHIPER, A., & URBÁN, P. 2004. Total order broadcast and

multicast algorithms: Taxonomy and survey. ACM Computing Surveys,

36(4), 372–421.

DOLEV, D., KRAMER, S., & MALKI, D. 1993. Early delivery totally or-

dered multicast in asynchronous environments. Pages 544–553 of: Digest

67

68 BIBLIOGRAPHY

of Papers, The 23th International Symposium on Fault-Tolerant Computing.

IEEE.

GORDA CONSORTIUM. 2005 (Mar.). GORDA Architecture Definition.

GORDA Deliverable 2.2.

GUERRAOUI, R., & SCHIPER, A. 1997. Software-Based Replication for

Fault Tolerance. IEEE Computer, 30(4), 68–74.

HAYDEN, M. 1998. The Ensemble System. Ph.D. thesis, Cornell University,

Computer Science Department.

HILTUNEN, M., & SCHLICHTING, R. 2000 (Oct.). The Cactus approach to

building configurable middleware services. In: Proceedings of the Work-

shop on Dependable System Middleware and Group Communication (DSMGC

2000).

KAASHOEK, M., & TANENBAUM, A. 1991. Group communication in the

Amoeba distributed operating system. Pages 222–230 of: Proceedings of the

11th International Conference on Distributed Computing Systems. IEEE.

LAMPORT, L. 1978. Time, clocks and the ordering of events in a dis-

tributed system. Communications of the ACM, 21(7), 558–565.

LIU, X., & VAN RENESSE, R. 2000 (July). Fast Protocol Transition in A Dis-

tributed Environment. Page 341 of: Proceedings of the 19th ACM Conference

on Principles of Distributed Computing (PODC 2000).

MIRANDA, H., PINTO, A., & RODRIGUES, L. 2001. Appia, a flexible pro-

tocol kernel supporting multiple coordinated channels. Pages 707–710

of: Proceedings of the 21st International Conference on Distributed Computing

Systems. Phoenix, Arizona: IEEE.

BIBLIOGRAPHY 69

MOCITO, J., & RODRIGUES, L. 2006. Run-Time Switching Between Total

Order Algorithms. In: Proceedings of the Euro-Par 2006. LNCS. Dresden,

Germany: Springer-Verlag.

NICOL, D., LIU, J., LILJENSTAM, M., & YAN, G. 2003. Simulation of

Large-Scale Networks Using SSF. In: Proceedings of the 2003 Winter Simu-

lation Conference.

PEDONE, F., & SCHIPER, A. 1998. Optimistic Atomic Broadcast. Pages

318–332 of: Proceedings of the 12th International Symposium on Distributed

Computing (DISC’98). London, UK: Springer-Verlag.

PETERSON, L., BUCHHOLZ, N., & SCHLICHTING, R. 1989. Preserving and

using context information in interprocess communication. ACM Transac-

tions on Computer Systems, 7(3), 217–146.

POWELL, D. (ed). 1996. Communications of the ACM. Vol. 39. ACM. Chap.

Special Issue on Group Communication, pages 50–97.

RODRIGUES, L., FONSECA, H., & VERÍSSIMO, P. 1996 (May). Totally Or-

dered Multicast in Large-Scale Systems. Pages 503–510 of: Proceedings of

the 16th International Conference on Distributed Computing Systems. IEEE,

Hong Kong.

RODRIGUES, L., MOCITO, J., & CARVALHO, N. 2006. From Spontaneous

Total Order to Uniform Total Order: different degrees of optimistic de-

livery. In: Proceedings of the 21st ACM symposium on Applied Computing

(SAC’06). ACM Press.

RUTTI, O., WOJCIECHOWSKI, P., & SCHIPER, A. 2006. Structural and

Algorithmic Issues of Dynamic Protocol Update. In: Proceedings of

the 20th IEEE International Parallel and Distributed Processing Symposium

(IPDPS’06). IEEE.

SCHNEIDER, F. B. 1990. Implementing fault-tolerant services using the

state machine approach: a tutorial. ACM Computing Surveys, 22(4), 299–

319.

SOUSA, A., PEREIRA, J., MOURA, F., & OLIVEIRA, R. 2002. Optimistic To-

tal Order in Wide Area Networks. Pages 190–199 of: Proceedings of the 21st

IEEE Symposium on Reliable Distributed Systems (SRDS’02). Washington,

DC, USA: IEEE Computer Society.

VAN RENESSE, R., BIRMAN, K., HAYDEN, M., VAYSBURD, A., & KARR, D.

1998. Building adaptive systems using Ensemble. Software: Practice and

Experience, 28(9), 963–979.

