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Abstract

Connectivity of a sensor network depends critically on tolerance to
node failures. Nodes may fail due to several reasons, including energy
exhaustion, material fatigue, environmental hazards or deliberate attacks.
Although most routing algorithms for sensor networks have the ability to
circumvent zones where nodes have crashed, if too many nodes fail the
network may become disconnected.

A sensible strategy for increasing the dependability of a sensor network
consists in deploying more nodes than strictly necessary, to replace crashed
nodes. Spare nodes that are not fundamental for routing or sensing may
go to sleep. To ensure proper operation of the sensor network, sleeping
nodes should monitor active nodes frequently. If crashed nodes are not
replaced, messages follow sub-optimal routes (which are energy inefficient)
and, furthermore, the network may eventually become partitioned due
to the effect of accumulated crashes. On the other hand, to save the
energy, nodes should remain sleeping as much as possible. In fact, if the
energy consumed with the monitoring process is too high, spare nodes may
exhaust their batteries (and the batteries of active nodes) before they are
needed.

This paper studies the optimal monitoring period in fault-tolerant
sensor networks to ensure that: i) the network remains connected (i.e.,
crashed nodes are detected and substituted fast enough to avoid the net-
work partition) and, ii) the lifetime of the network is maximized (i.e.,
inactive nodes save as much battery as possible).

1 Introduction

Sensors have long since been used for monitoring processes where humans are
either endangered by hazardous environments, too costly to be an option, or

∗Selected sections of this report were published in the Proceedings Second Latin-American
Symposium on Dependable Computing, Salvador, Bahia, Brazil, October 2005. This work was
partially supported by the LaSIGE and by the FCT project P-SON POSC/EIA/60941/2004
via POSI and FEDER funds.
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simply not able to effectively perform the sensing task. Recent progresses in
miniaturization and networking technologies are empowering the use of sensors
in self-organizing wireless networks, where nodes cooperate to more effectively
achieve some goal. Wireless sensor networks have a wide range of applications,
such as military, commercial, industrial, home or health.

In this paper we study techniques to increase the dependability of sensor
networks. Nodes that crash can reduce the accuracy or completeness of the
information being collected. Additionally, if too many nodes fail, the network
may become disconnected. Therefore, we are particularly concerned with tech-
niques that extend the lifetime of the network by postponing disconnection. A
sensible strategy for increasing the dependability of a sensor network consists
in deploying more nodes than strictly necessary. In this way, nodes collectively
decide which ones remain active and which ones may go to sleep. To ensure
proper operation of the sensor network, sleeping nodes should monitor active
nodes frequently. Crashed nodes may cause sub-optimal routing (which wastes
energy) as well as a network partition. On the other hand, to save the energy,
nodes should remain sleeping as much as possible. If the energy consumed with
the monitoring process is too high, spare nodes may exhaust their batteries (and
the batteries of active nodes) before they are needed.

In this context, we would like to select a value for the monitoring period that
maximizes the system availability. This task can be prohibitively complex due
to the multiple combinations of factors that affect the system lifetime such as the
initial energy available to nodes, power consumption, network topology, etc. The
paper addresses this complexity by making the following contributions: in first
place, it proposes a methodology of analysis that simplifies the reasoning about
the network behavior and, in second place, it proposes two new metrics that
capture the importance of the relative values of different system parameters.
The first metric, called “Failure Weight Factor”, F , relates the Mean Time
Between Failures, MTBF , with the maximum lifetime of the network, in ideal
monitoring conditions. The second metric, called “Power On-off Consumption
Factor”, P , relates the energy spent powering nodes on and off with the energy
spent by other sources of energy consumption. Using simulations, we show that
these two metrics are useful to reason about the impact of faults in the network
lifetime.

The rest of the paper is structured has follows. Section 2 overviews related
work. Section 3 presents our reference cell-based algorithm for energy conser-
vation. Section 4 describes our metrics and the analysis methodology. The
simulation results are presented and discussed in Section 5. Finally, Section 6
concludes the paper.

2 Background

The benefits gained from having more nodes than necessary have to be balanced
against the (energy) costs of managing the nodes. In this section, we overview
related work that helps to answer the following questions: How can the lifetime
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of a sensor network be precisely defined? How is energy consumed in a sensor
network? Which are the best techniques to tolerate node failures? Should some
redundant nodes be kept idle or, on the contrary, should all redundant nodes be
kept sleeping most of the time? How to replace nodes whose energy has been
exhausted? Which routing algorithm should be adopted? Previous work on
the above topics helps us to define our strategy to build a fault-tolerant sensor
network.

Network Lifetime In the literature, there are several definitions of network
lifetime [25, 30, 7], like time to first node that dies. In this paper, we adopt
the definition from [3], which considers that network life ends when the first
partition occurs. For the scenarios considered in this paper, this metric offers
a good measure of the availability of the network, because partitions typically
occur little after half of the space where the sensor network lies becomes empty
of nodes1.

Energy Consumption In a sensor network, tasks that typically consume
more energy are: sending and receiving messages, listening to the channel when
idle, and processing. In this paper we do not consider sensing energy, because
it depends mainly on the sensing task.

Several papers report that nodes consume a significant amount of energy
in idle mode [23, 12, 8]. According to [12], the ratio of power needed in receive
(transmit) mode against idle mode can be as low as 1.15 (1.56) 2. This order
of magnitude for idle power consumption paves the way to selectively powering
down nodes, to conserve energy, because nodes consume only a small amount of
energy while sleeping. One aspect that is often overlooked in literature is the cost
of powering on and off a node. We believe that any algorithm that selectively
powers down nodes to save energy must address this cost. In fact, there are two
issues to consider: the time it takes to wake up and the large spike in energy
consumption, due to the wakeup action alone plus a traffic announcement. The
exact figures for both of these depend on the communication card and controlling
software.

Fault-Tolerant Wireless Networks Resilience to node failures and energy
efficiency must be addressed simultaneously, because an energy-efficient routing
algorithm should be fault-tolerant and fault-tolerance can not come at a high
energy cost. For this reason, several authors focused on algorithms that are
both fault-tolerant and energy efficient (e.g, [10] and [11]). Several authors
propose heuristics to ensure k-vertex connectivity [13, 5, 17]. Unfortunately,
this construction requires nodes to be active when they are not strictly required.
The amount of energy consumed this way results in an effective loss of network

1More precisely, most partitions occur after half of the network cells become inactive. A
precise definition of the concept of cell can be found ahead in this text.

2In a Lucent IEEE 802.11 WaveLan PC Card.
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lifetime. Therefore, most approaches to extend the network lifetime try to power
down redundant nodes.

Powering Down Nodes There are many protocols that explore the idea of
powering down redundant nodes, both at network and MAC layers (e.g. [22]).
Attacking the problem at the network layer typically enables longer sleeping
periods, because decisions are more informed. Instead of powering down a node
for a single message or for some predefined number of time slots, knowledge of
the routing algorithm can be used to selectively put some (almost) redundant
nodes to sleep. For instance, this is the case of Span [8] that allows some nodes
to sleep if node density is high enough. In [26], authors address the integra-
tion of the connectivity with the coverage problem. Other authors propose to
selectively power down nodes in cluster-based routing schemes [30, 29, 28]. In
cluster-based algorithms, a good policy to select the cluster-heads is the avail-
able energy (e.g., [28, 29]), instead of other criteria, like node id (e.g., [27]), or
node degree (e.g., [9]). Due to their very well-structured organization and pre-
dictable behavior, division of the space into cells constitutes the ideal scenario
to analyze the impact that the monitoring period has on the lifetime. In fact,
we will show that this division allows us to evaluate precisely the effect of each
input variable on the lifetime and, consequently, on the ideal monitoring pe-
riod setting. For this reason, in this paper, we will adopt a modified version of
Geographical Adaptive Fidelity, GAF [30], which we present in Section 3.

Routing Algorithm Several proposals for energy-aware routing strategies
can be found in the literature [21, 6, 25]. While some of these strategies aim to
prolong as much as possible the lifetime of the first node to die [6, 25], others try
to avoid the exhaustion of the entire network [21]. To reduce power needed to
transmit, nodes might adjust their transmission range. Using this technique, two
papers [25] and [2] showed that the best strategy to deliver a message over a total
distance D is to use equally spaced hops. Although in practice networks do not
have nodes ideally located to relay a message, this result allows to derive upper
bounds on network lifetime [2] and to build power-aware routing algorithms [25].
In [7, 25] authors simultaneously try to minimize power consumption as a whole
and avoid exhaustion of nodes short of energy. Often, avoiding individual node
depletion is not an issue in a sensor network, where fairness is less important
than maintaining the network functioning.

The use of positional information is also important to conserve energy. As
pointed out in [24, 14], positional routing algorithms make a more efficient use of
resources than other routing algorithms like AODV [18], DSDV [19] or DSR [15]
in large networks, because they use much fewer control messages. Additionally,
positional information for the routing algorithm, in a scenario where a cell-based
conserving energy algorithm is in use, comes for free, because a GPS receiver
or an equivalent mechanism already exists. These facts motivated us to use,
for the purpose of this study, a position-based routing algorithm. By avoiding
algorithms that require configuration of several parameters, we also avoid the
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risks of having our results biased by inappropriate settings.
Therefore, we selected the Greedy Perimeter Stateless Routing (GPSR) al-

gorithm [4, 16], because it is localized, and efficient. Furthermore, since GPSR
has a very simple configuration and very few dedicated control messages, its
operation has very little interference in our results. When possible, GPSR uses
the greedy strategy of forwarding messages to the neighbor closest to destina-
tion. When it finds a local minimum, GPSR switches to perimeter mode and
routes around faces. As soon as it finds a node closest to destination than the
previous local minimum, GPSR goes back to greedy mode.

3 An Approach to Build Fault-Tolerant Sensor

Networks

To build a fault-tolerant sensor network we include more nodes than strictly
required. This allows replacement of failed nodes. To save battery, nodes col-
lectively decide which ones are not fundamental for routing or sensing. These
nodes should be sleeping most of the time, and only wake up with the mini-
mum frequency required to replace failed nodes before the network disconnects.
There are several issues that have to be defined in order to implement this strat-
egy. In first place, nodes have to agree on some strategy to define which nodes
should sleep, and which nodes must remain in idle state to maintain the network
connectedness. In second place, one needs to define a strategy to perform the
monitoring of idle nodes. Finally, one needs to define how often the monitoring
procedure should be performed. This paper tackles the latter two issues, with
particular emphasis on the importance of the monitoring period. As motivated
in the previous section, we base our architecture in a GAF [30]-like cell based
network running GPSR [16].

3.1 Node Monitoring in Geographical Adaptive Fidelity

Geographical Adaptive Fidelity (GAF) [30] is a cell-based energy-conserving al-
gorithm. GAF aims to maintain all but one node sleeping in each cell. It assumes
that nodes are aware of their location (for instance, using GPS receivers) and
uses this information to divide the two-dimensional space into a grid. The two
farthest points in any two adjacent cells must be within communication range,
as depicted in Figure 1a. This bounds the cell side, r, to r ≤ R/

√
5, where R

is the communication range of the nodes. In scenarios where it is worthwhile
using GAF, because more than one node exists per cell, resulting graph is very
likely to be connected.

In GAF, nodes can be in one of three states: active, discovery or sleeping.
Changes from one state to another are controlled by discovery messages and by
timers. A node uses discovery messages to inform other nodes of its presence
and of its application-dependent rank. In [30], authors propose as a ranking
criterion, first, the state of the node (active > discovery) and then the expected
lifetime, enat (higher ranks correspond to longer expected lifetimes). Hence,
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Figure 1: GAF and SQA algorithms

discovery messages consist of the following tuple: {node id, grid id, estimated
node active time (enat), node state}. As depicted in Figure 1b, timers can
change state of a node from sleeping to discovery (after Ts), from discovery to
active (after Td) and from active to discovery (after Ta). Nodes send discovery
messages in any of the following situations: i) when they enter the discovery
state, ii) when they enter active state after timeout Td takes them from discovery
to active; iii) periodically, after each period of Td seconds in active state; iv) in
active state when they receive a discovery message from a node with lower rank.
Whenever a node in discovery or active states receives a discovery message from
a node with higher rank it immediately resets its ongoing timers, sets up a timer
to wake up and changes to sleeping state.

If nodes are put to sleep for too long, it may happen that the node occupying
the cell either exhausts its battery or abandons the cell (if it is mobile) leaving
it unattended. On the other hand, if sleeping nodes wake up too early, they will
consume everybody’s resources without further improving routing fidelity, thus
defeating the goal of maximizing network lifetime. To achieve a good trade-
off, GAF dynamically sets the sleeping period of a node, Ts, to depend on the
estimated lifetime of the cell leader. In GAF, Ts is set to a fraction (50%) of the
estimated lifetime of the leader. Hence after the Ta timer of the leader expires,
it switches from active to discovery state, thus having an opportunity to be
replaced in the cell. This is important for load balancing purposes (see [30] for
further details).

3.2 Sleep-Query-Active Algorithm

Unlike [30], in this paper we consider some additional characteristics that make
a more realistic scenario: i) nodes can fail and ii) waking up and putting nodes
to sleep has fixed non-negligible cost. Furthermore, since we only consider
sensor networks of fixed nodes, load balancing is not an issue. These differences
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motivated us to develop a variation of the GAF algorithm, which we call Sleep-
Query-Active Algorithm (SQA), specifically suited to our setting. The states of
SQA are depicted in Figure 1c. SQA is a pretty simple algorithm where nodes
can only be in one of two states: either sleeping or active. The purpose of the
wait state is only to desynchronize nodes that start at the same time. In our
experiments, Tw was randomly set between 0 and 1 with uniform probability.

SQA nodes send discovery messages in the following situation: i) when they
enter active state, ii) periodically when they are in the active state (to over-
come the loss of messages) and iii) in active state when they receive a discovery
message from a node with lower rank. Differences to GAF in the exchange of
discovery messages, mainly reflect the way the rank is determined. In SQA
the rank of the node is determined by the enat alone. Despite not providing
any additional protection against node failures, nodes with larger supplies of
energy will give an additional degree of protection against unexpected energy
consumption caused by some peak of traffic. Perhaps the most important dif-
ference between GAF and SQA is that in SQA the sleeping timeout, Ts, which
we deem as the monitoring period, is randomly chosen from an interval that is
fixed beforehand. When we say that Ts = c, we really mean that Ts is selected
from the interval [0.5× c, 1.5× c]. Then, each time a node goes to sleep, it picks
the value for Ts from that interval with uniform probability. Our experimental
evaluation shows that this choice is appropriate, because more often that not,
the sensor networks will tend to behave in a very predictable way and using an
optimal fixed value for Ts will yield longer lifetimes than the dynamic approach
of GAF. The reader should notice that tuning SQA resumes to determining Ts.
Selecting the most appropriate Ts is a challenging task that we address in the
next sections. In fact, as we show in Section 5, for an appropriate choice of the
monitoring period, SQA can successfully replace GAF in sensor networks.

4 Proposed Metrics and Analysis Methodology

When using SQA, we would like to determine the monitoring period Ts that
maximizes network lifetime. Unfortunately, following a theoretical approach
to determine Ts is a task of great difficulty. An example of such an attempt
can be found in [3], where a theoretical bound for the network lifetime in a
scenario where dead nodes are replaced at once without spending energy (we
will call this the “ideal scenario” or “ideal network”) is derived. However, that
work does not account for all the parameters we consider in this paper (e.g.
faults) and, as noted in [3], it cannot be easily extended to capture practical
scenarios. Hence, in this paper we have opted to use simulations to evaluate
the effect of different parameters on the Ts. Unfortunately, without a correct
methodology, the process of determining the effect of Ts on a network using
simulations is also a daunting task. In fact, there are many factors that can
influence network lifetime and consequently, Ts, including initial energy of nodes,
idle energy consumption, transmission power, consumption power, sleep energy
consumption, not to mention power on consumption and faults. Furthermore,
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these factors can be combined in multiple ways and often can not be completely
isolated in order to analyze their impact on network lifetime. Finally, but not
the least, a single ns-2 [1] simulation of a given configuration (i.e., for a single
monitoring period), even when in executed on a Pentium IV 2.8 GHz with 2Gb
of RAM, takes more than 100 seconds to complete.

To handle this complexity, the paper makes two contributions. In first place
we propose a new set of metrics to reason about the influence of faults in the
network lifetime. An interesting feature of these metrics is that they capture the
relative weight of different factors, and highlight that networks with different
absolute values of some parameters may exhibit a comparable behaviour. In
second place, we propose a methodology of analysis that allows to reason about
the impact of these metrics before assessing the impact of network topology
in the final system availability. We will address these two contributions in the
following paragraphs.

4.1 The P and F Metrics

Our metrics are motivated by the insight that, in the context of assessing the
network availability, time intervals – in particular the monitoring period – should
be analyzed in a relative sense: a monitoring period of 1 second has a different
impact on a network whose lifetime is just 10 seconds than on a network whose
lifetime is 1000 seconds. In a similar manner, the magnitude of values like power
needed to transmit or to receive should also be measured in a relative way.

To reason in a generic manner about the fault-tolerance and power-on con-
sumption of sensor networks, we start by defining the notion of ideal lifetime,
LTI . LTI is the network lifetime in a scenario where i) there are no faults,
ii) switching nodes on and off has no cost and iii) nodes in the cells are om-
nisciently replaced at once (if replacement is available). LTI is determined by
simulation and measures the available initial energy versus average consump-
tion of the network. Using LTI we propose the following metrics to assess the
network behavior:

• The power on-off consumption factor, P , measures the impact of the en-
ergy spent powering nodes on and off. We define it as the ratio between
the energy needed for one power on-off operation versus remaining energy
spent in 1 time unit. This is determined as P = POE/(TE0/LTI), where
POE is the power on-off energy and TE0 is the total energy available
in the beginning of the network life (if we assume that all N nodes have
the same energy, E0, in the beginning, TE0 = N × E0). This makes P
a function of all remaining energies of the system but not of node failure
rate.

• The failure weight factor, F , measures the impact of faults in the network.
We define it as the lifetime of the ideal network, LTI , relative to MTBF ,
i.e., F = LTI/MTBF . This makes F a function of all energies except
power on-off energy. Large F means many node failures (possibly due to
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Figure 2: Cell Based Methodology vs Network Simulation

a long network lifetime), while large P means a lot of energy needed to
power a node on and off (at least compared with remaining energies, like
idle and traffic energies).

4.2 From Cell Level to Network Level Simulation

We propose and use the following methodology to evaluate the lifetime of the
wireless network. Instead of always running simulation on a complete network,
we first perform a careful study of the behavior of each network cell. Then, by
estimating how many cells are required to maintain the connectivity of a given
topology, we extrapolate the impact of the parameters in the entire network.
We illustrate this methodology in Figure 2. The approach has both concep-
tual and practical advantages. From the conceptual point of view, it allows
to separate the analysis of the influence of topology from other factors. From
the practical point of view, cell level simulations i) allow to isolate factors that
influence network lifetime and ii) run much faster. Therefore, cell simulation
allows a much richer analysis of different combinations of factors in practical
time. We validate our methodology by comparing the results obtained using
this method with the results obtained by simulating the entire network. An
additional advantage of the cell simulations is that its results can be used to
assess other system properties. For instance, although outside the scope of this
paper (where we focus on network lifetime) the analysis of cell simulations could
be easily extended to study the problem of assessing the coverage of the sensor
network in presence of faults.

5 Experimental Results

In this section we present our simulation results. We start by describing the
settings used to perform cell level simulations and network level simulations.
We then validate our methodology by comparing results derived from it (based
on cell level simulations) with results obtained by directly simulating the entire
network. Later, we show the relevance of the P and F metrics and their impact
on the network lifetime. Finally, we illustrate the importance of appropriately
selecting the correct monitoring period.
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Node Rx (W) Tx (W) Idle (W) Sleep (W) Init. Energy (J)

IEEE 802.11 0.974072 1.3410736 0.843 0.066303 15
MEDUSA-II 0.01248 0.01565 0.01234 0.00002 1
Rockwell’s WINS 0.7516 1.0805 0.7275 0.064 20

Table 1: Consumption of energy for the nodes tested

5.1 Simulation Settings

In our experiments we have used three different types of nodes: a node equipped
with a Lucent IEEE 802.11 2 Mbps WaveLAN PC Card, a Rockwell’s WINS
node and a MEDUSA-II node. Table 1 resumes the consumption of the three
different nodes in the situations considered in our simulations. Figures for the
first node were taken from [12], while values for the other two types of nodes
were inferred from [20].

We assume that failures of nodes follow an exponential distribution. How-
ever, for simulation purposes, we have modeled this as a geometric distribution.
After constant time intervals P , all nodes may fail with a given random prob-
ability p (we set P = 0.5 seconds in our simulator). Hence parameter r of the
exponential distribution is r u − 1

P
ln(1 − p), while MTBF = 1/r.

To plot a graphic that represents lifetime relative to LTI against the moni-
toring period relative to LTI (e.g., Figure 4), we select a number of monitoring
periods, Ts, not exceeding the ideal lifetime. Then, we fix all the parameters,
like power on-off consumption, idle power, initial energy, etc. and we experi-
mentally analyze the lifetime achieved for each Ts. We used a square size of
800 × 800 meters with 256 nodes, which we divided into 8 × 8 squares (giving
an average of 4 nodes per cell). Communication range was 250 meters. The
main difference between the cell and the ns-2 experiments is the way in which
lifetime is determined. In ns-2 we run a simulation of the entire network to
determine this value, while in the cell simulations we use a method that we
describe next. We have performed additional simulations that show that these
results also apply when other topologies are used (this aspect is discussed in
Section 5.5).

Cell Level Simulation Settings To determine the lifetime for a given mon-
itoring period, we fix this monitoring period and use time as the independent
variable. Then, as time goes by we assume a constant consumption of energy
and observe whether the cell is awake or sleeping (it is awake if there is any
node awake, otherwise it is sleeping). We used an average of 100 of these trials
to approximate a continuous random variable, function of time t, that repre-
sents the probability that the cell is awake. An example of a random variable
like this is depicted in Figure 3a, for a specific value of Ts. To infer network
behavior from this, we need to know the topology of the network. If disconnec-
tion occurs when an average number of D out of N cells are sleeping, we use
a rough approximation and assume that when the awake probability of a cell
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Figure 3: Derivation of network lifetime in cell simulation

drops below (N − D)/N , the network gets disconnected. Taking our grid for
example, we used a simple simulation to derive the probability density function
of the number of sleeping cells that cause network disconnection. This looks
like a Gaussian curve centered at 40 and truncated at the 64 cells. Therefore,
in such a topology, the threshold (64 − 40)/64 = 0.375 corresponds to a point
where, more often that not, network will be disconnected 3. Figure 3b shows the
relative lifetime graph as a function of the monitoring period for these settings.

Lifetime and monitoring periods represented in this plot are relative to the
ideal lifetime LTI , to abstract away the absolute magnitudes that govern the
network behavior. Note that an entire data series needed to create a graphic like
the one represented in Figure 3a produces a single point in Figure 3b. In this
case, this point should occur around t = 327 seconds (where the line y = 0.375
intersects the probability curve). In the cell simulations LTI is estimated as
the number of nodes of the cell × the time it takes to consume all the energy
of a node4. For the settings of these figures, this is around 324. Since Ts = 8
and LT = 327, this gives a relative monitoring period of 8/324 u 0.025 and a
relative lifetime of 327/324 u 1.009. It is not really counterintuitive to have a
lifetime greater than the ideal, due to the large idle power. In fact, this makes
it advantageous to let some cells sleeping from time to time, to prolong their
lives. On the contrary the ideal lifetime assumes that all the cells should be
constantly awoken, which is not always the best strategy.

Network Level Simulation Settings We used the ns-2 simulator [1], ver-
sion 2.27, to perform the network level simulations presented in this paper. This
required us to implement the SQA algorithm as well as port the GPRS rout-
ing algorithm to the same version of ns-2. We used a simulation environment
similar to the one described in [30]. Nodes were divided in traffic and transit
nodes. Traffic nodes serve as sources and sinks of traffic, while transit nodes

3In this case, disconnection occurs when a significant proportion of the network is, in fact,
unusable. We also observed this for other grid configurations.

4The reader should keep in mind that this only refers to the cell simulations.
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Figure 4: Lifetime estimated using cell level and network level simulations

are only used as intermediate hops for that traffic. Only transit nodes run the
SQA/GPSR protocol. Traffic was generated by constant bit rate (CBR) traf-
fic sources. In all our experiments we fixed the number of traffic nodes to 10.
To prevent traffic nodes to stop generating traffic, their supply of energy was
infinite.

5.2 Validation of the Methodology

To validate our methodology, we compare the results obtained from the applica-
tion of the methodology, with the results obtained from complete network level
simulations, using ns-2. Samples of several simulation we have performed for
three different concrete node characteristics are depicted in Figure 4. Although
the shape of the lines is slightly different, the peak in the relative lifetime plots
is comparable, despite huge differences in power figures of nodes. This is very
important, because in this peak lies the answer to the main question of this
paper: what is the optimal selection of Ts? The fact that its width is similar in
both types of simulations, allows us to use the simpler cell simulations to reason
about the impact of the P and F metrics.

5.3 Relevance of P and F Metrics

Impact of the Power Parameters on the Lifetime We observed that the
impact of the power parameters, like idle, transmission or reception, can be
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hidden by plotting curves relative to the ideal lifetime. This was a surprising
result of our simulations. Experiments made both with cell level simulations
and in ns-2 confirmed this observation. Figure 4 allows to confirm this, because
the three types of nodes have similar curves despite the differences in their
power ratings (note for instance that MEDUSA-II consumptions are orders of
magnitude away from the other types of nodes). Hence, the effect of the absolute
values of the power consumptions are almost entirely ruled out, by using the
simple technique of plotting lifetime curves relative to the ideal lifetime. This
considerably simplifies the analysis of the metrics P and F to be done ahead.

The parameters that have larger impact on relative network lifetime curves
are the power on consumption (assessed by P) and the faults (assessed by F).
Impact of the node density is discussed in Section 5.4.

Impact of the Metrics P and F on the Lifetime We now use cell level
simulations to discuss the impact of faults (represented by F) on the network
lifetime considering a non-negligible replacement cost (represented by P). For
most values of P and F , the stability of the lifetime peak still holds. Since several
combination of input parameters are captured by the two metrics, a precise
determination of these metrics should be enough to qualitatively determine the
behavior of the network. Figure 5 shows extreme as well as typical values for
P and F . We can see that results confirm the initial intuition: large values of
F tend to require smaller monitoring periods (thus shrinking the curve at the
right and making the peak start slightly earlier). On the other hand, larger
values of P will penalize small monitoring periods (thus shrinking the curve
at the left). Hence, as these two metrics grow, the curve tends to become
thinner. Moreover, the growth of these metrics also makes the curve shorter
as they impact network lifetime. To conserve space we only depict results for
the IEEE 802.11 adapter. However, results for the other types of nodes show
similar behaviors. Together with other simulations that we have done, this
shows that very different operational conditions have similar behaviors, as long
as the metrics P and F are similar (this effect also occurs in Figure 4).

Table 2, which summarizes the results obtained, offers a qualitative analysis
of this issue. Outside the parenthesis we describe the system parameter that
dominates network lifetime (other energies refers to idle and traffic energies),
while inside we describe the shape of the peak that exists in the monitoring
period (earlier, normal or later, respectively means that peak starts closer, in
the normal place or farther away from the origin). Given the values of Table 1
and the huge idle mode power, we expect current technology to operate in
the first line of the table (“Small P”). If with technological improvements idle
energy decreases, P will depend mainly on data traffic generated on the network.
In this case, the network will operate in a zone captured by the bottom line of
the table (“Large P”), whenever average traffic becomes low. In such scenarios,
the appropriate choice of Ts will make an even more significant impact on the
network lifetime.

In our simulations, including results depicted in Figures 4 and 5, longest
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Figure 5: Impact of P and F

Small F Intermediate F Large F

Small P
Other en.
(earlier)

Other en. &
Failures (earlier)

Failures (earlier)

Intermediate P All en. (normal) None (normal)
Failures (slightly

earlier)

Large P On-off (later) On-off (later)
Depends rel.

magnitude (later)

Table 2: Dominating parameter (and peak shape) for variations of F and P
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Figure 6: Relative lifetime and lifetime boost with varying node densities

lifetimes are almost always achieved when monitoring period is in the range of
10 to 20% of the ideal lifetime, for most values of P and F . This stability has to
do with the fact that a perfect monitoring algorithm should ensure that network
has as few active nodes as possible (fewer than the number of cells, in practice),
but preserving the minimum required to prevent disconnection from occurring.
Hence, substitution of nodes depends on the rate nodes die, which on its turn will
determine lifetime. This explains why better strategies for (potentially) longer
lifetimes, should use longer monitoring periods. Nevertheless, if this period goes
over some threshold (30 to 50%), the relative lifetime sharply decreases, because
nodes that die are not replaced and many cells become empty. This reveals a
thin line between optimal and disastrous configuration.

5.4 Impact of Node Density on the Lifetime

One aspect of our results that is difficult to understand with the ns-2 simulations,
but evident in cell simulations is the impact of node density. Cell experiments
(that we omit to conserve space), have shown that the peak of the lifetime curve
shrinks when the number of nodes per cell increases. This is consistent with
results obtained in ns-2 (IEEE 802.11) and depicted in Figure 6a, where this
effect is quite subtle. In this experiment we fixed all parameters and varied the
number of nodes from 64 to 512 (density d = 1 represents 256 nodes). The
gain in lifetime (relative to the lifetime of density 1) is depicted in Figure 6b
for different network densities. We have studied two scenarios of independent
interest: ideal replacement policy with and without node failures. The approxi-
mately linear growth of lifetime when there are no failures is consistent with [3].
However, when we consider failures of nodes, as absolute lifetime increases, fail-
ures become more important (F grows). This makes lifetime (relatively) shorter
as density increases.
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Figure 7: Lifetime for Different Replacement Methods

5.5 Impact of Topology on the Lifetime

Other experiments that we have made with ns-2 for the topology settings origi-
nally described in [30] did not show significant changes to the results presented
here. This scenario is of particular interest, because nodes are scattered in a
rectangle of 1500× 300 meters with 100× 100 meters for each cell, which gives
only 3 cells in one of the directions. Cell simulations with thresholds different
from 0.375 also have also produced similar results. Nevertheless, we believe that
it is still an open problem to know if there are configurations that considerably
impact the lifetime of the network and how can that impact be predicted.

5.6 Practical Relevance

We finally show in Figure 7 the benefit from adequately selecting the monitoring
period Ts. We illustrate this by using several different replacement policies in
scenarios with increasing node failure rates, simulated for 256 nodes in ns-2
(IEEE 802.11 adapter). F = 0 means that there are no failures, i.e., MTBF =
∞. First, we determine an upper bound for the lifetime using an ideal scenario
with node failures (“Ideal w/ failures”). Next, we use a worst-case setting where
Ts is so long that no actual substitution ever occurs (“Pessimal”). The third
intermediate scenario consists of keeping all nodes awake. In this case, no idle
energy is conserved (“All active”). The y-axis of the graphic is normalized to
the ideal lifetime, LTI (which does not vary along the x-axis, as it does not have
node failures).

Then we plot two additional curves in the graphic: lifetime obtained by the
GAF algorithm and lifetime obtained by SQA. For SQA we select the monitor-
ing period using the results from the analysis presented in Subsection 5.3: we
selected smaller monitoring periods for larger values of F , starting at 20% of
LTI , for small values of F and decreasing for 15%, 10% and finally 5% as F
grew larger. From the figure we can reach the following conclusions:

• Not adjusting the monitoring period (for instance, using the pessimal or
the all active approaches) offers a network lifetime that is much worse
than the ideal.
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• Using the analysis presented in this paper, SQA can be tuned to achieve
a lifetime that is frequently between 80 and 90% of the ideal.

• SQA offers, for most values of F , a much longer network lifetime than
GAF, that can be as high as 25%.

As a promising future research topic, we envision to combine the advantages
of SQA and GAF. The resulting algorithm could have the ability to dynamically
set the monitoring period, according to the importance of faults existing on the
network or to the power on-off consumption.

6 Conclusions

In this paper we studied the dependability of sensor networks, considering energy
constraints and fault-tolerance requirements. We aimed at determining the
ideal monitoring period for cell-based energy conserving techniques, to maximize
network lifetime, here defined as time to the first network partition. To simplify
this task, this paper made two contributions: a methodology of analysis, which
consisted of inferring network behavior from inspection of individual cells; and
two metrics, P and F that are able to capture the operational conditions of the
sensor network.

Experimental results demonstrated the appropriateness of using these met-
rics to assess network behavior, by showing that, often, P and F strongly de-
termine network operation. Furthermore, results have shown that it is possible
to achieve a lifetime close to the ideal by selecting the monitoring period ade-
quately and according to P and F . More precisely, we have shown that network
lifetime can be within 80 and 90% of that provided by an (non-implementable)
ideal replacement policy, even for very large failure rates.
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