
Universidade do Minho

Escola de Engenharia

Departamento de Informática

Semantically Reliable Group Communication

por

José Orlando Roque Nascimento Pereira

Dissertação apresentada à Universidade do Minho para

obtenção do grau de Doutor em Informática

Orientador:

Luís Eduardo Teixeira Rodrigues

(Professor Associado, FC/Univ. Lisboa)

Co-orientador:

Rui Carlos Mendes de Oliveira

(Professor Auxiliar)

Braga

Outubro de 2002

Este trabalho foi parcialmente financiado pela Fundação para a Ciência e a

Tecnologia através do projecto SHIFT (POSI/32869/CHS/2000).

Resumo

A utilização de computadores e redes de transmisssão de dados em diversas apli-

cações do quotidiano, torna desejável a adopção de técnicas de tolerância a faltas

em sistemas baseados em hardware e software não especializados. A comunicação

em grupo é, neste contexto, uma tecnologia particularmente atraente, pois oferece ao

programador garantias de fiabilidade que simplificam significativamente a aplicação

de técnicas de tolerância a faltas.

No entanto, a experiência tem mostrado que a concretização deste modelo em

sistemas heterogéneos e de grande escala levanta problemas de desempenho. Em-

bora as limitações de desempenho possam ser evitadas através de um relaxamento

das garantias de fiabilidade, os protocolos resultantes são normalmente menos úteis,

nomeadamente, na replicação com coerência forte. O desafio reside pois no relaxa-

mento das garantias de fiabilidade sem deixar de oferecer um modelo adequado à

programação de aplicações tolerantes a faltas.

Esta dissertação estuda modelos e mecanismos que permitem conciliar as van-

tagens da comunicação em grupo com o elevado desempenho, recorrendo para isso

ao enfraquecimento selectivo das garantias oferecidas pelos protocolos. A nosso pro-

posta consiste no uso pelo protocolo de informação sobre a semântica das mensagens,

por forma a escolher quais delas têm que ser fiavelmente transmitidas, daí a fiabi-

lidade semântica. Em diversas aplicações, algumas mensagens revogam ou trans-

mitem implicitamente outras mensagens enviadas recentemente, tornando-as obso-

letas durante a sua transmissão. Ao omitir apenas as mensagens obsoletas, o desem-

penho pode ser melhorado sem impacto na correcção da aplicação.

São apresentados as especificações e os algoritmos de um conjunto protocolos

de comunicação em grupo com fiabilidade semântica, incluindo ordenação e sincro-

nismo virtual. Os protocolos são então avaliados com um modelo analítico, um mo-

delo de simulação e um protótipo. A discussão de uma aplicação concreta ilustra a

interface de programação e o desempenho resultante.

Abstract

Current usage of computers and data communication networks for a variety of

daily tasks, calls for widespread deployment of fault tolerance techniques with inex-

pensive off-the-shelf hardware and software. Group communication is in this context

a particularly appealing technology, as it provides to the application programmer re-

liability guarantees that highly simplify many fault tolerance techniques.

It has however been reported that the performance of group communication tool-

kits in large and heterogeneous systems is frequently disappointing. Although this

can be overcome by relaxing reliability guarantees, the resulting protocol is often

much less useful than group communication, in particular, for strong consistent repli-

cation. The challenge is thus to relax reliability and still provide a convenient set of

guarantees for fault tolerant programming.

This thesis addresses models and mechanisms that by selectively relaxing reliabil-

ity guarantees, offer both the convenience of group communication for fault tolerant

programming and high performance. The key to our proposal is to use knowledge

about the semantics of messages exchanged to determine which messages need to be

reliably delivered, hence semantic reliability. In many applications, some messages

implicitly convey or overwrite other messages sent recently before, making them ob-

solete while still in transit. By omitting only the delivery of obsolete messages, per-

formance can be improved without impact on the correctness of the application.

Specifications and algorithms for a complete semantically reliable group commu-

nication protocol suite are introduced, encompassing ordered and view synchronous

multicast. The protocols are then evaluated with analytical and simulation models

and with a prototype implementation. The discussion of a concrete application illus-

trates the resulting programming interface and performance.

Acknowledgements

I want to thank my adviser, Luís Rodrigues, for his insightful guidance, his constant

encouragement, and his patient and prompt replies to my suggestions and scrib-

blings, despite the distance. I also want to thank Rui Oliveira and Francisco Moura for

their support and for providing me the unusual but interesting possibility of working

at the University of Minho with an external adviser.

I am also grateful to the other members of the committee for their helpful com-

ments and sugestions in improving the clarity and correctness of the final text. Namely,

to Prof. R. Guerraoui (E.P.F. Lausanne), Dr. K. Guo (AT&T Bell Labs), Prof. M. Mota

(U. Minho), Prof. J. Silva (U. Coimbra), and Prof. J. Valença (U. Minho).

I thank the people of the Distributed Systems Group, specially Rui Oliveira and

António Sousa, for many lengthy and useful technical discussions. I also thank the

researchers in Shift and Rumor projects, which have been hard at work implementing

and testing semantically reliable protocols. I want to thank all that have read and

commented the papers which contain most of the material of this thesis.

Finally, I want to thank to the Departamento de Informática, for hosting me, and

to FCT, for supporting the work on semantically reliable protocols through projects

Shift and Rumor.

Contents

List of Figures v

1 Introduction 1

1.1 Problem statement . 3

1.2 Summary of contributions . 3

1.3 Results . 4

1.4 Dissertation outline . 4

2 Group Communication 9

2.1 Overview . 9

2.2 Specification . 10

2.2.1 System model . 11

2.2.2 Group membership . 12

2.2.3 Reliable multicast . 13

2.2.4 Order . 13

2.2.5 View synchrony . 15

2.3 Advantages of group communication 16

2.3.1 Information dissemination 16

2.3.2 Primary-backup replication 17

2.3.3 Replicated state machine 19

2.4 Challenges to group communication 21

2.4.1 Scalability . 21

i

2.4.2 Throughput stability . 23

2.5 Relaxed reliability . 25

2.5.1 Addressing throughput stability 25

2.5.2 Consistency with relaxed reliability 26

2.5.3 Relaxed ordering and view synchrony 28

2.6 Summary . 28

3 Message Obsolescence 31

3.1 Selectively relaxing reliability . 31

3.1.1 Intuition . 32

3.1.2 Applications . 32

3.2 Expressing message obsolescence 34

3.3 Representing message obsolescence 35

3.3.1 Item tagging . 36

3.3.2 Message enumeration . 37

3.3.3 k-Enumeration . 38

3.4 Programming examples . 40

3.4.1 Informal protocol definition 40

3.4.2 Single item operations . 42

3.4.3 Multiple item operations 44

3.4.4 Concurrent operations . 48

3.5 Summary . 52

4 Semantically Reliable Protocols 53

4.1 System model and notation . 53

4.2 Semantically sender-based reliable multicast 55

4.2.1 Specification . 55

4.2.2 Algorithm . 56

4.2.3 Correctness argument . 58

4.3 Semantically reliable multicast 59

ii

4.3.1 Specification . 59

4.3.2 Algorithm . 60

4.3.3 Correctness argument . 62

4.4 Semantically view synchronous multicast 63

4.4.1 Specification . 63

4.4.2 Algorithm . 64

4.4.3 Correctness argument . 68

4.5 Uniform agreement . 69

4.6 Causal and total order . 69

4.7 Summary . 71

5 Performance Evaluation 73

5.1 Performance models . 73

5.1.1 Analytical . 74

5.1.2 Simulation . 75

5.2 Prototype implementation . 77

5.2.1 Retransmission and flow-control 78

5.2.2 Purging . 79

5.2.3 Centralized simulation . 80

5.3 Experimental conditions . 81

5.3.1 Traffic characterization . 81

5.3.2 Performance perturbations 82

5.3.3 Environment . 83

5.4 Results . 84

5.4.1 Purging efficiency . 84

5.4.2 Resource usage and scalability 91

5.4.3 View change frequency and latency 94

5.5 Summary . 96

iii

6 Case Study 99

6.1 Multi-player games . 99

6.2 Replicated server . 100

6.3 Traffic characterization . 102

6.4 Performance . 103

6.5 Summary . 106

7 Conclusions 107

7.1 Future work . 109

Bibliography 111

A Correctness Proofs 123

A.1 System model and notation . 123

A.2 Algorithm . 124

A.3 Proof . 127

A.4 Causal order . 132

B Implementation Details 133

B.1 Window-based implementation 133

B.2 Purging . 134

B.3 Multicast network . 135

iv

List of Figures

2.1 State dissemination using multicast. 17

2.2 Inconsistency resulting from unreliable multicast. 18

2.3 Inconsistency resulting from violation of Reliable FIFO. 18

2.4 Inconsistency upon membership change without View Synchrony. 19

2.5 Inconsistency upon violation of Uniform Total Order. 20

2.6 Throughput degradation when a single receiver is perturbed. . 24

3.1 Sample obsolescence relation. 36

3.2 Representation of Figure 3.1 with item tagging. 36

3.3 Representation of Figure 3.1 with message enumeration. 38

3.4 Representation of Figure 3.1 with k-enumeration. 39

3.5 Possible runs with the obsolescence relation of Figure 3.1. 41

3.6 Pseudo-code of state dissemination. 42

3.7 Obsolescence relation preserving operation boundaries. 44

3.8 Pseudo-code of state dissemination preserving operation bound-

aries. 46

3.9 Obsolescence relations among concurrent messages. 49

3.10 Pseudo-code of a replicated state machine. 50

4.1 Semantic Sender-based Reliable Multicast. 57

4.2 Semantically Reliable Multicast. 61

4.3 Semantic View Synchrony: multicast operations. 66

4.4 Semantic View Synchrony: view change. 67

v

5.1 Simplified system model. 74

5.2 Plots of obsolescence distribution. 81

5.3 Throughput with d = 1, N = 20 and variable r. 85

5.4 Messages purged with d = 1, N = 20 and variable r. 86

5.5 Buffer size sensitivity to r. 87

5.6 Buffer size sensitivity to d. 88

5.7 Comparison of purging strategies using simulation. 89

5.8 Buffer N = 20 compared with N = 10 + 10. 90

5.9 Impact of collecting majority of acknowledgments. 91

5.10 Impact of group size in throughput with various perturbations. 92

5.11 Impact of group size and purging in resource usage. 93

5.12 Impact of group size and purging in the latency of stability and

safety tracking. 94

5.13 Impact of purging in the frequency of view changes. 95

6.1 Addendum to pseudo-code of Figure 3.8. 101

6.2 Characterization of access to application state. 102

6.3 Performance of semantic reliability with Quake. 104

6.4 Impact of purging in the performance of view changes. 105

6.5 Latency histograms. 105

A.1 State variables. 126

A.2 Transitions associated with the environment. 126

A.3 Transitions associated with process i. 128

vi

Chapter 1

Introduction

The reliance on computers for monitoring and controlling critical processes,

from medical equipment to avionics and air traffic control, has long been a

reality and has justified the research and development of fault tolerant com-

puter systems. The criticality of the functions performed justifies expensive

custom hardware components and the involvement of skilled developers.

Current usage of computers and data communication networks in a va-

riety of daily tasks brings the issue of fault tolerance techniques to a wider

audience: Even if no human life is at stake, outages can have significant eco-

nomic impact. For instance, it has been estimated that an hour of downtime of

ebay.com servers results in a loss of $225,000 [Pat02]. Such applications drive

the seek for cost effective solutions for high performance fault tolerant com-

puting.

Faults can be tolerated by replicating system components [Cri91]. When

a component is affected, a replica is used to ensure the continuation of the

service. The major issue in managing replication is coordinating replicas both

during normal operation and across component failures. The goal is to ensure

that the service provided by the set of replicated servers is indistinguishable

from the service provided by a single server [HW90].

A cost effective approach to replication is to use off-the-shelf components,

1

both for servers and interconnecting networks, and use standard software

packages to coordinate replication. By leveraging commodity hardware, the

system designer has maximum flexibility to configure the system for the de-

sired performance level. Resorting to off-the-shelf software packages reduces

the need for developer skills in fault tolerance that can be concentrated on the

application itself.

An appropriate tool for the implementation of software replication is group

communication software [Pow96]. Group communication offers a message

passing interface and encompasses reliable multicast and management of cur-

rent group membership, alleviating the programmer from the burden of track-

ing the operational status of each system component. Message passing is a

programming paradigm that is already familiar to distributed system pro-

grammers. What makes group communication a solid foundation for fault

tolerant systems is that, in contrast to other message passing middleware, it

provides strong guarantees about message delivery despite faults. This hides

most of the complexity of programming a fault tolerant distributed system

and the result is that intuitive solutions to replication problems are often cor-

rect.

Low cost and the high performance of off-the-shelf computer systems make

them attractive for high throughput services. On the other hand, it can be

observed that computer systems experience transient performance perturba-

tions. These occur in disk subsystems, scheduling, virtual memory, interfer-

ence by background applications and system tasks, and network operation.

These happen even in local area networks and in closely controlled environ-

ments and seem to be unavoidable given the complexity of current computer

systems [ADAD01]. Load peaks can result in congestion phenomena, such

as thrashing in virtual memory subsystems [Den68] and packet loss in net-

works [Jac88]. In such situations, the throughput of those components is re-

duced below their nominal capacity.

Although the correctness of group communication and its applications is

2

not affected by such phenomena, the impact in performance can be dramatic.

It has been reported that the performance of group communication in real

systems is often disappointing [PS97]. Unfortunately, this happens despite im-

provements in the implementation of group communication that theoretically

scales to very large groups and high throughput [Bir99]. In fact, the perfor-

mance degradation observed in real world conditions derives directly from

the interaction of transient performance perturbations and the strong guar-

antees offered by group communication and on which stands its usefulness.

The solution to this is to relax the guarantees offered by group communication

sufficiently to overcome performance issues [BHO+99, BPRS98, RBAR00].

1.1 Problem statement

The problem is that the usefulness of group communication in the develop-

ment of fault tolerant applications rests precisely on those strong guarantees

which are an obstacle to performance. Proposals offering weaker guarantees

are much harder to use in fault tolerant systems and thus are not a substitute

for group communication. The developer is left with a choice between perfor-

mance and fault tolerance that is incompatible with requirements of emerging

distributed applications. The challenge is thus to relax reliability without en-

dangering the convenience of group communication.

1.2 Summary of contributions

This thesis addresses this dilemma between performance and fault tolerance

by proposing a novel reliability criterion: semantic reliability. The key to our

proposal is to use knowledge about the semantics of messages exchanged to

determine which messages become obsolete while in transit and can thus be

discarded immediately. This suffices to improve performance and requires

3

little additional effort to ensure the correctness of fault tolerant applications.

Semantic reliability is presented as specifications and algorithms for a com-

plete semantically reliable group communication protocol suite, encompass-

ing ordered and view synchronous multicast. This protocol suite is then ap-

plied to fault tolerant information dissemination and strongly consistent repli-

cation.

1.3 Results

A prototype of a semantically reliable multicast protocol is presented and eval-

uated. Along with a simple analytical model and a simulation model, it shows

how protocol configuration and application traffic parameters influence the

performance of semantic reliability. The prototype implementation illustrates

also how semantic reliability interacts with protocol implementation mecha-

nism, and thus, illustrates how existing group communication protocols can

be adapted for semantic reliability.

The discussion of applying semantic reliability to a concrete application,

specifically, the replication of distributed multi-player game service, illustrates

what are the required modifications to application code and shows the perfor-

mance of semantic reliability in a real application.

1.4 Dissertation outline

Chapter 2 motivates the work by introducing group communication. This

includes explaining why group communication is an appropriate tool for de-

veloping fault tolerant distributed applications. It also explains what are the

challenges of deploying group communication, specifically, the problem of

sustaining stable high throughput in real systems.

Chapter 3 presents the intuition underlying semantic reliability: Some mes-

4

sages become obsolete while still in transit and can be omitted without en-

dangering correctness. It then presents the formalization of the semantics that

need to be conveyed to the protocol; the mechanisms that can be used to im-

plement it; and examples how it can be used in typical applications.

Chapter 4 introduces the specifications and algorithms of semantically re-

liable protocols for group communication. This shows how the semantically

reliable group communication compares with standard group communication

and which are the challenges in implementing it. This chapter is comple-

mented by Appendix A that gives a more detailed algorithm and correctness

proof of a key protocol. Appendix B addresses the issues in implementing the

proposed algorithms within typical protocol mechanisms.

Chapter 5 evaluates the impact of semantic reliability in the performance

of group communication. This is achieved by introducing and comparing the

results of an analytical model, a simulation model and an implementation of

semantically reliable multicast.

Chapter 6 explores the application of semantic reliability to distributed

multi-player games. This includes characterization of the application traffic

and evaluation of the performance gains in a real setting.

To conclude, Chapter 7 summarizes the main contributions of this disser-

tation and discusses future work directions.

Related publications

Preliminary versions of portions of this dissertation have been published:

[1] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast proto-

cols. In IEEE International Symposium on Reliable Distributed Systems, Oct. 2000.

This paper motivates and introduces semantic reliability. The performance of

the protocol is estimated with the analytical and simulation models using pro-

filing data from a stock exchange application.

5

[2] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast: Cur-

rent status and future work. In International Symposium on Reliable Distributed

Systems (DISC), Brief Announcement, Oct. 2000.

This short paper introduces an early definition of semantically reliable multi-

cast.

[3] J. Pereira, L. Rodrigues, and R. Oliveira. Fault-tolerant replication of high through-

put services. In IEEE International Conference on Distributed Systems and Net-

works, Student Forum, Jun. 2000.

This short paper introduces a simple protocol for totally ordered semantically

reliable multicast, describing its application to strongly consistent replication.

[4] J. Pereira, L. Rodrigues, and R. Oliveira. Reducing the cost of group commu-

nication with semantic view synchrony. In IEEE International Conference on Dis-

tributed Systems and Networks, Jun. 2002.

This paper defines semantic view synchrony and its application to strong con-

sistent replication using the primary-backup approach. It also introduces a rep-

resentation for the obsolescence relation, both for the programmer interface as

well as for protocol internals. The protocol is applied to a multiplayer game.

[5] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable broadcast: Sus-

taining high throughput in reliable distributed systems. In P. Ezhilchelvan

and A. Romanovsky (eds.), Concurrency in Dependable Computing, Chapter 10,

Kluwer Academic Publishers, 2002. ISBN 1-4020-7043-8.

Liveness properties of semantically reliable protocols their impact in applica-

tion correctness are addressed in this paper by introducing a formal specifica-

tion, an algorithm and its correctness proof.

[6] N. Carvalho, J. Pereira, and L. Rodrigues. Concretização de protocolos com

fiabilidade semântica. In Conferência sobre Redes de Computadores, Sep. 2002.

This paper describes the ongoing implementation of semantically reliable group

communication within a modular protocol composition framework.

6

[7] J. Pereira, L. Rodrigues, and R. Oliveira. Semantically reliable multicast: Def-

inition, implementation and performance evaluation. In IEEE Transactions on

Computers Special Issue on Reliable Distributed Systems, 2003 (to appear).

This paper summarizes previous research on semantic reliability, describes the

specification and discussing performance results obtained with analytical and

simulation models, and evaluates a protocol implementation prototype.

7

8

Chapter 2

Group Communication

This chapter motivates our work by briefly introducing group communication

and the resulting trade-off between ease-of-use and performance. Applica-

tion scenarios illustrate how strong reliability guarantees greatly simplify the

programming of distributed fault tolerant applications. However, experience

shows that strong reliability is also a fundamental obstacle to the performance

of group communication, namely, to throughput stability.

2.1 Overview

Group communication toolkits support message passing within groups of pro-

cesses by offering membership management and reliable multicast services.

Examples of group communication toolkits are Isis and Horus [BvR94], En-

semble [Hay98], xAMp [RV92], Transis [ADKM92], Newtop [EMS95], Phoenix

[Mal96], Spread [ADS00] and Appia [MPR01].

Membership management keeps track of which processes are operational

and mutually reachable, taking into account both voluntary requests to join

and leave the group as well as process failures and network partitions. By

ensuring that a common membership is observed by all participants, many

distributed algorithms are simplified.

9

Reliable multicast can informally be described as ensuring delivery of all

messages to all destination processes that do not fail. The current composition

of the group serves as an implicit destination set for reliable multicast. Sev-

eral definitions are possible and differ subtly in their guarantees in the pres-

ence of process failures [HT94]. Several message ordering criteria in addition

to reliable multicast are provided by group communication [HT94]. Message

ordering simplifies application programming by ensuring that each message

is handled in a predictable context resulting from previous messages.

Group communication differs from other message passing middleware in

the consistency guarantees enforced in face of process and network faults by

coordinating membership changes with message delivery. This is known as

view synchrony [Bir93, SS93a] and can be superficially described as totally or-

dering message delivery and view changes, thus enabling processes to handle

each message in a common membership context. This reduces the complexity

of coping with process failure when programming applications [SKM00].

Notice that services such as group membership and view synchronous re-

liable multicast encapsulate solutions to fundamental problems arising in the

development of fault tolerant distributed systems such as consensus [CT96,

GS01]. This means that, although apparently similar to best-effort multicast

protocols [FJL+97], the resulting programming paradigm is in fact as powerful

as distributed atomic transactions [GS95]. This makes group communication

suitable for fault tolerant applications such as strong consistent replication of

services [GS97a, SS93a] while maintaining a simple and general purpose pro-

gramming interface.

2.2 Specification

We briefly survey specification of group communication services for reference

in the following sections. Although subtly different specifications of each ser-

10

vice exist, we choose to present only one that is representative, both in the

sense that it is provided by most toolkits as well as that it is sufficient for the

presentation of the applications in the next section. Where appropriate, alter-

natives are briefly discussed. Comprehensive surveys of group membership

and view synchrony properties are found in [HS95, CKV01]. Reliable multi-

cast properties are found in [HT94, CKV01]. Algorithms implementing this

specification can be found in [GS01, SS93b].

2.2.1 System model

The specification of group communication services is presented in the context

of an asynchronous message passing system model augmented with a failure

detector [CT96]. Briefly,1 the system is modeled as a set of sequential processes

fully connected by a network of point-to-point message passing channels such

that:

• Processes can only fail by crashing and do not recover, thus ceasing to

send or receive further messages. Byzantine or arbitrary faults [Cri91]

are not considered. A process that does not crash is said correct. A ma-

jority of processes are assumed to be correct.

• Processes communicate only by exchanging messages, thus excluding

any form of shared memory. Channel reliability means that if both the

sender and the receiver are correct, messages that are sent are eventually

received [BCBT96].

• Asynchrony means that there is no bound on relative execution speeds

of processes or on the time that takes a message to be transmitted.

• The failure detector oracle available to each process is of class �S, thus

making consensus solvable [FLP85, CHT96].

1The model is described in detail Chapter 4.

11

Group communication protocols can also be specified in the context of timed

models [CF99]. This enables reasoning about timeliness properties that are

guaranteed by some toolkits [RV92]. Nevertheless, using an asynchronous

model to describe the correctness of a protocol leads to more general specifica-

tions and algorithms, that can later be refined to consider timeliness [OPS01].

2.2.2 Group membership

The current composition of a group is usually referred to as the view and a

membership change notification as installing a view. The ith view is installed by

a process p by delivering a special control message v
p
i . Each view v

p
i includes

the identification of the view and of the set of processes which constitute the

current membership of the group.

Membership protocols differ in how new views are formed [RSB93]. Those

supporting the primary partition model [BSS91] enforce a total order of view

installation events, thus ensuring that each view is uniquely preceded and

succeeded by a single other view. Primary partition group membership means

that:

Primary Partition: If process p installs view v
p
i and process q installs view v

q
i ,

then v
p
i = v

q
i .

As all processes agree on the ith view, it is possible to refer to v
p
i simply as vi.

The alternative is the partitionable model [ADKM92] allowing installation

of concurrent disjoint views. New views result from merging or splitting pre-

vious views. This allows continued operation when a majority of processes is

not reachable, at the expense of consistency [FB96].

In both situations, the events used to trigger view changes are determinant

in the liveness guarantees offered to application programs [LH99]. Examples

of triggering mechanisms used in existing toolkits are unreliable failure detec-

tors [Mal96, CKV01], resource availability [CBDS01] and network connectiv-

ity [BDM01].

12

2.2.3 Reliable multicast

The multicast service is used through a pair of primitives: multicast(m) and

deliver(m). A process executing the multicast primitive initiates the transmis-

sion of a message and is said to multicast m. By executing the deliver primi-

tive, transmission is completed by handing over a message to the application

at a destination process, which is said to deliver m. The definition of reliable

multicast is as follows [HT94]:

Validity: If a correct process multicasts a message m, then eventually it deliv-

ers m.

Agreement: If a correct process delivers a message m, then all correct pro-

cesses eventually deliver m.

Integrity: For every message m, every process delivers m at most once and

only if m was previously multicast by some process.

A stronger form of reliable multicast which also enforces agreement in pro-

cesses that are not correct is provided by some group communication toolk-

its. The resulting strengthened reliability model is known as Uniform Agree-

ment [HT94] or Safe Delivery [CKV01]:

Uniform Agreement: If a process delivers a message m, then all correct pro-

cesses eventually deliver m.

Although useful in maintaining consistency in distributed applications [GT91],

implementation of Uniform Agreement is more costly. Its usage is therefore

avoided when not strictly necessary, for instance, when existing explicit ac-

knowledgment mechanisms at the application level make it redundant.

2.2.4 Order

The simplest criterion for ordering deliveries is First-In-First-Out (FIFO), in

which messages from the same sender are delivered in the order they were

13

multicast [HT94, CKV01]:

Reliable FIFO: If a process multicasts a message m before it multicasts a mes-

sage m′, no process delivers m′ without previously delivering m.

A step further is given by ordering delivery according to the causal “hap-

pens before” relation [Lam78]. A message m causally precedes a message m′

if some process sends m before sending m′; or receives m before sending m′;

or some m′′ exists such that m precedes m′′ and m′′ precedes m′. Causal order

multicast is [HT94, CKV01]:

Reliable Causal: If a message m causally precedes message m′, no process

delivers m′ without previously delivering m.

This is useful, for instance, when determining a global snapshot of the sys-

tem [CL85].

Most group communication toolkits also allow to totally order the delivery

of concurrent messages [HT94, CT96], resulting in messages being delivered

in the same order to all processes:

Uniform Total Order: If a process delivers a message m before it delivers a

message m′, no process delivers m after delivering m′.

Notice that total order is orthogonal to both FIFO and causal ordering and

thus can be combined with both. Total order is more costly to implement as it

requires coordinating the delivery of concurrent messages. On the other hand,

it is useful in implementing replicated services using the active replication ap-

proach [Sch93]. Totally ordered reliable multicast is also often called atomic

multicast, as the effect of the multicast operation appears to occur instanta-

neously as it logically does not overlap with the delivery of other messages.

Alternative versions of FIFO and causal ordering do not require previous

delivery of all predecessors, but prevent only out-of-order delivery [CKV01].

However, reliable version of ordering properties is more useful and as easy

14

to implement. Alternative formulations of the total order are weak total or-

der [WS95], that is not enforced for processes that are expelled from the group

and is thus less costly to implement, and total order to multiple overlapping

groups [GS97b, RGS98], that enforces total order among messages with differ-

ent destination sets.

2.2.5 View synchrony

The coordination of reliable multicast and group membership is provided by

view synchrony. If a process multicasts (resp. delivers) a message m after in-

stalling some view vi and before installing any other view vj we say m is mul-

ticast (resp. delivered) in view vi. The definition is as follows [CKV01]:

View Synchrony: If a process p installs two consecutive views vi and vi+1 and

delivers a message m in view vi, then all other processes installing both

vi and vi+1 deliver m in view vi.

An alternative formulation of view synchrony applies also to processes being

excluded [SS93b]. The rationale of the strengthened definition is similar to that

of Uniform Agreement and has identical consequences both in consistency

and implementation cost.

In addition to View Synchrony, it is also possible to enforce an additional

restriction on message delivery regarding view installation:

Sending View Delivery: If a process p multicasts a message m in view vi,

then p does not deliver m in a view other than vi.

Enforcing simultaneously Sending View Delivery and and Validity requires

that processes are prevented from multicasting messages while a view is being

installed [FvR95].

15

2.3 Advantages of group communication

Group communication eases the development of distributed fault tolerant ap-

plications by encapsulating solutions to complex problems in simple abstrac-

tions. In fact, it can be observed that by using group communication, the intu-

itive solution to replication problems is also the correct solution. This is best

captured by presenting examples of distributed fault tolerant applications and

overview their solutions and correctness arguments.

2.3.1 Information dissemination

An interesting application of group communication is the problem of fault

tolerant state dissemination. A server process keeps a set of data items that

change frequently. Such changes have to be propagated to a set of observer

processes that are interested in current values of items. The goal is to ensure

that:

1. If the server ceases to modify its state, all observers eventually have the

same values for all the items as the server.

2. If the server fails, all observers eventually have the same values for all

the items and that the combined state is the state of the server at some

previous instant.

The pattern described directly maps to information dissemination applica-

tions [PS97].

A solution using group communication is easily achieved. Each time the

server changes the value of an item, it multicasts the identification of the item

together with the new value to all observers. Upon delivery of a message, each

observer updates the referred item with the new value. Figure 2.1 presents a

sample run with a server S and two observers O1 and O2 updating the value

of item x to x1 and then to x2.

16

S //•
x←x1 ''

x←x1""EEEEE

x←x1!!

• •
x←x2 ''

x←x2""EEEEE

x←x2!!

• x = x2

O1
//• • x = x2

O2
//• • x = x2

Figure 2.1: State dissemination using multicast.

Intuitively, the usefulness of reliable multicast can be illustrated by situa-

tions in which violation of any property of the specification leads to inconsis-

tency. Such situations would have to be handled by the application when us-

ing unreliable multicast. Figure 2.2(a) depicts a run that violates Validity and

thus fails to satisfy the first condition of the specification. Figure 2.2(b) shows

that violating Agreement results in inconsistency regardless of the failure of

the server. Violation of Integrity in Figure 2.2(c) allows duplicate delivery of

messages and thus arbitrary return to any previous item value. Finally, Fig-

ure 2.3 illustrates the inconsistency resulting from delivering messages out of

the context enforced by Reliable FIFO.

The correction of such implementation can be outlined as follows. Integrity

and Reliable FIFO ensure that the sequence of messages delivered by any pro-

cess is a prefix of the sequence of messages multicast by the server. Agreement

ensures that all correct processes deliver the same sequence of messages. This

is enough to satisfy second condition. Validity ensures that when the server is

correct, it delivers exactly the same sequence of messages that was multicast,

which is enough to satisfy the first condition.

2.3.2 Primary-backup replication

A common strategy for implementing strong consistent replication is the pri-

mary-backup approach to replication [BMST93, GS97a]: A single server – the

17

S //•
x←x1 ''

x←x1""EEEEE

x←x1!!

• •
x←x2 %e

!aBBBBB

 ̀

x = x2

O1
//• x = x1

O2
//• x = x1

(a) Validity violation

S //•
x←x1 ''

x←x1""EEEEE

x←x1!!

• •
x←x2 ''

x←x2""EEEEE

"b

• x = x2

O1
//• • x = x2

O2
//• x = x1

(b) Agreement violation

S //•
x←x1 ''

x←x1""EEEEE

x←x1!!

x←x1

,,XXXXXXXXXXXXXXXXXXXXXXX • •
x←x2 ''

x←x2""EEEEE

x←x2!!

• x = x2

O1
//• • • x = x1

O2
//• • x = x2

(c) Integrity violation

Figure 2.2: Inconsistency resulting from unreliable multicast.

S //•
x←x1 ''

x←x1

,,XXXXXXXXXXXXXXXXXXXXXXX

x←x1!!

• •
x←x2 ''

x←x2""EEEEE

x←x2!!

• x = x2

O1
//• • x = x1

O2
//• • x = x2

Figure 2.3: Inconsistency resulting from violation of Reliable FIFO.

18

P
?�•

x←x1 ''

x←x1""EEEEE

x←x1!!

• •
x←x2 ''

x←x2
,,XXXXXXXXXXXXXXXXXXXXXX

x←x2!!

•

B1
//• x = x1

�
�

//•

B2
//• • x = x2

//

Figure 2.4: Inconsistency upon membership change without View Synchrony.

primary – handles requests from clients. Upon executing each request the

primary broadcasts a state update to backup replicas. A reply can be sent

to client after acknowledgment messages are collected from backup replicas.

Should the primary fail, a backup replica takes-over as the primary.

Implementing primary-backup replication involves determining the pri-

mary and updating backup replicas. The primary can easily be selected using

the group membership service, for instance, by deterministically selecting one

member of the group, that is ensured to be the same for all participants.

Updating backups is an information dissemination problem and can be

solved using the proposal of the preceding section. However, when the pri-

mary fails and a backup needs to take over, is must be determined whether a

consistent state has already been reached, as it is possible that late messages

are still in transit. Figure 2.4 illustrates a situation where despite enforcing

reliable multicast and group membership, the state of processes upon view

change is inconsistent. By using view synchrony the application can use mem-

bership notifications as indications that exactly the same messages have been

delivered and thus that processes installing the new view are consistent.

2.3.3 Replicated state machine

An alternative strategy for replicating services is known as the replicated state

machine [Sch93, GS97a]. In contrast to primary-backup replication, all repli-

19

x←x2##

x←x2""EEEEEEEEEEEEE

x←x2��

R1
//• • x = x2

R2
//• • x = x2

R3
//• • x = x1

x←x1

77

x←x1

==||||||||||||

x←x1

==

Figure 2.5: Inconsistency upon violation of Uniform Total Order.

cas handle requests directly from clients, executing them in parallel, updating

their state and replying to clients. A client uses any of the replies.2

Consistency is ensured by the determinism of replicas and by processing

the same sequence of client requests. The usefulness of reliable multicast as

provided by group communication is again illustrated by Figure 2.2. Violation

of Validity means that the client might not get any reply. Violation of Agree-

ment and Integrity might leave servers with inconsistent state that results

later in inconsistent replies to a request. In addition, implementing a repli-

cated state machine using group communication requires also that requests

are totally ordered. Otherwise, as shown in Figure 2.5, concurrent requests by

multiple clients might be delivered by different orders.

Notice that ensuring that the same sequence of messages is delivered to

correct processes is not enough. If a process delivers a different sequence,

replies to a client, and then crashes, it exposes inconsistent state to a client.

This is solved by requiring the multicast protocol to implement Uniform Agree-

ment.

A specialization of the replicated state machine approach is the database

state machine [Ped99, PGS02], that uses a replicated state machine to certify op-

timistically executed transactions. Execution of requests can therefore be done

2Assuming no byzantine faults.

20

in any of the replicas without locking. Read sets and write sets are then atomi-

cally multicast to all replicas that use a deterministic certification procedure to

determine which requests can be committed and those that should be aborted

due to conflicts with other transactions.

This makes better use of resources, as any replica can execute a transac-

tion. Only certification, that is relatively inexpensive, has to be duplicated in

all of them. To be deterministic, the replicated state machine approach alone

would force a sequential execution of transactions, that is particularly ineffi-

cient. Primary-backup replication is also not adequate, as it would force all

processing to be done by the primary. Neither would take advantage of the

fact that transactions can be aborted and restarted later.

2.4 Challenges to group communication

Group communication is a convenient tool for programming fault tolerant

distributed applications due to the strong guarantees provided. However, the

same strong guarantees make it difficult to obtain good performance, in par-

ticular, in large and heterogeneous groups subjected to high throughput.

2.4.1 Scalability

A major issue in the scalability of reliable multicast protocols, and thus of

group communication protocols, is the mechanism used to recover from lost

packets. This requires a feedback mechanism that informs the sender of pro-

cesses that have received each message. Gossip based protocols [BHO+99,

EGH+01, EG02] and forward error correction (FEC) [NBT97] do not rely on

feedback from receivers thus offering only probabilistic reliability guarantees.

In sender based protocols, the sender actively retransmits each packet to

each destination until an acknowledgment message is received back. This is

a simple and efficient mechanism for small groups, as immediate acknowl-

21

edgment results in low latency and optimal utilization of network resources.

However, in large groups and with high throughput the overhead of trans-

mitting and processing acknowledgment messages is not negligible. In fact,

it can be a serious limitation to the performance and scalability of the proto-

col [ES98].

The alternative is a receiver based protocol, in which the sender does not

perform retransmission unless this is explicitly requested by a receiver. The

receiver must detect that a message has been lost and explicitly request its

retransmission. This avoids the need for an explicit acknowledgment mecha-

nism. In large groups, if a message is lost this also results in the sender being

swamped in retransmission requests thus limiting performance [PTK94]. This

can be avoided by allowing messages to be retrieved from processes other

than the sender [BHO+99] and by performing retransmission to all receivers

upon a single retransmission request, standing on the assumption that a mes-

sage is likely to be lost by all or none of the receivers [FJL+97].

In addition, receiver based protocols need a mechanism to detect which

messages have been received by all processes for garbage collection of buffers.

This differs from positive acknowledgment as the sender is not required to

identify which processes have not received a message: It just knows whether

a message has been received by all. This allows the usage of mechanisms that

are more efficient, requiring less network and processing resources to with-

stand high throughput. Examples of such mechanisms include the use of a

logical token passing ring [AMMS+95] or gossiping [GHvR+97]. A compre-

hensive survey and comparison of such mechanisms is found in [Guo98]. The

combined usage of a receiver based protocol with an efficient stability detec-

tion mechanism allows a reliable protocol to scale to large groups.

22

2.4.2 Throughput stability

The issue of achieving high and stable throughput in reliable multicast pro-

tocols has been addressed by recent research efforts [PS97, Bir99, BHO+99]:

Perturbing the performance of a single participant in a multicast group de-

grades the performance of the whole group. This is a problem specially in

large and heterogeneous groups where the probability of at any given time at

least a single element being perturbed is high.

Throughput degradation is tightly related to strong reliability and flow

control, and cannot be overcome by improving protocol mechanisms. To en-

sure strong reliability, each message might have to be retransmitted several

times, possibly by different processes. Therefore, messages have to be buffered

until their reception is acknowledged by all receivers, being then declared sta-

ble and subsequently garbage collected. If a single process is perturbed, it

might delay the reception of a message. Even if the message is promptly re-

ceived, perturbation might delay the acknowledgment of the fact. In both

situations, messages have to be stored longer. If available buffer space is ex-

hausted, the sender is blocked until enough buffer space is available to accom-

modate further messages. By periodically blocking the sender its throughput

is reduced thus affecting all receivers.

To illustrate this we observe the behavior of a reliable multicast protocol

when one element of the group is perturbed. Another element of the group is

used as the sender producing messages at a constant rate of 200 msg/s. Then

we measure and plot the throughput received by one of the remaining pro-

cesses in messages per second (y axis) for different amounts of perturbation

introduced (x axis).3

The first performance perturbation we consider is to make the protocol

task sleep for an increasingly larger amount of time in every second.4 The ex-

3Since at this point we are merely trying to motivate our work, we postpone a detailed

description of the experimental setting to Chapter 5.
4This reproduces the results of [BHO+99].

23

0

40

80

120

160

200

0 0.1 0.2 0.3

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (s)

3 procs
32 procs
64 procs

(a) Delay in each second

0

40

80

120

160

200

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
sg

/s
)

Packet delay (ms)

3 procs
32 procs
64 procs

(b) Packet delay in the network

0

40

80

120

160

200

5001000150020002500

T
hr

ou
gh

pu
t (

m
sg

/s
)

Bandwidth (kbps)

3 procs
32 procs
64 procs

(c) Network link bandwidth

0

40

80

120

160

200

0 5 10 15

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

3 procs
32 procs
64 procs

(d) Processing delay upon delivery

Figure 2.6: Throughput degradation when a single receiver is perturbed.

periment is repeated with several group sizes, although always with only a

single perturbed process. Figure 2.6(a) shows that although the reliable multi-

cast protocol is scalable to large groups, a single perturbed receiver degrades

the throughput of all the others. In addition, the same perturbation results

in worse degradation in larger groups. Figure 2.6(b) shows that the impact

of scalability is even larger when there is a delay on network packets to and

from a single process. Figure 2.6(c) shows similar results obtained when the

bandwidth of the link to the perturbed process is reduced.

Finally, we make the application task sleep between message deliveries.

24

In contrast to the previous results, this allows the protocol task to continue

undisturbed exchanging control messages. Figure 2.6(d) shows that when the

delay is too large to keep up with the sender (i.e., it is greater than 5 ms), the

sender is forced to wait, thereby decreasing its throughput and affecting all

receivers. In contrast to previous results, different group sizes do not affect

throughput.

Naturally, if reliability is strictly required, i.e., if all recipients must eventu-

ally deliver all messages, either the sender adjusts to the slowest component

or an indefinitely large buffer would be required. Although it is possible to

exclude slow members from the group, transient problems by different ma-

chines may induce the same behavior. In such a situation, excluding members

leads to reduced availability and additional performance impact when reinte-

grating them.

2.5 Relaxed reliability

As limitations of group communication are related to the enforcement of strong

reliability guarantees, performance can often be improved by relaxing the

guarantees provided. This is useful as it is actually possible to ensure consis-

tency with relaxed guarantees. In this section we describe several approaches

to relax reliability, order and view synchrony and their impact on the com-

plexity of application programming.

2.5.1 Addressing throughput stability

Existing proposals addressing throughput stability weaken reliability guaran-

tees, such that slower receivers are not required to deliver all messages and

thus do not need to slow down the sender. Two major examples of this ap-

proach can be found in literature [BHO+99, CT90].

Bimodal multicast [BHO+99] offers probabilistic reliability: a message is

25

delivered to all or none of the processes with high probability. The probabil-

ity of a message being received by only some of the processes can be made

as small as necessary by adjusting configuration parameters. The underly-

ing gossip-based protocol works by relaying messages a bounded number of

times to randomly selected subsets of processes. After that, the message can

be discarded from buffers without feedback from receivers, thus decoupling

global throughput from the effect of perturbed processes. This means that

messages might not be delivered to those processes that fail to meet perfor-

mance assumptions. Notice that the protocol ensures that the application is

notified when a message is omitted. The usefulness of the protocol is illus-

trated in the context of information dissemination applications.

The approach to protocol design known as Application Level Framing

(ALF) [CT90] proposes that automatic buffering and retransmission should

not be ensured by the protocol, therefore avoiding buffer starvation. Instead,

the application is expected to explicitly request retransmissions of lost mes-

sages that are considered relevant and the sender is expected to provide them

upon request of the protocol. The usefulness of such protocols has been de-

scribed for file-transfer, where lost messages can be always reread from the

immutable file, and for conferencing applications with loosely defined consis-

tency requirements.

2.5.2 Consistency with relaxed reliability

When there are consistency requirements the additional complexity has to

be managed by the application. A simple workaround for message loss that

may compromise consistency is to force the receiver to exclude itself from the

group and rejoin later in order to get a correct copy of the state [BHO+99]. This

has however the same drawbacks as directly excluding slower members.

Excluding members can be avoided by retransmitting lost messages or

other substituting messages as determined by the application. Consider the

26

information dissemination scenario of Section 2.3.1. The loss of an update

message can be overcome by the delivery of a more recent message recreated

from the current state of the sender. However, until this message is deliv-

ered, the observer has an incomplete sequence of messages that, upon failure

of the sender, could result in inconsistency. Each observer has thus to buffer

messages until a complete sequence is locally available and only then apply

them.

The advantage of performing buffering within the application is that se-

mantics can be used to minimize the amount of retransmission and buffering

required. For instance, by recognizing that a lost message contained an obso-

lete value for an item, its retransmission can be avoided. Even if the obsolete

message is already available, it can be immediately discarded, reducing the

amount of buffer space used. The drawback is that this is not straightforward,

even in the simple information dissemination application: Care must be taken

that at all times a consistent state can be reached if the server fails.

Furthermore, when an observer is notified that a message has been lost, it

might be unable to decide whether retransmission is required since it has no

knowledge of that message’s content and thus cannot evaluate whether the

unknown message is relevant. This can be circumvented by the use of two

multicast protocols in parallel [RM97]: An unreliable protocol used for pay-

load and a reliable protocol used to convey meta-data describing the content

of data messages sent on the payload channel. Using information from the

control channel, the receiver may evaluate the relevance of lost messages in

the payload channel and explicitly request retransmission when needed.

In short, relaxed reliability models proposed can in fact improve through-

put stability but at the cost of more complexity for the application program-

mer. Namely, compared to the solution using group communication, the pro-

grammer is now forced to deal directly with process and network faults and

manage buffers itself while managing a separate meta-data session.

27

2.5.3 Relaxed ordering and view synchrony

It is also possible to relax the guarantees of group communication in aspects

other than reliability. Namely, several relaxed ordering and view synchrony

criteria have been proposed.

A relaxation of order known as Generic Broadcast [PS99] stems from the

observation that it is possible to ensure consistency in a replicated state ma-

chine despite some messages being delivered in different orders. For instance,

messages that address disjoint parts of the state and do not interact. Relaxed

ordering can be obtained by parameterizing the protocol with a conflict rela-

tion: Only pairs of messages that are related need to be totally ordered by

the protocol. When the conflict relation is empty the protocol defaults to un-

ordered reliable multicast and when all messages conflict it ensures total or-

der. This allows the latency of the protocol to be reduced when conflicting

messages are not multicast concurrently.

Ensuring that messages are received in the same view they were sent and

that messages from correct processes are not discarded requires that processes

are blocked while membership is changing [FvR95]. Although both are de-

sirable characteristics, this results in exposing the latency of installing a new

view to the application. This is often not acceptable and many protocols do

not implement Sending View Delivery [ADKM92, Hay98]. An alternative is to

inform the protocol of which messages need to be delivered in the view they

were multicast and discard other messages when delivering them in the same

view is not possible [SKM00].

2.6 Summary

This chapter motivates the work on semantic reliability by illustrating how

strong reliability guarantees are responsible both for greatly simplifying re-

liable distributed system programming and for reduced performance of pro-

28

tocol implementations. Although existing proposals to alleviate performance

problems result in substantially higher complexity to be managed by applica-

tions, they show that application semantics are effective in improving perfor-

mance.

It is interesting to note that relaxations of ordering and view synchrony

do not dramatically change group communication. In fact, unless the applica-

tion program specifies in which situations the guarantees can be relaxed, both

proposals default to strong guarantees. This means that the application can

be easily developed using strong guarantees and later, incrementally, have its

performance improved by giving additional details to the protocol about the

messages being exchanged.

This contrasts to reliability relaxations that from the start require that the

application is concerned with complex mechanisms for buffering and retrans-

mission on which its correctness depends. The challenge is thus to improve

the performance using application semantics to relax reliability without dis-

carding the comfortable programming paradigm of group communication.

29

30

Chapter 3

Message Obsolescence

We propose to selectively relax reliability using knowledge about message se-

mantics, specifically, by determining which messages become obsolete while

still in transit. This improves throughput stability without burdening the ap-

plication with all the complexity of maintaining consistency that is supposed

to be encapsulated in the group communication protocol. To use this con-

cept we must capture message semantics at the application level and convey

it to the protocol. In this chapter we discuss how message semantics can be

formalized, which data-structure is appropriate to represent it, and how this

structure is built in common application scenarios.

3.1 Selectively relaxing reliability

Allowing applications to determine which messages to omit in slower re-

ceivers improves throughput stability, but doing this in a fault tolerant manner

with existing relaxed reliability models highly complicates application pro-

gramming. In fact, allowing the application to dictate the policy for discarding

messages is done by burdening the application with mechanisms for buffer-

ing and retransmission. If enough knowledge about message semantics can

be conveyed to the protocol, it becomes possible to select which messages can

31

be omitted by slower processes without endangering consistency and without

bringing the complexity of buffering and retransmission into the application.

3.1.1 Intuition

The basic idea behind our approach is that in a distributed application some

messages become obsolete while still in transit because other messages over-

write or implicitly convey their content. If a message that has not yet been

delivered to the application is recognized as obsolete, it can be safely purged

from buffers without compromising the application’s correctness. Notice that

when the system is congested this is likely to happen, as buffers in the path to

the slower component will be full and thus contain messages sent some time

ago. Over time, if enough obsolete messages can be purged, the sender never

needs to be blocked thus sustaining a high throughput. If not, purging some

messages at least ensures that blocking is necessary less often and for shorter

periods of time.

Processes that have not delivered messages that became obsolete and are

purged omit their delivery. The result is a reliability criterion in which the pro-

tocol ensures that message content is delivered either explicitly or implicitly

in more recent messages. This means that the protocol reliably transmits se-

mantics of message sequences despite the loss of individual messages, hence

semantic reliability.

3.1.2 Applications

Applications embodying operations with overwrite semantics, in particular,

applications managing read-write items are the most obvious example of ap-

plications that exhibit message obsolescence. In these applications, any up-

date of a given item is made obsolete by subsequent update operations. Rec-

ognizing this fact, some applications deal with obsolescence directly. For in-

stance, distributed file-systems, such as NFS, cache write operations in the

32

client to minimize network traffic [Sat90]. Another example are weakly con-

sistent distributed shared memory systems, where the effect of memory op-

erations is restricted by synchronization primitives. In practice, this allows

delaying and even suppressing the dissemination of updates [RM93].

Although this solves the problem when using point-to-point communica-

tion channels, it is not possible to implement these optimizations at the ap-

plication level when using multicast protocols. In order to timely convey the

message to faster receivers, the application forwards updates to the multicast

protocol as soon as possible. At that point, the message becomes out of reach

of the application and cannot be discarded even if shortly after it becomes

obsolete and thus unnecessary load to already slower receivers.

Typical examples are applications such as on-line trading systems, where

new quotes have to be continuously disseminated to a large number of recip-

ients [PS97] or distributed multi-player games in which frequently updated

game state is disseminated to a group of replicas (see Chapter 6). This is also

the case of control and monitoring applications in which the input from sen-

sors is frequently updated [Bir99].

Not only applications with read-write semantics exhibit the obsolescence

property. For instance, many distributed algorithms are structured in log-

ical rounds and, when the algorithm advances to the next round messages

from previous rounds become obsolete. Recognizing this property, the con-

cept of stubborn channel has been proposed [GOS98], in which reliability has

to be ensured just for the last messages (note that the number of rounds is

not bounded). It has been shown that the fundamental problem of distributed

consensus [GOS98, Oli00] can be solved in asynchronous distributed systems

augmented with failure detectors and 1−stubborn channels. Stubborn channels

can be seen has a particular case of obsolescence.

33

3.2 Expressing message obsolescence

Semantic reliability requires that the protocol is able to determine which mes-

sages are obsolete based on their semantics. A convenient mechanism is to

perform the notification of obsolescence of some message using another mes-

sage whose content is directly responsible for the fact. For instance, the mes-

sage carrying the updated value of an item implicitly notifies the protocol that

the preceding message for the same item has become obsolete.

All required semantics can thus be abstracted as a binary relation on the

set of messages. The fact that a message m is obsoleted by a message m′ is

denoted as m @ m′. The intuitive meaning of the obsolescence relation is that if

m @ m′ and m′ is delivered, the correctness of the application is not affected

by omitting the delivery of m. The notation m v m′ is used as a shorthand for

m @ m′ ∨m = m′.

Specification, implementation and usage of protocols based on message

obsolescence is simplified by making the obsolescence relation behave accord-

ing to intuition that messages are obsolete because they are implicitly con-

veyed or overwritten by other messages. Therefore, it is assumed that the

obsolescence relation is transitive and that it is a subset of the causal order

relation. The obsolescence relation is thus a strict partial order relation.

A binary relation on the set of messages is not the only option to capture

message semantic. For instance, an obsolescence relation @∗ among sets of

messages could be considered, allowing direct representation of facts such

as “m becomes obsolete upon delivery of both m′ and m′′” with the notation

{m} @∗ {m′, m′′}. The additional complexity is however not worthwhile, as

the same result can be achieved by using an additional ordering relation, that

is already true for most applications based on group communication. Con-

sider for instance {m1, m2} @
∗ {m3, m4}, where delivery of both m3, m4 is re-

quired to make m1, m2 obsolete. By relying on delivery order to ensure that

the delivery sequence is m3, m4, this reduces to m1 @ m4 and m2 @ m4, as the

34

delivery of m4 implies previous delivery of m3. Further examples are given in

Section 3.4.

3.3 Representing message obsolescence

Implementing semantic reliability requires that an interface is exposed for the

application to convey the obsolescence relation to the protocol. We are inter-

ested in general purpose techniques that can be applied to a wide range of

systems in an efficient manner. Therefore we exclude solutions such as requir-

ing special formatting of messages [CRW00] for the protocol to infer which

messages are obsolete.

The obsolescence relation has also to be available in processes other than

the sender of the messages and possibly in processes not running the applica-

tion but acting only as routers. Therefore we exclude also callbacks to query

the application for obsolescence. Time and space efficient algorithms and data

structures to manipulate protocol buffers and determine obsolete messages

exclude also the possibility of enriching the messages with code [TTP+95]. The

remaining option is to use a concrete representation of the obsolescence rela-

tion as a data structure that is used to annotate messages. This data structure

is initialized by the application and supplied to the protocol along with each

message in the multicast operation.

A requirement of the representation technique is that it is able to repre-

sent a large subset of possible obsolescence relations to maximize the abil-

ity to recognize and purge obsolete messages. On the other hand, the repre-

sentation does not need to be complete to ensure application correctness: if

some messages are not recognized as obsolete, only purging efficiency is lost.

The amount of relations that can be represented has therefore to be weighted

against the need to make the structure compact and efficient, as annotations

need to be stored in buffers, transmitted over the network and manipulated

35

m1

�

&&

�

77Q
V Z _ d h

m
m2

�

77
m3

�

##
m4 m5

Figure 3.1: Sample obsolescence relation.

(1, a)

�

))

�

55T V X Z [] _ a c d f h j
(2, b)

�

55(3, a)

�

((

(4, a) (5, b)

Figure 3.2: Representation of Figure 3.1 with item tagging.

when searching for obsolete messages.

3.3.1 Item tagging

The simplest representation technique for applications managing read-write

data items consists in associating a unique tag to each data item. Each message

is tagged with the identifier of the data item it is updating. Tags are added to

the message headers and used in combination with the sequence numbers

generated by the protocol: if two messages from the same sender carry the

same tag, the one with the highest sequence number makes the other obsolete.

This allows relations among messages originating from the same sender to be

represented.

Let the header of a message m be represented as (seqNum,itemId) then

m @ m′ if m.seqNum < m′.seqNum and m.itemId = m′.itemId. The represen-

tation of a sample obsolescence relation of Figure 3.1 is presented in Figure 3.2

assuming that m1, m3, m4 update item a and m2, m5 update item b. Notice

that although simple, this technique does not allow expressing that a message

36

obsoletes several other non-related messages. For instance, it would not be

possible to represent a further message m6 such that simultaneously m4 @ m6

and m5 @ m6, as m4 6@ m5.

Notice that seqNum can be determined by the protocol itself and thus the

protocol interface needs only a single additional parameter for the itemId. This

technique can be generalized to represent obsolescence among causally re-

lated messages originating from multiple senders: one has to use a vector

instead of a single sequence number. As happens with the sequence number,

the vector can be the same used for causal ordering thus not incurring in any

additional overhead.

3.3.2 Message enumeration

A more general alternative consists in having each message explicitly enu-

merate which preceding messages it makes obsolete. This approach is clearly

more expressive than the item tagging approach and can easily be used to rep-

resent relations between causally related messages from distinct senders. On

the other hand, this results in significant space overhead in message headers

to list message identifiers.

In addition it burdens either the protocol or the application program with

the task of determining the transitive closure of the relation. Consider three

messages such that m1 @ m2 @ m3. The coding of obsolescence should allow

to verify that m1 @ m3 without requiring m2 to be available. For instance,

because m2 has already been purged. To ensure that the transitivity of the

obsolescence is preserved in the message enumeration technique, a message

must enumerate not only its direct predecessors, but all the (transitive) prede-

cessors.

If the header of a message m is represented as (id,predSet) then m @ m′

if m.id ∈ m′.predSet. Considering only messages from the same sender, the

identification is a single integer. The representation of the sample obsoles-

37

(1, {})

�

**

�

33V X Y [\ ^ _ ` b c e f
(2, {})

�

33
(3, {1})

�

**

(4, {1, 3}) (5, {2})

Figure 3.3: Representation of Figure 3.1 with message enumeration.

cence relation of Figure 3.1 is presented in Figure 3.3. This technique trivially

expresses that a message obsoletes several other non-related messages. For

instance, it would be possible to represent a further message m6 such that si-

multaneously m4 @ m6 and m5 @ m6 with (6, {1, 2, 3, 4, 5}).

Notice that id can be assigned by the protocol itself and be opaque to the

application, as long as the application is informed upon multicast and delivery

of each message. The protocol interface has also to be extended to accept

predSet for each message multicast.

In practice, only those messages that are possibly still in transit need to be

enumerated. Furthermore, only recent messages from the enumeration need

to be carried by each message without any significant impact on the purging

efficiency. This optimization is possible because it is very unlikely that two

messages far apart in the message stream can be found simultaneously in the

same buffer.

3.3.3 k-Enumeration

The k-enumeration technique is a representation strategy that combines the ef-

ficiency and simplicity of the tagging approach with the expressiveness of the

message enumeration approach. The technique exploits the facts that purging

is mainly applied to pairs of messages that are close to each other in the mes-

sage stream and that messages related by obsolescence are totally ordered in a

sequence. If the supporting order is FIFO, it can be used only to represent ob-

38

(1, 1, [0000])

�

,,

�

22Z [\] ^ _ ` a b c d
(2, 2, [0000])

�

22
(3, 3, [0100])

�

++

(4, 4, [1010]) (5, 4, [0100])

Figure 3.4: Representation of Figure 3.1 with k-enumeration.

solescence among messages from the same sender. If the supporting order is

a total order, it can be used to represent obsolescence among causally related

messages from multiple senders.

Each message explicitly enumerates which of the k preceding messages in

the supporting order it makes obsolete. This information can be stored in a

bitmap of k bits. If the nth position of the bitmap is set to 1, the message makes

obsolete the nth preceding message. This results in a compact representation

that is also efficiently manipulated: it is very easy to compute the representa-

tion of transitive obsolescence relations using only shift and binary “or” oper-

ators. It also makes it very easy to compute, using the same efficient operators,

the representation of the obsolescence relation when a message makes several

other obsolete.

Let the header of a message m in a sequence be (seqNum,base,map). Bits in

map are indexed from 1 to k. Then m @ m′ if m′.map[m′.base−m.seqNum] = 1.

Notice that for the obsolescence relation to be coherent with causality, it is al-

ways true that base≤seqNum. The representation of the sample obsolescence

relation of Figure 3.1 with k = 4 is presented in Figure 3.4. The bitmap is

ordered from left to right and thus [1000] refers to the message with seqNum

equal to base−1. This technique trivially expresses that a message obsoletes

several other non-related messages. For instance, it would be possible to rep-

resent a further message m6 such that simultaneously m4 @ m6 and m5 @ m6

with (6, 6, [1111]). Notice that m1 @ m6 cannot be determined and thus must

be assumed as not true by the protocol.

39

Both seqNum and base can be determined by the protocol itself. If the sup-

porting order is FIFO, they are equal to the position of the message in the

sequence and thus only one needs to be stored. If the supporting order is

total order, base is the sequence of the last message delivered and seqNum is

attributed by the total order protocol.

3.4 Programming examples

Any application of reliable multicast can be used with semantic reliability by

using an empty obsolescence relation. This does not however allow any im-

provement in throughput stability as no message ever becomes obsolete and

thus is ever purged. To take advantage of a semantically reliable protocol a

suitable obsolescence relation has to be determined and then conveyed to the

protocol.

In this section we give examples of these two steps for some common ap-

plication constructs: state dissemination and a replicated state machine. The

technique used to represent the obsolescence relation is k-enumeration. An

informal definition of the protocol is presented just to convey the intuition

and allow reasoning on the correctness of the application with a non-empty

obsolescence relation.

3.4.1 Informal protocol definition

An informal definition of a semantically reliable multicast protocol for finite

sequences of messages can be obtained by using a reliable multicast protocol

for comparison:

Semantically Reliable Multicast: Consider the sequence Sp of messages de-

livered by each correct process p using semantically reliable multicast. There

is a sequence of messages R that in the same situation (i.e., the same messages

40

R Mandatory in Sp Optional in Sp

m1 m1

m1, m2 m1, m2

m1, m2, m3 m2, m3 m1

m1, m2, m3, m4 m2, m4 m1, m3

m1, m2, m3, m4, m5 m4, m5 m1, m2, m3

Figure 3.5: Possible runs with the obsolescence relation of Figure 3.1.

multicast and the same correct processes) would have to be delivered to all

correct processes by reliable multicast. Sequences R and Sp must satisfy the

following properties:

P1. Every message m in some Sp is also in R;

P2. For every message m in R and for every correct process p there is some

message m′ in Sp such that m v m′;

P3. If two messages m, m′ appear both in R and in some Sp then they do so

in the same order.

This definition does not specify which ordering is enforced by the reliable

multicast protocol. Therefore, depending on the ordering chosen for reliable

multicast used, a different semantically reliable counterpart exists. For in-

stance, by assuming that R is a sequence, this definition assumes a total order

on messages: Either because there is a single sender and the protocol enforces

FIFO or because the protocol enforces total order. We use both FIFO and total

ordered versions of semantically reliable multicast in the examples.

Consider the sample obsolescence relation of Figure 3.1. If all processes are

correct, then R is the sequence m1, m2, m3, m4, m5. This means that for every

correct p, Sp includes m4 and m5. Including m1, m2, m3 is optional, as long as

41

/* Server process */
Initially:

seq = 0
for all id: info[id].map = [0..0] and info[id].seq = 0

1: upon update(id, value) do
2: write(id, value)
3: seq← seq+1

4: info[id].map← SHIFT(info[id].map, seq − info[id].seq)

5: multicast(UPDATE(id,value)) tagged with (seq, seq, info[id].map)

6: info[id].seq← seq+1

7: info[id].map← SHIFT(info[id].map, 1) OR [10..0]

/* Observer processes */
8: upon deliver(UPDATE(id, value)) do
9: write(id, value)

Figure 3.6: Pseudo-code of state dissemination.

the relative order in the sequence is preserved. If the sender fails, then any

prefix is acceptable as R and Sp varies accordingly as shown in Figure 3.5.

This definition avoids the complexity of a precise specification and is use-

ful only for motivation. Notice that the consequences of semantic reliability

on liveness are not addressed, e.g., which messages should be delivered if an

infinite sequence of related messages is multicast. Nevertheless this suffices

for reasoning about the safety of programming examples presented below.

In fact, as with strong reliability, several different specifications are possible.

Chapter 4 will present and discuss formal specifications and algorithms.

3.4.2 Single item operations

The solution proposed for fault tolerant state dissemination using FIFO reli-

able multicast can directly be reused with FIFO semantically reliable protocol

by assuming that an update to some item makes all previous updates to the

42

same item obsolete. This leads to the following definition of the obsolescence

relation: Let UPDATE(x, v) denote a message carrying an update of item x to

value v. If mi = UPDATE(x, v) and mj = UPDATE(y, u) are the ith message and

the jth message in a sequence, mi @ mj if i < j and x = y. The assumption that

all operations are updates can easily be removed as described in Chapter 6.

It is easily observed that the value of an item after delivering a message

sequence Sp is the same as after delivering R: If the item has been modified,

its value is that of the latest update. As the last update of each item never

becomes obsolete, then it is in Sp (by P2 and P1) and it is the last update of the

item in Sp (by P3 and P1). If the item is not modified by R, then it is also not

modified by Sp (by P1) and thus its value is the initial value.

The next step is to represent the obsolescence relation to be conveyed to the

protocol. Figure 3.6 presents pseudo-code for that using the k-enumeration

technique. The additional lines required only with semantic reliability are

shaded. Function SHIFT(b, n) used in lines 4 and 7 shifts right a bitmap b by

n bits. OR and AND denote bitwise logical operations on the bitmap. [0..0]

denotes a bitmap with all bits cleared to 0. [10..0] denotes a bitmap with only

the leftmost bit set to 1 and [01..1] a bitmap with only the leftmost bit set to 0.

Each update operation has a sequence number calculated in line 3. For

each item with identification id, the algorithm stores a bitmap info[id].map that

holds a k-enumeration of previous operations that have modified its value.

Variable info[id].seq holds the sequence number of the latest of these.

As info[id].map refers to the immediate predecessors of update with se-

quence info[id].seq, it is shifted to make it refer to the predecessors of current

operation seq (line 4). The result is used directly as the tag to the multicast

operation (line 5). In line 7, info[id].map is updated once more by inserting 1 in

its leftmost bit, referring to the current update.

Notice that the additional operations required are all elementary arith-

metic and logical operations that are quickly executed. The computational

effort required to compute the representation of the relation is thus negligible

43

m1 m2

�

##
m3 m4

�� _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _

��

�� _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _

��

(a) Intended obsolescence relation

m1 m2

�

++

COMMIT(1)

�

44
m3 m4 COMMIT(2)

�� _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _

��

�� _ _ _ _ _ ��
�
�

�
�

��
_ _ _ _ _

��

(b) Modification to preserve operation boundaries

Figure 3.7: Obsolescence relation preserving operation boundaries.

compared with the cost of multicasting a message.

If an item is not updated in k consecutive operations, the value of info[id] is

meaningless as info[id].map after line 4 it will be entirely set to zero. It is there-

fore possible to store info[id] only for items modified by the latest k operations,

thus saving space in exchange of some time to address info[id].

Notice also that the following modification to the obsolescence definition

would not make any difference in what messages can be purged: Make m v

m′ if there is some m′′ such that m′′ causally precedes m′ and m @ m′′. This

would avoid separately storing a bitmap for every item and save space. We

make use of this in the following section.

3.4.3 Multiple item operations

A slightly more complex variation of the state dissemination problem is when

each operation atomically updates several items. This imposes an additional

restriction on consistency that requires updates of the same operation to be

applied atomically by all observers. Consider the example of Figure 3.7(a)

where m1, m2 and m3, m4 are updates resulting from two operations. There-

44

fore applying just m1 or m1, m2, m3 will not result in a consistent state.

This can be solved with FIFO reliable multicast either if all updates from

an operation are grouped in a single message or if individual updates can be

buffered by the observer until the full operation is locally available and only

then applied. Should the server fail, the state of each of the observers reflects

the last fully delivered operation.

Neither of these can be used with semantic reliability with the technique

shown in the previous section. Grouping several updates within a single mes-

sage drastically reduces purging opportunities, as m @ m′ only if m updates

a subset of the items updated by m′. On the other hand, delaying the ap-

plication of individual updates may result in inconsistency. For instance in

Figure 3.7(a) with m2 @ m3, upon failure of the sender it is possible that an

observer delivers m1, m3, and thus does no apply any of them, and that simul-

taneously another observer delivers m1, m2, m3 and thus applies m1, m2.

This can be avoided by modifying the obsolescence relation with the in-

troduction of additional COMMIT(r) messages marking the boundary of each

operation r. With this, it is possible to postpone making a message obsolete

until the full operation is ensured to be delivered. Figure 3.7(b) shows the

modified sample relation. Notice that all runs including m3 but not m4 will

include m2 and COMMIT(1).

The obsolescence relation is defined as follows. Considering that the ith

message in a sequence is an update of item x to value v as part of operation r

is denoted mi = UPDATE(r, x, v), then mi @ mj if either:

• mi = COMMIT(r), mj = COMMIT(s) and r < s; or

• mi = UPDATE(r, x, v), mj = COMMIT(s) and some mk = UPDATE(t, y, u)

exists such that x = y and r < t ≤ s.

Notice that any commit message makes all previous commit messages ob-

solete, even if corresponding update messages refer to distict items. This hap-

45

/* Server process */
Initially:

seq = 0 and tseq = 0
map = [0..0] and for all id: iseq[id] = 0

1: upon update(set) do
2: write_all(set)
3: tseq← tseq+1

4: for all (id,value) ∈ set do
5: seq← seq+1

6: map← SHIFT(map,1) OR SHIFT([10..0], seq − iseq[id])

7: iseq[id]← seq

8: multicast(UPDATE(tseq,id,value)) tagged with (seq, seq, [0..0])
9: seq← seq+1

10: map← SHIFT(map, 1)

11: multicast(COMMIT) tagged with (seq, seq, map)
12: cseq← seq+1

13: map← SHIFT(map,1) OR [10..0]

/* Observer processes */
Initially:

queue is empty
last = 1

14: upon deliver(UPDATE(tseq, id, value)) do
15: if tseq 6= last
16: write_all(queue)
17: clear queue
18: queue(id, value)
19: last← tseq+1

20: upon deliver(COMMIT) do
21: write_all(queue)
22: clear queue
23: last← tseq+1

Figure 3.8: Pseudo-code of state dissemination preserving operation bound-
aries.

46

pens because all that is required is that eventually a commit message is deliv-

ered, resulting in all receivers eventually reaching a consistent state.

The representation of this obsolescence relation is done by the shaded lines

in Figure 3.8. Upon an update request, all values are updated (line 2) and

then multicast one by one to observers (line 8). Finally a commit marker is

multicast (line 11). Observers deliver updates one by one and store them in a

queue (lines 15 to 18). Upon commit, all updates are applied and the queue

is emptied (lines 21 to 23). Calculating tags for semantic reliability involves

three steps:

• while multicasting updates with an empty tag (line 8), the obsolescence

map is updated with bits referring messages made obsolete by the cur-

rent operation (lines 6 and 7);

• the commit message is tagged with map adjusted to current message se-

quence (line 11), which stores the messages made obsolete up to the pre-

vious commit operation;

• the bitmap of obsolete messages for operation tseq+1 is saved (line 13),

including the current commit message.

Notice that multiple application messages can be clustered in a single trans-

port level message for efficient network transmission and thus do not intro-

duce additional overhead. This is a feature that is present in group communi-

cation toolkits as it is invaluable regardless of semantic reliability [HvR95].

Notice also that the role of commit messages can be performed by a single

bit that is set in the last message of each operation. Nevertheless, this is not

critical, as in a message sequence all but the last commit message are obsolete

and can be purged.

47

3.4.4 Concurrent operations

In this section we consider obsolescence relations among concurrent mes-

sages. As an example we use a set of servers managing a collection of items

as a replicated state machine: Clients can request the current value of an item

or update the item with a new value. With group communication, this can be

solved as described in Section 2.3.3.

Obtaining performance improvements from semantic reliability requires

that a non-empty obsolescence relation is defined. It is thus desirable that

update messages can be made obsolete by later update requests. In contrast to

previous examples, using obsolescence relations among messages originating

from the same sender is not interesting. In fact, it may lead to inconsistency.

Consider messages m1, m2 from client process p1 updating the same item x. If

m1 @ m2, it is possible that some servers deliver both m1, m2 and others only

m2. However, it is possible that there is some other client process that issues

a message m3 requesting the value of x. If the total order is m1, m3, m2 then

some servers will reply with the initial value of x while other reply with the

value established by m1.

Furthermore, a pair of messages m1, m2 addressing the same item might

have been issued by different processes and thus concurrently as shown in

Figure 3.9(a). Although messages m1 and m2 update the same item no relation

among them can be established because this relation cannot be known at the

time m2 is multicast. That m1 @ m2 can only be established after the protocol

decides to order m1 before m2.

Both these problems can be circumvented by relying on a third message

that is multicast by some process after delivering both m1 and m2. For in-

stance, Figure 3.9(b) shows that process q upon multicasting m3, which by

ordering will delivered after m2, may notify the protocol that m1 has become

obsolete. This will allow the same messages to be purged as the originally

intended relation.

48

p : multicast(m1)

**

q : deliver(m1) // deliver(m2)

r : multicast(m2)

22

(a) m1 @ m2 cannot be represented because

multicast(m1)||multicast(m2)

p : multicast(m1)

**

q : deliver(m1) ///o/o deliver(m2) ///o/o multicast(m3)

r : multicast(m2)

22

(b) m1 @ m3 can be represented and has the same effect (represents useful causal-

ity)

Figure 3.9: Obsolescence relations among concurrent messages.

The process that multicasts m3 already knows if between m1 and m2 there

is a message whose external effects depends on the value of item x. Should

there be some message that reads the value of x, no process makes m1 obsolete

upon multicasting m3.

Considering that denotes causality, that mi = UPDATE(x, v) denotes the

ith message carrying an update of item x to value v, and ml = GET(z) the lth

message carrying a request for the value of item z, then mi @ mj if there is

some message mk = UPDATE(y, u) such that both:

• deliver(mi) deliver(mk) multicast(mj) and x = y; and

• there is no message ml = GET(z) such that x = z and deliver(mi)

deliver(ml) and deliver(ml) deliver(mk);

Figure 3.10 presents the pseudo-code of server processes. Client processes

49

/* Server processes */
Initially:

seq = 0 and map = [0..0]

for all id: info[id].map = [0..0] and info[id].seq = 0

1: upon deliver(UPDATE(id, value)) do
2: write(id, value)
3: seq← seq+1

4: info[id].map← SHIFT(info[id].map, seq − info[id].seq)

5: map← SHIFT(map,1) OR info[id].map

6: info[id].seq← seq+1

7: info[id].map← SHIFT(info[id].map, 1) OR [10..0]

8: upon deliver(GET(id)) do
9: info[id].map← info[id].map AND [01..1]

10: seq← seq+1

11: map← SHIFT(map,1)

12: multicast(REPLY(id,read(id))) tagged with (?,seq,map)

13: upon deliver(anything else) do
14: map← SHIFT(map,1)
15: seq← seq+1

Figure 3.10: Pseudo-code of a replicated state machine.

are not displayed. Upon receiving a request to update an item, a server up-

dates its current map of obsolete messages map with previous updates to the

same item stored in info[id].map (lines 4 and 5). It then updates info[id] to in-

clude the update message that is being delivered (lines 6 and 7).

When handling a request to read the value of an item, the last update is

erased from info[id] (line 9) ensuring that it will never become obsolete. The

reply is then issued (line 12) taking advantage of the opportunity to notify the

protocol of messages known to be obsolete. Additional messages could be

used specifically for the purpose of notifying the protocol of which messages

became obsolete, instead of using reply messages. As each of these messages

50

would make the previous one obsolete, this would not represent significant

overhead.

Notice also that, upon multicast of a message in line 12, the full annota-

tion of the message is not known. It is the responsibility of the protocol to

set seqNum to the sequence number of the message after it has been totally

ordered.

In more complex applications, the distinction between update and read

operation might not be clear. For instance, a single operation might be used

to update the value of some item with the result of a computation with the

values of other items. In such situation, it will be necessary to reset the maps

of all items read as in line 9 while performing the update operation. Notice

however that maps need only to be reset if the computation results in state

modification or is externally visible.

This is better illustrated with a concrete example. Consider an application

used in on-line trading to match seller and buyer bids. Replicated servers

maintain the current portfolio of each client as well as current seller and buyer

bids. Clients may at any time update their bids to buy or sell a specific stock.

If a seller and buyer bids match, the transaction is performed by updating the

portfolios and marking the bid items as read in order not to become obsolete.

If not, bid items need not be marked as read and the corresponding message

can later become obsolete.

Another example are control applications, where the input of multiple sen-

sors is processed by a replicated controller. Sensor readings that do not trigger

actuators can be made obsolete by subsequent readings. This is useful when

sensors are monitoring a physical variable that changes continuously (e.g., the

position of an airplane) that may be critical but is seldom used to decide the

answer to another request (e.g., an airplane has changed sectors).

51

3.5 Summary

This chapter presents the intuition underlying semantic reliability: some mes-

sages can be discarded because they become obsolete while still in transit. All

semantics required for the protocol to determine obsolescence can be captured

as a binary relation on messages. This is the basis for the formal definition of

the semantically reliable group communication in the following chapter.

This approach is motivated by discussing an appropriate programmer’s

interface for semantically reliable protocols, which allows the obsolescence

relation to be conveyed by the application to the protocol. The usage of this

interface and of semantic reliability in general is illustrated with concrete ex-

amples, namely, information dissemination and a simple replicated state ma-

chine.

52

Chapter 4

Semantically Reliable Protocols

In this chapter we present the specifications and algorithms for semantically

reliable multicast protocols. Specifically, a multicast protocol requiring a cor-

rect sender (S-SRM) is used to introduce semantic reliability; the core of the

protocol suite is the semantically reliable multicast (S-RM); and the interac-

tion with group membership is illustrated with semantic view synchronous

multicast (S-VSM). These protocols can be adapted to provide uniform agree-

ment, causal order and uniform total order in a similar fashion to conventional

group communication.

4.1 System model and notation

Protocol specifications are presented in the context of an asynchronous mes-

sage passing system model augmented with a failure detector [CT96]. The

distributed system is modeled as a set of sequential processes that can: send

a message; receive a message; consult the failure detection oracle; perform a

local computation; and crash. No assumptions are made on relative execution

speed of processes or on the existence of synchronized clocks. Processes can

only fail by crashing and do not recover, thus excluding byzantine faults. A

process that does not crash is correct. We assume that at most a minority f of

53

processes can crash.

Processes are fully connected by an asynchronous network of point-to-

point message passing channels. Asynchrony means that there is no bound

on the time that a message takes to be transmitted. A channel connecting

process p to process q is used through primitives send(m, q) in process p and

receive(m, p) in process q. Briefly, reliability means that if both the sender and

receiver processes are correct, the message is eventually received. Addition-

ally we assume that channels are FIFO ordered. Assumptions on reliability

and FIFO order are actually not strictly required, but used to simplify the pre-

sentation of the algorithms. In fact, channels can be reduced to fair-lossy chan-

nels [BCBT96].

A consensus protocol [CT96] is assumed to be available and modeled as

a function consensus(v) that takes as parameter a proposed value and returns

the decided value. Informally, consensus ensures that all correct processes

eventually decide the same value and that the decided value is one of the

proposed values. Notice that consensus can be solved in our model, i.e., with

unreliable failure detection [CHT96] and even if the assumption on reliability

of channels was relaxed [GOS98].

The multicast service is used through a pair of primitives: multicast(m)

and deliver(m). If during a computation a process executes multicast(m) (resp.

deliver(m)) it is said to “multicast message m” (resp. “deliver message m”).

When defining a view synchronous multicast, view changes are signaled to

the application by the install(v) primitive. Each view notification v includes

the identification of the view id(v) and of the set of processes which constitute

the current membership of the group memb(v).

The obsolescence relation is used as described in Section 3.2. Briefly, the

fact that a message m is obsoleted by a message m′ is denoted as m @ m′. The

notation m v m′ is used as a shorthand for m @ m′∨m = m′. The obsolescence

relation is a strict partial order relation and subset of causal ordering.

When presenting algorithms a single thread of control is assumed. There-

54

fore each upon/do clause is assumed to be executed without interleaving with

other processing. When several clauses are enabled, i.e., their pre-condition is

true, one of them is chosen non-deterministically to be executed. Fairness as-

sumptions are presented in the text when applicable.

Algorithms use sets and queues as auxiliary data structures. The usual

notation is used for sets in addition to procedures add(S, e) and remove(S, e),

that insert or remove element e in the set variable S. Queues are used with

procedures addToTail(Q, e), that inserts element e in the queue variable Q, and

remove(Q, e), that removes element e from Q. Function removeFirst(Q) removes

and returns the first element of Q. Function merge(Q1, Q2) returns a queue

containing the union of elements of Q1 and Q2 and preserving their relative

ordering. It is assumed that every two elements appearing in both parame-

ters, do so in the same order. Set operations are used on a queue, denoting

operations on the set of elements of the queue.

4.2 Semantically sender-based reliable multicast

4.2.1 Specification

Semantic reliability can be applied to a simple multicast protocol suited to

information dissemination when there are no consistency requirements upon

the failure of the sender. Semantically Sender-based Reliable Multicast (S-

SRM), that relies on the correctness of the sender of each message, is defined

by:

Semantic Sender-based Reliability: If a correct process multicasts a message

m and there is a time after which no process multicasts m′′ such that

m @ m′′, then all correct processes deliver some m′ such that m v m′.

Integrity: For every message m, every process delivers m at most once and

only if m was previously multicast by some process.

55

FIFO Delivery: If a process multicasts a message m before it multicasts a mes-

sage m′, no process delivers m after delivering m′.

The intuitive notion that a message can be substituted by another that

makes it obsolete is captured in the previous definition by the statement “de-

liver some m′ such that m v m′”. In addition, if there is an infinite sequence of

messages in which each message obsolete all its predecessors, the implemen-

tation may omit all of these messages. The possibility of omitting all messages

that belong to an infinite sequence is captured by the statement “there is a time

after which no process multicasts m′′ such that m @ m′′”. It may seem awk-

ward at first that such occurrence is allowed. However, it should be noted

that the application, by defining the obsolescence relation, can prevent such

sequences from occurring. Actually, the application can decide exactly which

is the most appropriate length of any sequence of messages related by obsoles-

cence. On the other hand, if the protocol was forced to deliver messages from

a possibly infinite sequence (by omitting the statement above from the specifi-

cations), the protocol designer would be forced to make an arbitrary decision

of which messages to choose from that infinite sequence (e.g., one out of every

k messages). It is clearly preferable to leave this decision to the application.

4.2.2 Algorithm

As the specification relies on the correctness of the sender process, the algo-

rithm simply sends a message to each of the destinations upon multicast. As

channels are reliable and FIFO, upon reception the message can be delivered.

However, this does not allow any message to be purged and thus does not

result in implementations that allow performance improvements due to se-

mantic reliability.

Illustrating purging requires that buffering is made explicit. In the algo-

rithm of Figure 4.1 this is done both in the sender with to-send and in the

receiver with to-deliver. When a message is multicast (t1), it is placed in an

56

Initially:
for all p: to-send[p] = empty queue
to-deliver = empty queue

proc purge(Q) do
while ∃m, m’ ∈ Q: m @m’ do

remove(Q, m)

t1 : upon multicast(m) do
forall p ∈ destinations do

addToTail(to-send[p], m)
purge(to-send[p])

t2 : upon to-send[p]6= ∅ do
m←removeFirst(to-send[p])
send(m,p)

t3 : upon receive(m,p) do
addToTail(to-deliver, m)
purge(to-deliver)

t4 : upon to-deliver 6= ∅ do
m←removeFirst(to-deliver)
deliver(m)

Figure 4.1: Semantic Sender-based Reliable Multicast.

outgoing buffer to-send[p] for each destination process p. This enables t2 for

each of the destinations, which being executed transmits the message. When

a process receives a message (t3) it places it in the incoming buffer to-deliver.

This enables t4 which eventually delivers it. This implies the following fair-

ness assumptions:

• transitions t2 and t4 are weakly fair, i.e., they cannot be enabled forever

in a correct process without being eventually executed [Lam94];

• transition t3 is also weakly fair, according to the assumption of reliable

channels;

• no fairness assumption is required on t1, as an application that never

multicasts messages is still correct.

Notice that the algorithm does not otherwise specify the interleaving of tran-

sitions and thus how long or how many messages are stored in each buffer.

This abstracts flow-control mechanisms that delay network transmission (t2)

and delivery (t4) for bounded amounts of time. Purging happens when mes-

sages are added to a buffer in t1 and t3 by executing the purge procedure.

57

This searches for pairs of messages related by the obsolescence relation and

removes the obsolete message thus avoiding it to be transmitted or delivered.

4.2.3 Correctness argument

The correctness of the algorithm is tightly related to the properties of point-to-

point channels. The proof of integrity reduces to two simple to prove invari-

ants: i) the set of messages in any to-send, to-deliver and in transit in point-to-

point channels is a subset of messages multicast; ii) for any pair of processes

p, q, sets of messages in to-send[q] of p, in to-deliver of q, and in transit in the

channel from p to q are disjoint. Both rely on point-to-point channels not cre-

ating or duplicating messages. The proof of FIFO Delivery is also a simple

invariance proof: Consider the path from a sender p to a receiver q. No mes-

sage in to-send[q] of p is a predecessor of a message in the channel from p to q

and none of these is a predecessor of a message in to-deliver of q. This relies

also on the properties of FIFO channels and on the invariants used to prove

Integrity.

The proof of Sender-based Reliability is as follows: Consider a message

m multicast by a correct process p such that no m′ with m @ m′ exists, and

any correct destination process q. As no such m′ exists, the message is never

removed from to-send by procedure purge. This means that it will eventually

be transmitted (as all predecessors are eventually purged or also transmitted)

and received by q. Again, as no m′ exists, the message is never removed from

to-deliver by procedure purge. This means that it will eventually be delivered

(as all predecessors are eventually purged or also transmitted).

58

4.3 Semantically reliable multicast

4.3.1 Specification

A semantically reliable protocol provides consistency guarantees even when

a sender fails, thus being suited to be used for replication in fault tolerant

systems. Semantically Reliable Multicast (S-RM), a protocol that enforces an

agreement property despite the correctness of the sender, is defined by:

Semantic Validity: If a correct process multicasts a message m and there is

a time after which no process multicasts m′′ such that m @ m′′, then it

delivers some m′ such that m v m′.

Semantic Agreement: If a correct process delivers a message m and there is

a time after which no process multicasts m′′ such that m @ m′′, then all

correct processes deliver some m′ such that m v m′.

Integrity: For every message m, every process delivers m at most once and

only if m was previously multicast by some process.

FIFO Delivery: If a process multicasts a message m before it multicasts a mes-

sage m′, no process delivers m after delivering m′.

Semantic FIFO Completeness: If a process multicasts a message m before it

multicasts a message m′ and there is a time after which no process mul-

ticasts m′′′ such that m @ m′′′, no correct process delivers m′ without

delivering some m′′ such that m v m′′.

This protocol differs from S-SRM by including agreement properties. Seman-

tic Agreement is similar to the Agreement property in conventional reliable

multicast and ensures that messages are delivered to either all or none of cor-

rect processes despite the failure of the sender. To understand the relevance of

Semantic FIFO Completeness consider the following scenario in the informa-

tion dissemination application of Section 2.3.1: a process multicasts m1, m2, m3

59

such that only m1 @ m3 and then fails. If a correct process delivers only m2

it would satisfy all properties of S-RM except Semantic FIFO Completeness

and would result in a final state that never existed in the server. Notice that

an observer process can temporarily exhibit this state, as long as it eventually

delivers m3. Semantic FIFO Completeness is thus a liveness property and is

required in addition to the usual FIFO Delivery safety property. This makes

liveness proofs more important in semantically reliable protocols.

Together, Semantic Agreement and Semantic FIFO Completeness proper-

ties ensure that the same prefix of non-obsolete messages are received by all

correct processes. This agrees with the informal specification of the previous

Section 3.4 and can be used, for instance, in the primary-backup replication

scenario outlined.

Notice that when the obsolescence relation is empty, this specification re-

duces to conventional reliable multicast [HT94]. On the other hand, if every

message makes all its predecessors obsolete, it results in an extension to multi-

cast of stubborn channels [GOS98]. In between, various scenarios (such as those

of Section 3.4) are possible and result in a generic protocol that is configured

by the obsolescence relation.

4.3.2 Algorithm

Ensuring the agreement property in spite of the failure of the sender pro-

cess requires that all processes are able to relay received messages to other

processes as in reliable multicast [HT94]. This requires that each destination

keeps track of messages already received in order not to deliver them more

than once.

In addition, the protocol has to take additional precautions not to violate

Semantic FIFO Completeness when purging obsolete messages. Consider the

following scenario and sequence of events: a process p multicasts messages

m1, m2, m3 such that only m1 @ m3; p purges m1 due to m3; p sends m2 that is

60

Initially:
for all p: to-send[p] = empty queue
for all p: received[p] = ∅
to-deliver = empty queue
delivered = empty queue

func new(Message m) =
∀ p: m 6∈ received[p]

func safe(Message m) =
|p: m’ ∈ received[p]∧m vm’| > f

proc purge_r(Q) do
while ∃m, m’ ∈ Q: m @m’ ∧ safe(m’) do

remove(Q, m)

proc purge_d(Q) do
while ∃m, m’ ∈ Q: m @m’ do

remove(Q, m)

t1 : upon multicast(m) do
addToTail(to-send[self], m)

t2 : upon to-send[p]6= ∅ do
m←removeFirst(to-send[p])
send(m,p)

t3 : upon receive(m,q) do
if new(m) then

forall p ∈ destinations: p 6= self do
addToTail(to-send[p], m)

addToTail(to-deliver, m)
purge_d(to-deliver)

addTo(received[q], m)
addTo(received[self], m)
forall p ∈ destinations do

purge_r(to-send[p])

t4 : upon to-deliver 6= ∅ do
m←removeFirst(to-deliver)
addToTail(delivered, m)
deliver(m)

Figure 4.2: Semantically Reliable Multicast.

delivered by some process q; p crashes. Clearly, this sequence violates Seman-

tic FIFO Completeness. The problem is that m1 was purged before ensuring

the eventual delivery of m3. A message is guaranteed to be eventually deliv-

ered as soon as it has been received by f+1 processes, where f is the maximum

number of processes that may fail. When this condition holds, we say that the

message is safe. In the particular sequence above, violation of Semantic FIFO

Completeness could be avoided if purging of m1 was delayed until m3 was

known to be safe.

Both these issues are addressed by keeping track of which messages have

been received from each process in received[p] and captured in functions new(m)

and safe(m) in the algorithm presented in Figure 4.2. Notice that purging of

the delivery queue does not need to be restricted to safe messages and thus

61

different procedures are used to purge the retransmission queues (to-send)and

the delivery queue (to-deliver).

The algorithm works as follows: Upon multicast (t1) the message is queued

and (t2) later sent only to the sender process itself. The message is then relayed

to all destinations (except to the sender itself) and queued for delivery upon

reception for the first time (t3). As in S-SRM, messages that are never purged

are eventually delivered (t4). This implies the following fairness assumptions:

• transitions t2 and t4 are weakly fair, i.e., they cannot be enabled forever

in a correct process without being eventually executed [Lam94];

• transition t3 is also weakly fair, according to the assumption of reliable

channels;

• no fairness assumption is required on t1, as an application that never

multicasts messages is still correct.

Purging is performed only upon reception (t3) only if a message has been

queued for delivery. The retransmission queue is purged regardless of no

new message having been queued for retransmission, as an existing message

might have become safe and thus made purging possible. Notice that there is

no point in purging to-send in t1, as the new message is guaranteed not to be

safe yet as it is still waiting to be sent to the sender itself.

4.3.3 Correctness argument

Safety properties (Integrity and FIFO Delivery) are similar to their counter-

parts in reliable multicast. The correctness of liveness properties of S-RM is

not as simple as for S-SRM. This justifies a more detailed proof of liveness

properties in Appendix A.

62

4.4 Semantically view synchronous multicast

4.4.1 Specification

To describe the combination of view synchrony with semantic reliability we

consider a simplified group membership service in which processes can only

leave the group. The kind of events that may lead to a view change are not

relevant to the definition of Semantic View Synchrony. Examples of possible

causes for triggering a view change to remove a process from the group are

the occurrence of failure suspicions [LH99], the lack of available buffer space

at one or more processes [CBDS01] and simply the existence of processes that

voluntarily want to leave. The properties for Semantically View Synchronous

Multicast (S-VSM) are:

Semantic View Synchrony: If a process p installs two consecutive views vi

and vi+1 and delivers a message m in view vi, then all other processes

installing both vi and vi+1 deliver some m′ such that m v m′ before in-

stalling view vi+1.

Integrity: For every message m, every process delivers m at most once and

only if m was previously multicast by some process.

FIFO Delivery: If a process multicasts a message m before it multicasts a mes-

sage m′, no process delivers m after delivering m′.

Semantic FIFO View Completeness: If a process multicasts a message m be-

fore it multicasts a message m′ and a process p installs two consecutive

views vi and vi+1, and delivers message m′ in view vi, then q delivers

some m′′, such that m v m′′, before installing view vi+1.

The Semantic FIFO View Completeness property relaxes the traditional Re-

liable FIFO properties [CKV01]. Given a sequence of messages multicast by a

process, this ensures that upon view installation only obsolete predecessors

63

of the last message delivered can be omitted. With Semantic View Synchrony

every two processes installing two consecutive views vi and vi+1 do not nec-

essarily deliver the same sequence of messages, thus being weaker than View

Synchrony, but they are ensured to deliver (at least) the same sequence of mes-

sages that have not been made obsolete by subsequent messages up to view

vi+1. For instance, process p1 may deliver in view vi messages m1 and m2,

such that m1 @ m2, and process p2 may only deliver m2 in the same view. If

no messages m, m′ exist such that m @ m′, Semantic View Synchrony reduces

to conventional View Synchrony. This makes it more general as different con-

crete semantics, including View Synchrony, can be obtained by defining an

appropriate obsolescence relation.

4.4.2 Algorithm

Interestingly, S-VSM can be obtained simply by adapting an existing view syn-

chronous protocol to include purging of obsolete messages at the appropriate

steps. It is hence possible to derive S-VSM implementations to different sys-

tems models, by adapting different view synchronous implementations. The

purpose of this section is not to re-invent view synchronous protocols, since

these have been extensively studied in the literature [HS95]. However, we do

want to illustrate what changes are needed to accommodate S-VSM. To do so,

we opted to adapt a protocol designed to run on asynchronous systems aug-

mented with a failure detector, that only allows processes to leave the group

and that uses consensus as a building block [GS01]. The algorithm is depicted

in Figures 4.3 and 4.4.

Each process in the group keeps a variable cv with the most recent view, a

boolean variable blocked that is used to prevent the reception and transmission

of new messages during the view change protocol, and two queues of mes-

sages ordered by FIFO: to-deliver and delivered. When messages are received

they are inserted in the to-deliver queue for delivery to the application. A mes-

64

sage m in the to-deliver queue may be purged if a message m′ such that m v m′

is received in the same view. This is modeled by the purge procedure. Delivery

of a message m implies removing it from the head of to-deliver and adding it

to the tail of the delivered queue (t4).

Figure 4.3 depicts the part of the algorithm that deals with multicast and

delivery of messages between installation of views. Data messages can only be

multicast if the group is not blocked (t1). A multicast message is tagged with

the current view and sent to all other processes in the view. A data message

is denoted DATA(v, m), where v is the view in which it is sent. Additional tags

are used for views and two control messages whose purpose is explained in

the following paragraphs.

Upon multicast, the message is also inserted in the to-deliver queue of the

sender. This will ensure that if the sender participates in the next view, all

the messages it has sent will be delivered in the current view. Data messages

are only accepted if the recipient is still in the view they were sent and if the

group is not blocked (t2). As before, received messages are added to the to-

deliver queue of the recipient.

Figure 4.4 depicts the part of the algorithm that deals with view instal-

lation. The installation of a new view is triggered by an external event. In

response to this event, the initiator of the view change simply disseminates

a INIT control message to all group members (t4). Upon the reception of the

first INIT message, a process forwards the INIT to all other members, ensur-

ing that all correct processes initiate the view change (t5). Additionally, each

process computes the sequence of messages it has accepted to deliver in the

current view and sends this sequence to all other processes in a PREC control

message. These sets are collected by all correct processes in the global-pred set

(t6). The set of processes from which the PREC message has been received for

the current view is maintained in the variable pred-received. When pred-received

includes all processes from the current view that are not suspected, and this

set contains a majority of processes, a new view as well as the sequence of

65

Initially:
to-deliver = empty queue
delivered = empty queue
cv = (0, ids of all processes)
blocked = false

proc purge(Q) do

while ∃ DATA(v, m), DATA(v’, m’) ∈ Q: v=v’ ∧m @m’ do
remove(Q, DATA(v,m))

t1 : upon multicast(m) ∧¬ blocked ∧ self ∈memb(cv) do
addToTail(to-deliver, DATA(cv, m))
forall p ∈memb(cv): p 6= self do

send(DATA(cv, m),p)
purge(to-deliver)

t2 : upon receive(DATA(v, m), p): v = cv ∧¬ blocked do
if 6 ∃ DATA(v’,m’) ∈ (to-deliver ∪ delivered): v=v’ ∧m vm’ do

addToTail(to-deliver, DATA(v, m))
purge(to-deliver)

t3 : upon to-deliver 6= ∅ do
m← removeFirst(to-deliver)
addToTail(delivered, m)
if m = DATA(v,d) then

deliver(d)
else if m = VIEW(v) then

cv← v
blocked← false
install(v)

Figure 4.3: Semantic View Synchrony: multicast operations.

66

Initially:
global-pred = empty queue
pred-received = ∅
leave = ∅

t4 : upon trigger-view-change (l) do
forall p ∈memb(cv) do

send(INIT(cv, l),p)

t5 : upon receive(INIT(v, l),p): v = cv ∧¬ blocked do
if p 6= self do

forall p ∈memb(cv) do
send(INIT(v, l),p)

blocked← true
leave← l ∩memb(cv)
local-pred← { DATA(v, m) ∈ (delivered ∪ to-deliver): v = cv }
forall p ∈memb(cv) do

send(PRED, cv, local-pred],p)

t6 : upon receive(PRED(v, P),p): v = cv do
global-pred←merge(global-pred,P)
pred-received← pred-received ∪ {p}

t7 : upon |pred| > |memb(cv)|
2

∧ ∀ p ∈memb(cv): suspects(p) ∨ p ∈ pred do
proposed-view← (id(cv)+1, pred-received\leave)
(next-view, pred-view)← consensus(cv, (proposed-view, global-pred))
if self ∈memb(next-view) do

while pred-view 6= ∅ do
m← removeFirst(pred-view)
if m 6∈ (to-deliver ∪ delivered) do

addToTail(to-deliver, m)
addToTail(to-deliver, VIEW(next-view))
purge(to-deliver)

Figure 4.4: Semantic View Synchrony: view change.

67

messages to be delivered in the current view are proposed for consensus (t7).

The proposed view corresponds to the pred-received set (minus the processes

leaving the group in variable leave that is given as an input parameter to the

view change procedure).

After consensus returns, the agreed sequence of messages to be delivered

in the current view is added to the to-deliver queue followed by the agreed next

view control message. These messages are delivered (t3), eventually updating

the current view and unblocking the process.

4.4.3 Correctness argument

When addressing the correctness of the algorithm we focus on Semantic View

Synchrony and Semantic FIFO View Completeness. The reason for this is that

these are the properties that differ from those found on VS algorithms and

thus reflect the impact of purging obsolete messages.

The original view synchrony protocol, obtained from Figures 4.3 and 4.4

without the shaded lines or with an empty obsolescence relation, implements

conventional view synchronous multicast [GS01]. From this we can derive the

correctness of the implementation of S-VSM considering the following fact:

the purge operation never discards maximal elements (according to the obso-

lescence relation @) of the set of messages delivered by some process prior to

installing a given view. If a process participates in view vi+1 and purges some

message m, then there is some m′ in to-deliver ∪ delivered such that m @ m′

that would be included in the pred-view set decided for vi+1 and thus m would

not be maximal. For any message m delivered by some process installing both

vi and vi+1, either (i) m is maximal in the set of messages and thus is never

purged and as in the original algorithm delivered by all processes before in-

stalling vi+1 or (ii) m is not maximal and there is some m′ such that m @ m′

that is maximal.

The argument for Semantic FIFO View Completeness is similar. As chan-

68

nels are reliable and FIFO, it can easily be shown that without ever purging

messages, to-deliver ∪ delivered contain always complete prefixes of sequences

of messages multicast by each sender. The subset of maximal elements (ac-

cording to the obsolescence relation @), that is guaranteed to be maintained

by purging is sufficient to ensure the desired property.

4.5 Uniform agreement

The protocol definitions presented are not uniform, i.e., properties hold only

for correct processes. Uniform agreement is important in preventing contam-

ination [GT91], where the effect of a message delivered only to an incorrect

process before it crashes becomes visible to other processes. An uniform ver-

sion of agreement can be defined as:

Semantic Uniform Agreement: If a process delivers a message m and there

is a time after which no process multicasts m′′ such that m @ m′′, then all

correct processes deliver some m′ such that m v m′.

The transformation from non-uniform to uniform agreement in reliable

multicast can be done by delaying the delivery of a message m until it has

been received from at least f +1 processes. In a semantically reliable protocol,

it suffices to receive from each of a majority of processes some m′ such that

m v m′. This is already expressed as safe(m′). Therefore, the same mechanism

used to detect safety for purging can be used to ensure uniform agreement.

4.6 Causal and total order

Although we have presented only FIFO order, one can also combine seman-

tic reliability with causal and total order constraints. For causal order this

involves defining a suitable completeness property:

69

Causal Delivery: If a message m causally precedes a message m′, no process

delivers m after delivering m′.

Semantic Causal Completeness: If a message m causally precedes a message

m′ and there is a time after which no process multicasts m′′′ such that

m @ m′′′, no correct process delivers m′ without delivering some m′′

such that m v m′′.

The implementation of Semantic Causal Completeness is similar to that of

Semantic FIFO Completeness and requires delaying purging until a message

is safe. It is however not possible to ensure multicast ordering solely based on

the order of point-to-point channels. This requires that a message received is

stored in an intermediate buffer until all predecessors are queued or known

to be purged. This is further discussed in Appendix A.

The definition of Uniform Total Order given in Section 2.2.4 remains valid

and can be used directly. A protocol for total order can be layered on top of

S-RM in the same fashion as proposed for reliable multicast [CT96]. Briefly,

messages are reliably multicast and upon delivery from reliable multicast,

messages are temporarily bufferd such that in each process:

1. the set of messages stored is proposed to consensus;

2. upon decision, the set of messages decided is delivered by some deter-

ministic order and removed from the set of pending messages;

3. repeat from step 1 with remaining and newly delivered messages.

For semantic reliability, upon each decision, one purges all pending messages

that are known to be obsolete, either by other pending messages or by mes-

sages appearing in the decided set. Notice that by using uniform consensus,

this protocol also ensures the Semantic Uniform Agreement property.

70

4.7 Summary

In this chapter we have introduced the definitions of protocols that consti-

tute a semantically reliable group communication toolkit, namely, reliable and

view synchronous multicast combined with FIFO, causal and total order. To

provide the same convenience for fault tolerant programming, an additional

liveness property is required when ordering messages.

Interestingly, algorithms for semantic reliability can be derived from the

algorithms for conventional reliability by adding purging operations: if two

related messages are found within the same buffer, the one that is obsolete can

be purged. The only additional limitation is the additional liveness property,

which requires the collection of acknowledgments before purging messages

in some situations.

71

72

Chapter 5

Performance Evaluation

The performance of semantically reliable multicast protocols is evaluated us-

ing three complementary techniques: a simple analytical model, a simulation

model and a prototype implementation. The results obtained relate the perfor-

mance of semantic reliability with the application profile and system configu-

ration parameters. The prototype implementation allows also to evaluate the

overhead imposed by additional protocol mechanisms required for semantic

reliability.

5.1 Performance models

A simple analytical model allows the application designer to assess the ex-

pected purging rate that can be observed with a concrete obsolescence pattern

and system configuration, and thus the adequacy of semantic reliability for a

specific application. A simulation model allows estimating the performance

of the protocol in complex settings before it is actually implemented. This val-

idates the analytical model and allows the protocol developer to evaluate the

interaction of semantic reliability and other protocol mechanisms.

We consider a simplified system model constituted by a single sender, a

fast receiver and a slow receiver (see Figure 5.1). The sender produces mes-

73

Buffer (N) T +3 Fast Receiver

Sender (Ts)

T /7

T
'/
Buffer (N)

T ′

// Slow Receiver(Tr)

Figure 5.1: Simplified system model.

sages at a rate up to Ts. For each receiver, messages are placed in a buffer

with capacity for N messages. If a message cannot be inserted in one of the

buffers, the sender blocks until buffer space becomes available. A fast receiver

removes messages from its buffer as soon as they become available, thus never

making the sender block. On the other hand, the slow receiver removes mes-

sages from its buffer at rate T ′, which is at most Tr. Considering Tr < Ts, the

slow receiver’s buffer eventually fills up. This blocks the receiver thus impact-

ing T , the rate at which messages are effectively produced by the sender. If no

messages are ever discarded in buffers, as in a reliable protocol, then T = T ′.

5.1.1 Analytical

With semantic reliability, the protocol can purge the buffer of obsolete mes-

sages to store arriving messages. Nevertheless, if the system remains over-

loaded for a long period, the buffer will eventually be filled just with unrelated

messages. Therefore, new messages can only be accepted if they obsolete one

of the messages in the buffer.

The estimation of performance thus depends on knowing the distance in

the input stream between related messages. Unless obsolescence is strictly pe-

riodic, this is a random variable. Let D be the distance between each message

and the latest message it makes obsolete, and f(x) = P (D = x) the probability

mass function of D. Value f(0) is defined to be the probability of not existing

any obsolete predecessor message.

74

The probability of a message being obsoleted by a new message is thus

given by R∗ =
∑

x≥1
f(x), that is an estimate of the maximum ratio of mes-

sages that can be purged by the protocol under continued congestion. How-

ever, this is not a good estimate of how the protocol behaves, as it implicitly

assumes an unbounded amount of previous buffered messages.

Knowing that when the system is congested buffers are full, a more rea-

sonable assumption is to consider that the buffer size determines the maxi-

mum distance between two related messages such that one of them can be

discarded. Making the simplifying assumption that the buffer holds messages

sent immediately before, the total probability of an obsoleted predecessor ex-

isting in the buffer is thus RN =
∑

1≤x≤N f(x), where N is the maximum num-

ber of messages buffered for each receiver. This gives an estimate of the ratio

of messages that can be purged by the protocol under continued congestion.

Using RN and given maximum sender and receiver throughputs Ts and Tr, it

is possible to derive the effective throughputs T , departing from the sender

and being consumed by a fast receiver, and T ′ (see Figure 5.1):

T = min(Ts,
Tr

1− RN

)

T ′ = min(T, Tr)

Naturally, if probability accumulates at low values of distance, i.e., if the

probability of a message being made obsolete by a close subsequent message

is high, the purging procedure is very effective. On the other hand, if the dis-

tance is large, it is likely that the buffers become exhausted before any message

has the chance to become obsolete. It is also clear that, for the same obsoles-

cence distribution, the algorithm performs best for larger buffer sizes.

5.1.2 Simulation

The analytical model does not take into consideration several issues that may

affect the efficiency of the algorithm. To start with, it does not consider the

75

effect of the purging procedure itself in the content of the buffer, which means

that even if exactly N messages are stored, they are likely not to be the last

N messages. Furthermore, existing networks are not fully reliable and may

deliver packets out of order. Thus, the actual distribution of messages in the

recipient’s buffers is even more unpredictable than considered above, where

we assume that all messages are received in FIFO order. Thus the buffer might

hold any N previous messages or even some subsequent messages. Addition-

ally, in a real system we do not have a single buffer for each pair of sender-

receiver nodes. Instead, we have two partially overlapping buffers, one at the

sender and the other at the recipient, where purging may be applied. Natu-

rally, if obsolete messages are purged in the sender’s buffer, there is the pos-

sibility that some obsolete information never reaches recipients. On the other

hand, there is less load imposed downstream.

By using a simulation model, we can confirm the validity of the analytical

model despite its simplicity and explore the impact of system parameters in

the performance of purging in more complex models. A discrete-event sim-

ulation model [Jai91] works by keeping a queue of events ordered by their

scheduled time. The simulation progresses by removing and executing the

event in the head of the queue. The scheduled time of the event is con-

sidered the current time during the execution. Executing an event handler

may change the state of the model and schedule further events to a subse-

quent time. Simulation terminates when the event queue is empty or the time

reaches a pre-established instant.

The system state is composed by a pair of FIFO buffers with configurable

size N , one for the fast and one for the slow receiver. Events are periodically

scheduled to produce and consume messages according to at most Ts and Tr.

The obsolescence relation can either be generated randomly or replay a profile

obtained from a real application. This obsolescence relation is represented

using k-enumeration, with k defined as a parameter. The following variations

of the model are used to study the impact of implementation mechanisms:

76

• Purging can be performed as soon as possible despite existing free space

(eager purging), or only when necessary to accommodate a message ar-

riving to a full buffer (lazy purging).

• Each buffer can be split in two sections, modeling buffering in both ends

of a network connection. A message in each section can only be purged

if it is made obsolete by another message arriving or already in the same

section.

• A delay is imposed in each message until it can be used for purging.

This models the effect of gathering acknowledgments before purging to

satisfy completeness properties in ordered protocols.

The simulation logs the time when each messages is produced, enters each

buffer, leaves each buffer and is consumed. Message rates, purging rate, av-

erage usage of buffers and the delay caused by queuing are can then be com-

puted.

5.2 Prototype implementation

A prototype implementation of semantically reliable multicast with static group

membership allows experimental evaluation of semantic reliability, in particu-

lar, of its impact on throughput stability and of the overhead of the additional

mechanisms required to deal with semantic reliability.

The prototype is implemented using the C++ language and the ACE frame-

work [SBS93] as an operating system abstraction layer. Specifically, it uses a

Reactor object for scheduling and datagram sockets for communication, both

point-to-point and multicast. The protocol code is event-driven and executes

in a single thread. Events can be triggered by arrival of messages from the ap-

plication or the network, by timeouts or explicitly queued by event handlers.

Event handlers are statically associated with event types.

77

Application code runs in a separate thread. The composition of the group

is fixed and must be supplied to the protocol during initialization of each

node. After that, a message is multicast by executing a blocking write()

operation on the protocol. Delivery is initiated by the application that invokes

a blocking read() operation on the protocol.

Although the protocol architecture is monolithic, it is possible to condi-

tionally compile protocol code to suppress some features, namely, buffering

of each message by processes other than the sender, FIFO order and purging.

This allows the impact of purging to be compared in protocols that are other-

wise identical.

5.2.1 Retransmission and flow-control

When a message is multicast it is optimistically disseminated using IP multi-

cast [DC90] and then buffered. An optional upper bound on the bandwidth

consumed by multicast can be imposed to avoid congesting the network. Re-

liability is ensured by a receiver initiated mechanism [PTK94, Cla82]. Each

receiver keeps a queue of messages discovered to be missing which it re-

quests using negative acknowledgment messages. To avoid congesting the

network, retransmission requests are controlled by a variable window that

uses the TCP/IP algorithm [Jac88].

Garbage collection of retransmission buffers is based on a scalable stabil-

ity tracking algorithm [Guo98]. This algorithm uses gossiping to determine

which is the last message that has been received by all processes. Interme-

diate control messages of this protocol are used by receivers as hints in the

discovery that the last message sent by some process has been lost.

Flow control is performed by imposing a limit on the total number of mes-

sages buffered (i.e., for retransmission and for delivery) at each process. There-

fore, if a process is consuming messages slower than they arrive, messages

accumulate in its buffers. Eventually this process ceases to accept further data

78

messages from the network, making the stability tracking algorithm block in

the latest message stored by such a process. Being unable to remove messages

from its buffers, the sender protocol ceases to accept further messages from

the application. Care is taken not to cause deadlocks when FIFO order is in

use.

5.2.2 Purging

The obsolescence relation is represented using the k-enumeration technique

and supplied to the protocol upon multicast as an additional parameter of

the write() operation. Upon the arrival of a new message to a buffer, it is

determined if any existing messages become obsolete and can later be purged.

This is determined by storing and updating an index of the message buffer.

By representing the obsolescence relation with a bitmap in the message, this

index reduces to maintaining the latest messages stored in the buffer from

each sender as a bitmap too. Upon arrival, a logical “and” of both bitmaps

(after the appropriate shift operations) is performed. Each remaining set bit

represents a message that can be purged from the buffer. Notice that iterating

the resulting bitmap is reasonably fast as this bitmap is small. This suffices for

purging the delivery queue in any of the semantically reliable protocols.

Purging the retransmission buffer involves an additional step. It may hap-

pen that a message is purged from all processes capable of retransmitting it

before it has been delivered to all destinations. Processes that have not re-

ceived a purged message must realize that this message can be removed from

the negative acknowledgment queue and skipped. The mechanism used to

do this is the stability tracking algorithm. If a process purges a message from

its retransmission queue, it fakes the stability of that message by unilaterally

declaring it received by all processes. Eventually, processes that have not re-

ceived it discover that it has became stable, regardless of not having been lo-

cally received, and therefore conclude that the message is not missing but has

79

been purged and should be skipped.

Determining which messages are safe to be used for purging in FIFO proto-

cols is achieved by running a global safety tracking algorithm, that determines

which messages have been queued for delivery by f + 1 processes and delay-

ing purging accordingly. This algorithm is a modified version of the stability

tracking algorithm [Guo98] requiring only f + 1 votes (instead of n) to make

progress.

5.2.3 Centralized simulation

The evaluation of the prototype implementation can be improved by using a

centralized simulation model [AC97]. This combines a real implementation

of the protocol code with discrete-event simulation models of the application

and the network and has been shown to accurately reproduce timing proper-

ties of real systems. In detail, centralized simulation allows single-threaded

event-driven code to be run side-by-side with simulated system components:

The execution of each event handler is timed using a profiling timer and the

result used to update a simulated timeline.

By running all processes under control of the centralized simulation run-

time within a single workstation, it becomes possible to perform observations

that depend on a centralized clock. By stopping the clock, it is also possible

to perform detailed accounting of various system parameters during runtime

without disturbing the results. Centralized simulation has also simplified test-

ing and debugging of the protocol implementation, by allowing automation of

regression tests with fault-injection. This configuration of the model has been

validated both by micro-benchmarks for individual parameters (e.g., overhead

of the kernel network stack and scheduling latency) and by comparing results

of protocol executions with results of the real system when possible (e.g., dis-

tribution of round-trip times).

80

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

x

r=1
r=1/2
r=1/3
r=1/4
r=1/5

(a) Varying r with d = 1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

x

d=1
d=2
d=5

d=10
d=15

(b) Varying d with r = 1

Figure 5.2: Plots of obsolescence distribution.

5.3 Experimental conditions

5.3.1 Traffic characterization

To exercise system models and the prototype implementation we have se-

lected a pattern of message obsolescence consisting of two distinct types of

messages: i) independent messages that do not make other messages obsolete

and that are not made obsolete by any other message; and ii) overwrite mes-

sages that obsolete their predecessors and are made obsolete by their successor

with a given probability. The distribution is characterized as follows:

fr,d(x) =











1− r ⇐ x = 0

r(1− r
d
)x−1 r

d
⇐ x > 0

This distribution is interesting because it is easily generated and because

parameters r and d directly determine the characteristics of the traffic. The pa-

rameter r models the relative distribution of independent and overwrite mes-

sages: On the average, a ratio r of messages has overwrite semantics. Thus,

r directly establishes an absolute upper bound on purging. As shown in Fig-

81

ure 5.2(a), RN ≤ r and except for very small values of N , RN = r. The param-

eter d represents the diversity of overwrite messages, dictating the probability

of two overwrite messages being related and thus sensitivity to buffer size

N . As shown Figure 5.2(b), the value of N required for RN to approach 1 is

increasingly larger with d. With this distribution we can explore boundary

conditions that limit the performance of our protocol.

Simulations and prototype executions shown in the following section use

traffic generated with constant intervals. When using the prototype imple-

mentation, each message carries a payload of 4 bytes, except for measure-

ments of Figures 2.6(c) and 5.10(c), when it is 1000 bytes.

5.3.2 Performance perturbations

All of our models and the prototype allow setting Tr < Ts. This is used as the

main performance perturbation scenario as it directly implies that messages

are discarded to avoid blocking the sender. It models mainly performance

perturbations during message processing by the application.

The centralized simulation model allows a wider range of perturbations to

be injected, specifically, by making a process sleep by a fixed amount of time

each second, by delaying or by dropping network packets. Temporarily block-

ing a process has an immediate impact in throughput as it halts all protocol

mechanisms, including stability tracking [BHO+99]. Network perturbations

affect both incoming and outgoing packets of a single process. Packet loss oc-

curs according to available bandwidth. This requires retransmission of data

and also delays stability. Packet delays are constant and impact mostly stabil-

ity detection.

82

5.3.3 Environment

Measurements of the prototype implementation were obtained with a net-

work of 3 Pentium III/1 GHz workstations over a switched 100 Mbits Ether-

net. One of the workstations is used as the sender. Another is used as the

slow receiver, by sleeping an amount of time between deliveries. The sender

and the third receiver do not introduce additional delays between deliveries,

therefore consuming messages as soon as they are available. Unless otherwise

noted the protocols used are FIFO Reliable Multicast [HT94] (reliable) and S-

RM (semantic). All throughput measurements are performed at the sender.

Initial measurements in each run are discarded to obtain results only after the

system is stationary.

The operating system used in all workstations is RedHat Linux 7.1 and

the protocol is compiled using the default GNU C++ 2.96 compiler with opti-

mization option -O2. As the ACE toolkit uses the select() system call for

timing in Linux, the clock has a 10 ms resolution that limits the granularity of

the sample. For instance, we used 10 ms as the period of the sender. Never-

theless, the low resolution of the timer used prevents obtaining measurements

for higher message rates.

By timing the execution of real code in centralized simulation, the per-

formance of the host processor determines the performance of each simulated

processor. We used the same 1GHz workstation for measurements. The model

used for the network assumes 10 µs delay for each pass of the UDP/IP stack

within the operating system (as measured in Linux) and a simulated 100 Mbits

full duplex switched network. Applications do not consume processor time.

We have not simulated the 10 ms granularity of Linux timers, allowing us to

obtain results other than for multiples of 10 ms. On the other hand, we mod-

eled the scheduling latency of the operating system in order to be able to real-

istically reproduce round-trip measurements.

The prototype protocol is configured as follows, both for execution and

83

centralized simulation:

• maximum buffer size of 40 messages, regardless of their size;

• both the stability and safety detection protocols are configured with a

period of 30 ms and a fanout of 3.

This configuration is tuned for high throughput with very small buffers on a

high bandwidth and low latency network. For other networks, a larger buffers

and period should be used [Guo98].

5.4 Results

5.4.1 Purging efficiency

In this section we study the performance of purging based on message ob-

solescence traffic and system parameters. Whenever possible, the values ob-

tained from the analytical model are compared with the simulation results and

with the data collected from the implementation.

The effectiveness of purging protocol buffers, introduced by semantically

reliable protocols, is measured mostly by the ability to accommodate a slower

receiver within the group without disturbing the sender. This allows the re-

sources of fast receivers to be fully used.

Figure 5.3 presents the sustained incoming throughput (Ts) as a function of

the processing delay of a single slow receiver. When purging is not applied,

processing delays larger than 10 ms prevent a delivery throughput of more

than 100 msg/s, thereby reducing the input that can be accepted. For instance,

with 20 ms only 50 msg/s are accepted.

By generating traffic with parameter d = 1 and a sufficiently large buffer

size, parameter r directly determines the amount of traffic that can be purged.

Using a semantically reliable protocol we observe that:

84

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

r=1
r=0.5

r=0.25
reliable

(a) Analytical

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

r=1
r=0.5

r=0.25
reliable

(b) Simulation

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

r=1
r=0.5

r=0.25
reliable

(c) Implementation

Figure 5.3: Throughput with d = 1, N = 20 and variable r.

• When the amount of messages that can be purged is enough to accom-

modate the difference between Ts and Tr, the sender is undisturbed. For

instance, with r = 0.5 half of the messages eventually become obsolete

and can be purged. Therefore, the receiver can exhibit up to twice the

delay (20 ms) without disturbing the sender.

• When the amount of messages that can be purged is not enough to ac-

commodate the difference between Ts and Tr, such as with r = 0.25 and

a delay of 20 ms, although the sender is disturbed the input allowed is

still higher than without purging (75 msg/s versus 50 msg/s).

85

0

20

40

60

80

100

0 10 20 30 40 50

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

r=1
r=0.5

r=0.25

(a) Analytical

0

20

40

60

80

100

0 10 20 30 40 50

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

r=1
r=0.5

r=0.25
reliable

(b) Simulation

0

20

40

60

80

100

0 10 20 30 40 50

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

r=1
r=0.5

r=0.25
reliable

(c) Implementation

Figure 5.4: Messages purged with d = 1, N = 20 and variable r.

These results are explained by the amount of messages that are purged and

thus are not delivered to the slower receiver as shown in Figure 5.4. These

results confirm that the maximum expected purging rate and consequent im-

provement in throughput can in fact be observed in practice.

Notice that with the prototype implementation it has not been possible to

achieve an input of 100 msg/s. This happens because the test application tries

to sleep for 10 ms between sending messages. However, due to the lack of ac-

curacy of the operating system timer, it is often scheduled later, therefore re-

ducing the input rate. This also means that measurements were obtained only

86

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
)

Buffer size (N)

r=1
r=2
r=3

(a) Analytical

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

Buffer size (N)

r=1
r=2
r=3

(b) Simulation (buffer size)

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

Bitmap size (k)

r=1
r=2
r=3

(c) Simulation (parameter k)

Figure 5.5: Buffer size sensitivity to r (d = 5, Tr = 40).

for delays multiple of 10 ms that reduces the detail of Figures 5.3(c) and 5.4(c).

Buffer and bitmap sizes (N and k) The possibility of purging messages de-

pends on recognizing pairs of related messages within a buffer. This is af-

fected by the size of the buffer, the representation of the obsolescence relation

and the characteristics of the traffic. Using simulation we can easily observe

the behavior of the protocol when such parameters are varied.

Figure 5.5 shows the impact of varying buffer size N and obsolescence

representation parameter k with several values of r and a low value for d.

87

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
)

Buffer size (N)

d=10
d=20
d=30

(a) Analytical

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

Buffer size (N)

d=10
d=20
d=30

(b) Simulation (buffer size)

0

20

40

60

80

100

5 10 15 20 25 30

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

Bitmap size (k)

d=10
d=20
d=30

(c) Simulation (parameter k)

Figure 5.6: Buffer size sensitivity to d (r = 1, Tr = 40).

This makes the ratio of independent messages the limiting factor. Notice that

the analytical model is somewhat optimistic. This happens because measure-

ments were taken after the system is congested for a long time which means

that buffers fill up with messages that never become obsolete.

On the other hand, if the limiting factor is d, the diversity of traffic, all

messages eventually become obsolete although related pairs of messages are

far apart. As shown in Figure 5.6 the analytical model illustrates how per-

formance is degraded when parameter k of the obsolescence representation is

too low. The analytical model is however to pessimistic when describing the

88

0

20

40

60

80

100

0 10 20 30 40 50

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

lazy
eager

(a) Messages purged

0

20

40

60

80

100

0 10 20 30 40 50

B
uf

fe
r

oc
cu

pa
nc

y
(%

)

Processing delay (ms)

lazy
eager

(b) Buffer occupancy

Figure 5.7: Comparison of purging strategies using simulation (r = 0.5, d = 5).

impact of a small buffer. This happens because purging makes related pairs

of messages closer after purging others in between.

Eager and lazy purging In the analytical model we have also assumed that

purging happens only when the buffer is full, thereby yielding a constant

buffer size. This is a lazy purging strategy. In contrast, an eager purging strat-

egy where purging is always applied can also be considered. As messages are

delivered immediately, no messages are purged in the path to a fast receiver

or when the system is not congested (Figure 5.7(a)). However, buffer usage

while purging is effective is lower (Figure 5.7(b)). Therefore eager purging re-

sults in better latency and better response to short congestion periods without

otherwise impacting performance. As searching for obsolete messages does

not represent a major overhead we consider only eager purging.

Single and split buffer When the system is not congested, buffers at the

sender and at receivers contain approximately the same messages, waiting to

be garbage collected. When the system is congested, buffers of slow receivers

are eventually filled up with older messages waiting for delivery, while fast

89

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

N=10+10
N=10
N=20

(a) Throughput

0

20

40

60

80

100

0 10 20 30 40 50 60

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

N=10
N=20

(b) Purging (single buffer)

0

20

40

60

80

100

0 10 20 30 40 50 60

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

total
sender

receiver

(c) Purging (split buffer)

Figure 5.8: Buffer N = 20 compared with N = 10 + 10 (r = 1, d = 20).

receivers and the sender hold newer messages waiting to be transmitted to

slower receivers. This raises the issue of being able to use twice the buffer

size for purging. We now illustrate the difference between applying the purge

procedure just at the recipient or both at the recipient and at the sender. Fig-

ure 5.8 shows simulation results for a scenario where both the sender and

the recipients have a buffer size of N = 10 and purging is performed at both

ends and compares this with both a single buffer of N = 10 and N = 20.

Notice that, since congestion propagates back from the bottleneck, purging

is first performed exclusively at the receiver until the buffer fills up with un-

90

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
ec

)

Processing delay (ms)

0s
0.4s
0.8s

reliable

Figure 5.9: Impact of collecting majority of acknowledgments (r = 0.5, d = 5).

related messages. After that, back-pressure is exercised and messages start

being purged also at the sender side. Although the result is better than a sin-

gle buffer, it is not comparable with a buffer with twice the size. Nevertheless,

it is important to allow purging in both buffers as it allows the system to cope

also with network congestion.

Safety detection The requirement of determining safety prior to applying

purging in retransmission buffers, that is implicit in FIFO Completeness, also

affects purging, as messages cannot be used for purging immediately as they

enter the buffer. The resulting effect is similar to a reduced buffer size, varying

with the relation between safety latency and buffer latency. Figure 5.9 shows

how throughput is reduced with an increasing safety detection time. Notice

that with high safety detection latency, purging is effective only when the sys-

tem is highly congested, as purging can be done only after messages have

been stored for a long time.

5.4.2 Resource usage and scalability

We now focus on determining the issue of scalability of protocol mechanisms.

We also address the impact of semantic reliability in the usage of resources

such as processor and network. Both these issues are fundamental in estab-

91

0

40

80

120

160

200

0 0.1 0.2 0.3

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (s)

3 procs
32 procs
64 procs

3 procs (reliable)

(a) Delay in each second

0

40

80

120

160

200

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

m
sg

/s
)

Packet delay (ms)

3 procs
32 procs
64 procs

3 procs (reliable)

(b) Packet delay in the network

0

40

80

120

160

200

5001000150020002500

T
hr

ou
gh

pu
t (

m
sg

/s
)

Bandwidth (kbps)

3 procs
32 procs
64 procs

3 procs (reliable)

(c) Network link bandwidth

0

40

80

120

160

200

0 5 10 15

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

3 procs
32 procs
64 procs

reliable

(d) Processing delay upon delivery

Figure 5.10: Impact of group size in throughput with various perturbations

(r = 0.5, d = 5).

lishing that introducing semantic reliability does not otherwise compromise

the performance of protocols.

Using the centralized simulation model it is possible to observe the be-

havior of the prototype implementation with a larger number of processes.

Figure 5.10 presents the impact of semantic purging in face of several pertur-

bations and large groups and can be compared to Figure 2.6. Results with the

reliable protocol and 3 processes are displayed again for easier reference.

Figure 5.11 shows processor and network usage of both protocols as mea-

92

0

10

20

30

40

10 20 30 40

P
ro

ce
ss

or
 u

sa
ge

 (
%

)

Processes

reliable
reliable (congested)

semantic
semantic (congested)

(a) Processor usage

0

2

4

6

8

10

10 20 30 40

N
et

w
or

k
us

ag
e

(%
)

Processes

reliable
reliable (congested)

semantic
semantic (congested)

(b) Network usage

Figure 5.11: Impact of group size and purging in resource usage (r = 0.5, d =

5).

sured at the sender process. This has been obtained with small messages (4

bytes of payload) to highlight the overhead of protocol mechanisms. Proces-

sor usage includes time spent both in the protocol and in the operating system,

but excludes the application. Most of the overhead of the reliable protocol

when the system is not congested is attributable to the configuration chosen

for stability tracking, which allows using very small buffers. Safety tracking,

that is used only by semantic reliability, produces comparable overhead to sta-

bility tracking, thus doubling the protocol overhead when the system is not

congested. The overhead can be lowered by decreasing the frequency of gos-

sip rounds of the protocol and proportionally increasing buffer space to cope

with increasing latency. In addition, if congestion is estimated from average

buffer occupancy, safety tracking can be disabled when the system is not con-

gested. When the system is congested, most of the overhead is attributable to

retransmissions, which in this experiment are performed only by the sender,

and thus the impact if safety tracking is not as relevant.

Figure 5.12(a) presents the average latency of stability and safety tracking

when the system is not congested. As safety tracking latency is quite large

93

0

20

40

60

80

10 20 30 40

La
te

nc
y

(m
s)

Processes

stability (reliable)
stability (semantic)

safety

(a) Latency of stability and safety

tracking

0

200

400

600

800

1000

10 20 30 40

La
te

nc
y

(m
s)

Processes

stability (reliable)
stability (semantic)

safety

(b) Latency of stability and safety

tracking when the system is con-

gested

Figure 5.12: Impact of group size and purging in the latency of stability and

safety tracking (r = 0.5, d = 5).

compared to stability tracking latency, purging of retransmission buffers is

harder. This is not critical, as when the system is not congested purging is only

used to accelerate garbage-collection. Figure 5.12(b) presents similar results

with a single congested receiver. Stability tracking latency becomes depen-

dent on the slower receiver. In this experiment safety tracking is not affected

because there is a single slow receiver, thus purging opportunities can be fully

exploited and greatly reduce stability latency in the semantic protocol. This is

true as long as the number of fast receivers is greater than f .

5.4.3 View change frequency and latency

When the performance of a receiver is perturbed, applications using strict re-

liability have the option of expelling the perturbed member from the group

to improve throughput stability [PS97]. This can be triggered by determining

which are the processes that are delaying message stability. With S-VSM this

can also be done, although it is not required as long as enough purging can be

94

0

20

40

60

80

100

4 8 12 16 20 24 28

T
hr

es
ho

ld
 (

m
sg

/s
)

Buffer size (msg)

reliable
semantic

(a) Threshold value

0

200

400

600

4 8 12 16 20 24 28

P
er

tu
rb

at
io

n
(m

s)

Buffer size (msg)

reliable
semantic

(b) Tolerated perturbation length

Figure 5.13: Impact of purging in the frequency of view changes.

done. It is thus interesting to consider, with the same traffic profile and system

configuration, which is the size of a perturbation that triggers a view change.

The points of inflexion of the curves of Figure 5.3 indicate which is the

minimal rate that a perturbed receiver has to ensure in order not to disturb

the group and thus not to be expelled. If a receiver exceeds this threshold

and remains in the group, its entire throughput is affected. For instance, with

traffic with r = 0.5, this is 50 msg/s while for reliable it is 100 msg/s.

Figure 5.13(a) shows what is the lowest threshold value, for the degrada-

tion of a receiver, that can be tolerated (with less that 5% impact on the sender)

as a function of the buffer size with traffic parameter r = 0.5, d = 5 when the

input rate is 100 msg/s. In any case, with a reliable protocol, the receiver’s rate

can never be lower than the average input rate, otherwise it eventually slows

down the system no matter how large the buffers are. On the other hand,

with S-VSM, slower receivers can be accommodated by increasing the buffer

size that enables purging to be done. Notice that S-VSM is not effective for

very small buffer sizes due to the dependency on the distance among related

messages.

The difference between the two lines of Figure 5.13(a) indicates the purg-

95

ing rate achieved by the protocol for each buffer size. The difference between

the messages being produced and the messages being purged indicates the

rate at which buffers fill-up for a given configuration. From this rate, we can

also estimate the maximum length of the perturbation period that can be tol-

erated before the buffers are exhausted. As a function of the buffer size, Fig-

ure 5.13(b) shows for how long can be tolerated a receiver that completely

stops to process messages. For instance, with a buffer size of 20 messages, a

reliable protocol can only tolerate a perturbation of 212 ms while the S-VSM

protocol can tolerate a perturbation of 377 ms.

The latency of view installation is related to the amount of used buffer

space when a view change is triggered, as it must wait for all pending mes-

sages to be stable. If the view change is due to a slower process, then buffers

are equally full and semantically reliability has no impact. Figure 5.7(b) presents

the results of observing the amount of buffer used. Notice that for delays be-

tween 10 ms to 20 ms, when purging is enough to prevent throughput degra-

dation, an eager strategy achieves this without buffers filling up.

5.5 Summary

We have analyzed the performance of our protocol using different approaches,

namely using an analytical model, simulation and a concrete implementation.

This experience allows us to draw conclusions about the validity of these ap-

proaches and identify the most relevant issues in the performance of semanti-

cally reliable protocols.

We have observed that the results from the prototype are sufficiently close

to the simulation model to allow reliable estimations to be extracted from sim-

ulations. In addition, results show that the simple analytical model is useful

in predicting the behavior of the system from the characteristics of the traf-

fic. Therefore it can be used by application developers as a configuration tool.

96

This avoids having to use the more complex simulation model or configure

the system by trial and error.

We have identified the following critical parameters in the performance

of the protocol that have to be adjusted to the characteristics of the traffic:

buffer size and maximum representable obsolescence distance. Configuration

of the system can thus be done in two steps: i) a description of the traffic

as a probability mass function of the distance between related messages is

determined, either analytically or by profiling the application; ii) if probability

of finding related pairs of messages accumulates in low values of distance,

buffer size N and maximum obsolescence distance k can be selected as the

minimum value which enables a sufficiently large share of related message

pairs to be found.

We conclude that S-VSM allows longer perturbations to be tolerated with

the same amount of allocated buffer space. Since this is achieved at the cost

of purging obsolete information, and not at the cost of storing additional mes-

sages, S-VSM as no negative impact on the latency of the view change proto-

col.

97

98

Chapter 6

Case Study

The purpose of this chapter is to illustrate a concrete application of semantic

reliability. This involves profiling the application to determine the obsoles-

cence relation and then using it to evaluate the performance of the prototype.

The case-study chosen is the replication of the server of a multi-player game.

6.1 Multi-player games

Multi-player games are an interesting application scenario where stringent

performance and consistency requirements meet. These applications are not

typically supported by group communication services, due to the following

factors:

• Off-the-shelf group communication services have traditionally been tar-

geted at applications without the stringent throughput requirements of

highly interactive applications.

• High availability of servers has not been high in the list of priorities

of game developers. In the past games were normally short-lived and

servers managed on a best-effort basis, frequently by players themselves.

99

However, this scenario is bound to change as the number of multi-player

games hosted by commercial services as well as the number of players and

spectators in each game is growing. Therefore it would be convenient to use

standard protocols for dissemination of game information. Also as a result of

this trend, long lived games have been appearing in an attempt to keep play-

ers loyal to a server. In such systems, the need to preserve the server state and

offer continuous service becomes an important concern. Therefore, it is ex-

tremely relevant to find abstractions that ease the task of replicating this type

of servers in an efficient manner.

6.2 Replicated server

We consider a primary-backup approach to replicate the game server. To de-

termine how the state is updated, we have inspected the code of the open-

source game QuakeTM1 to extract concrete obsolescence relations. The state of

the game is modeled as a set of items. An item is any object in the game with

which players can interact. The background is described separately and is im-

mutable. Each item is represented by a data structure that stores its current

position and velocity in the 3D space. The same data structure may also hold

additional type specific attributes, such as the players remaining strength.

The game advances in rounds that correspond to frames that are displayed

in players screens. Although the server tries to calculate 30 frames each sec-

ond, this number can be reduced without loss of correctness. However, this

degrades the perceived performance of the game hence the need to sustain a

stable throughput. During each round the server gathers input from clients

and re-calculates the state of the game. In each round, besides being updated,

items can also be created and destroyed. For instance, when a bullet is fired

an item has to be created to represent it, and if a player is later hit, both the

1http://www.quake.com

100

/* Server process */

1: upon reliable(data):
2: seq← seq+1

3: multicast(REL(data)) tagged with (seq, seq, [0..0])

/* Observer processes */

4: upon deliver(REL(data)):
5: . . .

Figure 6.1: Addendum to pseudo-code of Figure 3.8.

items of the bullet and the player need to be removed. The transmission of the

updated state includes:

• Updated values of items, for instance, as their position is altered. These

make previous values of updates obsolete as they convey newer values.

• Destruction and creation of items. These must be reliably delivered to

ensure that items are kept consistent.

Maximizing the amount of messages that become obsolete requires that

each item is multicast as a separate message. This leads to bursty application

traffic: In every round, after the new state is calculated, each modified item is

multicast along with reliable messages. Notice that consistency requires that

each round is applied atomically. Therefore we apply the scenario described

in Section 2.3.2, representing the obsolescence relation as described in Sec-

tion 3.4.3 that can easily be adapted to allow for some messages which never

become obsolete as shown in Figure 6.1 through the addition of procedure

reliable(data).

101

0
2
4
6
8

10
12
14
16
18
20

10 20 30 40 50

%
 o

f r
ou

nd
s

Item rank

(a) Frequency of item modifications

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

%
 o

f m
es

sa
ge

s

Distance to closest related message

(b) Obsolescence distance

Figure 6.2: Characterization of access to application state.

6.3 Traffic characterization

We have instrumented the game server to obtain experimentally the obsoles-

cence patterns from real game sessions. These patterns are logged and later

replayed, being only then multicast to a set of replicas. This is preferable to di-

rectly multicasting state updates from a live game, as it allows the same run to

be repeated with different protocols and the results compared. By comparing

the resulting state after applying messages delivered by S-RM with the state

resulting from reliable multicast it is also possible to verify the correctness of

the protocol implementation.

We detect which items are changed at each round by monitoring inter-

nal functions used to update the system state and to disseminate changes to

clients. The results presented have been observed during a session with 5

players lasting for approximately 6 minutes and allowing us to record a to-

tal of 11696 rounds. This particular run was selected due to its length with a

constant number of players.

From the traffic generated it was observed that a share of 41.88% of the

messages never became obsolete. The obsolescence pattern of the remaining

102

messages is related to the distribution of item updates. Although an aver-

age of 42.33 items were recorded active in each round, only an average of

1.39 items were modified. In addition, the results of Figure 6.2(a) show that

a small number of items was modified frequently, while some items have not

been modified at all during the measurement period. Therefore, consecutive

updates of the same item are likely to be found close in the message stream.

This is confirmed by Figure 6.2(b), that shows the distribution of distance be-

tween related messages. Notice that related pairs are usually close together

(often within 10 messages of each other). All items are represented by the

same data structure, which is 52 bytes long. This is the size of the message

payload. Reliable messages have variable size depending on what happened

in the round. Most were less that 32 bytes in size.

We have also collected data with other numbers of players. It can be ob-

served that when more players join the game the message rate increases, the

share of messages that never become obsolete decreases, but the distance be-

tween related messages increases. This suggests that higher purging rates

would be possible that those presented here, although at the expense of larger

buffer sizes.

6.4 Performance

Using the prototype implementation it is possible to observe the impact of

purging in throughput stability. Figure 6.3(a) shows that semantic reliability

allows the processing delay at the receiver to grow from 10 ms to 30 ms and

to be accommodated without impacting the sender. This is explained by be-

ing able to purge 51.14% of traffic as shown in Figure 6.3(b). No purging is

observed by fast receivers, because messages are rapidly delivered before a

substituting message exists. Fast receivers are thus completely unaffected by

congestion.

103

0

20

40

60

80

100

0 10 20 30 40 50

T
hr

ou
gh

pu
t (

m
sg

/s
)

Processing delay (ms)

semantic
reliable

(a) Throughput

0

20

40

60

80

100

0 10 20 30 40 50

M
es

sa
ge

s
pu

rg
ed

 (
%

)

Processing delay (ms)

(b) Purging

Figure 6.3: Performance of semantic reliability with Quake.

Of particular interest in these results are the points of inflexion of the curves

of Figure 6.3(a). Figure 6.4(a) shows the lowest threshold value, for the degra-

dation of a receiver, that can be tolerated (with less that 5% impact on the

sender) as a function of the buffer size. The horizontal line shows the aver-

age rate of input traffic. In the presence of periodic traffic, a receiver could

process messages at the average rate without affecting the group throughput.

However, as it can be seen from the figure, due to the bursty nature of the

game traffic pattern, when a reliable protocol is used, the receiver has to pro-

cess messages at a faster pace (to accommodate the excess of messages during

the bursts). As expected, it can be observed that larger buffers allow the reli-

able protocol to better accommodate message bursts. With semantic reliability,

slower receivers can be accommodated by increasing the buffer size that en-

ables purging to be done. Notice that semantic reliability is not effective for

very small buffer sizes due to the distance among related messages.

As a function of the buffer size, Figure 6.4(b) shows for how long a receiver

that completely stops to process messages can be tolerated. For instance, with

a buffer size of 24 messages, a reliable protocol can only tolerate a perturbation

of 342 ms while the S-VSM protocol can tolerate a perturbation of 857 ms. This

104

0

50

100

4 8 12 16 20 24 28

T
hr

es
ho

ld
 (

m
sg

/s
)

Buffer size (msg)

reliable
semantic

(a) Threshold value

0

500

1000

4 8 12 16 20 24 28

P
er

tu
rb

at
io

n
(m

s)

Buffer size (msg)

reliable
semantic

(b) Tolerated perturbation length

Figure 6.4: Impact of purging in the performance of view changes.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy
 (

%
)

Latency (rounds)

delay=20ms
delay=30ms

Figure 6.5: Latency histograms.

confirms that S-VSM allows longer perturbations to be tolerated with the same

amount of allocated buffer space.

Although the application ends up receiving a message that obsoletes ev-

ery purged message, this information is received with some additional delay.

When semantic reliability is used to disseminate the information to clients,

slower receivers will receive updates less often. Although this has no im-

pact in the replication scenario outlined, we have measured it by counting

the number of game rounds for which an item is outdated until the substitut-

ing message is received. This metric avoids the need for synchronized clocks.

105

When no purging exists, all modified items are updated within the round of

modification. When the receiver is perturbed with 10 ms, 78% of modified

items are updated within the a single round and 94% within 10 rounds. Re-

sults when purging is higher are presented in Figure 6.5.

6.5 Summary

This chapter presents the usage of semantic reliability in a concrete applica-

tion, namely, replicating a server of multi-player game using the primary-

backup approach. This involves determining and representing the obsoles-

cence relation.

This application is a good example of a case where the reliability con-

straints conflict with other system requirements (in this case timeliness) lead-

ing, in the worst case, to a complete denial of service during load peaks. The

notion of message obsolescence may provide the means to achieve a reason-

able trade-off in this setting. Instead of introducing an arbitrary loss of mes-

sages, that could lead to losing information about some entities, obsolescence

allows to introduce a selective purging of messages during congestion peri-

ods.

This is confirmed by performance results. Namely, it is possible to config-

ure the system such that a server with approximately one third of the through-

put can be accommodated without disturbing the performance of the group.

With a buffer size of 24 messages, this translates to being able to to accommo-

date a completely disconnected member for 857 ms instead of 342 ms until the

whole group is blocked.

106

Chapter 7

Conclusions

Reliable multicast protocols are useful in programming a wide range of dis-

tributed applications. Namely, in developing fault tolerant services by replica-

tion using a view synchronous multicast protocol as available in group com-

munication toolkits. The deployment of reliable multicast is however chal-

lenged by environments with heterogeneous performance: A single slow node

or network link can degrade the performance of the whole group by means of

flow-control. This is often referred to as a “crying baby” and is an obstacle to

the performance of systems requiring stable high throughput.

Previous proposals to address this problem fall roughly into three cate-

gories: temporarily expelling the perturbed member from the group; using

very large buffers; and avoiding the usage of a reliable multicast protocol.

Neither of these is suitable for fault tolerant applications.

Our proposal is to use knowledge about message semantics to selectively

relax reliability. This allows us to improve throughput stability while keeping

the convenient programming model of group communication. The approach

is motivated by the observation that when the system is congested, buffers

in the path to the bottleneck are full and thus are likely to contain messages

that have been produced in different points in time. In many applications,

recent messages implicitly convey the content or overwrite the effect of previ-

107

ous messages, which thereby become obsolete prior to their delivery to slow

processes.

If obsolete messages can be recognized within protocol buffers and then

purged, the application is relieved from processing some of the outdated mes-

sages and resources are freed to process further messages. Therefore, a recip-

ient that suffers a performance perturbation does not prevent messages from

stabilizing and can then be accommodated within the group without disturb-

ing the remaining members. Purging of obsolete messages is not observed

by fast members, which quickly deliver messages before becoming obsolete.

This means that only slow processes omit deliveries: They do not receive all

the messages but they still receive enough messages to be allowed to remain

in the group.

The introduction of semantically reliable group communication is done in

two steps:

• A suite of semantically reliable protocols is defined based on applica-

tion semantics captured as a binary relation on messages. This includes

combining semantic reliability with order and view synchrony. Impor-

tant issues in implementing semantically reliable protocols are identified

and discussed.

• The evaluation of performance of semantically reliable protocols is done

by using simple analytical and simulation models and then by imple-

menting and testing a multicast protocol.

Semantic reliability is effective only if obsolete messages can be found, i.e.,

our solution is only effective for some applications in which messages fre-

quently make recent messages obsolete. However, it can be observed that

high throughput applications such as distributed multi-player games allow

high purging rates. This is illustrated in two different ways:

• Typical applications of reliable multicast are examined for obsolescence

and the necessary modifications for usage with a semantically reliable

108

protocol are presented as pseudo-code. This qualitative analysis serves

also as a guide to programming with semantic reliability.

• A concrete application is profiled to determine the amount of purging

that can be accomplished in real executions. This provides a quantitative

example of the usefulness of semantic reliability.

An interesting conclusion is that existing group communication toolkits

can be easily modified to provide semantic reliability. As semantic reliability

defaults to strict reliability, this allows applications to run unmodified. This

opens up the possibility of, in a second step, improving the performance of

the application by defining suitable obsolescence relations.

7.1 Future work

As the emphasis of this dissertation is on the protocols themselves, the pre-

sentation of application programs is done mostly as motivation and as a pro-

grammer’s guide. A formal treatment of the correctness of primary-backup

and replicated state machine approaches based on semantic reliability is thus

desirable. Specifically, proofs that both are linearizable [HW90].

Although the prototype implementation addresses protocol mechanism

issues that arise in semantic reliability and allows the evaluation of perfor-

mance, it lacks the functionality for being deployed, most notably, the absence

of a view synchrony and total order. Nonetheless, the implementation of the

complete semantically reliable group communication suite is underway, based

on the Appia [MPR01] protocol composition framework.

Alternatively, the current prototype can be improved by using gossip in-

stead of IP multicast for the first phase. This would allow it to simultaneous

geographical and numerical large scale. The application of semantic purging

to gossip-based multicast protocols offering probabilistic reliability guaran-

tees is already being considered [PROK01, PROK02], allowing the reduction

109

of the bandwidth required for correct operation.

The concept of semantic reliability introduced in this thesis seems also to

be generally useful in multicast protocols, even outside group communica-

tion. Namely, it is being considered to improve error-handling in wireless

networks [EP01a, EP01b, EP02].

110

Bibliography

[AC97] G. Alvarez and F. Cristian. Applying simulation to the design

and performance evaluation of fault-tolerant systems. In IEEE

International Symposium on Reliable Distributed Systems, 1997.

[ADAD01] R. Arpaci-Dusseau and A. Arpaci-Dusseau. Fail-stutter fault tol-

erance. In Workshop on Hot Topics in Operating Systems, May 2001.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A commu-

nication sub-system for high availability. In IEEE International

Symposium on Fault-Tolerant Computing, July 1992.

[ADS00] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss tolerant

architecture and protocol for wide area group communication.

In IEEE International Conference on Dependable Systems and Net-

works, June 2000.

[AMMS+95] Y. Amir, L Moser, P Melliar-Smith, D. Agarwal, and P. Ciarfella.

The Totem single-ring ordering and membership protocol. ACM

Transactions on Computer Systems, 13(4), November 1995.

[BCBT96] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links

with unreliable links in the presence of process crashes. In Inter-

national Workshop on Distributed Algorithms, October 1996.

111

[BDM01] O. Babaoglu, R. Davoli, and A. Montresor. Group communica-

tion in partitionable systems: Specification and algorithms. IEEE

Transactions on Software Engineering, 27(4), 2001.

[BHO+99] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and

Y. Minsky. Bimodal multicast. ACM Transactions on Computer

Systems, 17(2), 1999.

[Bir93] K. Birman. The process group approach to reliable distributed

computing. Communications of the ACM, 36(12), December 1993.

[Bir99] K. Birman. A review of experiences with reliable multicast. Soft-

ware Practice and Experience, 29(9), July 1999.

[BMST93] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg. The

primary-backup approach. In S. Mullender, editor, Distributed

Systems, chapter 8. Addison Wesley, 1993.

[BPRS98] R. Baldoni, R. Prakash, M. Raynal, and M. Singhal. Efficient ∆-

causal broadcasting. International Journal of Computer Systems Sci-

ence and Engineering, 13(5), September 1998.

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal

and atomic group multicast. ACM Transactions on Computer Sys-

tems, 9(3), August 1991.

[BvR94] K. Birman and R. van Renesse. Reliable Distributed Computing

with the Isis Toolkit. IEEE Computer Society Press, 1994.

[CBDS01] B. Charron-Bost, X. Défago, and A. Schiper. Time vs. space in

fault-tolerant distributed systems. In IEEE International Workshop

on Object-oriented Real-time Dependable Systems, January 2001.

112

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed

system model. IEEE Transactions on Parallel and Distributed Sys-

tems, June 1999.

[CHT96] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure

detector for solving consensus. Journal of the ACM, 43(4), July

1996.

[CKV01] G. Chockler, I. Keidar, and R. Vitenberg. Group communication

specifications: a comprehensive study. ACM Computing Surveys,

33(4), December 2001.

[CL85] K. Chandy and L. Lamport. Distributed snapshots: determining

global states of distributed systems. ACM Transactions on Com-

puter Systems, 3(1), February 1985.

[Cla82] D. Clark. RFC 813: Window and acknowledgement strategy in

TCP. IETF Request for Comments, July 1982.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems.

Communications of the ACM, 34(2), February 1991.

[CRW00] A. Carzaniga, D. Rosenblum, and A. Wolf. Content-based ad-

dressing and routing: A general model and its application. Tech-

nical Report CU-CS-902-00, Department of Computer Science,

University of Colorado, January 2000.

[CT90] D. Clark and D. Tennenhouse. Architectural considerations for a

new generation of protocols. In ACM SIGCOMM Symposium on

Communications Architectures and Protocols, September 1990.

[CT96] T. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2), March 1996.

113

[DC90] S. Deering and D. Cheriton. Multicast routing in datagram in-

ternetworks and extended LANs. ACM Transactions on Computer

Systems, 8(2), May 1990.

[Den68] P. Denning. The working set model for program behaviour. Com-

munications of the ACM, 11(5), May 1968.

[EG02] P. Eugster and R. Guerraoui. Probabilistic multicast. In IEEE

International Conference on Dependable Systems and Networks, June

2002.

[EGH+01] P. Eugster, R. Guerraoui, S. Handurukande, A.-M. Kerrmarec,

and P. Kouznetsov. Lightweight probabilistic broadcast. In IEEE

International Conference on Dependable Systems and Networks, June

2001.

[EMS95] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A fault-

tolerant group communication protocol. In IEEE International

Conference on Distributed Computing Systems, May 1995.

[EP01a] S. Elf and P. Parnes. A configurable transport layer as a cure for

crying babies. Technical report, Luleå University of Technology,

May 2001.

[EP01b] S. Elf and P. Parnes. A literature review of recent developments

in reliable multicast error handling. Technical report, Luleå Uni-

versity of Technology, May 2001.

[EP02] S. Elf and P. Parnes. Applying semantic reliability concepts to

multicast information messaging in wireless networks. In IRMA

International Conference, May 2002.

114

[ES98] A. Erramilli and R. Singh. A reliable and efficient multicast for

broadband broadcast networks. In ACM Workshop on Frontiers in

Computer Communications Technology, August 1998.

[FB96] R. Friedman and K. Birman. Trading consistency for availabil-

ity in distributed systems. Technical Report TR96-1579, Cornell

University, Computer Science Department, April 1996.

[FJL+97] S. Floyd, Van Jacobson, C.-G. Liu, S. McCanne, and L. Zhang. A

reliable multicast framework for light-weight sessions and ap-

plication level framing. IEEE/ACM Transactions on Networking,

5(6), December 1997.

[FLP85] M. Fischer, N. Lynch, and M. Paterson. Impossibility of dis-

tributed consensus with one faulty process. Journal of the ACM,

1985.

[FvR95] R. Friedman and R. van Renesse. Strong and weak virtual syn-

chrony in Horus. Technical Report TR95-1537, Cornell Univer-

sity, Computer Science Department, August 1995.

[GHvR+97] K. Guo, M. Hayden, R. van Renesse, W. Vogels, and K. Birman.

GSGC: An efficient gossip-style garbage collection scheme for

scalable reliable multicast. Technical Report TR97-1656, Cornell

University, Computer Science Department, December 1997.

[GOS98] R. Guerraoui, R. Oliveira, and A. Schiper. Stubborn com-

munication channels. Technical Report 98-278, Département

d’Informatique, École Polytechnique Fédérale de Lausanne,

1998.

[GS95] R. Guerraoui and A. Schiper. Transaction model vs virtual syn-

chrony model: bridging the gap. In K. Birman, F. Mattern, and

115

A. Schiper, editors, Theory and Practice in Distributed Systems,

number 938 in Lecture Notes in Computer Science. Springer-Ver-

lag, 1995.

[GS97a] R. Guerraoui and A. Schiper. Software-based replication for fault

tolerance. IEEE Computer, 30(4), April 1997.

[GS97b] R. Guerraoui and A. Schiper. Total order multicast to multiple

groups. In IEEE International Conference on Distributed Computing

Systems, May 1997.

[GS01] R. Guerraoui and A. Schiper. The generic consensus service.

IEEE Transactions on Software Engineering, 27(1), January 2001.

[GT91] A. Gopal and S. Toueg. Inconsistency and contamination. In

ACM Symposium on Principles of Distributed Computing, August

1991.

[Guo98] K. Guo. Scalable Message Stability Detection Protocols. PhD thesis,

Cornell University, Computer Science Department, May 1998.

[Hay98] M. Hayden. The Ensemble System. PhD thesis, Cornell University,

Computer Science Department, January 1998.

[HS95] M. Hiltunen and R. Schlichting. Properties of membership ser-

vices. In IEEE International Symposium on Autonomous Decentral-

ized Systems, April 1995.

[HT94] V. Hadzilacos and S. Toueg. A modular approach to fault-

tolerant broadcasts and related problems. Technical Report

TR94-1425, Cornell University, Computer Science Department,

May 1994.

116

[HvR95] T. Hickey and R. van Renesse. Incorporating system resource

information into flow control. Technical Report TR95-1489, Cor-

nell University, Computer Science Department, February 1995.

[HW90] M. Herlihy and J. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Lan-

guages and Systems, 12(3), July 1990.

[Jac88] V. Jacobson. Congestion avoidance and control. In ACM SIG-

COMM Conference, August 1988.

[Jai91] R. Jain. The art of computer systems performance analysis. John

Wiley & Sons, Inc., 1991.

[Lam78] L. Lamport. Time, clocks and the ordering of events in dis-

tributed systems. Communications of the ACM, 21(7), 1978.

[Lam94] L. Lamport. The temporal logic of actions. ACM Transactions on

Programming Languages and Systems, 16(3), May 1994.

[Lam97] L. Lamport. Processes are in the eye of the beholder. Theoretical

Computer Science, 179(1–2), June 1997.

[LH99] K. Lin and V. Hadzilacos. Asynchronous group membership

with oracles. In International Symposium on Distributed Computing

(DISC), 1999.

[Mal96] C. Malloth. Conception and Implementation of a Toolkit for Build-

ing Fault-Tolerant Distributed Applications in Large Scale Networks.

PhD thesis, Département d’Informatique, École Polytechnique

Fédérale de Lausanne, 1996.

[MPR01] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible pro-

tocol kernel supporting multiple coordinated channels. In IEEE

117

International Conference on Distributed Computing Systems, April

2001.

[NBT97] J. Nonnenmacher, E. Biersack, and D. Towsley. Parity-based loss

recovery for reliable multicast transmission. In ACM SIGCOMM

Conference, September 1997.

[Oli00] R. Oliveira. Solving consensus: From fair-lossy channels to crash-

recovery of processes. PhD thesis, Département d’Informatique,

École Polytechnique Fédérale de Lausanne, February 2000.

[OPS01] R. Oliveira, J. Pereira, and A. Schiper. Primary-backup replica-

tion: From a time-free protocol to a time-based implementation.

In IEEE International Symposium on Reliable Distributed Systems,

October 2001.

[Pat02] D. Patterson. Availability and maintainability >> performance:

New focus for a new century. USENIX Conference on File and

Storage Technologies, Keynote address, January 2002.

[Ped99] F. Pedone. The Database State Machine and Group Communication

Issues. PhD thesis, Département d’Informatique, École Polytech-

nique Fédérale de Lausanne, 1999.

[PGS02] F. Pedone, R. Guerraoui, and A. Schiper. The database state ma-

chine approach. Journal of Distributed and Parallel Databases and

Technology, 2002.

[Pow96] D. Powell. Group communication. Communications of the ACM,

39(4), April 1996.

[PROK01] J. Pereira, L. Rodrigues, R. Oliveira, and A.-M. Kermarrec. Prob-

abilistic semantically reliable multicast. In IEEE International

Symposium on Network Computing and Applications, 2001.

118

[PROK02] J. Pereira, L. Rodrigues, R. Oliveira, and A.-M. Kermarrec. On

the use of message semantics in probabilistic multicast. (Submit-

ted for publication.), 2002.

[PS97] R. Piantoni and C. Stancescu. Implementing the Swiss Ex-

change Trading System. In IEEE International Symposium on

Fault-Tolerant Computing, June 1997.

[PS99] F. Pedone and A. Schiper. Generic broadcast. In International

Symposium on Distributed Computing (DISC), September 1999.

[PTK94] S. Pingali, D. Towsley, and J. Kurose. A comparison of sender-

initiated and receiver-initiated reliable multicast protocols. In

ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, May 1994.

[RBAR00] L. Rodrigues, R. Baldoni, E. Anceaume, and M. Raynal.

Deadline-constrained causal order. In IEEE International Sym-

posium on Object-oriented Real-time distributed Computing, March

2000.

[RGS98] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic mul-

ticast. In IEEE International Conference on Computer Communica-

tions and Networks, October 1998.

[RM93] M. Raynal and M. Mizuno. How to find his way in the jungle

of consistency criteria for distributed shared memories (or How

to escape from Minos’ Labyrinth). In IEEE International Confer-

ence on Future Trends of Distributed Computing Systems, September

1993.

[RM97] S. Raman and S. McCanne. Generalized data naming and scal-

able state announcements for reliable multicast. Technical Re-

port CSD-97-951, University of California, Berkeley, June 1997.

119

[RSB93] A. Ricciardi, A. Schiper, and K. Birman. Understanding par-

titions and the “No partition” assumption. In IEEE Interna-

tional Conference on Future Trends of Distributed Computing Sys-

tems, September 1993.

[RV92] L. Rodrigues and P. Veríssimo. xAMp: a multi-primitive group

communications service. In IEEE International Symposium on Re-

liable Distributed Systems, October 1992.

[Sat90] M. Satyanarayanan. A survey of distributed file systems. Annual

Reviews of Computer Science, 4, 1990.

[SBS93] D. Schmidt, D. Box, and T. Suda. ADAPTIVE — A Dynamically

Assembled Protocol Transformation, Integration and eValuation

Environment. Concurrency: Practice and Experience, 5(4), 1993.

[Sch93] F. Schneider. Replication management using the state-machine

approach. In S. Mullender, editor, Distributed Systems, chapter 7.

Addison Wesley, 1993.

[SKM00] J. Sussman, I. Keidar, and K. Marzullo. Optimistic virtual syn-

chrony. In IEEE International Symposium on Reliable Distributed

Systems, October 2000.

[SS93a] A. Schiper and A. Sandoz. Understanding the power of the

virtually-synchronous model. In European Workshop on Depend-

able Computing, February 1993.

[SS93b] A. Schiper and A. Sandoz. Uniform reliable multicast in a virtu-

ally synchronous environment. In IEEE International Conference

on Distributed Computing Systems, May 1993.

[TTP+95] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and

C. Hauser. Managing update conflicts in Bayou, a weakly con-

120

nected replicated storage system. In ACM Symposium on Operat-

ing Systems Principles, December 1995.

[WS95] U. Wilhelm and A. Schiper. A hierarchy of totally ordered mul-

ticasts. In IEEE International Symposium on Reliable Distributed

Systems, September 1995.

121

122

Appendix A

Correctness Proofs

Liveness properties of S-RM are sufficiently different from those of reliable

mulitcast to justify a detailed proof. We use the opportunity to relax the

assumption of FIFO channels thus introducing additional detail in the algo-

rithm. On the other hand, we resort to a more abstract notation to simplify the

presentation of the proof. Appendix B discusses how a practical implementa-

tion can be obtained from this algorithm.

A.1 System model and notation

The system execution is modeled as a sequence of states [Lam94]. Each state

is a mapping from state variables to values. A next state relation is a predicate

on pairs of states. A specification is a set of executions, that can be defined

by a next state relation which is true for consecutive states in legal executions,

plus fairness assumptions written in temporal logic.

The state describes both the algorithm and the environment. Processes and

channels are not explicit: A process state is a portion of the system state and

channel operations are modeled as copying elements between the state of two

processes [Lam97]. Process crash is denoted explicitly by state variables. A

process is considered correct if its crashed state is forever false.

123

We use the common notation for sets. For tuples, we use the usual notation

πn to denote projection of element n. This notation is extended for sets of tu-

ples with Πn to denote the set of projections. For sequences, we use 〈m〉 to de-

note a sequence with one element m and ◦ to denote concatenation. elems(S)

denotes the set of elements of a sequence S. A message multicast by pro-

cess i is expressed as m ∈ elems(Mi) and a message delivered by process i

is expressed as m ∈ elems(Di). Likewise, order of multicast and delivery are

expressed as ordering in sequences Mi and Di.

A.2 Algorithm

The challenges in implementing S-RM can be summarized by two example

scenarios of how a naive implementation, that would just delete from the

buffers messages made obsolete by the reception of a subsequent message,

would fail.

The first is the following scenario and arises because the assumption of

FIFO order in point-to-point channels is not made: i) a process p multicasts

two unrelated message m1 and m2 (m1 6@ m2); ii) the same process p multicasts

an infinite sequence of messages m3, m4, . . . such that m1 @ m3 and ∀i ≥ 3 :

mi @ mi+1. Consider that p purges m1 from its buffer before sending both m1

and m2 to another process q. Since m2 was sent after m1, q will not deliver

m2 before m1 arrives (that would never occur) or until it realizes that m1 was

purged because it was made obsolete by some other message mi. However,

since mi belongs to an infinite sequence, it may never arrive at q. Therefore,

the protocol must incorporate some mechanism to ensure that q is informed

about the purging of m1.

Even if information about purged messages is propagated, it is possible to

show that the naive implementation would not ensure both Semantic Validity

and Semantic FIFO Completeness in the case of failures. Consider the same

124

scenario as above and the following sequence of events: i) process p multicasts

m1, m2 and m3; ii) p purges m1 due to m3 and informs the remaining processes

that m1 was purged; iii) p sends m2 that is delivered by some process q; iv)

p crashes. Clearly, this sequence violates Semantic FIFO Completeness. The

problem is that m1 was purged before ensuring the delivery of m3. A message

is guaranteed to be eventually delivered as soon as it has been received by

f + 1 processes, where f is the maximum number of processes that may fail.

When this condition holds, we say that the message is safe. In the particular

sequence above, violation of Semantic FIFO Completeness could be avoided

if purging of m1 was delayed until m3 was known to be safe.

Given these observations, our protocol is based on the following princi-

ples:

• As in any reliable protocol, processes forward all the messages they re-

ceived to mask the failure of the sender.

• In a retransmission buffer, a message m may be purged only if there is

another message m′ such that: m @ m′ and m′ is safe.

• When a message is purged, enough information is stored to inform the

remaining processes that the message has been purged.

The variables used by each process i are listed in Figure A.1. Variable Mi

simply keeps the messages that have been multicast by the process. The vari-

able ci records the state of the process (false if the process is correct and true

if the process is crashed). Each process keeps a pair of buffers Ii,j and Oi,j

for each process j. Variable Ii,j is an incoming buffer from j, where messages

waiting to be ordered are stored. Variable Oi,j stores messages waiting to be

transmitted to j. Messages ordered are copied to a local delivery queue Qi and

messages that have been delivered are recorded in Di. Messages in Oi,j and

Qi can be purged. Purging is modeled by changing an attribute that is associ-

ated with each message in a given queue. This attribute can have one of two

125

State for each process i:
Mi: messages multicast, initially empty sequence
Di: messages delivered, initially empty sequence
ci: crashed state, boolean, initially false
Oi,j : outgoing toward j, initially empty
Ii,j : incoming via j, initially empty
Qi: queued for delivery, initially empty

Figure A.1: State variables.

TE1: transmitj,i(m, o)
PRE-CONDITION:

(m, o) ∈ Oj,i ∧ ¬cj∧
m 6∈ Π1(Ii,j) ∧ ¬ci

EFFECT:
Ii,j := Ii,j ∪ {(m, o)}

TE2: crashi

PRE-CONDITION:
|{j : cj} ∪ {i}| < f

EFFECT:
ci := true

Figure A.2: Transitions associated with the environment.

values: D (the message contains data) or P (the message has been purged).

Figure A.2 depicts the transitions of the environment. Transition TE1 sim-

ply specifies that messages in output buffers are eventually inserted in the

corresponding input buffers from the destination processes (this models the

transmission of messages in the links). Transition TE2 specifies that a process

may crash as long as the maximum number of faulty processes has not been

reached.

Figure A.3 depicts the transitions for each process i:

• Transition TP1 corresponds to the multicast of a message m. In this tran-

sition the fact that m has been multicast is stored in Mi and the message

is sent to self by inserting it in Oi,i (note that the environment will even-

tually move the message to Ii,i). Notice that the predicate next(m, S),

that ensures that all predecessors of message m are available in set S, is

used to enforce that the message being multicast has the right sequence

number.

126

• Transition TP2 captures the forwarding procedure executed by every

node. When a message is received for the first time and it is the next

message in the sequence, as enforced by next(m, S), it is copied to all

output buffers and inserted in Qi for delivery.

• Transition TP3 captures the delivery of messages (note that, in practice,

when a purged message is delivered the application is not disturbed).

• Transition TP4 specifies that a message m, waiting to be delivered, can

be purged as long as in the same queue there is a subsequent message

m′ that makes m obsolete.

• Finally, transition TP5 specifies that a message m in an output buffer

can only be purged if in the same queue there is a subsequent message

m′ that makes m obsolete and m′ is safe. This is ensured by predicate

safe(m, i), which checks that process i has received m from more than f

processes.

The fairness assumptions for the algorithm are the following. No fairness

assumptions for multicasti(m), purge_qi(m), purge_ri(m) and crashi, thus al-

lowing them to be forever enabled but never executed. Weak fairness is as-

sumed for transmitj,i(m, o), for all i, j, m, o, and for enqueuei(m, o)/ deliveri(m),

for all i, m, o. This requires them to be eventually executed if forever enabled.

Notice that there is no fairness imposed on purging operations, thus allowing

reliable executions where no message is discarded.

A.3 Proof

We focus on proving liveness properties of the specification because these are

the ones that make the difference to strict reliability and are those that can be

compromised by losing messages.

127

TP1: multicasti(m)
PRE-CONDITION:

next(m,Oi,i) ∧ ¬ci

EFFECT:
Mi := 〈m〉 ◦Mi

Oi,i := Oi,i ∪ {(m, D)}

TP2: enqueuei(m, o)
PRE-CONDITION:
∃j : (m, o) ∈ Ii,j ∧m 6∈ Π1(Qi)∧
next(m,Qi) ∧ ¬ci

EFFECT:
for all k 6= i:Oi,k := Oi,k ∪ {(m, o)}
Qi := Qi ∪ {(m, o)}

TP3: deliveri(m)
PRE-CONDITION:

(m, D) ∈ Qi ∧m 6∈ elems(Di) ∧ ¬ci

EFFECT:
Di := 〈m〉 ◦Di

TP4: purge_qi(m)
PRE-CONDITION:
∃m′ : (m, D), (m′, D) ∈ Qi∧
m @ m′ ∧ ¬ci

EFFECT:
Qi := (Qi \ {(m, D)}) ∪ {(m, P)}

TP5: purge_ri(m)
PRE-CONDITION:
∃m′ : (m, D), (m′, D) ∈ Oi,j∧
m @ m′ ∧ safei(m

′) ∧ ¬ci

EFFECT:
Oi,j := (Oi,j \ {(m, D)}) ∪ {(m, P)}

safe(m, i) =
|{j : (m, o) ∈ Ii,j}| > f

next(m,S) =
∀s < seq(m),∃m ∈ Π1(S) :

snd(m) = snd(m′) ∧ seq(m′) = s

Figure A.3: Transitions associated with process i.

Of the remaining properties, Integrity is trivially satisfied. The correctness

of FIFO Order derives from i) Qi containing a complete prefix of messages

multicast and ii) a message that is purged in Qi is never available as data

(m, D) again in Qi.

The proof of each of the liveness properties of the specification requires

that if some condition on a message m is true, then some message m′ such that

m v m′ is eventually delivered. This is split in two steps:

1. We prove that if for a pair of correct processes j, i, m ∈ Π1(Oj,i) and there

is a time after which no process multicasts m′′ such that m @ m′′, then

eventually exists some m′ ∈ elems(Di) such that m v m′.

2. For each specification property, we prove that the condition it imposes

on m implies that for some pair of correct processes j, i, m ∈ Π1(Oj,i).

128

This makes the proof associated with the first step in Lemma 3 the only even-

tuality proof required. This proof uses the results of two auxiliary lemmata

that summarize interesting aspects of the protocol. The proofs use some ad-

ditional notation: The path to a process i, denoted Hi, is defined as Hi =
⋃

¬cj
(Oj,i ∪ Ii,j). The world W is

⋃n,n

i=0,j=0
(Ii,j ∪ Oi,j). The predecessors of a

message m are Pred(m) = {m′ ∈M : snd(m′) = snd(m) ∧ seq(m′) < seq(m)}.

Lemma 1 If (m, P) ∈ Hi then there is some m′ such that m @ m′ and for every

process j (correct or not) m′ ∈ Π1(Hj).

PROOF: If (m, P) ∈ Hi then for some process k, (m, P) ∈ Ok,i or (m, P) ∈ Ii,k.

Moreover, if (m, P) ∈ Ii,k then (m, P) ∈ Ok,i. This is true as i) (m, P) is never

removed from Ok,i and ii) the only action that inserts elements in Ii,k is only

enabled if the same element is in Ok,i.

Trivially if (m, P) ∈ Ok,i then (m, P) ∈ W . If (m, P) ∈ W then there is some

m′, m @ m′, and a set of processes L with |L| > f , such that for any l ∈ L,

m′ ∈ Ik,l. This is true as i) the only action that inserts (m, P) in W is only

enabled when m′ is in more than f incoming queues and ii) if m′ ∈ Π1(Ik,l)

once, then it is forever true. Therefore, for any process l ∈ L, m′ ∈ Ol,k and

there is at least one l ∈ L that is correct, as crash is enabled only for f processes.

If m′ ∈ Π1(Ol,k) then for all j, m ∈ Ol,j. This is true as i) transition

enqueuej(m, o) always inserts m in all Π1(Ol,j). Therefore, for any j, m′ ∈

Π1(Hj).�

Lemma 2 Any path Hi contains a complete sequential prefix of the message ordering:

For all m ∈ Π1(Hi), Pred(m) ⊂ Π1(Hi).

PROOF: For all i, Π1(Qi) is a prefix of the ordering. This is true as the only

action that changes it is only enabled when the new message is the next in

the sequence. Moreover, Π1(Oj,i ∪ Ii,j) is always equal to Π1(Qj). The only

actions that change Π1(Oj,i ∪ Ii,j) also change Π1(Qj) accordingly. Therefore,

129

as the union of prefixes is still a valid sequential prefix, any path Hi contains

a prefix.�

Lemma 3 If forever m ∈ Π1(Hi) then eventually m′ ∈ elems(Di) such that m v

m′.

PROOF: We define a set of tuples Stat(m) ⊆ P ×M × 2M × 2M × 2M × 2M

such that (r, x, s0, s1, s2) ∈ Stat(m) iff m v x;
⋃

3

i=0
si = Pred(x) ∪ {x} and

∀i 6= j : si ∩ sj = ∅.

We define a relation ≺ in Stat(m) such that t ≺ t′ iff either π1(t) ⊂ π1(t
′);

or π1(t) = π1(t
′) and π1(t) @ π1(t

′); or π1(t) = π1(t
′) and π1(t) 6@ π1(t

′) and

for some a for all 3 ≤ a < b ≤ 5, πa(t) = πb(t
′) and πa(t) ⊂ πb(t

′). If the set of

messages that make m obsolete is finite, then Stat(m) is also finite. (Stat(m),≺

) is a strict partial order because both strict set inclusion and obsolescence are

strict partial orders. Thus (Stat(m),≺) is well-founded.

We now define a function fi,m from system state to Stat(m) defined for

states in which process i has not crashed and m ∈ Π1(Hi). Let fi,m = (r, x, s0, s1, s2)

such that:

• r = {i : ¬ci}

• choose x ∈ Π1(Hi) such that m v x and ∀m′ ∈ Π1(Hi) : x 6@ m′;

• s0 = Π1(
⋃

k∈c Ok,i) \ Π1(
⋃

k∈c Ii,k) ∩ Pred(x)

• s1 = Π1(
⋃

k∈c Ii,k) \ Π1(Qi) ∩ Pred(x)

• s2 = Π1(Qi) \Di ∩ Pred(x)

Assuming that m ∈ Π1(Oj,i) such that j is correct (forever ¬cj), we prove

that eventually m′ ∈ elems(Di) by ensuring that i) if m ∈ Oj,i then fi,m ∈

Stat(m), that is true by definition; ii) for some helpful transitions either fi,m ≺

f ′i,m or m′ ∈ elems(Di) and at least one is enabled or m′ ∈ Di; and iii) for the

remaining transitions, never f ′i,m ≺ fi,m.

130

The transitions considered helpful and respective resulting values for fi,m =

(r, x, s0, s1, s2) are:

• transmitj,i(m
′, o) if m′ ∈ s0, leads to (r, x, s0 \ {m

′}, s1 ∪ {m
′}, s2).

• enqueuei(m
′, o) if m′ ∈ s1, leads to (r, x, s0, s1 \ {m

′}, s2 ∪ {m
′}).

• deliveri(m
′) if m 6v m′ ∧ m′ ∈ s2, leads to (r, x, s0, s1, s2 \ {m

′}). Notice

that m′ 6v m implies m′ 6= x.

• deliveri(m
′) if m v m′. Goal reached with m′ ∈ elems(Di).

At least one of these is enabled: If transmitj,i(m, o) is not enabled for all j,

then at least m ∈ Π1(Ii,j) for some j as m ∈ Π1(Hi). If enqueuei(m, o) is also

not enabled, then m ∈ Π1(Qi). Otherwise, with m ∈ Π1(Hi) and Hi containing

complete prefixes (by Lemma 2), transmission would have to be enabled. If

deliveryi(m), m 6v m′ is also not enabled then s2 = {x}, as Qi contains x.

Otherwise deliveryi(x) is enabled as x must be tagged with D. Otherwise (by

Lemma 2) it would not be a maximal element.

There are transitions that help but are not guaranteed to occur. Either be-

cause there is no fairness, namely in multicasti(m
′) if x @ m′ and crashj if

¬cj , or are fair but may never be enabled, namely enqueuek(m
′) if x @ m′.

Other actions leave fi,m unchanged. Notice that crashi does not happen by

assumption.�

Theorem 1 (Semantic Validity) If a correct process multicasts a message m and

there is a time after which no process multicasts m′′ such that m @ m′′, then eventu-

ally it delivers some m′ such that m v m′.

PROOF: It is trivially true that if m ∈ Mi then m ∈ Oi,i and process i is correct

by assumption. Proof follows immediately from Lemma 3.�

Theorem 2 (Semantic Agreement) If a correct process delivers a message m and

there is a time after which no process multicasts m′′ such that m @ m′′, then all

correct processes eventually deliver some m′ such that m v m′.

131

PROOF: By a simple invariance proof, if i delivers m then m ∈ Oi,j for all j and

process i is correct by assumption. Proof follows immediately by Lemma 3.�

Theorem 3 (Semantic FIFO Completeness) If a process multicasts a message m

before it multicasts a message m′ and there is a time after which no process multicasts

m′′′ such that m @ m′′′, no correct process delivers m′ without eventually delivering

some m′′ such that m v m′′.

PROOF: By a simple invariance proof (same as Semantic Agreement), if i de-

livers m′ then m′ ∈ Oi,j for all j. By Lemma 2, the same Oi,j contains m. Thus

either m is delivered or by Lemma 1 some m′′ such that m v m′′ exists.�

A.4 Causal order

The algorithm used for S-RM with FIFO order can easily be adapted for causal

order. In detail, it is necessary to be able to determine the set of predecessors

Pred(m) of a given message. This reduces to knowing for each message m the

sequence number of the last message from each process j delivered to snd(m)

at the time that m is multicast. Let this be cseq(m, j). Then Pred(m) = {m′ ∈

M : (snd(m′) = snd(m)∧seq(m′) < seq(m))∨(∃j ∈ P : snd(m′) = j∧seq(m′) ≤

cseq(m, j))}. The changes to the algorithm are then reduced to the definition of

predicate next(m, S) to reflect the redefinition of predecessor set. The impact

of the redefinition of Pred(m) is restricted to Lemma 2 and the result remains

valid, as all predecessors of a message are necessarily contained in the same

path.

132

Appendix B

Implementation Details

The abstract presentation of the algorithm makes several simplifications, such

as assuming that information about past messages indefinitely accumulates

in the variables at each process. The specification also requires that informa-

tion about purged messages is always explicitly sent over the network. We

now argue how a practical implementation can be derived from the specifi-

cation. For clarity, we address first the case where no purging occurs before

discussing how purging can be implemented.

B.1 Window-based implementation

In the algorithm of Figures A.2 and A.3, sets Oj,i, Ii,j and Qi represent a point-

to-point FIFO reliable channel as follows: Messages currently in transit (sent

but not yet received), are Oj,i \Qi. Messages available only at the sender side

are Oj,i \ Ii,j. Messages available at the receiver side waiting to be ordered are

Ii,j\Qi. Notice that operations transmit and enqueue never refer to the content

of messages in Qi but need only the knowledge of the sequence number of the

last message delivered.

In practice, this can be implemented using a pair of buffers (one on each

side of the channel) and a sequence counter on the receiver: i) messages sent

133

are placed in the outgoing buffer, being eventually sent and if necessary re-

peatedly resent to the network (this is first line of enqueue); ii) upon reception,

an acknowledgment is sent back and if necessary, repeatedly resent; iii) upon

reception of acknowledgment the message is removed from the sender buffer

(this implements transmit); iv) when a message bearing the next sequence

number is available at the receiver, it is removed from the buffer and the se-

quence number is incremented (this implements the second line of enqueue).

Therefore, it is possible to implement the abstract specification of a chan-

nel using a window-based protocol. Since, in the proposed algorithm, there is

symmetric connection (i.e., Oi,j, Ij,i and Qj), acknowledgments can be piggy-

backed on messages traveling in the opposite direction as happens in TCP/IP

in which acknowledgments are implicit in the lower bound of the window.

B.2 Purging

When purging happens in Oj,i, (m, D) is replaced by (m, P). In practice, for

purging to be useful this must be implemented as freeing all resources (mem-

ory and bandwidth) consumed by m. This can be done in the sender’s buffer,

thus preventing network resources from being wasted. However, the receiver

has to be notified that m has been purged to advance the sequence counter

without receiving m.

This can be done using the following strategy: i) assume a fixed window of

size w: the sender never puts sequence s+w in the network without previously

receiving an acknowledgment to s; ii) the sender knows that it has not received

an acknowledgment s if some m such that seq(m) = s is in the buffer; iii) if

m is purged, it is removed from the buffer thus allowing s + w to be put in

the network and eventually received. When the receiver gets s + w without

ever getting s it must conclude that the message with sequence s has been

purged. This implements (m, P) being inserted in Ii,j. Notice that no message

134

labeled with P is, in the algorithm, ever used for anything besides inspecting

its sequence number, that in practice translates to it not occupying space. Note

also that if there are no further messages to send, a message indicating that the

window is empty needs to be explicitly sent.

Likewise, Qi and Di abstract a FIFO queue holding messages Qi \ Di or-

dered by sequence number. Messages are inserted by enqueue and removed

by deliver. Purging in this buffer is implemented by removing the purged

message.

B.3 Multicast network

If multicast links are available, it is also possible to optimize the message for-

warding procedure that, in the abstract specification, requires each message

to be transmitted on the network n2 times. Two optimizations are possible:

• As a message is always simultaneously inserted in all outgoing channels

Oi,j, a network level multicast mechanism can be used to transmit it, thus

reducing the complexity to n.

• As soon as a message is received in some Ii,j it can be acknowledged

in all incoming channels: the receiver advances the lower bound of the

window thus allowing the sender to immediately remove the message

from its buffers. This also reduces the complexity to n.

Using both optimizations simultaneously, a message can be transmitted

only once in the network. In addition, as in conventional reliable multicast

protocols, the explicit point-to-point acknowledgment mechanism can be re-

placed by a global stability tracking mechanism thus further improving per-

formance and scalability.

135

